Newer
Older
#include "ilw_cuda.hpp"
#include <ftl/cuda/weighting.hpp>
using ftl::cuda::TextureObject;
using ftl::rgbd::Camera;
#define WARP_SIZE 32
#define T_PER_BLOCK 8
#define FULL_MASK 0xffffffff
__device__ inline float warpMin(float e) {
for (int i = WARP_SIZE/2; i > 0; i /= 2) {
const float other = __shfl_xor_sync(FULL_MASK, e, i, WARP_SIZE);
e = min(e, other);
}
return e;
}
__device__ inline float warpSum(float e) {
for (int i = WARP_SIZE/2; i > 0; i /= 2) {
const float other = __shfl_xor_sync(FULL_MASK, e, i, WARP_SIZE);
e += other;
}
return e;
}
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
//==============================================================================
template <int RADIUS>
__global__ void preprocess_kernel(
ftl::cuda::TextureObject<float> depth_in,
ftl::cuda::TextureObject<float> depth_out,
ftl::cuda::TextureObject<uchar4> colour,
ftl::cuda::TextureObject<int> mask,
ftl::rgbd::Camera camera,
ftl::cuda::ILWParams params) {
const unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
const unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
float d = depth_in.tex2D((int)x,(int)y);
uchar4 c = colour.tex2D((int)x,(int)y);
// Calculate discontinuity mask
// Fill missing depths
if (d < camera.minDepth || d > camera.maxDepth) {
float depth_accum = 0.0f;
float contrib = 0.0f;
for (int v=-RADIUS; v<=RADIUS; ++v) {
for (int u=-RADIUS; u<=RADIUS; ++u) {
uchar4 c2 = colour.tex2D((int)x+u,(int)y+v);
float d2 = depth_in.tex2D((int)x+u,(int)y+v);
if (d2 >= camera.minDepth && d2 <= camera.maxDepth) {
float w = ftl::cuda::colourWeighting(c, c2, params.colour_smooth);
depth_accum += d2*w;
contrib += w;
}
}
}
if (contrib >= 0.0f) d = depth_accum / contrib;
}
depth_out(x,y) = d;
}
void ftl::cuda::preprocess_depth(
ftl::cuda::TextureObject<float> &depth_in,
ftl::cuda::TextureObject<float> &depth_out,
ftl::cuda::TextureObject<uchar4> &colour,
ftl::cuda::TextureObject<int> &mask,
const ftl::rgbd::Camera &camera,
const ftl::cuda::ILWParams ¶ms,
cudaStream_t stream) {
const dim3 gridSize((depth_in.width() + T_PER_BLOCK - 1)/T_PER_BLOCK, (depth_in.height() + T_PER_BLOCK - 1)/T_PER_BLOCK);
const dim3 blockSize(T_PER_BLOCK, T_PER_BLOCK);
preprocess_kernel<3><<<gridSize, blockSize, 0, stream>>>(depth_in, depth_out, colour, mask, camera, params);
cudaSafeCall( cudaGetLastError() );
}
//==============================================================================
template<int FUNCTION>
__device__ float costFunction(const ftl::cuda::ILWParams ¶ms, float dweight, float cweight);
__device__ inline float costFunction<0>(const ftl::cuda::ILWParams ¶ms, float dweight, float cweight) {
return 1.0f - (params.cost_ratio * (cweight) + (1.0f - params.cost_ratio) * dweight);
}
template <>
__device__ inline float costFunction<1>(const ftl::cuda::ILWParams ¶m, float dweight, float cweight) {
return 1.0f - (cweight * cweight * dweight);
}
__device__ inline float costFunction<2>(const ftl::cuda::ILWParams ¶m, float dweight, float cweight) {
return 1.0f - (dweight * dweight * cweight);
}
template <>
__device__ inline float costFunction<3>(const ftl::cuda::ILWParams ¶ms, float dweight, float cweight) {
return (dweight == 0.0f) ? 1.0f : 1.0f - (params.cost_ratio * (cweight) + (1.0f - params.cost_ratio) * dweight);
}
