Skip to content
Snippets Groups Projects
voxel_scene.cpp 14.2 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
#include <ftl/voxel_scene.hpp>
#include "compactors.hpp"

using namespace ftl::voxhash;
using ftl::rgbd::Source;
using ftl::Configurable;
using cv::Mat;

#define 	SAFE_DELETE_ARRAY(a)   { delete [] (a); (a) = NULL; }

extern "C" void resetCUDA(ftl::voxhash::HashData& hashData, const ftl::voxhash::HashParams& hashParams);
extern "C" void resetHashBucketMutexCUDA(ftl::voxhash::HashData& hashData, const ftl::voxhash::HashParams& hashParams);
extern "C" void allocCUDA(ftl::voxhash::HashData& hashData, const ftl::voxhash::HashParams& hashParams, const DepthCameraData& depthCameraData, const DepthCameraParams& depthCameraParams, const unsigned int* d_bitMask);
//extern "C" void fillDecisionArrayCUDA(ftl::voxhash::HashData& hashData, const ftl::voxhash::HashParams& hashParams, const DepthCameraData& depthCameraData);
//extern "C" void compactifyHashCUDA(ftl::voxhash::HashData& hashData, const ftl::voxhash::HashParams& hashParams);
//extern "C" unsigned int compactifyHashAllInOneCUDA(ftl::voxhash::HashData& hashData, const ftl::voxhash::HashParams& hashParams);
extern "C" void integrateDepthMapCUDA(ftl::voxhash::HashData& hashData, const ftl::voxhash::HashParams& hashParams, const DepthCameraData& depthCameraData, const DepthCameraParams& depthCameraParams);
//extern "C" void bindInputDepthColorTextures(const DepthCameraData& depthCameraData);

extern "C" void starveVoxelsKernelCUDA(ftl::voxhash::HashData& hashData, const ftl::voxhash::HashParams& hashParams);
extern "C" void garbageCollectIdentifyCUDA(ftl::voxhash::HashData& hashData, const ftl::voxhash::HashParams& hashParams);
extern "C" void garbageCollectFreeCUDA(ftl::voxhash::HashData& hashData, const ftl::voxhash::HashParams& hashParams);

SceneRep::SceneRep(nlohmann::json &config) : Configurable(config), do_reset_(false), m_frameCount(0) {
	// Allocates voxel structure on GPU
	_create(_parametersFromConfig());

	on("SDFVoxelSize", [this](const ftl::config::Event &e) {
		do_reset_ = true;
	});
	on("hashNumSDFBlocks", [this](const ftl::config::Event &e) {
		do_reset_ = true;
	});
	on("hashNumBuckets", [this](const ftl::config::Event &e) {
		do_reset_ = true;
	});
	on("hashMaxCollisionLinkedListSize", [this](const ftl::config::Event &e) {
		do_reset_ = true;
	});
	on("SDFTruncation", [this](const ftl::config::Event &e) {
		m_hashParams.m_truncation = value("SDFTruncation", 0.1f);
	});
	on("SDFTruncationScale", [this](const ftl::config::Event &e) {
		m_hashParams.m_truncScale = value("SDFTruncationScale", 0.01f);
	});
	on("SDFMaxIntegrationDistance", [this](const ftl::config::Event &e) {
		m_hashParams.m_maxIntegrationDistance = value("SDFMaxIntegrationDistance", 10.0f);
	});
}

SceneRep::~SceneRep() {
	_destroy();
}

void SceneRep::addSource(ftl::rgbd::Source *src) {
	auto &cam = cameras_.emplace_back();
	cam.source = src;
	cam.params.m_imageWidth = 0;
}

int SceneRep::upload() {
	int active = 0;

	for (size_t i=0; i<cameras_.size(); ++i) {
		cameras_[i].source->grab();
	}

	for (size_t i=0; i<cameras_.size(); ++i) {
		auto &cam = cameras_[i];

		if (!cam.source->isReady()) {
			cam.params.m_imageWidth = 0;
			// TODO(Nick) : Free gpu allocs if was ready before
			continue;
		} else {
			auto in = cam.source;
			// Only now do we have camera parameters for allocations...
			if (cam.params.m_imageWidth == 0) {
				cam.params.fx = in->parameters().fx;
				cam.params.fy = in->parameters().fy;
				cam.params.mx = -in->parameters().cx;
				cam.params.my = -in->parameters().cy;
				cam.params.m_imageWidth = in->parameters().width;
				cam.params.m_imageHeight = in->parameters().height;
				cam.params.m_sensorDepthWorldMax = in->parameters().maxDepth;
				cam.params.m_sensorDepthWorldMin = in->parameters().minDepth;
				cam.gpu.alloc(cam.params);
			}
		}

