Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#include "ftl/calibration/parameters.hpp"
#include <opencv2/calib3d/calib3d.hpp>
using cv::Mat;
using cv::Size;
using cv::Point2d;
using cv::Point3d;
using cv::Vec3d;
using cv::Rect;
using std::vector;
using namespace ftl::calibration;
using ftl::calibration::Camera;
////////////////////////////////////////////////////////////////////////////////
void Camera::setRotation(const Mat& R) {
if (((R.size() != Size(3, 3)) &&
(R.size() != Size(3, 1)) &&
(R.size() != Size(1, 3))) ||
(R.type() != CV_64FC1)) { throw std::exception(); }
Mat rvec;
if (R.size() == cv::Size(3, 3)) { cv::Rodrigues(R, rvec); }
else { rvec = R; }
data[Parameter::RX] = rvec.at<double>(0);
data[Parameter::RY] = rvec.at<double>(1);
data[Parameter::RZ] = rvec.at<double>(2);
}
void Camera::setTranslation(const Mat& t) {
if ((t.type() != CV_64FC1) ||
(t.size() != cv::Size(1, 3))) { throw std::exception(); }
data[Parameter::TX] = t.at<double>(0);
data[Parameter::TY] = t.at<double>(1);
data[Parameter::TZ] = t.at<double>(2);
}
void Camera::setIntrinsic(const Mat& K) {
if ((K.type() != CV_64FC1) || (K.size() != cv::Size(3, 3))) {
throw std::exception();
}
data[Parameter::F] = K.at<double>(0, 0);
data[Parameter::CX] = K.at<double>(0, 2);
data[Parameter::CY] = K.at<double>(1, 2);
}
void Camera::setDistortion(const Mat& D) {
if ((D.type() != CV_64FC1)) { throw std::exception(); }
switch(D.total()) {
case 12:
/*
data[Parameter::S1] = D.at<double>(8);
data[Parameter::S2] = D.at<double>(9);
data[Parameter::S3] = D.at<double>(10);
data[Parameter::S4] = D.at<double>(11);
*/
[[fallthrough]];
case 8:
/*
data[Parameter::K4] = D.at<double>(5);
data[Parameter::K5] = D.at<double>(6);
data[Parameter::K6] = D.at<double>(7);
*/
[[fallthrough]];
case 5:
data[Parameter::K3] = D.at<double>(4);
[[fallthrough]];
default:
data[Parameter::K1] = D.at<double>(0);
data[Parameter::K2] = D.at<double>(1);
/*
data[Parameter::P1] = D.at<double>(2);
data[Parameter::P2] = D.at<double>(3);
*/
}
}
Camera::Camera(const Mat &K, const Mat &D, const Mat &R, const Mat &tvec) {
setIntrinsic(K, D);
if (!R.empty()) { setRotation(R); }
if (!tvec.empty()) { setTranslation(tvec); }
}
Mat Camera::intrinsicMatrix() const {
Mat K = Mat::eye(3, 3, CV_64FC1);
K.at<double>(0, 0) = data[Parameter::F];
K.at<double>(1, 1) = data[Parameter::F];
K.at<double>(0, 2) = data[Parameter::CX];
K.at<double>(1, 2) = data[Parameter::CY];
return K;
}
Mat Camera::distortionCoefficients() const {
Mat D;
if (Camera::n_distortion_parameters <= 4) { D = Mat::zeros(4, 1, CV_64FC1); }
else if (Camera::n_distortion_parameters <= 5) { D = Mat::zeros(5, 1, CV_64FC1); }
else if (Camera::n_distortion_parameters <= 8) { D = Mat::zeros(8, 1, CV_64FC1); }
else if (Camera::n_distortion_parameters <= 12) { D = Mat::zeros(12, 1, CV_64FC1); }
else if (Camera::n_distortion_parameters <= 14) { D = Mat::zeros(14, 1, CV_64FC1); }
switch(Camera::n_distortion_parameters) {
case 14:
case 12:
case 8:
case 5:
D.at<double>(4) = data[Parameter::K3];
case 4:
D.at<double>(0) = data[Parameter::K1];
D.at<double>(1) = data[Parameter::K2];
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
return D;
}
Mat Camera::rvec() const {
return Mat(Vec3d(data[Parameter::RX], data[Parameter::RY], data[Parameter::RZ]));
}
Mat Camera::tvec() const {
return Mat(Vec3d(data[Parameter::TX], data[Parameter::TY], data[Parameter::TZ]));
}
Mat Camera::rmat() const {
Mat R;
cv::Rodrigues(rvec(), R);
return R;
}
Mat Camera::extrinsicMatrix() const {
Mat T = Mat::eye(4, 4, CV_64FC1);
rmat().copyTo(T(Rect(0, 0, 3, 3)));
tvec().copyTo(T(Rect(3, 0, 1, 3)));
return T;
}
Mat Camera::extrinsicMatrixInverse() const {
return extrinsicMatrix().inv();
}
////////////////////////////////////////////////////////////////////////////////