__global__ void correspondence_energy_vector_kernel(
TextureObject<float> d1,
TextureObject<float> d2,
TextureObject<uchar4> c1,
TextureObject<uchar4> c2,
TextureObject<float> dout,
TextureObject<float> conf,
Camera cam2, ftl::cuda::ILWParams params) {
// Each warp picks point in p1
//const int tid = (threadIdx.x + threadIdx.y * blockDim.x);
const int x = (blockIdx.x*blockDim.x + threadIdx.x); // / WARP_SIZE;
const int y = blockIdx.y*blockDim.y + threadIdx.y;
//const float3 world1 = make_float3(p1.tex2D(x, y));
const float depth1 = d1.tex2D(x,y); //(pose1_inv * world1).z; // Initial starting depth
if (depth1 < cam1.minDepth || depth1 > cam1.maxDepth) return;
// TODO: Temporary hack to ensure depth1 is present
//const float4 temp = vout.tex2D(x,y);
//vout(x,y) = make_float4(depth1, 0.0f, temp.z, temp.w);
const float3 world1 = pose1 * cam1.screenToCam(x,y,depth1);
float bestcost = 1.1f;
float avgcost = 0.0f;
const float step_interval = params.range / (COR_STEPS / 2);
const float3 rayStep_world = pose1.getFloat3x3() * cam1.screenToCam(x,y,step_interval);
const float3 rayStart_2 = pose2 * world1;
const float3 rayStep_2 = pose2.getFloat3x3() * rayStep_world;
// Project to p2 using cam2
// Each thread takes a possible correspondence and calculates a weighting
//const int lane = tid % WARP_SIZE;
for (int i=0; i<COR_STEPS; ++i) {
const int j = i - (COR_STEPS/2);
const float depth_adjust = (float)j * step_interval + depth1;
// Calculate adjusted depth 3D point in camera 2 space
const float3 worldPos = world1 + j * rayStep_world; //(pose1 * cam1.screenToCam(x, y, depth_adjust));
const float3 camPos = rayStart_2 + j * rayStep_2; //pose2 * worldPos;
const uint2 screen = cam2.camToScreen<uint2>(camPos);
if (screen.x >= cam2.width || screen.y >= cam2.height) continue;
// Generate a depth correspondence value
const float depth2 = d2.tex2D((int)screen.x, (int)screen.y);
const float dweight = ftl::cuda::weighting(fabs(depth2 - camPos.z), params.spatial_smooth);
// Generate a colour correspondence value
const uchar4 colour2 = c2.tex2D((int)screen.x, (int)screen.y);
const float cweight = ftl::cuda::colourWeighting(colour1, colour2, params.colour_smooth);
const float cost = costFunction<FUNCTION>(params, dweight, cweight);
// Cost is so bad, don't even consider this a valid option
if (cost >= params.cost_threshold) continue;
++count;
avgcost += cost;
if (cost < bestcost) {
bestdepth = depth_adjust;
bestcost = cost;
}
//count = warpSum(count);
const float mincost = bestcost; //warpMin(bestcost);
//bool best = mincost == bestcost;
avgcost /= count;
const float confidence = (params.flags & ftl::cuda::kILWFlag_ColourConfidenceOnly) ? avgcost : (avgcost - mincost);
if ((1.0f - mincost) * confidence > old) {
dout(x,y) = bestdepth;
conf(x,y) = (1.0f - mincost) * confidence;
}
TextureObject<float> &d1,
TextureObject<float> &d2,
TextureObject<uchar4> &c1,
TextureObject<uchar4> &c2,
TextureObject<float> &dout,
TextureObject<float> &conf,
const Camera &cam2, const ILWParams ¶ms, int func,
const dim3 gridSize((d1.width() + T_PER_BLOCK - 1)/T_PER_BLOCK, (d1.height() + T_PER_BLOCK - 1)/T_PER_BLOCK);
//printf("COR SIZE %d,%d\n", p1.width(), p1.height());
switch (func) {
case 0: correspondence_energy_vector_kernel<16,0><<<gridSize, blockSize, 0, stream>>>(d1, d2, c1, c2, dout, conf, pose1, pose1_inv, pose2, cam1, cam2, params);
