Newer
Older
#include "camera.hpp"
#include "pose_window.hpp"
#include "screen.hpp"
#include <nanogui/glutil.h>
using ftl::rgbd::isValidDepth;
using ftl::gui::GLTexture;
using ftl::gui::PoseWindow;
// TODO(Nick) MOVE
class StatisticsImage {
private:
cv::Mat data_; // CV_32FC3, channels: m, s, f
cv::Size size_; // image size
float n_; // total number of samples
StatisticsImage(cv::Size size);
StatisticsImage(cv::Size size, float max_f);
/* @brief reset all statistics to 0
*/
/* @brief update statistics with new values
*/
/* @brief variance (depth)
*/
void getVariance(cv::Mat &out);
/* @brief standard deviation (depth)
*/
/* @brief mean value (depth)
*/
/* @brief percent of samples having valid depth value
*/
void getValidRatio(cv::Mat &out);
StatisticsImage::StatisticsImage(cv::Size size) :
StatisticsImage(size, std::numeric_limits<float>::infinity()) {}
StatisticsImage::StatisticsImage(cv::Size size, float max_f) {
size_ = size;
data_ = cv::Mat(size, CV_32FC3, cv::Scalar(0.0, 0.0, 0.0));
if (!std::isinf(max_f)) {
LOG(WARNING) << "TODO: max_f_ not used. Values calculated for all samples";
void StatisticsImage::reset() {
data_ = cv::Scalar(0.0, 0.0, 0.0);
void StatisticsImage::update(const cv::Mat &in) {
DCHECK(in.type() == CV_32F);
DCHECK(in.size() == size_);
for (int row = 0; row < in.rows; row++) {
float* ptr_data = data_.ptr<float>(row);
const float* ptr_in = in.ptr<float>(row);
for (int col = 0; col < in.cols; col++, ptr_in++) {
float x = *ptr_in;
float &m = *ptr_data++;
float &s = *ptr_data++;
float &f = *ptr_data++;
if (!ftl::rgbd::isValidDepth(x)) continue;
f = f + 1.0f;
m = m + (x - m) / f;
s = s + (x - m) * (x - m_prev);
}
void StatisticsImage::getVariance(cv::Mat &out) {
std::vector<cv::Mat> channels(3);
cv::split(data_, channels);
cv::divide(channels[1], channels[2], out);
}
void StatisticsImage::getStdDev(cv::Mat &out) {
getVariance(out);
cv::sqrt(out, out);
void StatisticsImage::getMean(cv::Mat &out) {
std::vector<cv::Mat> channels(3);
cv::split(data_, channels);
out = channels[0];
}
void StatisticsImage::getValidRatio(cv::Mat &out) {
std::vector<cv::Mat> channels(3);
cv::split(data_, channels);
cv::divide(channels[2], n_, out);
}
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
static Eigen::Affine3d create_rotation_matrix(float ax, float ay, float az) {
Eigen::Affine3d rx =
Eigen::Affine3d(Eigen::AngleAxisd(ax, Eigen::Vector3d(1, 0, 0)));
Eigen::Affine3d ry =
Eigen::Affine3d(Eigen::AngleAxisd(ay, Eigen::Vector3d(0, 1, 0)));
Eigen::Affine3d rz =
Eigen::Affine3d(Eigen::AngleAxisd(az, Eigen::Vector3d(0, 0, 1)));
return rz * rx * ry;
}
ftl::gui::Camera::Camera(ftl::gui::Screen *screen, ftl::rgbd::Source *src) : screen_(screen), src_(src) {
eye_ = Eigen::Vector3d(0.0f, 0.0f, 0.0f);
neye_ = Eigen::Vector4d(0.0f, 0.0f, 0.0f, 0.0f);
rotmat_.setIdentity();
//up_ = Eigen::Vector3f(0,1.0f,0);
lerpSpeed_ = 0.999f;
depth_ = false;
ftime_ = (float)glfwGetTime();
pause_ = false;
channel_ = ftl::rgbd::kChanLeft;
channels_.push_back(ftl::rgbd::kChanLeft);
channels_.push_back(ftl::rgbd::kChanDepth);
// Create pose window...
