Newer
Older
#include <cmath>
#include "loguru.hpp"
#include "ftl/operators/detectandtrack.hpp"
using std::string;
using std::vector;
using std::map;
using cv::Mat;
using cv::Size;
using cv::Rect;
using cv::Rect2d;
using cv::Point2i;
using cv::Point2d;
using ftl::rgbd::Frame;
using ftl::operators::DetectAndTrack;
DetectAndTrack::DetectAndTrack(ftl::Configurable *cfg) : ftl::operators::Operator(cfg) {
init();
}
bool DetectAndTrack::init() {
fname_ = config()->value<string>("filename", "");
debug_ = config()->value<bool>("debug", false);
detect_n_frames_ = config()->value<int>("n_frames", 10);
detect_n_frames_ = detect_n_frames_ < 0.0 ? 0.0 : detect_n_frames_;
max_distance_ = config()->value<double>("max_distance", 100.0);
max_distance_ = max_distance_ < 0.0 ? 0.0 : max_distance_;
max_fail_ = config()->value<int>("max_fail", 10);
max_fail_ = max_fail_ < 0 ? 10 : max_fail_;
max_tracked_ = config()->value<int>("max_tracked", 3);
max_tracked_ = max_tracked_ < 0 ? 10 : max_tracked_;
scalef_ = config()->value<double>("scalef", 1.1);
min_neighbors_ = config()->value<int>("min_neighbors", 3);
auto min_size = config()->get<vector<double>>("min_size");
auto max_size = config()->get<vector<double>>("max_size");
if (min_size && min_size->size() == 2) { min_size_ = *min_size; }
else { min_size_ = {0.0, 0.0}; }
if (max_size && max_size->size() == 2) { max_size_ = *max_size; }
else { max_size_ = {1.0, 1.0}; }
min_size_[0] = max(min(1.0, min_size_[0]), 0.0);
min_size_[1] = max(min(1.0, min_size_[1]), 0.0);
max_size_[0] = max(min(1.0, max_size_[0]), 0.0);
max_size_[1] = max(min(1.0, max_size_[1]), 0.0);
if (min_size_[0] > max_size_[0]) { min_size_[0] = max_size_[0]; }
if (min_size_[1] > max_size_[1]) { min_size_[1] = max_size_[1]; }
channel_in_ = ftl::codecs::Channel::Colour;
channel_out_ = ftl::codecs::Channel::Data;
id_max_ = 0;
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
bool retval = false;
try {
retval = classifier_.load(fname_);
}
catch (cv::Exception &ex)
{
retval = false;
LOG(ERROR) << ex.what();
}
if (!retval) {
LOG(ERROR) << "can't load: " << fname_;
return false;
}
return true;
}
static Point2d center(Rect2d obj) {
return Point2d(obj.x+obj.width/2.0, obj.y+obj.height/2.0);
}
bool DetectAndTrack::detect(const Mat &im) {
Size min_size(im.size().width*min_size_[0], im.size().height*min_size_[1]);
Size max_size(im.size().width*max_size_[0], im.size().height*max_size_[1]);
vector<Rect> objects;
classifier_.detectMultiScale(im, objects,
scalef_, min_neighbors_, 0, min_size, max_size);
LOG(INFO) << "Cascade classifier found " << objects.size() << " objects";
for (const Rect2d &obj : objects) {
Point2d c = center(obj);
bool found = false;
for (auto &tracker : tracked_) {
if (cv::norm(center(tracker.object)-c) < max_distance_) {
// update? (bounding box can be quite different)
// tracker.object = obj;
found = true;
break;
}
}
if (!found && (tracked_.size() < max_tracked_)) {
cv::Ptr<cv::Tracker> tracker = cv::TrackerCSRT::create();
tracked_.push_back({ id_max_++, obj, tracker, 0 });
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
}
}
return true;
}
bool DetectAndTrack::track(const Mat &im) {
for (auto it = tracked_.begin(); it != tracked_.end();) {
if (!it->tracker->update(im, it->object)) {
it->fail_count++;
}
else {
it->fail_count = 0;
}
if (it->fail_count > max_fail_) {
tracked_.erase(it);
}
else { it++; }
}
return true;
}
bool DetectAndTrack::apply(Frame &in, Frame &out, cudaStream_t stream) {
if (classifier_.empty()) {
LOG(ERROR) << "classifier not loaded";
return false;
}
if (!in.hasChannel(channel_in_)) {
LOG(ERROR) << "input channel missing";
return false;
}
in.download(channel_in_);
Mat im = in.get<Mat>(channel_in_);
track(im);
if ((n_frame_++ % detect_n_frames_ == 0) && (tracked_.size() < max_tracked_)) {
if (im.channels() == 1) {
gray_ = im;
}
else if (im.channels() == 4) {
cv::cvtColor(im, gray_, cv::COLOR_BGRA2GRAY);
}
else if (im.channels() == 3) {
cv::cvtColor(im, gray_, cv::COLOR_BGR2GRAY);
}
else {
LOG(ERROR) << "unsupported number of channels in input image";
return false;
}
detect(gray_);
}
std::vector<Rect2d> result;
result.reserve(tracked_.size());
for (auto const &tracked : tracked_) {
result.push_back(tracked.object);
if (debug_) {
cv::putText(im, "#" + std::to_string(tracked.id),
Point2i(tracked.object.x+5, tracked.object.y+tracked.object.height-5),
cv::FONT_HERSHEY_COMPLEX_SMALL, 1.0, cv::Scalar(0,0,255));
cv::rectangle(im, tracked.object, cv::Scalar(0, 0, 255), 1);
}
}
in.create(channel_out_, result);
// TODO: should be uploaded by operator which requires data on GPU
in.upload(channel_in_);
return true;
}