Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include "multicalibrate.hpp"
#include <opencv2/core.hpp>
#include <opencv2/calib3d.hpp>
#include <cvsba/cvsba.h>
#include <loguru.hpp>
#include <map>
using cv::Mat;
using cv::Size;
using cv::Point2d;
using cv::Point3d;
using cv::Vec4d;
using cv::Scalar;
using std::string;
using std::vector;
using std::map;
using std::pair;
using std::make_pair;
double CalibrationTarget::estimateScale(vector<Point3d> points) {
// 1. calculate statistics
// 2. reject possible outliers
// 3. calculate scale factor
double f = 0.0;
double S = 0.0;
double m = 0.0;
vector<double> d(points.size() / 2, 0.0);
for (size_t i = 0; i < points.size(); i += 2) {
const Point3d &p1 = points[i];
const Point3d &p2 = points[i + 1];
Point3d p = p1 - p2;
double x = sqrt(p.x * p.x + p.y * p.y + p.z * p.z);
double prev_mean = m;
d[i/2] = x;
f = f + 1.0;
m = m + (x - m) / f;
S = S + (x - m) * (x - prev_mean);
}
double stddev = sqrt(S / f);
f = 0.0;
int outliers = 0;
double scale = 0.0;
for (double l : d) {
// TODO: * Parameterize how large deviation allowed
// * Validate this actually improves quality
if (abs(l - m) > 3.0 * stddev) {
outliers++;
}
else {
f += 1.0;
scale += 1.0 / l;
}
DCHECK(scale != INFINITY);
}
if (outliers != 0) {
LOG(WARNING) << "Outliers (large std. deviation in scale): " << outliers;
}
LOG(INFO) << "calibration target std. dev. " << stddev << " (" << (int) f << " samples), scale: " << scale * calibration_bar_length_ / f;
return scale * calibration_bar_length_ / f;
// TODO: LM-optimization for scale.
}
MultiCameraCalibrationNew::MultiCameraCalibrationNew(
size_t n_cameras, size_t reference_camera, Size resolution,
CalibrationTarget target, int fix_intrinsics) :
target_(target),
visibility_graph_(n_cameras),
is_calibrated_(false),
n_cameras_(n_cameras),
reference_camera_(reference_camera),
fix_intrinsics_(fix_intrinsics == 1 ? 5 : 0),
K_(n_cameras),
dist_coeffs_(n_cameras),
R_(n_cameras),
t_(n_cameras),
points3d_optimized_(n_cameras),
points3d_(n_cameras),
points2d_(n_cameras),
visible_(n_cameras),
fm_method_(cv::FM_8POINT), // RANSAC/LMEDS results need validation (does not work)
fm_ransac_threshold_(0.95),
fm_confidence_(0.90)
{
for (auto &K : K_) { K = Mat::eye(Size(3, 3), CV_64FC1); }
for (auto &d : dist_coeffs_) { d = Mat(Size(5, 1), CV_64FC1, Scalar(0.0)); }
}
Mat MultiCameraCalibrationNew::getCameraMat(size_t idx) {
DCHECK(idx < n_cameras_);
Mat K;
K_[idx].copyTo(K);
return K;
}
Mat MultiCameraCalibrationNew::getCameraMatNormalized(size_t idx, double scale_x, double scale_y)
{
Mat K = getCameraMat(idx);
CHECK((scale_x != 0.0 && scale_y != 0.0) || ((scale_x == 0.0) && scale_y == 0.0));
scale_x = scale_x / (double) resolution_.width;
scale_y = scale_y / (double) resolution_.height;
Mat scale(Size(3, 3), CV_64F, 0.0);
scale.at<double>(0, 0) = scale_x;
scale.at<double>(1, 1) = scale_y;
scale.at<double>(2, 2) = 1.0;
return (scale * K);
}
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
Mat MultiCameraCalibrationNew::getDistCoeffs(size_t idx) {
DCHECK(idx < n_cameras_);
Mat D;
dist_coeffs_[idx].copyTo(D);
return D;
}
void MultiCameraCalibrationNew::setCameraParameters(size_t idx, const Mat &K, const Mat &distCoeffs) {
DCHECK(idx < n_cameras_);
DCHECK(K.size() == Size(3, 3));
DCHECK(distCoeffs.size() == Size(5, 1));
