Skip to content
Snippets Groups Projects
optimization.cpp 12.9 KiB
Newer Older
Sebastian Hahta's avatar
Sebastian Hahta committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
#include "optimization.hpp"
#include "calibration.hpp"

#include "loguru.hpp"

#include <algorithm>
#include <unordered_set>

#include <opencv2/calib3d.hpp>
#include <ceres/rotation.h>

using std::vector;

using cv::Mat;

using cv::Point3d;
using cv::Point2d;

using cv::Rect;

using ftl::calibration::BundleAdjustment;
using ftl::calibration::Camera;

////////////////////////////////////////////////////////////////////////////////

struct ReprojectionError {
	/**
	 * Reprojection error.
	 *
	 * Camera model has _CAMERA_PARAMETERS parameters:
	 *
	 * - rotation and translation: rx, ry, rz, tx, ty, tx
	 * - focal length: f (fx == fy assumed)
	 * - pricipal point: cx, cy
	 * - first three radial distortion coefficients: k1, k2, k3
	 *
	 * Camera model documented in
	 * https://docs.opencv.org/master/d9/d0c/group__calib3d.html
	 */
	explicit ReprojectionError(double observed_x, double observed_y)
		: observed_x(observed_x), observed_y(observed_y) {}

	template <typename T>
	bool operator()(const T* const camera,
					const T* const point,
					T* residuals) const {

		T p[3];

		// Apply rotation and translation
		ceres::AngleAxisRotatePoint(camera + Camera::Parameter::ROTATION, point, p);

		p[0] += camera[Camera::Parameter::TX];
		p[1] += camera[Camera::Parameter::TY];
		p[2] += camera[Camera::Parameter::TZ];

		T x = T(p[0]) / p[2];
		T y = T(p[1]) / p[2];

		// Intrinsic parameters
		const T& focal = camera[Camera::Parameter::F];
		const T& cx = camera[Camera::Parameter::CX];
		const T& cy = camera[Camera::Parameter::CY];

		// Distortion parameters k1, k2, k3
		const T& k1 = camera[Camera::Parameter::K1];
		const T& k2 = camera[Camera::Parameter::K2];
		const T& k3 = camera[Camera::Parameter::K3];

		const T r2 = x*x + y*y;
		const T r4 = r2*r2;
		const T r6 = r4*r2;

		T distortion = T(1.0) + k1*r2 + k2*r4 + k3*r6;

		// Projected point position
		T predicted_x = focal*x*distortion + cx;
		T predicted_y = focal*y*distortion + cy;

		// Error: the difference between the predicted and observed position
		residuals[0] = predicted_x - T(observed_x);
		residuals[1] = predicted_y - T(observed_y);

		return true;
	}

	static ceres::CostFunction* Create(	const double observed_x,
										const double observed_y) {
		return (new ceres::AutoDiffCostFunction<ReprojectionError, 2, _NCAMERA_PARAMETERS, 3>(
					new ReprojectionError(observed_x, observed_y)));
	}

	static ceres::CostFunction* Create(	const Point2d &observed) {
		return (new ceres::AutoDiffCostFunction<ReprojectionError, 2, _NCAMERA_PARAMETERS, 3>(
					new ReprojectionError(observed.x, observed.y)));
	}

	double observed_x;
	double observed_y;
};

struct LengthError {
	explicit LengthError(const double d) : d(d) {}

	template <typename T>
	bool operator()(const T* const p1, const T* const p2, T* residual) const {
		auto x = p1[0] - p2[0];
		auto y = p1[1] - p2[1];
		auto z = p1[2] - p2[2];
		residual[0] = T(d) - sqrt(x*x + y*y + z*z);

		return true;
	}

	static ceres::CostFunction* Create(const double d) {
		return (new ceres::AutoDiffCostFunction<LengthError, 1, 3, 3>(new LengthError(d)));
	}

	double d;
};

struct ScaleError {
	ScaleError(const double d, const Point3d& p) : d(d), p(p) {}

	template <typename T>
	bool operator()(const T* const s, T* residual) const {
		auto x = T(p.x) * s[0];
		auto y = T(p.y) * s[0];
		auto z = T(p.z) * s[0];
		residual[0] = T(d) - sqrt(x*x + y*y + z*z);

		return true;
	}

	static ceres::CostFunction* Create(const double d, const Point3d p) {
		return (new ceres::AutoDiffCostFunction<ScaleError, 1, 1>(new ScaleError(d, p)));
	}

	double d;
	Point3d p;
};

////////////////////////////////////////////////////////////////////////////////

double ftl::calibration::optimizeScale(const vector<Point3d> &object_points, vector<Point3d> &points) {

	// use exceptions instead
	CHECK(points.size() % object_points.size() == 0);
	CHECK(points.size() % 2 == 0);

	// initial scale guess from first two object points

	double f = 0.0;
	double m = 0.0;

	for (size_t i = 0; i < points.size(); i += 2) {
		const Point3d &p1 = points[i];
		const Point3d &p2 = points[i+1];

