Newer
Older
/*
* Author: Nicolas Pope and Sebastian Hahta (2019)
* Implementation of algorithm presented in article(s):
*
* [1] Humenberger, Engelke, Kubinger: A fast stereo matching algorithm suitable
* for embedded real-time systems
* [2] Humenberger, Zinner, Kubinger: Performance Evaluation of Census-Based
* Stereo Matching Algorithm on Embedded and Multi-Core Hardware
*
* Equation numbering uses [1] unless otherwise stated
*
*/
#include <opencv2/core/cuda/common.hpp>
using namespace cv::cuda;
using namespace cv;
#define RADIUS 7
#define RADIUS2 2
#define XHI(P1,P2) ((P1 <= P2) ? 0 : 1)
namespace ftl {
namespace gpu {
// --- SUPPORT -----------------------------------------------------------------
/*
* Sparse 16x16 census (so 8x8) creating a 64bit mask
* (14) & (15), based upon (9)
*/
__device__ uint64_t sparse_census(unsigned char *arr, size_t u, size_t v, size_t w) {
uint64_t r = 0;
unsigned char t = arr[v*w+u];
for (int m=-7; m<=7; m+=2) {
auto start_ix = (v + m)*w + u;
for (int n=-7; n<=7; n+=2) {
r <<= 1;
r |= XHI(t, arr[start_ix+n]);
}
}
return r;
}
/*
* Parabolic interpolation between matched disparities either side.
* Results in subpixel disparity. (20).
*/
__device__ float fit_parabola(size_t pi, uint16_t p, uint16_t pl, uint16_t pr) {
float a = pr - pl;
float b = 2 * (2 * p - pl - pr);
return static_cast<float>(pi) + (a / b);
}
// --- KERNELS -----------------------------------------------------------------
/*
* Calculate census mask for left and right images together.
*/
__global__ void census_kernel(PtrStepSzb l, PtrStepSzb r, uint64_t *census) {
//extern __shared__ uint64_t census[];
size_t u = (blockIdx.x * BLOCK_W + threadIdx.x + RADIUS);
size_t v_start = blockIdx.y * ROWSperTHREAD + RADIUS;
size_t v_end = v_start + ROWSperTHREAD;
if (v_end >= l.rows) v_end = l.rows;
if (u >= l.cols) return;
size_t width = l.cols;
for (size_t v=v_start; v<v_end; v++) {
size_t ix = (u + v*width) * 2;
uint64_t cenL = sparse_census(l.data, u, v, l.step);
uint64_t cenR = sparse_census(r.data, u, v, r.step);
census[ix] = cenL;
census[ix + 1] = cenR;
}
}
/*
* Generate left and right disparity images from census data. (19)
*/
__global__ void disp_kernel(float *disp_l, float *disp_r, size_t width, size_t height, uint64_t *census, size_t ds) {
size_t u = (blockIdx.x * BLOCK_W) + threadIdx.x + RADIUS2;
size_t v_start = (blockIdx.y * ROWSperTHREAD) + RADIUS2;
size_t v_end = v_start + ROWSperTHREAD;
// Prepare the cache load
//const int cache_thread_width = (BLOCK_W+ds / BLOCK_W + RADIUS2*2 + 1)*2;
//uint64_t *cache_ptr = cache + (threadIdx.x * cache_thread_width);
if (v_end >= height) v_end = height;
for (size_t v=v_start; v<v_end; v++) {
/*const int cache_start = v*width*2 + cache_thread_width*blockIdx.x;
for (int i=0; i<cache_thread_width; i+=2) {
cache_ptr[i] = census[cache_start+i];
cache_ptr[i+1] = census[cache_start+i+1];
}
__syncthreads();*/
uint16_t last_ham1 = 65535;
uint16_t last_ham2 = 65535;
uint16_t min_disp1 = 65535;