K.convertTo(K_[idx], CV_64FC1);
distCoeffs.convertTo(dist_coeffs_[idx], CV_64FC1);
}
void MultiCameraCalibrationNew::setCameraParameters(size_t idx, const Mat &K) {
DCHECK(idx < n_cameras_);
setCameraParameters(idx, K, dist_coeffs_[idx]);
}
void MultiCameraCalibrationNew::addPoints(vector<vector<Point2d>> points, vector<int> visible) {
DCHECK(points.size() == visible.size());
DCHECK(visible.size() == n_cameras_);
for (size_t i = 0; i < n_cameras_; i++) {
visible_[i].insert(visible_[i].end(), points[i].size(), visible[i]);
points2d_[i].insert(points2d_[i].end(), points[i].begin(), points[i].end());
}
visibility_graph_.update(visible);
}
void MultiCameraCalibrationNew::reset() {
is_calibrated_ = false;
weights_ = vector(n_cameras_, vector(points2d_[0].size(), 0.0));
inlier_ = vector(n_cameras_, vector(points2d_[0].size(), 0));
points3d_ = vector(n_cameras_, vector(points2d_[0].size(), Point3d()));
points3d_optimized_ = vector(points2d_[0].size(), Point3d());
R_ = vector<Mat>(n_cameras_, Mat::eye(Size(3, 3), CV_64FC1));
t_ = vector<Mat>(n_cameras_, Mat(Size(1, 3), CV_64FC1, Scalar(0.0)));
}
void MultiCameraCalibrationNew::saveInput(const string &filename) {
cv::FileStorage fs(filename, cv::FileStorage::WRITE);
saveInput(fs);
fs.release();
}
void MultiCameraCalibrationNew::saveInput(cv::FileStorage &fs) {
fs << "K" << K_;
fs << "points2d" << points2d_;
fs << "visible" << visible_;
}
void MultiCameraCalibrationNew::loadInput(const std::string &filename, const vector<size_t> &cameras_in) {
points2d_.clear();
points3d_.clear();
points3d_optimized_.clear();
visible_.clear();
inlier_.clear();
cv::FileStorage fs(filename, cv::FileStorage::READ);
vector<Mat> K;
vector<vector<Point2d>> points2d;
vector<vector<int>> visible;
fs["K"] >> K;
fs["points2d"] >> points2d;
fs["visible"] >> visible;
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
fs.release();
vector<size_t> cameras;
if (cameras_in.size() == 0) {
cameras.resize(K.size());
size_t i = 0;
for (auto &c : cameras) { c = i++; }
}
else {
cameras.reserve(cameras_in.size());
for (auto &c : cameras_in) { cameras.push_back(c); }
}
n_cameras_ = cameras.size();
points2d_.resize(n_cameras_);
points3d_.resize(n_cameras_);
visible_.resize(n_cameras_);
for (auto const &c : cameras) {
K_.push_back(K[c]);
}
for (size_t c = 0; c < n_cameras_; c++) {
points2d_[c].reserve(visible[0].size());
points3d_[c].reserve(visible[0].size());
visible_[c].reserve(visible[0].size());
points3d_optimized_.reserve(visible[0].size());
}
visibility_graph_ = Visibility(n_cameras_);
dist_coeffs_.resize(n_cameras_);
for (auto &d : dist_coeffs_ ) { d = Mat(Size(5, 1), CV_64FC1, Scalar(0.0)); }
vector<vector<Point2d>> points2d_add(n_cameras_, vector<Point2d>());
vector<int> visible_add(n_cameras_);
for (size_t i = 0; i < visible[0].size(); i += target_.n_points) {
int count = 0;
for (size_t c = 0; c < n_cameras_; c++) {
count += visible[c][i];
points2d_add[c].clear();
points2d_add[c].insert(
points2d_add[c].begin(),
points2d[cameras[c]].begin() + i,
points2d[cameras[c]].begin() + i + target_.n_points);
visible_add[c] = visible[cameras[c]][i];
}
if (count >= 2) {
addPoints(points2d_add, visible_add);
}
}
reset();
DCHECK(points2d_.size() == n_cameras_);
DCHECK(points2d_.size() == visible_.size());
size_t len = visible_[0].size();
