Newer
Older
#include <iostream>
#include <sstream>
#include <string>
#include <ctime>
#include <cstdio>
#include <ftl/calibrate.hpp>
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace std;
using ftl::Calibrate;
void Calibrate::Settings::write(FileStorage& fs) const //Write serialization for this class
{
fs << "{"
<< "BoardSize_Width" << boardSize.width
<< "BoardSize_Height" << boardSize.height
<< "Square_Size" << squareSize
<< "Calibrate_Pattern" << patternToUse
<< "Calibrate_NrOfFrameToUse" << nrFrames
<< "Calibrate_FixAspectRatio" << aspectRatio
<< "Calibrate_AssumeZeroTangentialDistortion" << calibZeroTangentDist
<< "Calibrate_FixPrincipalPointAtTheCenter" << calibFixPrincipalPoint
<< "Write_DetectedFeaturePoints" << writePoints
<< "Write_extrinsicParameters" << writeExtrinsics
<< "Write_gridPoints" << writeGrid
//<< "Write_outputFileName" << outputFileName
//<< "Show_UndistortedImage" << showUndistorsed
<< "Input_FlipAroundHorizontalAxis" << flipVertical
<< "Input_Delay" << delay
//<< "Input" << input
<< "}";
}
void Calibrate::Settings::read(const nlohmann::json& node) //Read serialization for this class
boardSize.width = node["board_size"][0];
boardSize.height = node["board_size"][1];
//node["Calibrate_Pattern"] >> patternToUse;
squareSize = node["square_size"];
nrFrames = node["num_frames"];
aspectRatio = node["fix_aspect_ratio"];
//node["Write_DetectedFeaturePoints"] >> writePoints;
//node["Write_extrinsicParameters"] >> writeExtrinsics;
//node["Write_gridPoints"] >> writeGrid;
//node["Write_outputFileName"] >> outputFileName;
calibZeroTangentDist = node["assume_zero_tangential_distortion"];
calibFixPrincipalPoint = node["fix_principal_point_at_center"];
useFisheye = node["use_fisheye_model"];
flipVertical = node["flip_vertical"];
//node["Show_UndistortedImage"] >> showUndistorsed;
//node["Input"] >> input;
delay = node["frame_delay"];
fixK1 = node["fix_k1"];
fixK2 = node["fix_k2"];
fixK3 = node["fix_k3"];
fixK4 = node["fix_k4"];
fixK5 = node["fix_k5"];
validate();
}
void Calibrate::Settings::validate()
{
goodInput = true;
if (boardSize.width <= 0 || boardSize.height <= 0)
LOG(ERROR) << "Invalid Board size: " << boardSize.width << " " << boardSize.height;
goodInput = false;
LOG(ERROR) << "Invalid square size " << squareSize;
goodInput = false;
LOG(ERROR) << "Invalid number of frames " << nrFrames;
goodInput = false;
flag = 0;
if(calibFixPrincipalPoint) flag |= CALIB_FIX_PRINCIPAL_POINT;
if(calibZeroTangentDist) flag |= CALIB_ZERO_TANGENT_DIST;
if(aspectRatio) flag |= CALIB_FIX_ASPECT_RATIO;
if(fixK1) flag |= CALIB_FIX_K1;
if(fixK2) flag |= CALIB_FIX_K2;
if(fixK3) flag |= CALIB_FIX_K3;
if(fixK4) flag |= CALIB_FIX_K4;
if(fixK5) flag |= CALIB_FIX_K5;
if (useFisheye) {
// the fisheye model has its own enum, so overwrite the flags
flag = fisheye::CALIB_FIX_SKEW | fisheye::CALIB_RECOMPUTE_EXTRINSIC;
if(fixK1) flag |= fisheye::CALIB_FIX_K1;
if(fixK2) flag |= fisheye::CALIB_FIX_K2;
if(fixK3) flag |= fisheye::CALIB_FIX_K3;
if(fixK4) flag |= fisheye::CALIB_FIX_K4;
if (calibFixPrincipalPoint) flag |= fisheye::CALIB_FIX_PRINCIPAL_POINT;
if (!patternToUse.compare("CHESSBOARD")) calibrationPattern = CHESSBOARD;
if (!patternToUse.compare("CIRCLES_GRID")) calibrationPattern = CIRCLES_GRID;
if (!patternToUse.compare("ASYMMETRIC_CIRCLES_GRID")) calibrationPattern = ASYMMETRIC_CIRCLES_GRID;
if (calibrationPattern == NOT_EXISTING)
LOG(ERROR) << " Camera calibration mode does not exist: " << patternToUse;
goodInput = false;
Mat Calibrate::_nextImage(size_t cam)
{
Mat result;
if (cam == 0) {
local_->left(result);
} else if (cam == 1 && local_->isStereo()) {
local_->right(result);
}
return result;
bool Calibrate::Settings::readStringList( const string& filename, vector<string>& l )
{
l.clear();
FileStorage fs(filename, FileStorage::READ);
if( !fs.isOpened() )
return false;
FileNode n = fs.getFirstTopLevelNode();
if( n.type() != FileNode::SEQ )
return false;
FileNodeIterator it = n.begin(), it_end = n.end();
for( ; it != it_end; ++it )
l.push_back((string)*it);
return true;
bool Calibrate::Settings::isListOfImages( const string& filename)
{
string s(filename);
// Look for file extension
if( s.find(".xml") == string::npos && s.find(".yaml") == string::npos && s.find(".yml") == string::npos )
return false;
else
return true;
}
enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };
bool runCalibration(Calibrate::Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector<vector<Point2f> > imagePoints, float grid_width, bool release_object);
Calibrate::Calibrate(ftl::LocalSource *s, nlohmann::json &config) : local_(s) {
/*FileStorage fs(cal, FileStorage::READ); // Read the settings
if (!fs.isOpened())
{
LOG(ERROR) << "Could not open the configuration file: \"" << cal << "\"";
return;
settings_.read(config);
//fs.release();
LOG(ERROR) << "Invalid input detected. Application stopping.";
return;
map1_.resize(2);
map2_.resize(2);