uint16_t min_disp2 = 65535;
uint16_t min_before1 = 0;
uint16_t min_before2 = 0;
uint16_t min_after1 = 0;
uint16_t min_after2 = 0;
int dix1 = 0;
int dix2 = 0;
for (size_t d=0; d<ds; d++) {
uint16_t hamming1 = 0;
uint16_t hamming2 = 0;
//if (u+2+ds >= width) break;
for (int m=-2; m<=2; m++) {
const auto v_ = (v + m)*width;
for (int n=-2; n<=2; n++) {
const auto u_ = u + n;
hamming1 += __popcll(r1^l1);
hamming2 += __popcll(r2^l2);
}
}
if (hamming1 < min_disp1) {
min_before1 = last_ham1;
min_disp1 = hamming1;
dix1 = d;
if (dix1 == d) min_after1 = hamming1;
last_ham1 = hamming1;
if (hamming2 < min_disp2) {
min_before2 = last_ham2;
min_disp2 = hamming2;
dix2 = d;
if (dix2 == d) min_after2 = hamming2;
last_ham2 = hamming2;
//float d1 = (dix1 == 0 || dix1 == ds-1) ? (float)dix1 : fit_parabola(dix1, min_disp1, min_before1, min_after1);
//float d2 = (dix2 == 0 || dix2 == ds-1) ? (float)dix2 : fit_parabola(dix2, min_disp2, min_before2, min_after2);
float d1 = fit_parabola(dix1, min_disp1, min_before1, min_after1);
float d2 = fit_parabola(dix2, min_disp2, min_before2, min_after2);
disp_l[v*width+u] = d2;
disp_r[v*width+u] = d1;
__global__ void consistency_kernel(float *d_sub_l, float *d_sub_r, PtrStepSz<float> disp) {
size_t w = disp.cols;
size_t h = disp.rows;
//Mat result = Mat::zeros(Size(w,h), CV_32FC1);
size_t u = (blockIdx.x * BLOCK_W) + threadIdx.x + RADIUS;
size_t v_start = (blockIdx.y * ROWSperTHREAD) + RADIUS;
size_t v_end = v_start + ROWSperTHREAD;
if (v_end >= disp.rows) v_end = disp.rows;
if (u >= w) return;
for (size_t v=v_start; v<v_end; v++) {
int a = (int)(d_sub_l[v*w+u]);
if ((int)u-a < 0) continue;
auto b = d_sub_r[v*w+u-a];
if (abs(a-b) <= 1.0) disp(v,u) = abs((a+b)/2);
else disp(v,u) = 0.0f;
//}
}
void rtcensus_call(const PtrStepSzb &l, const PtrStepSzb &r, const PtrStepSz<float> &disp, size_t num_disp, const int &stream) {
dim3 grid(1,1,1);
dim3 threads(BLOCK_W, 1, 1);
grid.x = cv::cuda::device::divUp(l.cols - 2 * RADIUS, BLOCK_W);
grid.y = cv::cuda::device::divUp(l.rows - 2 * RADIUS, ROWSperTHREAD);
// TODO, reduce allocations
uint64_t *census;
cudaMalloc(&census, sizeof(uint64_t)*l.cols*l.rows*2);
//cudaMemset(census, 0, sizeof(uint64_t)*l.cols*l.rows*2);
cudaMalloc(&disp_l, sizeof(float)*l.cols*l.rows);
cudaMalloc(&disp_r, sizeof(float)*l.cols*l.rows);
//size_t smem_size = (2 * l.cols * l.rows) * sizeof(uint64_t);
census_kernel<<<grid, threads>>>(l, r, census);
cudaSafeCall( cudaGetLastError() );
grid.x = cv::cuda::device::divUp(l.cols - 2 * RADIUS2, BLOCK_W);
grid.y = cv::cuda::device::divUp(l.rows - 2 * RADIUS2, ROWSperTHREAD);
//grid.x = cv::cuda::device::divUp(l.cols - 2 * RADIUS - num_disp, BLOCK_W) - 1;
disp_kernel<<<grid, threads>>>(disp_l, disp_r, l.cols, l.rows, census, num_disp);
cudaSafeCall( cudaGetLastError() );
consistency_kernel<<<grid, threads>>>(disp_l, disp_r, disp);
cudaSafeCall( cudaGetLastError() );
cudaFree(census);
//if (&stream == Stream::Null())
cudaSafeCall( cudaDeviceSynchronize() );
}
};
};