bool validate::translationStereo(const Mat &t) {
if (t.type() != CV_64F) { return false; }
if (t.channels() != 1) { return false; }
if (t.size() != Size(1, 3)) { return false; }
if (cv::norm(t, cv::NORM_L2) == 0) { return false; }
return true;
}
bool validate::rotationMatrix(const Mat &M) {
if (M.type() != CV_64F) { return false; }
if (M.channels() != 1) { return false; }
if (M.size() != Size(3, 3)) { return false; }
double det = cv::determinant(M);
if (abs(abs(det)-1.0) > 0.00001) { return false; }
// TODO: floating point errors (result not exactly identity matrix)
// rotation matrix is orthogonal: M.T * M == M * M.T == I
//if (cv::countNonZero((M.t() * M) != Mat::eye(Size(3, 3), CV_64FC1)) != 0)
// { return false; }
return true;
}
bool validate::pose(const Mat &M) {
if (M.size() != Size(4, 4)) { return false; }
if (!validate::rotationMatrix(M(cv::Rect(0 , 0, 3, 3))))
{ return false; }
if (!( (M.at<double>(3, 0) == 0.0) &&
(M.at<double>(3, 1) == 0.0) &&
(M.at<double>(3, 2) == 0.0) &&
(M.at<double>(3, 3) == 1.0))) { return false; }
return true;
}
bool validate::cameraMatrix(const Mat &M) {
if (M.type() != CV_64F) { return false; }
if (M.channels() != 1) { return false; }
if (M.size() != Size(3, 3)) { return false; }
if (!( (M.at<double>(2, 0) == 0.0) &&
(M.at<double>(2, 1) == 0.0) &&
(M.at<double>(2, 2) == 1.0))) { return false; }
return true;
}
bool ftl::calibration::validate::distortionCoefficients(const Mat &D, Size size) {
if (D.type() != CV_64FC1) { return false; }
if (!(
(D.total() == 4) ||
(D.total() == 5) ||
(D.total() == 8) ||
(D.total() == 12))) { return false; }
for (int i = 0; i < D.total(); i++) {
if (!std::isfinite(D.at<double>(i))) { return false; }
}
double k[6] = {0.0};
//double p[2] = {0.0};
//double s[4] = {0.0};
switch(D.total()) {
case 12:
/*
s[0] = D.at<double>(8);
s[1] = D.at<double>(9);
s[2] = D.at<double>(10);
s[3] = D.at<double>(11);
*/
[[fallthrough]];
case 8:
k[3] = D.at<double>(5);
k[4] = D.at<double>(6);
k[5] = D.at<double>(7);
[[fallthrough]];
case 5:
k[2] = D.at<double>(4);
[[fallthrough]];
default:
k[0] = D.at<double>(0);
k[1] = D.at<double>(1);
/*
p[0] = D.at<double>(2);
p[1] = D.at<double>(3);
*/
}
int diagonal = sqrt(size.width*size.width+size.height*size.height) + 1.0;
bool is_n = true;
bool is_p = true;
double dist_prev_n = 0;
double dist_prev_p = 0;
for (int r = 0; r < diagonal; r++) {
double r2 = r*r;
double r4 = r2*r2;
double r6 = r4*r2;
double rdist = 1.0 + k[0]*r2 + k[1]*r4 + k[2]*r6;
double irdist2 = 1./(1.0 + k[3]*r2 + k[4]*r4 + k[5]*r6);
double dist = r2*rdist*irdist2; // + s[0]*r2 + s[1]*r4;
if (is_n) {
if (r2 == 0) {}
else if (!(dist < dist_prev_n)) { is_n = false; }
dist_prev_n = dist;
}
if (is_p) {
if (r2 == 0) {}
else if (!(dist > dist_prev_p)) { is_p = false; }
dist_prev_p = dist;
}
if (!is_n && !is_p) { return false; }
}
return true;
}
Mat ftl::calibration::scaleCameraMatrix(const Mat &K, const Size &size_new, const Size &size_old) {
Mat S(cv::Size(3, 3), CV_64F, 0.0);
double scale_x = ((double) size_new.width) / ((double) size_old.width);
double scale_y = ((double) size_new.height) / ((double) size_old.height);
S.at<double>(0, 0) = scale_x;
S.at<double>(1, 1) = scale_y;
S.at<double>(2, 2) = 1.0;
return (S*K);
}
double ftl::calibration::reprojectionError(const vector<Point2d>& points_im,
const vector<Point3d>& points, const Mat& K, const Mat& D, const Mat& R,
const Mat& t) {
Mat rvec;
if (R.size() == Size(3, 3)) { cv::Rodrigues(R, rvec); }
else { rvec = R; }
vector<Point2d> points_reprojected;
cv::projectPoints(points, rvec, t, K, D, points_reprojected);
double err = 0.0;
int npoints = points_im.size();
for (int i = 0; i < npoints; i++) {
err += norm(points_im[i] - points_reprojected[i]);
}
return err / ((double) npoints);
}