Newer
Older
#include "ftl/calibration/optimize.hpp"
#include "ftl/calibration/parameters.hpp"
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#include "loguru.hpp"
#include <algorithm>
#include <unordered_set>
#include <opencv2/calib3d.hpp>
#include <ceres/rotation.h>
using std::vector;
using cv::Mat;
using cv::Point3d;
using cv::Point2d;
using cv::Rect;
using ftl::calibration::BundleAdjustment;
using ftl::calibration::Camera;
////////////////////////////////////////////////////////////////////////////////
struct ReprojectionError {
/**
* Reprojection error.
*
* Camera model has _CAMERA_PARAMETERS parameters:
*
* - rotation and translation: rx, ry, rz, tx, ty, tx
* - focal length: f (fx == fy assumed)
* - pricipal point: cx, cy
* - first three radial distortion coefficients: k1, k2, k3
*
* Camera model documented in
* https://docs.opencv.org/master/d9/d0c/group__calib3d.html
*/
explicit ReprojectionError(double observed_x, double observed_y)
: observed_x(observed_x), observed_y(observed_y) {}
template <typename T>
bool operator()(const T* const camera,
const T* const point,
T* residuals) const {
T p[3];
// Apply rotation and translation
ceres::AngleAxisRotatePoint(camera + Camera::Parameter::ROTATION, point, p);
p[0] += camera[Camera::Parameter::TX];
p[1] += camera[Camera::Parameter::TY];
p[2] += camera[Camera::Parameter::TZ];
T x = T(p[0]) / p[2];
T y = T(p[1]) / p[2];
// Intrinsic parameters
const T& focal = camera[Camera::Parameter::F];
const T& cx = camera[Camera::Parameter::CX];
const T& cy = camera[Camera::Parameter::CY];
// Distortion parameters k1, k2, k3
const T& k1 = camera[Camera::Parameter::K1];
const T& k2 = camera[Camera::Parameter::K2];
const T& k3 = camera[Camera::Parameter::K3];
const T r2 = x*x + y*y;
const T r4 = r2*r2;
const T r6 = r4*r2;
T distortion = T(1.0) + k1*r2 + k2*r4 + k3*r6;
// Projected point position
T predicted_x = focal*x*distortion + cx;
T predicted_y = focal*y*distortion + cy;
// Error: the difference between the predicted and observed position
residuals[0] = predicted_x - T(observed_x);
residuals[1] = predicted_y - T(observed_y);
return true;
}
static ceres::CostFunction* Create( const double observed_x,
const double observed_y) {
return (new ceres::AutoDiffCostFunction<ReprojectionError, 2, Camera::n_parameters, 3>(
new ReprojectionError(observed_x, observed_y)));
}
static ceres::CostFunction* Create( const Point2d &observed) {
return (new ceres::AutoDiffCostFunction<ReprojectionError, 2, Camera::n_parameters, 3>(
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
new ReprojectionError(observed.x, observed.y)));
}
double observed_x;
double observed_y;
};
struct LengthError {
explicit LengthError(const double d) : d(d) {}
template <typename T>
bool operator()(const T* const p1, const T* const p2, T* residual) const {
auto x = p1[0] - p2[0];
auto y = p1[1] - p2[1];
auto z = p1[2] - p2[2];
residual[0] = T(d) - sqrt(x*x + y*y + z*z);
return true;
}
static ceres::CostFunction* Create(const double d) {
return (new ceres::AutoDiffCostFunction<LengthError, 1, 3, 3>(new LengthError(d)));
}
double d;
};
struct ScaleError {
ScaleError(const double d, const Point3d& p) : d(d), p(p) {}
template <typename T>
bool operator()(const T* const s, T* residual) const {
auto x = T(p.x) * s[0];
auto y = T(p.y) * s[0];
auto z = T(p.z) * s[0];
residual[0] = T(d) - sqrt(x*x + y*y + z*z);
return true;
}
static ceres::CostFunction* Create(const double d, const Point3d p) {
return (new ceres::AutoDiffCostFunction<ScaleError, 1, 1>(new ScaleError(d, p)));
}
double d;
Point3d p;
};
////////////////////////////////////////////////////////////////////////////////
double ftl::calibration::optimizeScale(const vector<Point3d> &object_points, vector<Point3d> &points) {
// use exceptions instead
CHECK(points.size() % object_points.size() == 0);
CHECK(points.size() % 2 == 0);
// initial scale guess from first two object points
double f = 0.0;
double m = 0.0;
for (size_t i = 0; i < points.size(); i += 2) {
const Point3d &p1 = points[i];
const Point3d &p2 = points[i+1];
Point3d p = p1 - p2;
double x = sqrt(p.x * p.x + p.y * p.y + p.z * p.z);
f = f + 1.0;
m = m + (x - m) / f;
}
double scale = norm(object_points[0]-object_points[1]) / m;