		// Get the RGB-Depth frame from input
		Source *input = cam.source;
		Mat rgb, depth;

		// TODO(Nick) Direct GPU upload to save copy
		input->getFrames(rgb,depth);
		
		active += 1;

		if (depth.cols == 0) continue;

		// Must be in RGBA for GPU
		Mat rgba;
		cv::cvtColor(rgb,rgba, cv::COLOR_BGR2BGRA);

		cam.params.flags = m_frameCount;

		// Send to GPU and merge view into scene
		cam.gpu.updateParams(cam.params);
		cam.gpu.updateData(depth, rgba);

		setLastRigidTransform(input->getPose().cast<float>());

		//make the rigid transform available on the GPU
		m_hashData.updateParams(m_hashParams);

		//allocate all hash blocks which are corresponding to depth map entries
		_alloc(cam.gpu, cam.params, nullptr);
	}

	return active;
}

void SceneRep::integrate() {
	for (size_t i=0; i<cameras_.size(); ++i) {
		auto &cam = cameras_[i];

		setLastRigidTransform(cam.source->getPose().cast<float>());
		m_hashData.updateParams(m_hashParams);

		//generate a linear hash array with only occupied entries
		_compactifyVisible();

		//volumetrically integrate the depth data into the depth SDFBlocks
		_integrateDepthMap(cam.gpu, cam.params);

		//_garbageCollect(cam.gpu);

		m_numIntegratedFrames++;
	}
}

void SceneRep::garbage() {
	_compactifyAllocated();
	_garbageCollect();

}

/*void SceneRep::integrate(const Eigen::Matrix4f& lastRigidTransform, const DepthCameraData& depthCameraData, const DepthCameraParams& depthCameraParams, unsigned int* d_bitMask) {
		
	setLastRigidTransform(lastRigidTransform);

	//make the rigid transform available on the GPU
	m_hashData.updateParams(m_hashParams);

	//allocate all hash blocks which are corresponding to depth map entries
	_alloc(depthCameraData, depthCameraParams, d_bitMask);

	//generate a linear hash array with only occupied entries
	_compactifyHashEntries();

	//volumetrically integrate the depth data into the depth SDFBlocks
	_integrateDepthMap(depthCameraData, depthCameraParams);

	_garbageCollect(depthCameraData);

	m_numIntegratedFrames++;
}*/

void SceneRep::setLastRigidTransform(const Eigen::Matrix4f& lastRigidTransform) {
	m_hashParams.m_rigidTransform = MatrixConversion::toCUDA(lastRigidTransform);
	m_hashParams.m_rigidTransformInverse = m_hashParams.m_rigidTransform.getInverse();
}

/*void SceneRep::setLastRigidTransformAndCompactify(const Eigen::Matrix4f& lastRigidTransform, const DepthCameraData& depthCameraData) {
	setLastRigidTransform(lastRigidTransform);
	_compactifyHashEntries();
}*/


const Eigen::Matrix4f SceneRep::getLastRigidTransform() const {
	return MatrixConversion::toEigen(m_hashParams.m_rigidTransform);
}

/* Nick: To reduce weights between frames */
void SceneRep::nextFrame() {
	if (do_reset_) {
		do_reset_ = false;
		_destroy();
		_create(_parametersFromConfig());
	} else {
		starveVoxelsKernelCUDA(m_hashData, m_hashParams);
		m_numIntegratedFrames = 0;
	}
}

//! resets the hash to the initial state (i.e., clears all data)
void SceneRep::reset() {
	m_numIntegratedFrames = 0;

	m_hashParams.m_rigidTransform.setIdentity();
	m_hashParams.m_rigidTransformInverse.setIdentity();
	m_hashParams.m_numOccupiedBlocks = 0;
	m_hashData.updateParams(m_hashParams);
	resetCUDA(m_hashData, m_hashParams);
}

//! debug only!
unsigned int SceneRep::getHeapFreeCount() {
	unsigned int count;
	cudaSafeCall(cudaMemcpy(&count, m_hashData.d_heapCounter, sizeof(unsigned int), cudaMemcpyDeviceToHost));
	return count+1;	//there is one more free than the address suggests (0 would be also a valid address)
}

