Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/*
* Author: Nicolas Pope and Sebastian Hahta (2019)
* Implementation of algorithm presented in article(s):
*
* [1] Humenberger, Engelke, Kubinger: A fast stereo matching algorithm suitable
* for embedded real-time systems
* [2] Humenberger, Zinner, Kubinger: Performance Evaluation of Census-Based
* Stereo Matching Algorithm on Embedded and Multi-Core Hardware
*
* Equation numbering uses [1] unless otherwise stated
*
*/
#include <opencv2/core/cuda/common.hpp>
using namespace cv::cuda;
using namespace cv;
#define BLOCK_W 128
#define RADIUS 7
#define RADIUS2 2
#define ROWSperTHREAD 20
#define XHI(P1,P2) ((P1 <= P2) ? 0 : 1)
namespace ftl {
namespace gpu {
__device__ uint64_t sparse_census(unsigned char *arr, size_t u, size_t v, size_t w) {
uint64_t r = 0;
unsigned char t = arr[v*w+u];
for (int n=-7; n<=7; n+=2) {
auto u_ = u + n;
for (int m=-7; m<=7; m+=2) {
auto v_ = v + m;
r <<= 1;
r |= XHI(t, arr[v_*w+u_]);
}
}
return r;
}
__device__ float fit_parabola(size_t pi, uint16_t p, uint16_t pl, uint16_t pr) {
float a = pr - pl;
float b = 2 * (2 * p - pl - pr);
return static_cast<float>(pi) + (a / b);
}
__global__ void census_kernel(PtrStepSzb l, PtrStepSzb r, uint64_t *census) {
//extern __shared__ uint64_t census[];
size_t u = (blockIdx.x * BLOCK_W + threadIdx.x + RADIUS);
size_t v_start = blockIdx.y * ROWSperTHREAD + RADIUS;
size_t v_end = v_start + ROWSperTHREAD;
if (v_end >= l.rows) v_end = l.rows;
if (u >= l.cols) return;
size_t width = l.cols;
for (size_t v=v_start; v<v_end; v++) {
//for (size_t u=7; u<width-7; u++) {
size_t ix = (u + v*width) * 2;
uint64_t cenL = sparse_census(l.data, u, v, l.step);
uint64_t cenR = sparse_census(r.data, u, v, r.step);
census[ix] = cenL;
census[ix + 1] = cenR;
//disp(v,u) = (float)cenL;
//}
}
//__syncthreads();
return;
}
__global__ void disp_kernel(float *disp_l, float *disp_r, size_t width, size_t height, uint64_t *census, size_t ds) {
//extern __shared__ uint64_t census[];
size_t u = (blockIdx.x * BLOCK_W) + threadIdx.x + RADIUS2;
size_t v_start = (blockIdx.y * ROWSperTHREAD) + RADIUS2;
size_t v_end = v_start + ROWSperTHREAD;
if (v_end >= height) v_end = height;
for (size_t v=v_start; v<v_end; v++) {
//for (size_t u=7; u<width-7; u++) {
//const size_t eu = (sign>0) ? w-2-ds : w-2;
//for (size_t v=7; v<height-7; v++) {
//for (size_t u=7; u<width-7; u++) {
//const size_t ix = v*w*ds+u*ds;
uint16_t last_ham[2] = {65535,65535};
uint16_t min_disp[2] = {65535,65535};
uint16_t min_before[2] = {0,0};
uint16_t min_after[2] = {0,0};
size_t dix[2] = {0,0};
for (size_t d=0; d<ds; d++) {
uint16_t hamming1 = 0;
uint16_t hamming2 = 0;
//if (u+2+ds >= width) break;
for (int n=-2; n<=2; n++) {
const auto u_ = u + n;
for (int m=-2; m<=2; m++) {
const auto v_ = (v + m)*width;
// Correct for disp_R
auto l1 = census[(u_+v_)*2+1];
auto r1 = census[(v_+(u_+d))*2];
// Correct for disp_L
auto l2 = census[(u_+v_)*2];
auto r2 = census[(v_+(u_-d))*2+1];