// optimize using all distances between points
vector<double> d;
ceres::Problem problem;
auto loss_function = new ceres::HuberLoss(1.0);
// use all pairwise distances
for (size_t i = 0; i < object_points.size(); i++) {
for (size_t j = i + 1; j < object_points.size(); j++) {
d.push_back(norm(object_points[i]-object_points[j]));
}
}
for (size_t i = 0; i < points.size(); i += object_points.size()) {
size_t i_d = 0;
for (size_t i = 0; i < object_points.size(); i++) {
for (size_t j = i + 1; j < object_points.size(); j++) {
auto cost_function = ScaleError::Create(d[i_d++], points[i]-points[j]);
problem.AddResidualBlock(cost_function, loss_function, &scale);
}
}
}
ceres::Solver::Options options;
ceres::Solver::Summary summary;
ceres::Solve(options, &problem, &summary);
for (auto &p : points) { p = p * scale; }
return scale;
}
////////////////////////////////////////////////////////////////////////////////
void BundleAdjustment::addCamera(Camera& camera) {
// cameras can't be added after points
if (points_.size() != 0) { throw std::exception(); }
cameras_.push_back(&camera);
}
void BundleAdjustment::addCameras(vector<Camera>& cameras) {
for (auto& camera : cameras) { addCamera(camera); }
}
void BundleAdjustment::addPoint(const vector<bool>& visibility, const vector<Point2d>& observations, Point3d& point) {
if ((observations.size() != visibility.size()) ||
(visibility.size() != cameras_.size())) { throw std::exception(); }
points_.push_back(BundleAdjustment::Point{visibility, observations, reinterpret_cast<double*>(&point)});
}
void BundleAdjustment::addPoints(const vector<vector<bool>>& visibility, const vector<vector<Point2d>>& observations, vector<Point3d>& points) {
if ((observations.size() != points.size()) ||
(observations.size() != visibility.size())) { throw std::exception(); }
for (size_t i = 0; i < points.size(); i++) {
addPoint(visibility[i], observations[i], points[i]);
}
}
void BundleAdjustment::addPoint(const vector<Point2d>& observations, Point3d& point) {
vector<bool> visibility(observations.size(), true);
addPoint(visibility, observations, point);
}
void BundleAdjustment::addPoints(const vector<vector<Point2d>>& observations, std::vector<Point3d>& points) {
if (observations.size() != points.size()) { throw std::exception(); }
for (size_t i = 0; i < points.size(); i++) {
addPoint(observations[i], points[i]);
}
}
void BundleAdjustment::addConstraintObject(const vector<Point3d> &object_points) {
if (points_.size() % object_points.size() != 0) { throw std::exception(); }
constraints_object_.push_back(BundleAdjustment::ConstraintObject {0, (int) points_.size(), object_points});
}
void BundleAdjustment::_buildBundleAdjustmentProblem(ceres::Problem &problem, const BundleAdjustment::Options &options) {
ceres::LossFunction *loss_function = nullptr;
if (options.loss == Options::Loss::HUBER) {
loss_function = new ceres::HuberLoss(1.0);
}
else if (options.loss == Options::Loss::CAUCHY) {
loss_function = new ceres::CauchyLoss(1.0);
}
for (auto point : points_) {
for (size_t i = 0; i < point.observations.size(); i++) {
if (!point.visibility[i]) { continue; }
ceres::CostFunction* cost_function =
ReprojectionError::Create(point.observations[i]);
problem.AddResidualBlock(cost_function,
loss_function,
getCameraPtr(i),
point.point);
}
}
// apply options
vector<int> constant_camera_parameters;
// extrinsic paramters
if (!options.optimize_motion) {
for (int i = 0; i < 3; i++) {
constant_camera_parameters.push_back(Camera::Parameter::ROTATION + i);
constant_camera_parameters.push_back(Camera::Parameter::TRANSLATION + i);
}
}
if (!options.fix_distortion) {
LOG(WARNING) << "Optimization of distortion parameters is not supported"
<< "and results may contain invalid values.";
}
// intrinsic parameters
if (!options.optimize_intrinsic || options.fix_focal) {
constant_camera_parameters.push_back(Camera::Parameter::F);
}
if (!options.optimize_intrinsic || options.fix_principal_point) {
constant_camera_parameters.push_back(Camera::Parameter::CX);
constant_camera_parameters.push_back(Camera::Parameter::CY);
}
if (!options.optimize_intrinsic || options.fix_distortion) {
constant_camera_parameters.push_back(Camera::Parameter::K1);
constant_camera_parameters.push_back(Camera::Parameter::K2);