		Point3d p = p1 - p2;

		double x = sqrt(p.x * p.x + p.y * p.y + p.z * p.z);
		f = f + 1.0;
		m = m + (x - m) / f;
	}

	double scale = norm(object_points[0]-object_points[1]) / m;

	// optimize using all distances between points

	vector<double> d;
	ceres::Problem problem;
	auto loss_function = new ceres::HuberLoss(1.0);

	// use all pairwise distances
	for (size_t i = 0; i < object_points.size(); i++) {
		for (size_t j = i + 1; j < object_points.size(); j++) {
			d.push_back(norm(object_points[i]-object_points[j]));
		}
	}

	for (size_t i = 0; i < points.size(); i += object_points.size()) {
		size_t i_d = 0;
		for (size_t i = 0; i < object_points.size(); i++) {
			for (size_t j = i + 1; j < object_points.size(); j++) {
				auto cost_function = ScaleError::Create(d[i_d++], points[i]-points[j]);
				problem.AddResidualBlock(cost_function, loss_function, &scale);
			}
		}
	}

	ceres::Solver::Options options;
	ceres::Solver::Summary summary;
	ceres::Solve(options, &problem, &summary);

	for (auto &p : points) { p = p * scale; }
	return scale;
}

////////////////////////////////////////////////////////////////////////////////

void BundleAdjustment::addCamera(Camera& camera) {
	// cameras can't be added after points
	if (points_.size() != 0) { throw std::exception(); }

	cameras_.push_back(&camera);
}

void BundleAdjustment::addCameras(vector<Camera>& cameras) {
	for (auto& camera : cameras) { addCamera(camera); }
}

void BundleAdjustment::addPoint(const vector<bool>& visibility, const vector<Point2d>& observations, Point3d& point) {
	if ((observations.size() != visibility.size()) ||
		(visibility.size() != cameras_.size())) { throw std::exception(); }

	points_.push_back(BundleAdjustment::Point{visibility, observations, reinterpret_cast<double*>(&point)});
}

void BundleAdjustment::addPoints(const vector<vector<bool>>& visibility, const vector<vector<Point2d>>& observations, vector<Point3d>& points) {
	if ((observations.size() != points.size()) ||
		(observations.size() != visibility.size())) { throw std::exception(); }

	for (size_t i = 0; i < points.size(); i++) {
		addPoint(visibility[i], observations[i], points[i]);
	}
}

void BundleAdjustment::addPoint(const vector<Point2d>& observations, Point3d& point) {
	vector<bool> visibility(observations.size(), true);
	addPoint(visibility, observations, point);
}
void BundleAdjustment::addPoints(const vector<vector<Point2d>>& observations, std::vector<Point3d>& points) {
	if (observations.size() != points.size()) { throw std::exception(); }
	for (size_t i = 0; i < points.size(); i++) {
		addPoint(observations[i], points[i]);
	}
}

void BundleAdjustment::addConstraintObject(const vector<Point3d> &object_points) {
	if (points_.size() % object_points.size() != 0) { throw std::exception(); }
	constraints_object_.push_back(BundleAdjustment::ConstraintObject {0, (int) points_.size(), object_points});
}

void BundleAdjustment::_buildBundleAdjustmentProblem(ceres::Problem &problem, const BundleAdjustment::Options &options) {

	ceres::LossFunction *loss_function = nullptr;

	if (options.loss == Options::Loss::HUBER) {
		loss_function = new ceres::HuberLoss(1.0);
	}
	else if (options.loss == Options::Loss::CAUCHY) {
		loss_function = new ceres::CauchyLoss(1.0);
	}

	for (auto point : points_) {
		for (size_t i = 0; i < point.observations.size(); i++) {
			if (!point.visibility[i]) { continue; }
			ceres::CostFunction* cost_function =
				ReprojectionError::Create(point.observations[i]);

			problem.AddResidualBlock(cost_function,
						loss_function,
						getCameraPtr(i),
						point.point);
		}
	}

	// apply options

	vector<int> constant_camera_parameters;

	// extrinsic paramters
	if (!options.optimize_motion) {
		for (int i = 0; i < 3; i++) {
			constant_camera_parameters.push_back(Camera::Parameter::ROTATION + i);
			constant_camera_parameters.push_back(Camera::Parameter::TRANSLATION + i);
		}
	}

	if (!options.fix_distortion) {
		LOG(WARNING) << "Optimization of distortion parameters is not supported"
					 << "and results may contain invalid values.";
	}