for (size_t i = 0; i < n_cameras_; i++) {
DCHECK(visible_[i].size() == len);
DCHECK(points2d_[i].size() == visible_[i].size());
}
}
size_t MultiCameraCalibrationNew::getViewsCount() {
return points2d_[0].size() / target_.n_points;
}
size_t MultiCameraCalibrationNew::getOptimalReferenceCamera() {
return (size_t) visibility_graph_.getOptimalCamera();
}
bool MultiCameraCalibrationNew::isVisible(size_t camera, size_t idx) {
return visible_[camera][idx] == 1;
}
bool MultiCameraCalibrationNew::isValid(size_t camera, size_t idx) {
return inlier_[camera][idx] >= 0;
}
bool MultiCameraCalibrationNew::isValid(size_t idx) {
for (auto camera : inlier_) {
if (camera[idx] > 0) return true;
}
return false;
}
vector<Point2d> MultiCameraCalibrationNew::getPoints(size_t camera, size_t idx) {
return vector<Point2d> (points2d_[camera].begin() + idx * (target_.n_points),
points2d_[camera].begin() + idx * (target_.n_points + 1));
}
void MultiCameraCalibrationNew::updatePoints3D(size_t camera, Point3d new_point,
size_t idx, const Mat &R, const Mat &t) {
int &f = inlier_[camera][idx];
Point3d &point = points3d_[camera][idx];
new_point = transformPoint(new_point, R, t);
if (f == -1) return;
if (f > 0) {
// TODO: remove parameter (10.0 cm - 1.0m); over 0.25m difference
// would most likely suggest very bad triangulation (sync? wrong match?)
// instead store all triangulations and handle outliers
// (perhaps inverse variance weighted mean?)
if (euclideanDistance(point, new_point) > 10.0) {
LOG(ERROR) << "bad value (skipping) " << "(" << point << " vs " << new_point << ")";
f = -1;
}
else {
point = (point * f + new_point) / (double) (f + 1);
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
}
}
else {
point = new_point;
f = 1;
}
}
void MultiCameraCalibrationNew::updatePoints3D(size_t camera, vector<Point3d> points,
vector<size_t> idx, const Mat &R, const Mat &t) {
for (size_t i = 0; i < idx.size(); i++) {
updatePoints3D(camera, points[i], idx[i], R, t);
}
}
void MultiCameraCalibrationNew::getVisiblePoints(
vector<size_t> cameras, vector<vector<Point2d>> &points, vector<size_t> &idx) {
size_t n_points_total = points2d_[0].size();
DCHECK(cameras.size() <= n_cameras_);
DCHECK(n_points_total % target_.n_points == 0);
idx.clear();
idx.reserve(n_points_total);
points.clear();
points.resize(cameras.size(), {});
for (size_t i = 0; i < n_points_total; i += target_.n_points) {
bool visible_all = true;
for (auto c : cameras) {
for (size_t j = 0; j < target_.n_points; j++) {
visible_all &= isVisible(c, i + j);
}
}
if (!visible_all) { continue; }
for (size_t j = 0; j < target_.n_points; j++) {
idx.push_back(i + j);
}
for (size_t c = 0; c < cameras.size(); c++) {
points[c].insert(points[c].end(),
points2d_[cameras[c]].begin() + i,
points2d_[cameras[c]].begin() + i + target_.n_points
);
}
}
for (auto p : points) { DCHECK(idx.size() == p.size()); }
}
double MultiCameraCalibrationNew::calibratePair(size_t camera_from, size_t camera_to, Mat &rmat, Mat &tvec) {
vector<size_t> idx;
vector<Point2d> points1, points2;
{
vector<vector<Point2d>> points2d;
getVisiblePoints({camera_from, camera_to}, points2d, idx);
points1 = points2d[0];
points2 = points2d[1];
}
DCHECK(points1.size() % target_.n_points == 0);
DCHECK(points1.size() == points2.size());
// cameras possibly lack line of sight?