constant_camera_parameters.push_back(Camera::Parameter::K3);
}
if (!options.optimize_motion && !options.optimize_intrinsic) {
// do not optimize any camera parameters
for (size_t i = 0; i < cameras_.size(); i++) {
problem.SetParameterBlockConstant(getCameraPtr(i));
}
}
else {
std::unordered_set<int> fix_extrinsic(
options.fix_camera_extrinsic.begin(), options.fix_camera_extrinsic.end());
std::unordered_set<int> fix_intrinsic(
options.fix_camera_extrinsic.begin(), options.fix_camera_extrinsic.end());
for (size_t i = 0; i < cameras_.size(); i++) {
std::unordered_set<int> fixed_parameters(
constant_camera_parameters.begin(),
constant_camera_parameters.end());
if (fix_extrinsic.find(i) != fix_extrinsic.end()) {
fixed_parameters.insert({
Camera::Parameter::RX, Camera::Parameter::RY,
Camera::Parameter::RZ, Camera::Parameter::TX,
Camera::Parameter::TY, Camera::Parameter::TZ
});
}
if (fix_intrinsic.find(i) != fix_intrinsic.end()) {
fixed_parameters.insert({
Camera::Parameter::F, Camera::Parameter::CX,
Camera::Parameter::CY
});
}
vector<int> params(fixed_parameters.begin(), fixed_parameters.end());
// Ceres crashes if all parameters are set constant using
// SubsetParameterization()
problem.SetParameterBlockConstant(getCameraPtr(i));
}
else if (params.size() > 0) {
problem.SetParameterization(getCameraPtr(i),
new ceres::SubsetParameterization(Camera::n_parameters, params));
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
}
}
}
if (!options.optmize_structure) {
// do not optimize points
for (auto &point : points_) { problem.SetParameterBlockConstant(point.point); }
}
}
void BundleAdjustment::_buildLengthProblem(ceres::Problem &problem, const BundleAdjustment::Options &options) {
for (auto &constraint : constraints_object_) {
int npoints = constraint.object_points.size();
auto &object_points = constraint.object_points;
vector<double> d;
for (int i = 0; i < npoints; i++) {
for (int j = i + 1; j < npoints; j++) {
d.push_back(norm(object_points[i]-object_points[j]));
}
}
for (int p = constraint.idx_start; p < constraint.idx_end; p += npoints) {
size_t i_d = 0;
for (size_t i = 0; i < object_points.size(); i++) {
for (size_t j = i + 1; j < object_points.size(); j++) {
double* p1 = points_[p+i].point;
double* p2 = points_[p+j].point;
auto cost_function = LengthError::Create(d[i_d++]);
problem.AddResidualBlock(cost_function, nullptr, p1, p2);
}
}
}
}
}
void BundleAdjustment::_buildProblem(ceres::Problem &problem, const BundleAdjustment::Options &options) {
_buildBundleAdjustmentProblem(problem, options);
_buildLengthProblem(problem, options);
}
void BundleAdjustment::run(const BundleAdjustment::Options &bundle_adjustment_options) {
ceres::Problem problem;
_buildProblem(problem, bundle_adjustment_options);
ceres::Solver::Options options;
options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
options.minimizer_progress_to_stdout = bundle_adjustment_options.verbose;
if (bundle_adjustment_options.max_iter > 0) {
options.max_num_iterations = bundle_adjustment_options.max_iter;
}
if (bundle_adjustment_options.num_threads > 0) {
options.num_threads = bundle_adjustment_options.num_threads;
}
ceres::Solver::Summary summary;
ceres::Solve(options, &problem, &summary);
if (bundle_adjustment_options.verbose) {
LOG(INFO) << summary.BriefReport();
}
else {
DLOG(INFO) << summary.BriefReport();
}
}
void BundleAdjustment::run() {
BundleAdjustment::Options options;
run(options);
}
double BundleAdjustment::reprojectionError(int camera) {
vector<Point2d> observations;
vector<Point3d> points;
observations.reserve(points_.size());
points.reserve(points_.size());
for (const auto& point : points_) {
if (!point.visibility[camera]) { continue; }
observations.push_back(point.observations[camera]);
points.push_back(Point3d(point.point[0], point.point[1], point.point[2]));
}
auto K = cameras_[camera]->intrinsicMatrix();
auto rvec = cameras_[camera]->rvec();
auto tvec = cameras_[camera]->tvec();
return ftl::calibration::reprojectionError(observations, points, K, Mat::zeros(1, 5, CV_64FC1), rvec, tvec);
}
double BundleAdjustment::reprojectionError() {
double error = 0.0;
for (size_t i = 0; i < cameras_.size(); i++) { error += reprojectionError(i); }
return error * (1.0 / (double) cameras_.size());
}