Newer
Older
#include "camera.hpp"
#include "pose_window.hpp"
#include "screen.hpp"
#include <nanogui/glutil.h>
using ftl::rgbd::isValidDepth;
using ftl::gui::GLTexture;
using ftl::gui::PoseWindow;
using ftl::rgbd::Channel;
using ftl::rgbd::Channels;
// TODO(Nick) MOVE
class StatisticsImage {
private:
cv::Mat data_; // CV_32FC3, channels: m, s, f
cv::Size size_; // image size
float n_; // total number of samples
explicit StatisticsImage(cv::Size size);
StatisticsImage(cv::Size size, float max_f);
/* @brief reset all statistics to 0
*/
/* @brief update statistics with new values
*/
/* @brief variance (depth)
*/
void getVariance(cv::Mat &out);
/* @brief standard deviation (depth)
*/
/* @brief mean value (depth)
*/
/* @brief percent of samples having valid depth value
*/
void getValidRatio(cv::Mat &out);
StatisticsImage::StatisticsImage(cv::Size size) :
StatisticsImage(size, std::numeric_limits<float>::infinity()) {}
StatisticsImage::StatisticsImage(cv::Size size, float max_f) {
size_ = size;
data_ = cv::Mat(size, CV_32FC3, cv::Scalar(0.0, 0.0, 0.0));
if (!std::isinf(max_f)) {
LOG(WARNING) << "TODO: max_f_ not used. Values calculated for all samples";
void StatisticsImage::reset() {
data_ = cv::Scalar(0.0, 0.0, 0.0);
void StatisticsImage::update(const cv::Mat &in) {
DCHECK(in.type() == CV_32F);
DCHECK(in.size() == size_);
for (int row = 0; row < in.rows; row++) {
float* ptr_data = data_.ptr<float>(row);
const float* ptr_in = in.ptr<float>(row);
for (int col = 0; col < in.cols; col++, ptr_in++) {
float x = *ptr_in;
float &m = *ptr_data++;
float &s = *ptr_data++;
float &f = *ptr_data++;
if (!ftl::rgbd::isValidDepth(x)) continue;
f = f + 1.0f;
m = m + (x - m) / f;
s = s + (x - m) * (x - m_prev);
}
void StatisticsImage::getVariance(cv::Mat &out) {
std::vector<cv::Mat> channels(3);
cv::split(data_, channels);
cv::divide(channels[1], channels[2], out);
}
void StatisticsImage::getStdDev(cv::Mat &out) {
getVariance(out);
cv::sqrt(out, out);
void StatisticsImage::getMean(cv::Mat &out) {
std::vector<cv::Mat> channels(3);
cv::split(data_, channels);
out = channels[0];
}
void StatisticsImage::getValidRatio(cv::Mat &out) {
std::vector<cv::Mat> channels(3);
cv::split(data_, channels);
cv::divide(channels[2], n_, out);
}
static Eigen::Affine3d create_rotation_matrix(float ax, float ay, float az) {
Eigen::Affine3d rx =
Eigen::Affine3d(Eigen::AngleAxisd(ax, Eigen::Vector3d(1, 0, 0)));
Eigen::Affine3d ry =
Eigen::Affine3d(Eigen::AngleAxisd(ay, Eigen::Vector3d(0, 1, 0)));
Eigen::Affine3d rz =
Eigen::Affine3d(Eigen::AngleAxisd(az, Eigen::Vector3d(0, 0, 1)));
return rz * rx * ry;
}
ftl::gui::Camera::Camera(ftl::gui::Screen *screen, ftl::rgbd::Source *src) : screen_(screen), src_(src) {
eye_ = Eigen::Vector3d(0.0f, 0.0f, 0.0f);
neye_ = Eigen::Vector4d(0.0f, 0.0f, 0.0f, 0.0f);
rotmat_.setIdentity();
//up_ = Eigen::Vector3f(0,1.0f,0);
lerpSpeed_ = 0.999f;
ftime_ = (float)glfwGetTime();
pause_ = false;
channels_ += Channel::Left;
channels_ += Channel::Depth;
// Create pose window...
