/* * Author: Nicolas Pope and Sebastian Hahta (2019) * Implementation of algorithm presented in article(s): * * [1] Humenberger, Engelke, Kubinger: A fast stereo matching algorithm suitable * for embedded real-time systems * [2] Humenberger, Zinner, Kubinger: Performance Evaluation of Census-Based * Stereo Matching Algorithm on Embedded and Multi-Core Hardware * * Equation numbering uses [1] unless otherwise stated * */ #include <opencv2/core/cuda/common.hpp> using namespace cv::cuda; using namespace cv; #define BLOCK_W 128 #define RADIUS 7 #define RADIUS2 2 #define ROWSperTHREAD 20 #define XHI(P1,P2) ((P1 <= P2) ? 0 : 1) namespace ftl { namespace gpu { __device__ uint64_t sparse_census(unsigned char *arr, size_t u, size_t v, size_t w) { uint64_t r = 0; unsigned char t = arr[v*w+u]; for (int n=-7; n<=7; n+=2) { auto u_ = u + n; for (int m=-7; m<=7; m+=2) { auto v_ = v + m; r <<= 1; r |= XHI(t, arr[v_*w+u_]); } } return r; } __device__ float fit_parabola(size_t pi, uint16_t p, uint16_t pl, uint16_t pr) { float a = pr - pl; float b = 2 * (2 * p - pl - pr); return static_cast<float>(pi) + (a / b); } __global__ void census_kernel(PtrStepSzb l, PtrStepSzb r, uint64_t *census) { //extern __shared__ uint64_t census[]; size_t u = (blockIdx.x * BLOCK_W + threadIdx.x + RADIUS); size_t v_start = blockIdx.y * ROWSperTHREAD + RADIUS; size_t v_end = v_start + ROWSperTHREAD; if (v_end >= l.rows) v_end = l.rows; if (u >= l.cols) return; size_t width = l.cols; for (size_t v=v_start; v<v_end; v++) { //for (size_t u=7; u<width-7; u++) { size_t ix = (u + v*width) * 2; uint64_t cenL = sparse_census(l.data, u, v, l.step); uint64_t cenR = sparse_census(r.data, u, v, r.step); census[ix] = cenL; census[ix + 1] = cenR; //disp(v,u) = (float)cenL; //} } //__syncthreads(); return; } __global__ void disp_kernel(float *disp_l, float *disp_r, size_t width, size_t height, uint64_t *census, size_t ds) { //extern __shared__ uint64_t census[]; size_t u = (blockIdx.x * BLOCK_W) + threadIdx.x + RADIUS2; size_t v_start = (blockIdx.y * ROWSperTHREAD) + RADIUS2; size_t v_end = v_start + ROWSperTHREAD; if (v_end >= height) v_end = height; //if (u >= width-ds) return; for (size_t v=v_start; v<v_end; v++) { //for (size_t u=7; u<width-7; u++) { //const size_t eu = (sign>0) ? w-2-ds : w-2; //for (size_t v=7; v<height-7; v++) { //for (size_t u=7; u<width-7; u++) { //const size_t ix = v*w*ds+u*ds; uint16_t last_ham[2] = {65535,65535}; uint16_t min_disp[2] = {65535,65535}; uint16_t min_before[2] = {0,0}; uint16_t min_after[2] = {0,0}; size_t dix[2] = {0,0}; for (size_t d=0; d<ds; d++) { uint16_t hamming1 = 0; uint16_t hamming2 = 0; //if (u+2+ds >= width) break; for (int n=-2; n<=2; n++) { const auto u_ = u + n; for (int m=-2; m<=2; m++) { const auto v_ = (v + m)*width; // Correct for disp_R auto l1 = census[(u_+v_)*2+1]; auto r1 = census[(v_+(u_+d))*2]; // Correct for disp_L auto l2 = census[(u_+v_)*2]; auto r2 = census[(v_+(u_-d))*2+1]; hamming1 += __popcll(r1^l1); hamming2 += __popcll(r2^l2); } } if (hamming1 < min_disp[0]) { min_before[0] = last_ham[0]; min_disp[0] = hamming1; dix[0] = d; } if (dix[0] == d) min_after[0] = hamming1; last_ham[0] = hamming1; if (hamming2 < min_disp[1]) { min_before[1] = last_ham[1]; min_disp[1] = hamming2; dix[1] = d; } if (dix[1] == d) min_after[1] = hamming2; last_ham[1] = hamming2; } float d1 = (dix[0] == 0 || dix[0] == ds-1) ? (float)dix[0] : fit_parabola(dix[0], min_disp[0], min_before[0], min_after[0]); float d2 = (dix[1] == 0 || dix[1] == ds-1) ? (float)dix[1] : fit_parabola(dix[1], min_disp[1], min_before[1], min_after[1]); //if (abs(d1-d2) <= 1.0) disp(v,u) = abs((d1+d2)/2); //else disp(v,u) = 0.0f; //disp(v,u) = d1; disp_l[v*width+u] = d2; disp_r[v*width+u] = d1; } } __global__ void consistency_kernel(float *d_sub_l, float *d_sub_r, PtrStepSz<float> disp) { size_t w = disp.cols; size_t h = disp.rows; //Mat result = Mat::zeros(Size(w,h), CV_32FC1); size_t u = (blockIdx.x * BLOCK_W) + threadIdx.x + RADIUS; size_t v_start = (blockIdx.y * ROWSperTHREAD) + RADIUS; size_t v_end = v_start + ROWSperTHREAD; if (v_end >= disp.rows) v_end = disp.rows; if (u >= w) return; for (size_t v=v_start; v<v_end; v++) { int a = (int)(d_sub_l[v*w+u]); if ((int)u-a < 0) continue; auto b = d_sub_r[v*w+u-a]; if (abs(a-b) <= 1.0) disp(v,u) = abs((a+b)/2); else disp(v,u) = 0.0f; //} } } /*__global__ void test_kernel(const PtrStepSzb l, const PtrStepSzb r, PtrStepSz<float> disp) { int x = threadIdx.x + blockIdx.x * blockDim.x; int y = threadIdx.y + blockIdx.y * blockDim.y; if (x < l.cols && y < l.rows) { const unsigned char lv = l(y, x); const unsigned char rv = r(y, x); disp(y, x) = (float)lv - (float)rv; //make_uchar1(v.z, v.y, v.x); } }*/ void rtcensus_call(const PtrStepSzb &l, const PtrStepSzb &r, const PtrStepSz<float> &disp, size_t num_disp, const int &stream) { dim3 grid(1,1,1); dim3 threads(BLOCK_W, 1, 1); grid.x = cv::cuda::device::divUp(l.cols - 2 * RADIUS, BLOCK_W); grid.y = cv::cuda::device::divUp(l.rows - 2 * RADIUS, ROWSperTHREAD); // TODO, reduce allocations uint64_t *census; float *disp_l; float *disp_r; cudaMalloc(&census, sizeof(uint64_t)*l.cols*l.rows*2); //cudaMemset(census, 0, sizeof(uint64_t)*l.cols*l.rows*2); cudaMalloc(&disp_l, sizeof(float)*l.cols*l.rows); cudaMalloc(&disp_r, sizeof(float)*l.cols*l.rows); //size_t smem_size = (2 * l.cols * l.rows) * sizeof(uint64_t); census_kernel<<<grid, threads>>>(l, r, census); cudaSafeCall( cudaGetLastError() ); grid.x = cv::cuda::device::divUp(l.cols - 2 * RADIUS2, BLOCK_W); grid.y = cv::cuda::device::divUp(l.rows - 2 * RADIUS2, ROWSperTHREAD); //grid.x = cv::cuda::device::divUp(l.cols - 2 * RADIUS - num_disp, BLOCK_W) - 1; disp_kernel<<<grid, threads>>>(disp_l, disp_r, l.cols, l.rows, census, num_disp); cudaSafeCall( cudaGetLastError() ); consistency_kernel<<<grid, threads>>>(disp_l, disp_r, disp); cudaSafeCall( cudaGetLastError() ); cudaFree(disp_r); cudaFree(disp_l); cudaFree(census); //if (&stream == Stream::Null()) cudaSafeCall( cudaDeviceSynchronize() ); } }; };