//! debug only!
void SceneRep::debugHash() {
	HashEntry* hashCPU = new HashEntry[m_hashParams.m_hashBucketSize*m_hashParams.m_hashNumBuckets];
	unsigned int* heapCPU = new unsigned int[m_hashParams.m_numSDFBlocks];
	unsigned int heapCounterCPU;

	cudaSafeCall(cudaMemcpy(&heapCounterCPU, m_hashData.d_heapCounter, sizeof(unsigned int), cudaMemcpyDeviceToHost));
	heapCounterCPU++;	//points to the first free entry: number of blocks is one more

	cudaSafeCall(cudaMemcpy(heapCPU, m_hashData.d_heap, sizeof(unsigned int)*m_hashParams.m_numSDFBlocks, cudaMemcpyDeviceToHost));
	cudaSafeCall(cudaMemcpy(hashCPU, m_hashData.d_hash, sizeof(HashEntry)*m_hashParams.m_hashBucketSize*m_hashParams.m_hashNumBuckets, cudaMemcpyDeviceToHost));

	//Check for duplicates
	class myint3Voxel {
	public:
		myint3Voxel() {}
		~myint3Voxel() {}
		bool operator<(const myint3Voxel& other) const {
			if (x == other.x) {
				if (y == other.y) {
					return z < other.z;
				}
				return y < other.y;
			}
			return x < other.x;
		}

		bool operator==(const myint3Voxel& other) const {
			return x == other.x && y == other.y && z == other.z;
		}

		int x,y,z, i;
		int offset;
		int ptr;
	}; 


	std::unordered_set<unsigned int> pointersFreeHash;
	std::vector<int> pointersFreeVec(m_hashParams.m_numSDFBlocks, 0);  // CHECK Nick Changed to int from unsigned in
	for (unsigned int i = 0; i < heapCounterCPU; i++) {
		pointersFreeHash.insert(heapCPU[i]);
		pointersFreeVec[heapCPU[i]] = FREE_ENTRY;
	}
	if (pointersFreeHash.size() != heapCounterCPU) {
		throw std::runtime_error("ERROR: duplicate free pointers in heap array");
	}
		

	unsigned int numOccupied = 0;
	unsigned int numMinusOne = 0;
	//unsigned int listOverallFound = 0;

	std::list<myint3Voxel> l;
	//std::vector<myint3Voxel> v;
	
	for (unsigned int i = 0; i < m_hashParams.m_hashBucketSize*m_hashParams.m_hashNumBuckets; i++) {
		if (hashCPU[i].ptr == -1) {
			numMinusOne++;
		}

		if (hashCPU[i].ptr != -2) {
			numOccupied++;	// != FREE_ENTRY
			myint3Voxel a;	
			a.x = hashCPU[i].pos.x;
			a.y = hashCPU[i].pos.y;
			a.z = hashCPU[i].pos.z;
			l.push_back(a);
			//v.push_back(a);

			unsigned int linearBlockSize = m_hashParams.m_SDFBlockSize*m_hashParams.m_SDFBlockSize*m_hashParams.m_SDFBlockSize;
			if (pointersFreeHash.find(hashCPU[i].ptr / linearBlockSize) != pointersFreeHash.end()) {
				throw std::runtime_error("ERROR: ptr is on free heap, but also marked as an allocated entry");
			}
			pointersFreeVec[hashCPU[i].ptr / linearBlockSize] = LOCK_ENTRY;
		}
	}

	unsigned int numHeapFree = 0;
	unsigned int numHeapOccupied = 0;
	for (unsigned int i = 0; i < m_hashParams.m_numSDFBlocks; i++) {
		if		(pointersFreeVec[i] == FREE_ENTRY) numHeapFree++;
		else if (pointersFreeVec[i] == LOCK_ENTRY) numHeapOccupied++;
		else {
			throw std::runtime_error("memory leak detected: neither free nor allocated");
		}
	}
	if (numHeapFree + numHeapOccupied == m_hashParams.m_numSDFBlocks) std::cout << "HEAP OK!" << std::endl;
	else throw std::runtime_error("HEAP CORRUPTED");

	l.sort();
	size_t sizeBefore = l.size();
	l.unique();
	size_t sizeAfter = l.size();


	std::cout << "diff: " << sizeBefore - sizeAfter << std::endl;
	std::cout << "minOne: " << numMinusOne << std::endl;
	std::cout << "numOccupied: " << numOccupied << "\t numFree: " << getHeapFreeCount() << std::endl;
	std::cout << "numOccupied + free: " << numOccupied + getHeapFreeCount() << std::endl;
	std::cout << "numInFrustum: " << m_hashParams.m_numOccupiedBlocks << std::endl;