posewin_ = new PoseWindow(screen, src_->getURI());
posewin_->setTheme(screen->windowtheme);
posewin_->setVisible(false);
src->setCallback([this](int64_t ts, cv::Mat &rgb, cv::Mat &depth) {
UNIQUE_LOCK(mutex_, lk);
rgb_.create(rgb.size(), rgb.type());
depth_.create(depth.size(), depth.type());
cv::swap(rgb_,rgb);
cv::swap(depth_, depth);
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
}
ftl::gui::Camera::~Camera() {
}
ftl::rgbd::Source *ftl::gui::Camera::source() {
return src_;
}
void ftl::gui::Camera::setPose(const Eigen::Matrix4d &p) {
eye_[0] = p(0,3);
eye_[1] = p(1,3);
eye_[2] = p(2,3);
double sx = Eigen::Vector3d(p(0,0), p(1,0), p(2,0)).norm();
double sy = Eigen::Vector3d(p(0,1), p(1,1), p(2,1)).norm();
double sz = Eigen::Vector3d(p(0,2), p(1,2), p(2,2)).norm();
Eigen::Matrix4d rot = p;
rot(0,3) = 0.0;
rot(1,3) = 0.0;
rot(2,3) = 0.0;
rot(0,0) = rot(0,0) / sx;
rot(1,0) = rot(1,0) / sx;
rot(2,0) = rot(2,0) / sx;
rot(0,1) = rot(0,1) / sy;
rot(1,1) = rot(1,1) / sy;
rot(2,1) = rot(2,1) / sy;
rot(0,2) = rot(0,2) / sz;
rot(1,2) = rot(1,2) / sz;
rot(2,2) = rot(2,2) / sz;
rotmat_ = rot;
}
void ftl::gui::Camera::mouseMovement(int rx, int ry, int button) {
if (!src_->hasCapabilities(ftl::rgbd::kCapMovable)) return;
if (button == 1) {
float rrx = ((float)ry * 0.2f * delta_);
//orientation_[2] += std::cos(orientation_[1])*((float)rel[1] * 0.2f * delta_);
float rry = (float)rx * 0.2f * delta_;
float rrz = 0.0;
Eigen::Affine3d r = create_rotation_matrix(rrx, -rry, rrz);
rotmat_ = rotmat_ * r.matrix();
}
}
void ftl::gui::Camera::keyMovement(int key, int modifiers) {
if (!src_->hasCapabilities(ftl::rgbd::kCapMovable)) return;
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
if (key == 263 || key == 262) {
float mag = (modifiers & 0x1) ? 0.01f : 0.1f;
float scalar = (key == 263) ? -mag : mag;
neye_ += rotmat_*Eigen::Vector4d(scalar,0.0,0.0,1.0);
return;
} else if (key == 264 || key == 265) {
float mag = (modifiers & 0x1) ? 0.01f : 0.1f;
float scalar = (key == 264) ? -mag : mag;
neye_ += rotmat_*Eigen::Vector4d(0.0,0.0,scalar,1.0);
return;
} else if (key == 266 || key == 267) {
float mag = (modifiers & 0x1) ? 0.01f : 0.1f;
float scalar = (key == 266) ? -mag : mag;
neye_ += rotmat_*Eigen::Vector4d(0.0,scalar,0.0,1.0);
return;
}
}
void ftl::gui::Camera::showPoseWindow() {
posewin_->setVisible(true);
}
void ftl::gui::Camera::showSettings() {
}
void ftl::gui::Camera::setChannel(Channel c) {
case Channel::Energy:
case Channel::Flow:
case Channel::Confidence:
case Channel::Normals:
case Channel::Right:
src_->setChannel(c);
break;
if (stats_) { stats_->reset(); }
src_->setChannel(c);
default: src_->setChannel(Channel::None);
static Eigen::Matrix4d ConvertSteamVRMatrixToMatrix4( const vr::HmdMatrix34_t &matPose )
{
Eigen::Matrix4d matrixObj;
matrixObj <<
matPose.m[0][0], matPose.m[1][0], matPose.m[2][0], 0.0,
matPose.m[0][1], matPose.m[1][1], matPose.m[2][1], 0.0,
matPose.m[0][2], matPose.m[1][2], matPose.m[2][2], 0.0,
matPose.m[0][3], matPose.m[1][3], matPose.m[2][3], 1.0f;
return matrixObj;
}
static void visualizeDepthMap( const cv::Mat &depth, cv::Mat &out,
const float max_depth)
{
DCHECK(max_depth > 0.0);
depth.convertTo(out, CV_8U, 255.0f / max_depth);
out = 255 - out;