DCHECK(points1.size() > 8);
Mat &K1 = K_[camera_from];
Mat &K2 = K_[camera_to];
vector<uchar> inliers;
Mat F, E;
F = cv::findFundamentalMat(points1, points2, fm_method_, fm_ransac_threshold_, fm_confidence_, inliers);
if (F.empty())
{
LOG(ERROR) << "Fundamental matrix estimation failed. Possibly degenerate configuration?";
return INFINITY;
}
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
E = K2.t() * F * K1;
// Only include inliers
if (fm_method_ == cv::FM_LMEDS || fm_method_ == cv::FM_RANSAC) {
vector<Point2d> inliers1, inliers2;
vector<size_t> inliers_idx;
inliers1.reserve(points1.size());
inliers2.reserve(points1.size());
inliers_idx.reserve(points1.size());
for (size_t i = 0; i < inliers.size(); i += target_.n_points) {
bool inlier = true;
for (size_t j = 0; j < target_.n_points; j++) {
inlier &= inliers[i+j];
}
if (inlier) {
inliers1.insert(inliers1.end(), points1.begin() + i, points1.begin() + i + target_.n_points);
inliers2.insert(inliers2.end(), points2.begin() + i, points2.begin() + i + target_.n_points);
inliers_idx.insert(inliers_idx.end(), idx.begin() + i, idx.begin() + i + target_.n_points);
}
}
LOG(INFO) << "Total points: " << points1.size() << ", inliers: " << inliers1.size();
double ratio_good_points = (double) inliers1.size() / (double) points1.size();
if (ratio_good_points < 0.66) {
// TODO: ...
LOG(WARNING) << "Over 1/3 of points rejected!";
if (ratio_good_points < 0.33) { LOG(FATAL) << "Over 2/3 points rejected!"; }
}
DCHECK(inliers1.size() == inliers_idx.size());
DCHECK(inliers2.size() == inliers_idx.size());
std::swap(inliers1, points1);
std::swap(inliers2, points2);
std::swap(inliers_idx, idx);
}
// Estimate initial rotation matrix and translation vector and triangulate
// points (in camera 1 coordinate system).
Mat R1, R2, t1, t2;
R1 = Mat::eye(Size(3, 3), CV_64FC1);
t1 = Mat(Size(1, 3), CV_64FC1, Scalar(0.0));
vector<Point3d> points3d;
// Convert homogeneous coordinates
{
Mat points3dh;
recoverPose(E, points1, points2, K1, K2, R2, t2, 1000.0, points3dh);
points3d.reserve(points3dh.cols);
for (int col = 0; col < points3dh.cols; col++) {
Point3d p = Point3d(points3dh.at<double>(0, col),
points3dh.at<double>(1, col),
points3dh.at<double>(2, col))
/ points3dh.at<double>(3, col);
points3d.push_back(p);
}
}
DCHECK(points3d.size() == points1.size());
// Estimate and apply scale factor
{
double scale = target_.estimateScale(points3d);
for (auto &p : points3d) { p = p * scale; }
t1 = t1 * scale;
t2 = t2 * scale;
}
// Reprojection error before BA
{
// SBA should report squared mean error
const double err1 = reprojectionError(points3d, points1, K1, R1, t1);
const double err2 = reprojectionError(points3d, points2, K2, R2, t2);
if (abs(err1 - err2) > 2.0) {
LOG(INFO) << "Initial reprojection error (camera " << camera_from << "): " << err1;
LOG(INFO) << "Initial reprojection error (camera " << camera_to << "): " << err2;
}
LOG(INFO) << "Initial reprojection error (" << camera_from << ", " << camera_to << "): "
<< sqrt(err1 * err1 + err2 * err2);
}
// Bundle Adjustment
// vector<Point3d> points3d_triangulated;