	// intrinsic parameters
	if (!options.optimize_intrinsic || options.fix_focal) {
		constant_camera_parameters.push_back(Camera::Parameter::F);
	}
	if (!options.optimize_intrinsic || options.fix_principal_point) {
		constant_camera_parameters.push_back(Camera::Parameter::CX);
		constant_camera_parameters.push_back(Camera::Parameter::CY);
	}

	if (!options.optimize_intrinsic || options.fix_distortion) {
		constant_camera_parameters.push_back(Camera::Parameter::K1);
		constant_camera_parameters.push_back(Camera::Parameter::K2);
		constant_camera_parameters.push_back(Camera::Parameter::K3);
	}

	if (!options.optimize_motion && !options.optimize_intrinsic) {
		// do not optimize any camera parameters
		for (size_t i = 0; i < cameras_.size(); i++) {
			problem.SetParameterBlockConstant(getCameraPtr(i));
		}
	}
	else {
		std::unordered_set<int> fix_extrinsic(
			options.fix_camera_extrinsic.begin(), options.fix_camera_extrinsic.end());

		std::unordered_set<int> fix_intrinsic(
			options.fix_camera_extrinsic.begin(), options.fix_camera_extrinsic.end());

		for (size_t i = 0; i < cameras_.size(); i++) {
			std::unordered_set<int> fixed_parameters(
				constant_camera_parameters.begin(),
				constant_camera_parameters.end());

			if (fix_extrinsic.find(i) != fix_extrinsic.end()) {
				fixed_parameters.insert({
					Camera::Parameter::RX, Camera::Parameter::RY,
					Camera::Parameter::RZ, Camera::Parameter::TX,
					Camera::Parameter::TY, Camera::Parameter::TZ
				});
			}

			if (fix_intrinsic.find(i) != fix_intrinsic.end()) {
				fixed_parameters.insert({
					Camera::Parameter::F, Camera::Parameter::CX,
					Camera::Parameter::CY
				});
			}

			vector<int> params(fixed_parameters.begin(), fixed_parameters.end());

			if (params.size() == _NCAMERA_PARAMETERS) {
				// Ceres crashes if all parameters are set constant using
				// SubsetParameterization()
				problem.SetParameterBlockConstant(getCameraPtr(i));
			}
			else if (params.size() > 0) {
				problem.SetParameterization(getCameraPtr(i),
					new ceres::SubsetParameterization(_NCAMERA_PARAMETERS, params));
			}
		}
	}

	if (!options.optmize_structure) {
		// do not optimize points
		for (auto &point : points_) { problem.SetParameterBlockConstant(point.point); }
	}
}

void BundleAdjustment::_buildLengthProblem(ceres::Problem &problem, const BundleAdjustment::Options &options) {

	for (auto &constraint : constraints_object_) {
		int npoints = constraint.object_points.size();
		auto &object_points = constraint.object_points;

		vector<double> d;
		for (int i = 0; i < npoints; i++) {
			for (int j = i + 1; j < npoints; j++) {
				d.push_back(norm(object_points[i]-object_points[j]));
			}
		}

		for (int p = constraint.idx_start; p < constraint.idx_end; p += npoints) {
			size_t i_d = 0;
			for (size_t i = 0; i < object_points.size(); i++) {
				for (size_t j = i + 1; j < object_points.size(); j++) {
					double* p1 = points_[p+i].point;
					double* p2 = points_[p+j].point;

					auto cost_function = LengthError::Create(d[i_d++]);

					problem.AddResidualBlock(cost_function, nullptr, p1, p2);
				}
			}
		}
	}
}

void BundleAdjustment::_buildProblem(ceres::Problem &problem, const BundleAdjustment::Options &options) {

	_buildBundleAdjustmentProblem(problem, options);
	_buildLengthProblem(problem, options);
}

void BundleAdjustment::run(const BundleAdjustment::Options &bundle_adjustment_options) {
	ceres::Problem problem;
	_buildProblem(problem, bundle_adjustment_options);

	ceres::Solver::Options options;
	options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
	options.minimizer_progress_to_stdout = bundle_adjustment_options.verbose;
	
	if (bundle_adjustment_options.max_iter > 0) {
		options.max_num_iterations = bundle_adjustment_options.max_iter;
	}
	
	if (bundle_adjustment_options.num_threads > 0) {
		options.num_threads = bundle_adjustment_options.num_threads;
	}

	ceres::Solver::Summary summary;
	ceres::Solve(options, &problem, &summary);

	if (bundle_adjustment_options.verbose) {
		LOG(INFO) << summary.BriefReport();
	}
	else {
		DLOG(INFO) << summary.BriefReport();
	}
}

void BundleAdjustment::run() {
	BundleAdjustment::Options options;
	run(options);
}

double BundleAdjustment::reprojectionError(int camera) {
	vector<Point2d>	observations;
	vector<Point3d>	points;

	observations.reserve(points_.size());
	points.reserve(points_.size());

	for (const auto& point : points_) {
		if (!point.visibility[camera]) { continue; }
		observations.push_back(point.observations[camera]);
		points.push_back(Point3d(point.point[0], point.point[1], point.point[2]));
	}

	auto K = cameras_[camera]->intrinsicMatrix();
	auto rvec = cameras_[camera]->rvec();
	auto tvec = cameras_[camera]->tvec();

	return ftl::calibration::reprojectionError(observations, points, K, Mat::zeros(1, 5, CV_64FC1), rvec, tvec);
}

double BundleAdjustment::reprojectionError() {
	double error = 0.0;
	for (size_t i = 0; i < cameras_.size(); i++) { error += reprojectionError(i); }
	return error * (1.0 / (double) cameras_.size());
}