cv::Mat mask = (depth >= 39.0f); // TODO (mask for invalid pixels)
applyColorMap(out, out, cv::COLORMAP_JET);
out.setTo(cv::Scalar(255, 255, 255), mask);
}
static void visualizeEnergy( const cv::Mat &depth, cv::Mat &out,
const float max_depth)
{
DCHECK(max_depth > 0.0);
depth.convertTo(out, CV_8U, 255.0f / max_depth);
//out = 255 - out;
cv::Mat mask = (depth >= 39.0f); // TODO (mask for invalid pixels)
applyColorMap(out, out, cv::COLORMAP_JET);
out.setTo(cv::Scalar(255, 255, 255), mask);
}
static void drawEdges( const cv::Mat &in, cv::Mat &out,
const int ksize = 3, double weight = -1.0, const int threshold = 32,
const int threshold_type = cv::THRESH_TOZERO)
{
cv::Mat edges;
cv::Laplacian(in, edges, 8, ksize);
cv::threshold(edges, edges, threshold, 255, threshold_type);
cv::Mat edges_color(in.size(), CV_8UC3);
cv::addWeighted(edges, weight, out, 1.0, 0.0, out, CV_8UC3);
}
bool ftl::gui::Camera::thumbnail(cv::Mat &thumb) {
UNIQUE_LOCK(mutex_, lk);
src_->grab(1,9);
if (rgb_.empty()) return false;
cv::resize(rgb_, thumb, cv::Size(320,180));
return true;
}
const GLTexture &ftl::gui::Camera::captureFrame() {
float now = (float)glfwGetTime();
delta_ = now - ftime_;
ftime_ = now;
if (src_ && src_->isReady()) {
vr::VRCompositor()->WaitGetPoses(rTrackedDevicePose_, vr::k_unMaxTrackedDeviceCount, NULL, 0 );
if ( rTrackedDevicePose_[vr::k_unTrackedDeviceIndex_Hmd].bPoseIsValid )
{
auto pose = ConvertSteamVRMatrixToMatrix4( rTrackedDevicePose_[vr::k_unTrackedDeviceIndex_Hmd].mDeviceToAbsoluteTracking );
pose.inverse();
// Lerp the Eye
eye_[0] += (neye_[0] - eye_[0]) * lerpSpeed_ * delta_;
eye_[1] += (neye_[1] - eye_[1]) * lerpSpeed_ * delta_;
eye_[2] += (neye_[2] - eye_[2]) * lerpSpeed_ * delta_;
Eigen::Translation3d trans(eye_);
Eigen::Affine3d t(trans);
Eigen::Matrix4d viewPose = t.matrix() * pose;
if (src_->hasCapabilities(ftl::rgbd::kCapMovable)) src_->setPose(viewPose);
} else {
LOG(ERROR) << "No VR Pose";
}
#endif
} else {
// Lerp the Eye
eye_[0] += (neye_[0] - eye_[0]) * lerpSpeed_ * delta_;
eye_[1] += (neye_[1] - eye_[1]) * lerpSpeed_ * delta_;
eye_[2] += (neye_[2] - eye_[2]) * lerpSpeed_ * delta_;
Eigen::Translation3d trans(eye_);
Eigen::Affine3d t(trans);
Eigen::Matrix4d viewPose = t.matrix() * rotmat_;
if (src_->hasCapabilities(ftl::rgbd::kCapMovable)) src_->setPose(viewPose);
}
// When switching from right to depth, client may still receive
// right images from previous batch (depth.channels() == 1 check)
{
if (!stats_) {
stats_ = new StatisticsImage(depth_.size());
}
cv::Mat tmp;
switch(channel_) {
if (depth_.rows == 0) { break; }
visualizeEnergy(depth_, tmp, 1.0);
texture_.update(tmp);
break;
if (depth_.rows == 0) { break; }
visualizeEnergy(depth_, tmp, 10.0);
if (depth_.rows == 0) { break; }
visualizeDepthMap(depth_, tmp, 7.0);
if (screen_->root()->value("showEdgesInDepth", false)) drawEdges(rgb_, tmp);
//imageSize = Vector2f(depth.cols, depth.rows);
stats_->getStdDev(tmp);
tmp.convertTo(tmp, CV_8U, 1000.0);
applyColorMap(tmp, tmp, cv::COLORMAP_HOT);
texture_.update(tmp);
break;
if (depth_.rows == 0 || depth_.type() != CV_8UC3) { break; }
texture_.update(depth_);
}
}
return texture_;
}
nlohmann::json ftl::gui::Camera::getMetaData() {
return nlohmann::json();