// points3d_triangulated.insert(points3d_triangulated.begin(), points3d.begin(), points3d.end());
double err;
cvsba::Sba sba;
{
sba.setParams(cvsba::Sba::Params(cvsba::Sba::TYPE::MOTIONSTRUCTURE, 200, 1.0e-30, 5, 5, false));
Mat rvec1, rvec2;
cv::Rodrigues(R1, rvec1);
cv::Rodrigues(R2, rvec2);
auto points2d = vector<vector<Point2d>> { points1, points2 };
auto K = vector<Mat> { K1, K2 };
auto r = vector<Mat> { rvec1, rvec2 };
auto t = vector<Mat> { t1, t2 };
auto dcoeffs = vector<Mat> { dist_coeffs_[camera_from], dist_coeffs_[camera_to] };
sba.run(points3d,
vector<vector<Point2d>> { points1, points2 },
vector<vector<int>>(2, vector<int>(points1.size(), 1)),
K, r, t, dcoeffs
);
cv::Rodrigues(r[0], R1);
cv::Rodrigues(r[1], R2);
t1 = t[0];
t2 = t[1];
// intrinsic parameters should only be optimized at final BA
//K1 = K[0];
//K2 = K[1];
err = sba.getFinalReprjError();
LOG(INFO) << "SBA reprojection error before BA " << sba.getInitialReprjError();
LOG(INFO) << "SBA reprojection error after BA " << err;
}
calculateTransform(R2, t2, R1, t1, rmat, tvec);
// Store and average 3D points for both cameras (skip garbage)
if (err < 10.0) {
updatePoints3D(camera_from, points3d, idx, R1, t1);
updatePoints3D(camera_to, points3d, idx, R2, t2);
}
else {
LOG(ERROR) << "Large RMS error ("
<< reprojectionError(points3d, points2, K2, rmat, tvec)
<< "), not updating points!";
}
//LOG(INFO) << reprojectionError(points3d, points1, K1, R1, t1);
//LOG(INFO) << reprojectionError(points3d, points2, K2, R2, t2);
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
return err;
}
Point3d MultiCameraCalibrationNew::getPoint3D(size_t camera, size_t idx) {
return points3d_[camera][idx];
}
void MultiCameraCalibrationNew::calculateMissingPoints3D() {
points3d_optimized_.clear();
points3d_optimized_.resize(points3d_[reference_camera_].size());
for (size_t i = 0; i < points3d_optimized_.size(); i++) {
if (inlier_[reference_camera_][i] > 0) {
points3d_optimized_[i] = points3d_[reference_camera_][i];
continue;
}
if (!isValid(i)) continue;
double f = 0.0;
Point3d point(0.0, 0.0, 0.0);
for (size_t c = 0; c < n_cameras_; c++) {
if (inlier_[c][i] <= 0) { continue; }
point += transformPoint(getPoint3D(c, i), R_[c], t_[c]);
f += 1.0;
}
DCHECK(f != 0.0);
points3d_optimized_[i] = point / f;
}
}
double MultiCameraCalibrationNew::getReprojectionError(size_t c_from, size_t c_to, const Mat &K, const Mat &R, const Mat &t) {
vector<Point2d> points2d;
vector<Point3d> points3d;
for (size_t i = 0; i < points2d_[c_from].size(); i++) {
if (!isValid(i) || !isVisible(c_from, i) || !isVisible(c_to, i)) continue;
points2d.push_back(points2d_[c_from][i]);
points3d.push_back(points3d_[c_to][i]);
}
return reprojectionError(points3d, points2d, K, R, t);
}
double MultiCameraCalibrationNew::getReprojectionErrorOptimized(size_t c_from, const Mat &K, const Mat &R, const Mat &t) {
vector<Point2d> points2d;
vector<Point3d> points3d;
for (size_t i = 0; i < points2d_[c_from].size(); i++) {
if (!isValid(i) || !isVisible(c_from, i)) continue;
points2d.push_back(points2d_[c_from][i]);
points3d.push_back(points3d_optimized_[i]);