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
hamming1 += __popcll(r1^l1);
hamming2 += __popcll(r2^l2);
}
}
if (hamming1 < min_disp[0]) {
min_before[0] = last_ham[0];
min_disp[0] = hamming1;
dix[0] = d;
}
if (dix[0] == d) min_after[0] = hamming1;
last_ham[0] = hamming1;
if (hamming2 < min_disp[1]) {
min_before[1] = last_ham[1];
min_disp[1] = hamming2;
dix[1] = d;
}
if (dix[1] == d) min_after[1] = hamming2;
last_ham[1] = hamming2;
}
float d1 = (dix[0] == 0 || dix[0] == ds-1) ? (float)dix[0] : fit_parabola(dix[0], min_disp[0], min_before[0], min_after[0]);
float d2 = (dix[1] == 0 || dix[1] == ds-1) ? (float)dix[1] : fit_parabola(dix[1], min_disp[1], min_before[1], min_after[1]);
//if (abs(d1-d2) <= 1.0) disp(v,u) = abs((d1+d2)/2);
//else disp(v,u) = 0.0f;
disp_l[v*width+u] = d2;
disp_r[v*width+u] = d1;
__global__ void consistency_kernel(float *d_sub_l, float *d_sub_r, PtrStepSz<float> disp) {
size_t w = disp.cols;
size_t h = disp.rows;
//Mat result = Mat::zeros(Size(w,h), CV_32FC1);
size_t u = (blockIdx.x * BLOCK_W) + threadIdx.x + RADIUS;
size_t v_start = (blockIdx.y * ROWSperTHREAD) + RADIUS;
size_t v_end = v_start + ROWSperTHREAD;
if (v_end >= disp.rows) v_end = disp.rows;
if (u >= w) return;
for (size_t v=v_start; v<v_end; v++) {
int a = (int)(d_sub_l[v*w+u]);
if ((int)u-a < 0) continue;
auto b = d_sub_r[v*w+u-a];
if (abs(a-b) <= 1.0) disp(v,u) = abs((a+b)/2);
else disp(v,u) = 0.0f;
//}
}
/*__global__ void test_kernel(const PtrStepSzb l, const PtrStepSzb r, PtrStepSz<float> disp)
{
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
if (x < l.cols && y < l.rows) {
const unsigned char lv = l(y, x);
const unsigned char rv = r(y, x);
disp(y, x) = (float)lv - (float)rv; //make_uchar1(v.z, v.y, v.x);
}
}*/
void rtcensus_call(const PtrStepSzb &l, const PtrStepSzb &r, const PtrStepSz<float> &disp, size_t num_disp, const int &stream) {
dim3 grid(1,1,1);
dim3 threads(BLOCK_W, 1, 1);
grid.x = cv::cuda::device::divUp(l.cols - 2 * RADIUS, BLOCK_W);
grid.y = cv::cuda::device::divUp(l.rows - 2 * RADIUS, ROWSperTHREAD);
// TODO, reduce allocations
uint64_t *census;
cudaMalloc(&census, sizeof(uint64_t)*l.cols*l.rows*2);
//cudaMemset(census, 0, sizeof(uint64_t)*l.cols*l.rows*2);
cudaMalloc(&disp_l, sizeof(float)*l.cols*l.rows);
cudaMalloc(&disp_r, sizeof(float)*l.cols*l.rows);
//size_t smem_size = (2 * l.cols * l.rows) * sizeof(uint64_t);
census_kernel<<<grid, threads>>>(l, r, census);
cudaSafeCall( cudaGetLastError() );
grid.x = cv::cuda::device::divUp(l.cols - 2 * RADIUS2, BLOCK_W);
grid.y = cv::cuda::device::divUp(l.rows - 2 * RADIUS2, ROWSperTHREAD);
//grid.x = cv::cuda::device::divUp(l.cols - 2 * RADIUS - num_disp, BLOCK_W) - 1;
disp_kernel<<<grid, threads>>>(disp_l, disp_r, l.cols, l.rows, census, num_disp);
cudaSafeCall( cudaGetLastError() );
consistency_kernel<<<grid, threads>>>(disp_l, disp_r, disp);
cudaSafeCall( cudaGetLastError() );
cudaFree(census);
//if (&stream == Stream::Null())
cudaSafeCall( cudaDeviceSynchronize() );
}
};
};