posewin_ = new PoseWindow(screen, src_->getURI());
posewin_->setTheme(screen->windowtheme);
posewin_->setVisible(false);
}
ftl::gui::Camera::~Camera() {
}
ftl::rgbd::Source *ftl::gui::Camera::source() {
return src_;
}
void ftl::gui::Camera::setPose(const Eigen::Matrix4d &p) {
eye_[0] = p(0,3);
eye_[1] = p(1,3);
eye_[2] = p(2,3);
double sx = Eigen::Vector3d(p(0,0), p(1,0), p(2,0)).norm();
double sy = Eigen::Vector3d(p(0,1), p(1,1), p(2,1)).norm();
double sz = Eigen::Vector3d(p(0,2), p(1,2), p(2,2)).norm();
Eigen::Matrix4d rot = p;
rot(0,3) = 0.0;
rot(1,3) = 0.0;
rot(2,3) = 0.0;
rot(0,0) = rot(0,0) / sx;
rot(1,0) = rot(1,0) / sx;
rot(2,0) = rot(2,0) / sx;
rot(0,1) = rot(0,1) / sy;
rot(1,1) = rot(1,1) / sy;
rot(2,1) = rot(2,1) / sy;
rot(0,2) = rot(0,2) / sz;
rot(1,2) = rot(1,2) / sz;
rot(2,2) = rot(2,2) / sz;
rotmat_ = rot;
}
void ftl::gui::Camera::mouseMovement(int rx, int ry, int button) {
if (!src_->hasCapabilities(ftl::rgbd::kCapMovable)) return;
if (button == 1) {
float rrx = ((float)ry * 0.2f * delta_);
//orientation_[2] += std::cos(orientation_[1])*((float)rel[1] * 0.2f * delta_);
float rry = (float)rx * 0.2f * delta_;
float rrz = 0.0;
Eigen::Affine3d r = create_rotation_matrix(rrx, -rry, rrz);
rotmat_ = rotmat_ * r.matrix();
}
}
void ftl::gui::Camera::keyMovement(int key, int modifiers) {
if (!src_->hasCapabilities(ftl::rgbd::kCapMovable)) return;
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
if (key == 263 || key == 262) {
float mag = (modifiers & 0x1) ? 0.01f : 0.1f;
float scalar = (key == 263) ? -mag : mag;
neye_ += rotmat_*Eigen::Vector4d(scalar,0.0,0.0,1.0);
return;
} else if (key == 264 || key == 265) {
float mag = (modifiers & 0x1) ? 0.01f : 0.1f;
float scalar = (key == 264) ? -mag : mag;
neye_ += rotmat_*Eigen::Vector4d(0.0,0.0,scalar,1.0);
return;
} else if (key == 266 || key == 267) {
float mag = (modifiers & 0x1) ? 0.01f : 0.1f;
float scalar = (key == 266) ? -mag : mag;
neye_ += rotmat_*Eigen::Vector4d(0.0,scalar,0.0,1.0);
return;
}
}
void ftl::gui::Camera::showPoseWindow() {
posewin_->setVisible(true);
}
void ftl::gui::Camera::showSettings() {
}
void ftl::gui::Camera::setChannel(ftl::rgbd::channel_t c) {
channel_ = c;
switch (c) {
case ftl::rgbd::kChanFlow:
case ftl::rgbd::kChanConfidence:
case ftl::rgbd::kChanNormals:
src_->setChannel(c);
break;
case ftl::rgbd::kChanDeviation:
if (stats_) { stats_->reset(); }
src_->setChannel(ftl::rgbd::kChanDepth);
break;
case ftl::rgbd::kChanDepth:
src_->setChannel(c);
default: src_->setChannel(ftl::rgbd::kChanNone);
}
}
const GLTexture &ftl::gui::Camera::captureFrame() {
float now = (float)glfwGetTime();
delta_ = now - ftime_;
ftime_ = now;
if (src_ && src_->isReady()) {
cv::Mat rgb, depth;
// Lerp the Eye
eye_[0] += (neye_[0] - eye_[0]) * lerpSpeed_ * delta_;
eye_[1] += (neye_[1] - eye_[1]) * lerpSpeed_ * delta_;
eye_[2] += (neye_[2] - eye_[2]) * lerpSpeed_ * delta_;
Eigen::Translation3d trans(eye_);
Eigen::Affine3d t(trans);
Eigen::Matrix4d viewPose = t.matrix() * rotmat_;
if (src_->hasCapabilities(ftl::rgbd::kCapMovable)) src_->setPose(viewPose);
src_->grab();
src_->getFrames(rgb, depth);
// When switching from right to depth, client may still receive
// right images from previous batch (depth.channels() == 1 check)
if (channel_ == ftl::rgbd::kChanDeviation &&
depth.rows > 0 && depth.channels() == 1)
{
if (!stats_) {
stats_ = new StatisticsImage(depth.size());
stats_->update(depth);
}
cv::Mat tmp;
switch(channel_) {
case ftl::rgbd::kChanDepth:
if (depth.rows == 0) { break; }
//imageSize = Vector2f(depth.cols,depth.rows);
depth.convertTo(tmp, CV_8U, 255.0f / 5.0f);
tmp = 255 - tmp;
applyColorMap(tmp, tmp, cv::COLORMAP_JET);
texture_.update(tmp);
break;
case ftl::rgbd::kChanDeviation:
if (depth.rows == 0) { break; }
//imageSize = Vector2f(depth.cols, depth.rows);
stats_->getStdDev(tmp);
tmp.convertTo(tmp, CV_8U, 1000.0);
applyColorMap(tmp, tmp, cv::COLORMAP_HOT);
texture_.update(tmp);
break;
case ftl::rgbd::kChanFlow:
case ftl::rgbd::kChanConfidence:
case ftl::rgbd::kChanNormals:
case ftl::rgbd::kChanRight:
if (depth.rows == 0 || depth.type() != CV_8UC3) { break; }
texture_.update(depth);
break;
default:
if (rgb.rows == 0) { break; }
//imageSize = Vector2f(rgb.cols,rgb.rows);
texture_.update(rgb);
}
}
return texture_;
}
nlohmann::json ftl::gui::Camera::getMetaData() {
return nlohmann::json();