}
return reprojectionError(points3d, points2d, K, R, t);
}
double MultiCameraCalibrationNew::calibrateAll(int reference_camera) {
if (reference_camera != -1) {
DCHECK(reference_camera >= 0 && reference_camera < n_cameras_);
reference_camera_ = reference_camera;
}
for (const auto &K : K_) {
LOG(INFO) << K;
}
reset(); // remove all old calibration results
map<pair<size_t, size_t>, pair<Mat, Mat>> transformations;
// All cameras should be calibrated pairwise; otherwise all possible 3D
// points are not necessarily triangulated
auto paths = visibility_graph_.findShortestPaths(reference_camera_);
for (size_t c1 = 0; c1 < n_cameras_; c1++) {
for (size_t c2 = c1; c2 < n_cameras_; c2++) {
if (c1 == c2) {
transformations[make_pair(c1, c2)] =
make_pair(Mat::eye(Size(3, 3), CV_64FC1),
Mat(Size(1, 3), CV_64FC1, Scalar(0.0))
);
continue;
}
size_t n_visible = getVisiblePointsCount({c1, c2});
if (n_visible < min_visible_points_) {
LOG(INFO) << "Not enough (" << min_visible_points_ << ") points between "
<< "cameras " << c1 << " and " << c2 << " (" << n_visible << " points), "
<< "skipping";
continue;
}
LOG(INFO) << "Running pairwise calibration for cameras "
<< c1 << " and " << c2 << "(" << n_visible << " points)";
if (transformations.find(make_pair(c2, c1)) != transformations.end()) {
continue;
}
Mat R, t, R_i, t_i;
// TODO: threshold parameter, 16.0 possibly too high
if (calibratePair(c1, c2, R, t) > 16.0) {
LOG(ERROR) << "Pairwise calibration failed, skipping cameras "
<< c1 << " and " << c2;
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
continue;
}
calculateInverse(R, t, R_i, t_i);
transformations[make_pair(c2, c1)] = make_pair(R, t);
transformations[make_pair(c1, c2)] = make_pair(R_i, t_i);
}}
for (size_t c = 0; c < paths.size(); c++) {
Mat R_chain = Mat::eye(Size(3, 3), CV_64FC1);
Mat t_chain = Mat(Size(1, 3), CV_64FC1, Scalar(0.0));
LOG(INFO) << "Chain for camera " << c;
for (auto e: paths[c]) {
CHECK(transformations.find(e) != transformations.end()) << "chain not calculated; pairwise calibration possibly failed earlier?";
LOG(INFO) << e.first << " -> " << e.second;
Mat R = transformations[e].first;
Mat t = transformations[e].second;
R_chain = R * R_chain;
t_chain = t + R * t_chain;
}
R_[c] = R_chain;
t_[c] = t_chain;
/*R_[c] = transformations[make_pair(reference_camera_, c)].first;
t_[c] = transformations[make_pair(reference_camera_, c)].second;
DCHECK(R_[c].size() == Size(3, 3));
DCHECK(t_[c].size() == Size(1, 3));*/
}
calculateMissingPoints3D();
for (size_t c_from = 0; c_from < n_cameras_; c_from++) {
if (c_from == reference_camera_) continue;
Mat R, t;
calculateInverse(R_[c_from], t_[c_from], R, t);
LOG(INFO) << "Error before BA, cameras " << reference_camera_ << " and " << c_from << ": "
<< getReprojectionErrorOptimized(c_from, K_[c_from], R, t);
}
double err;
cvsba::Sba sba;
{
sba.setParams(cvsba::Sba::Params(cvsba::Sba::TYPE::MOTIONSTRUCTURE, 200, 1.0e-24, fix_intrinsics_, fix_intrinsics_, false));
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
vector<Mat> rvecs(R_.size());
vector<vector<int>> visible(R_.size());