Nicolas Pope
committed
// TODO Load existing calibration if available...
calibrated_ = _loadCalibration();
if (calibrated_) {
LOG(INFO) << "Calibration loaded from file";
}
}
bool Calibrate::_loadCalibration() {
// Capture one frame to get size;
Mat l,r;
local_->get(l,r);
Size img_size = l.size();
float scale = 1.0f;
Rect roi1, roi2;
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// reading intrinsic parameters
FileStorage fs(FTL_CONFIG_ROOT "/intrinsics.yml", FileStorage::READ);
if(!fs.isOpened())
{
LOG(WARNING) << "Calibration file not found";
return false;
}
Mat M1, D1, M2, D2;
fs["M1"] >> M1;
fs["D1"] >> D1;
fs["M2"] >> M2;
fs["D2"] >> D2;
M1 *= scale;
M2 *= scale;
fs.open(FTL_CONFIG_ROOT "/extrinsics.yml", FileStorage::READ);
if(!fs.isOpened())
{
LOG(WARNING) << "Calibration file not found";
return false;
}
Mat R, T, R1, P1, R2, P2;
fs["R"] >> R;
fs["T"] >> T;
fs["R1"] >> R1;
fs["R2"] >> R2;
fs["P1"] >> P1;
fs["P2"] >> P2;
fs["Q"] >> Q_;
stereoRectify( M1, D1, M2, D2, img_size, R, T, R1, R2, P1, P2, Q_, CALIB_ZERO_DISPARITY, -1, img_size, &roi1, &roi2 );
Mat map11, map12, map21, map22;
initUndistortRectifyMap(M1, D1, R1, P1, img_size, CV_16SC2, map1_[0], map2_[0]);
initUndistortRectifyMap(M2, D2, R2, P2, img_size, CV_16SC2, map1_[1], map2_[1]);
return true;