	SAFE_DELETE_ARRAY(heapCPU);
	SAFE_DELETE_ARRAY(hashCPU);

	//getchar();
}

HashParams SceneRep::_parametersFromConfig() {
	//auto &cfg = ftl::config::resolve(config);
	HashParams params;
	// First camera view is set to identity pose to be at the centre of
	// the virtual coordinate space.
	params.m_rigidTransform.setIdentity();
	params.m_rigidTransformInverse.setIdentity();
	params.m_hashNumBuckets = value("hashNumBuckets", 100000);
	params.m_hashBucketSize = HASH_BUCKET_SIZE;
	params.m_hashMaxCollisionLinkedListSize = value("hashMaxCollisionLinkedListSize", 7);
	params.m_SDFBlockSize = SDF_BLOCK_SIZE;
	params.m_numSDFBlocks = value("hashNumSDFBlocks",500000);
	params.m_virtualVoxelSize = value("SDFVoxelSize", 0.006f);
	params.m_maxIntegrationDistance = value("SDFMaxIntegrationDistance", 10.0f);
	params.m_truncation = value("SDFTruncation", 0.1f);
	params.m_truncScale = value("SDFTruncationScale", 0.01f);
	params.m_integrationWeightSample = value("SDFIntegrationWeightSample", 10);
	params.m_integrationWeightMax = value("SDFIntegrationWeightMax", 255);
	// Note (Nick): We are not streaming voxels in/out of GPU
	//params.m_streamingVoxelExtents = MatrixConversion::toCUDA(gas.s_streamingVoxelExtents);
	//params.m_streamingGridDimensions = MatrixConversion::toCUDA(gas.s_streamingGridDimensions);
	//params.m_streamingMinGridPos = MatrixConversion::toCUDA(gas.s_streamingMinGridPos);
	//params.m_streamingInitialChunkListSize = gas.s_streamingInitialChunkListSize;
	return params;
}

void SceneRep::_create(const HashParams& params) {
	m_hashParams = params;
	m_hashData.allocate(m_hashParams);

	reset();
}

void SceneRep::_destroy() {
	m_hashData.free();
}

void SceneRep::_alloc(const DepthCameraData& depthCameraData, const DepthCameraParams& depthCameraParams, const unsigned int* d_bitMask) {
	// NOTE (nick): We might want this later...
	if (true) {
		//allocate until all blocks are allocated
		unsigned int prevFree = getHeapFreeCount();
		while (1) {
			resetHashBucketMutexCUDA(m_hashData, m_hashParams);
			allocCUDA(m_hashData, m_hashParams, depthCameraData, depthCameraParams, d_bitMask);

			unsigned int currFree = getHeapFreeCount();

			if (prevFree != currFree) {
				prevFree = currFree;
			}
			else {
				break;
			}
		}
	}
	else {
		//this version is faster, but it doesn't guarantee that all blocks are allocated (staggers alloc to the next frame)
		resetHashBucketMutexCUDA(m_hashData, m_hashParams);
		allocCUDA(m_hashData, m_hashParams, depthCameraData, depthCameraParams, d_bitMask);
	}
}


void SceneRep::_compactifyVisible() { //const DepthCameraData& depthCameraData) {
	m_hashParams.m_numOccupiedBlocks = ftl::cuda::compactifyVisible(m_hashData, m_hashParams);		//this version uses atomics over prefix sums, which has a much better performance
	m_hashData.updateParams(m_hashParams);	//make sure numOccupiedBlocks is updated on the GPU
}

void SceneRep::_compactifyAllocated() {
	m_hashParams.m_numOccupiedBlocks = ftl::cuda::compactifyAllocated(m_hashData, m_hashParams);		//this version uses atomics over prefix sums, which has a much better performance
	std::cout << "Occ blocks = " << m_hashParams.m_numOccupiedBlocks << std::endl;
	m_hashData.updateParams(m_hashParams);	//make sure numOccupiedBlocks is updated on the GPU
}

void SceneRep::_integrateDepthMap(const DepthCameraData& depthCameraData, const DepthCameraParams& depthCameraParams) {
	integrateDepthMapCUDA(m_hashData, m_hashParams, depthCameraData, depthCameraParams);
}

void SceneRep::_garbageCollect() {
	garbageCollectIdentifyCUDA(m_hashData, m_hashParams);
	resetHashBucketMutexCUDA(m_hashData, m_hashParams);	//needed if linked lists are enabled -> for memeory deletion
	garbageCollectFreeCUDA(m_hashData, m_hashParams);
}