vector<Point3d> points3d;
vector<vector<Point2d>> points2d(R_.size());
vector<size_t> idx;
idx.reserve(points3d_optimized_.size());
for (size_t i = 0; i < points3d_optimized_.size(); i++) {
auto p = points3d_optimized_[i];
DCHECK(!isnanl(p.x) && !isnanl(p.y) && !isnanl(p.z));
int count = 0;
for (size_t c = 0; c < n_cameras_; c++) {
if (isVisible(c, i) && isValid(c, i)) { count++; }
}
if (count < 2) continue;
points3d.push_back(p);
idx.push_back(i);
for (size_t c = 0; c < n_cameras_; c++) {
bool good = isVisible(c, i) && isValid(c, i);
visible[c].push_back(good ? 1 : 0);
points2d[c].push_back(points2d_[c][i]);
}
}
for (size_t i = 0; i < rvecs.size(); i++) {
calculateInverse(R_[i], t_[i], R_[i], t_[i]);
cv::Rodrigues(R_[i], rvecs[i]);
}
DCHECK(points2d.size() == n_cameras_);
DCHECK(visible.size() == n_cameras_);
for (size_t c = 0; c < n_cameras_; c++) {
DCHECK(points3d.size() == points2d[c].size());
DCHECK(points3d.size() == visible[c].size());
}
LOG(INFO) << "number of points used: " << points3d.size();
sba.run(points3d, points2d, visible,
K_, rvecs, t_, dist_coeffs_
);
for (size_t i = 0; i < rvecs.size(); i++) {
cv::Rodrigues(rvecs[i], R_[i]);
calculateInverse(R_[i], t_[i], R_[i], t_[i]);
}
// save optimized points
{
size_t l = points3d.size();
points3d_optimized_.clear();
points3d_optimized_.resize(l, Point3d(NAN, NAN, NAN));
for (size_t i = 0; i < points3d.size(); i++) {
points3d_optimized_[idx[i]] = points3d[i];
}
}
err = sba.getFinalReprjError();
LOG(INFO) << "SBA reprojection error before final BA " << sba.getInitialReprjError();
LOG(INFO) << "SBA reprojection error after final BA " << err;
}
for (size_t c_from = 0; c_from < n_cameras_; c_from++) {
if (c_from == reference_camera_) continue;
Mat R, t;
calculateInverse(R_[c_from], t_[c_from], R, t);
LOG(INFO) << "Error (RMS) after BA, cameras " << reference_camera_ << " and " << c_from << ": "
<< getReprojectionErrorOptimized(c_from, K_[c_from], R, t);
}
is_calibrated_ = true;
return err;
}
void MultiCameraCalibrationNew::projectPointsOriginal(size_t camera_src, size_t camera_dst, size_t idx, vector<Point2d> &points) {
}
void MultiCameraCalibrationNew::projectPointsOptimized(size_t camera_dst, size_t idx, vector<Point2d> &points) {
// TODO: indexing does not match input (points may be skipped in loadInput())
points.clear();
size_t i = target_.n_points * idx;
if (!isValid(i)) return;
Point3d p1(points3d_optimized_[i]);
Point3d p2(points3d_optimized_[i + 1]);
if (!std::isfinite(p1.x) || !std::isfinite(p2.x)) {
// DEBUG: should not happen
LOG(ERROR) << "Bad point! (no valid triangulation)";
return;
}
Mat R, tvec, rvec;
calculateTransform(R_[reference_camera_], t_[reference_camera_], R_[camera_dst], t_[camera_dst], R, tvec);
cv::Rodrigues(R, rvec);
cv::projectPoints( vector<Point3d> { p1, p2 },
rvec, tvec, K_[camera_dst], dist_coeffs_[camera_dst], points);
}
void MultiCameraCalibrationNew::getCalibration(vector<Mat> &R, vector<Mat> &t) {
DCHECK(is_calibrated_);
R.resize(n_cameras_);
t.resize(n_cameras_);
for (size_t i = 0; i < n_cameras_; i++) {
R_[i].copyTo(R[i]);
t_[i].copyTo(t[i]);
}
}