Nicolas Pope
committed
vector<vector<Point2f> > imagePoints[2];
Mat cameraMatrix[2], distCoeffs[2];
Size imageSize[2];
// TODO Ensure both left+right use same frames
bool r = _recalibrate(imagePoints, cameraMatrix, distCoeffs, imageSize);
//if (local_->isStereo()) r &= _recalibrate(1, imagePoints[1], cameraMatrix[1], distCoeffs[1], imageSize[1]);

Nicolas Pope
committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
if (r && local_->isStereo()) {
int nimages = static_cast<int>(imagePoints[0].size());
auto squareSize = settings_.squareSize;
vector<vector<Point3f>> objectPoints;
objectPoints.resize(nimages);
for(auto i = 0; i < nimages; i++ )
{
for(auto j = 0; j < settings_.boardSize.height; j++ )
for(auto k = 0; k < settings_.boardSize.width; k++ )
objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0));
}
Mat R, T, E, F;
LOG(INFO) << "Running stereo calibration...";
double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
cameraMatrix[0], distCoeffs[0],
cameraMatrix[1], distCoeffs[1],
imageSize[0], R, T, E, F,
CALIB_FIX_ASPECT_RATIO +
CALIB_ZERO_TANGENT_DIST +
CALIB_USE_INTRINSIC_GUESS +
CALIB_SAME_FOCAL_LENGTH +
CALIB_RATIONAL_MODEL +
CALIB_FIX_K3 + CALIB_FIX_K4 + CALIB_FIX_K5,
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 100, 1e-5) );
LOG(INFO) << "... done with RMS error=" << rms;
// save intrinsic parameters
FileStorage fs(FTL_CONFIG_ROOT "/intrinsics.yml", FileStorage::WRITE);
if( fs.isOpened() )
{
fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<
"M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
fs.release();
}
else
LOG(ERROR) << "Error: can not save the intrinsic parameters";

Nicolas Pope
committed

Nicolas Pope
committed
Rect validRoi[2];
stereoRectify(cameraMatrix[0], distCoeffs[0],
cameraMatrix[1], distCoeffs[1],
imageSize[0], R, T, R1, R2, P1, P2, Q_,

Nicolas Pope
committed
CALIB_ZERO_DISPARITY, 1, imageSize[0], &validRoi[0], &validRoi[1]);
fs.open(FTL_CONFIG_ROOT "/extrinsics.yml", FileStorage::WRITE);
if( fs.isOpened() )
{
fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q_;

Nicolas Pope
committed
fs.release();
}
else
LOG(ERROR) << "Error: can not save the extrinsic parameters";

Nicolas Pope
committed
//Precompute maps for cv::remap()
initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize[0], CV_16SC2, map1_[0], map2_[0]);
initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize[0], CV_16SC2, map1_[1], map2_[1]);
} else {
int cam = 0;
if (settings_.useFisheye)
{
Mat newCamMat;
fisheye::estimateNewCameraMatrixForUndistortRectify(cameraMatrix[cam], distCoeffs[cam], imageSize[cam],
Matx33d::eye(), newCamMat, 1);
fisheye::initUndistortRectifyMap(cameraMatrix[cam], distCoeffs[cam], Matx33d::eye(), newCamMat, imageSize[cam],
CV_16SC2, map1_[cam], map2_[cam]);
}
else
{
initUndistortRectifyMap(
cameraMatrix[cam], distCoeffs[cam], Mat(),
getOptimalNewCameraMatrix(cameraMatrix[cam], distCoeffs[cam], imageSize[cam], 1, imageSize[cam], 0), imageSize[cam],
CV_16SC2, map1_[cam], map2_[cam]);
}

Nicolas Pope
committed
}
bool Calibrate::_recalibrate(vector<vector<Point2f>> *imagePoints,
Mat *cameraMatrix, Mat *distCoeffs, Size *imageSize) {
int winSize = 11; //parser.get<int>("winSize");
float grid_width = settings_.squareSize * (settings_.boardSize.width - 1);
bool release_object = false;