case 1: correspondence_energy_vector_kernel<16,1><<<gridSize, blockSize, 0, stream>>>(d1, d2, c1, c2, dout, conf, pose1, pose1_inv, pose2, cam1, cam2, params);
case 2: correspondence_energy_vector_kernel<16,2><<<gridSize, blockSize, 0, stream>>>(d1, d2, c1, c2, dout, conf, pose1, pose1_inv, pose2, cam1, cam2, params);
case 3: correspondence_energy_vector_kernel<16,3><<<gridSize, blockSize, 0, stream>>>(d1, d2, c1, c2, dout, conf, pose1, pose1_inv, pose2, cam1, cam2, params);
cudaSafeCall( cudaGetLastError() );
}
//==============================================================================
//#define MOTION_RADIUS 9
template <int MOTION_RADIUS>
__global__ void move_points_kernel(
ftl::cuda::TextureObject<float> d_old,
ftl::cuda::TextureObject<float> d_new,
ftl::cuda::TextureObject<float> conf,
float4x4 pose,
ftl::cuda::ILWParams params,
float rate) {
const unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
const unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
const float d0_new = d_new.tex2D((int)x,(int)y);
const float d0_old = d_old.tex2D((int)x,(int)y);
if (d0_new == 0.0f) return; // No correspondence found
//const float4 world = p(x,y);
//if (world.x == MINF) return;
float delta = 0.0f; //make_float4(0.0f, 0.0f, 0.0f, 0.0f); //ev.tex2D((int)x,(int)y);
float contrib = 0.0f;
// Calculate screen space distortion with neighbours
for (int v=-MOTION_RADIUS; v<=MOTION_RADIUS; ++v) {
for (int u=-MOTION_RADIUS; u<=MOTION_RADIUS; ++u) {
const float dn_new = d_new.tex2D((int)x+u,(int)y+v);
const float dn_old = d_old.tex2D((int)x+u,(int)y+v);
const float confn = conf.tex2D((int)x+u,(int)y+v);
//const float3 pn = make_float3(p.tex2D((int)x+u,(int)y+v));
//if (pn.x == MINF) continue;
if (dn_new == 0.0f) continue; // Neighbour has no new correspondence
const float s = ftl::cuda::weighting(fabs(d0_new - dn_new), params.range);
contrib += (confn+0.01f) * s;
delta += (confn+0.01f) * s * ((confn == 0.0f) ? dn_old : dn_new);
//const float3 newworld = pose * camera.screenToCam(x, y, vec0.x + rate * ((delta / contrib) - vec0.x));
//p(x,y) = make_float4(newworld, world.w); //world + rate * (vec / contrib);
d_old(x,y) = d0_old + rate * ((delta / contrib) - d0_old);
}
}
}
void ftl::cuda::move_points(
ftl::cuda::TextureObject<float> &d_old,
ftl::cuda::TextureObject<float> &d_new,
ftl::cuda::TextureObject<float> &conf,
const float4x4 &pose,
const ftl::cuda::ILWParams ¶ms,
float rate,
int radius,
cudaStream_t stream) {
const dim3 gridSize((d_old.width() + T_PER_BLOCK - 1)/T_PER_BLOCK, (d_old.height() + T_PER_BLOCK - 1)/T_PER_BLOCK);
const dim3 blockSize(T_PER_BLOCK, T_PER_BLOCK);
switch (radius) {
case 9 : move_points_kernel<9><<<gridSize, blockSize, 0, stream>>>(d_old,d_new,conf,camera, pose, params, rate); break;
case 5 : move_points_kernel<5><<<gridSize, blockSize, 0, stream>>>(d_old,d_new,conf,camera, pose, params, rate); break;
case 3 : move_points_kernel<3><<<gridSize, blockSize, 0, stream>>>(d_old,d_new,conf,camera, pose, params, rate); break;
case 1 : move_points_kernel<1><<<gridSize, blockSize, 0, stream>>>(d_old,d_new,conf,camera, pose, params, rate); break;
case 0 : move_points_kernel<0><<<gridSize, blockSize, 0, stream>>>(d_old,d_new,conf,camera, pose, params, rate); break;
}
cudaSafeCall( cudaGetLastError() );
}