Nicolas Pope
committed
//vector<vector<Point2f> > imagePoints;
//Mat cameraMatrix, distCoeffs;
//Size imageSize;
const Scalar RED(0,0,255), GREEN(0,255,0);
int chessBoardFlags = CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE;
if(!settings_.useFisheye) {
// fast check erroneously fails with high distortions like fisheye
chessBoardFlags |= CALIB_CB_FAST_CHECK;
}
//! [get_input]
for(;;)
{
//view = _nextImage(cam);
LOG(INFO) << "Grabbing calibration image...";
if (view[0].empty() || (local_->isStereo() && view[1].empty()) || imagePoints[0].size() >= (size_t)settings_.nrFrames) {
settings_.outputFileName = FTL_CONFIG_ROOT "/cam0.xml";
cameraMatrix[0], distCoeffs[0], imagePoints[0],
grid_width, release_object);
if (local_->isStereo()) {
settings_.outputFileName = FTL_CONFIG_ROOT "/cam1.xml";
cameraMatrix[1], distCoeffs[1], imagePoints[1],
grid_width, release_object);
}
if (!r && view[0].empty()) {
LOG(ERROR) << "Not enough frames to calibrate";
return false;
} else if (r) {
LOG(INFO) << "Calibration successful";
break;
}
imageSize[0] = view[0].size(); // Format input image.
imageSize[1] = view[1].size();
//if( settings_.flipVertical ) flip( view[cam], view[cam], 0 );
//! [find_pattern]
found1 = findChessboardCorners( view[0], settings_.boardSize, pointBuf[0], chessBoardFlags);
found2 = !local_->isStereo() || findChessboardCorners( view[1], settings_.boardSize, pointBuf[1], chessBoardFlags);
if (found1 && found2 && local_->getTimestamp()-prevTimestamp > settings_.delay) // If done with success,
prevTimestamp = local_->getTimestamp();
// improve the found corners' coordinate accuracy for chessboard
Mat viewGray;
cvtColor(view[0], viewGray, COLOR_BGR2GRAY);
cornerSubPix( viewGray, pointBuf[0], Size(winSize,winSize),
Size(-1,-1), TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 30, 0.0001 ));
imagePoints[0].push_back(pointBuf[0]);
if (local_->isStereo()) {
cvtColor(view[1], viewGray, COLOR_BGR2GRAY);
cornerSubPix( viewGray, pointBuf[1], Size(winSize,winSize),
Size(-1,-1), TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 30, 0.0001 ));
// Draw the corners.
drawChessboardCorners( view[0], settings_.boardSize, Mat(pointBuf[0]), found1 );
if (local_->isStereo()) drawChessboardCorners( view[1], settings_.boardSize, Mat(pointBuf[1]), found2 );
} else {
LOG(WARNING) << "No calibration pattern found";
char key = (char)waitKey(50);
bool Calibrate::undistort(cv::Mat &l, cv::Mat &r) {
local_->get(l,r);
if (!calibrated_) return false;
if (l.empty()) return false;
remap(l, l, map1_[0], map2_[0], INTER_LINEAR);
if (local_->isStereo()) remap(r, r, map1_[1], map2_[1], INTER_LINEAR);
return true;
}
bool Calibrate::rectified(cv::Mat &l, cv::Mat &r) {
return undistort(l,r);
}
bool Calibrate::isCalibrated() {
return calibrated_;
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
}
//! [compute_errors]
static double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints,
const vector<Mat>& rvecs, const vector<Mat>& tvecs,
const Mat& cameraMatrix , const Mat& distCoeffs,
vector<float>& perViewErrors, bool fisheye)
{
vector<Point2f> imagePoints2;
size_t totalPoints = 0;
double totalErr = 0, err;
perViewErrors.resize(objectPoints.size());
for(size_t i = 0; i < objectPoints.size(); ++i )
{
if (fisheye)
{
fisheye::projectPoints(objectPoints[i], imagePoints2, rvecs[i], tvecs[i], cameraMatrix,
distCoeffs);
}
else
{
projectPoints(objectPoints[i], rvecs[i], tvecs[i], cameraMatrix, distCoeffs, imagePoints2);
}
err = norm(imagePoints[i], imagePoints2, NORM_L2);
size_t n = objectPoints[i].size();
perViewErrors[i] = (float) std::sqrt(err*err/n);
totalErr += err*err;
totalPoints += n;
}
return std::sqrt(totalErr/totalPoints);
}
//! [compute_errors]
//! [board_corners]
static void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners,
Calibrate::Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
{
corners.clear();
switch(patternType)
{
case Calibrate::Settings::CHESSBOARD:
case Calibrate::Settings::CIRCLES_GRID:
for( int i = 0; i < boardSize.height; ++i )
for( int j = 0; j < boardSize.width; ++j )
corners.push_back(Point3f(j*squareSize, i*squareSize, 0));
break;
case Calibrate::Settings::ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f((2*j + i % 2)*squareSize, i*squareSize, 0));
break;
default:
break;
}
}
//! [board_corners]
static bool _runCalibration( Calibrate::Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector<vector<Point2f> > imagePoints, vector<Mat>& rvecs, vector<Mat>& tvecs,
vector<float>& reprojErrs, double& totalAvgErr, vector<Point3f>& newObjPoints,
float grid_width, bool release_object)
{
//! [fixed_aspect]
cameraMatrix = Mat::eye(3, 3, CV_64F);
if( s.flag & CALIB_FIX_ASPECT_RATIO )
cameraMatrix.at<double>(0,0) = s.aspectRatio;
//! [fixed_aspect]
if (s.useFisheye) {
distCoeffs = Mat::zeros(4, 1, CV_64F);
} else {
distCoeffs = Mat::zeros(8, 1, CV_64F);
}
vector<vector<Point3f> > objectPoints(1);
calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], Calibrate::Settings::CHESSBOARD);
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
objectPoints[0][s.boardSize.width - 1].x = objectPoints[0][0].x + grid_width;
newObjPoints = objectPoints[0];
objectPoints.resize(imagePoints.size(),objectPoints[0]);
//Find intrinsic and extrinsic camera parameters
double rms;
if (s.useFisheye) {
Mat _rvecs, _tvecs;
rms = fisheye::calibrate(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, _rvecs,
_tvecs, s.flag);
rvecs.reserve(_rvecs.rows);
tvecs.reserve(_tvecs.rows);
for(int i = 0; i < int(objectPoints.size()); i++){
rvecs.push_back(_rvecs.row(i));
tvecs.push_back(_tvecs.row(i));
}
} else {
int iFixedPoint = -1;
if (release_object)
iFixedPoint = s.boardSize.width - 1;
rms = calibrateCameraRO(objectPoints, imagePoints, imageSize, iFixedPoint,
cameraMatrix, distCoeffs, rvecs, tvecs, newObjPoints,
s.flag | CALIB_USE_LU);
}
cout << "New board corners: " << endl;
cout << newObjPoints[0] << endl;
cout << newObjPoints[s.boardSize.width - 1] << endl;
cout << newObjPoints[s.boardSize.width * (s.boardSize.height - 1)] << endl;
cout << newObjPoints.back() << endl;
LOG(INFO) << "Re-projection error reported by calibrateCamera: "<< rms;
bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs);
objectPoints.clear();
objectPoints.resize(imagePoints.size(), newObjPoints);
totalAvgErr = computeReprojectionErrors(objectPoints, imagePoints, rvecs, tvecs, cameraMatrix,
distCoeffs, reprojErrs, s.useFisheye);
return ok;
}
//! [run_and_save]
bool runCalibration(Calibrate::Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector<vector<Point2f> > imagePoints, float grid_width, bool release_object)
{
vector<Mat> rvecs, tvecs;
vector<float> reprojErrs;
double totalAvgErr = 0;
vector<Point3f> newObjPoints;
bool ok = _runCalibration(s, imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs, reprojErrs,
totalAvgErr, newObjPoints, grid_width, release_object);
LOG(INFO) << (ok ? "Calibration succeeded" : "Calibration failed")
<< ". avg re projection error = " << totalAvgErr;
return ok;
}
//! [run_and_save]