#include <ftl/render/splat_render.hpp> #include <ftl/utility/matrix_conversion.hpp> #include "splatter_cuda.hpp" #include <ftl/cuda/points.hpp> #include <opencv2/core/cuda_stream_accessor.hpp> using ftl::render::Splatter; using ftl::rgbd::Channel; using ftl::rgbd::Channels; using ftl::rgbd::Format; using cv::cuda::GpuMat; static Eigen::Affine3d create_rotation_matrix(float ax, float ay, float az) { Eigen::Affine3d rx = Eigen::Affine3d(Eigen::AngleAxisd(ax, Eigen::Vector3d(1, 0, 0))); Eigen::Affine3d ry = Eigen::Affine3d(Eigen::AngleAxisd(ay, Eigen::Vector3d(0, 1, 0))); Eigen::Affine3d rz = Eigen::Affine3d(Eigen::AngleAxisd(az, Eigen::Vector3d(0, 0, 1))); return rz * rx * ry; } Splatter::Splatter(nlohmann::json &config, ftl::rgbd::FrameSet *fs) : ftl::render::Renderer(config), scene_(fs) { if (config["clipping"].is_object()) { auto &c = config["clipping"]; float rx = c.value("pitch", 0.0f); float ry = c.value("yaw", 0.0f); float rz = c.value("roll", 0.0f); float x = c.value("x", 0.0f); float y = c.value("y", 0.0f); float z = c.value("z", 0.0f); float width = c.value("width", 1.0f); float height = c.value("height", 1.0f); float depth = c.value("depth", 1.0f); Eigen::Affine3f r = create_rotation_matrix(rx, ry, rz).cast<float>(); Eigen::Translation3f trans(Eigen::Vector3f(x,y,z)); Eigen::Affine3f t(trans); clip_.origin = MatrixConversion::toCUDA(r.matrix() * t.matrix()); clip_.size = make_float3(width, height, depth); clipping_ = true; } else { clipping_ = false; } } Splatter::~Splatter() { } void Splatter::renderChannel( ftl::render::SplatParams ¶ms, ftl::rgbd::Frame &out, const Channel &channel, cudaStream_t stream) { if (channel == Channel::None) return; cv::cuda::Stream cvstream = cv::cuda::StreamAccessor::wrapStream(stream); temp_.get<GpuMat>(Channel::Depth).setTo(cv::Scalar(0x7FFFFFFF), cvstream); temp_.get<GpuMat>(Channel::Depth2).setTo(cv::Scalar(0x7FFFFFFF), cvstream); temp_.get<GpuMat>(Channel::Colour).setTo(cv::Scalar(0.0f,0.0f,0.0f,0.0f), cvstream); temp_.get<GpuMat>(Channel::Contribution).setTo(cv::Scalar(0.0f), cvstream); bool is_float = ftl::rgbd::isFloatChannel(channel); // Render each camera into virtual view for (size_t i=0; i < scene_->frames.size(); ++i) { auto &f = scene_->frames[i]; auto *s = scene_->sources[i]; if (f.empty(Channel::Depth + Channel::Colour)) { LOG(ERROR) << "Missing required channel"; continue; } // Needs to create points channel first? if (!f.hasChannel(Channel::Points)) { //LOG(INFO) << "Creating points... " << s->parameters().width; auto &t = f.createTexture<float4>(Channel::Points, Format<float4>(f.get<GpuMat>(Channel::Colour).size())); auto pose = MatrixConversion::toCUDA(s->getPose().cast<float>()); //.inverse()); ftl::cuda::point_cloud(t, f.createTexture<float>(Channel::Depth), s->parameters(), pose, stream); //LOG(INFO) << "POINTS Added"; } // Clip first? if (clipping_) { ftl::cuda::clipping(f.createTexture<float4>(Channel::Points), clip_, stream); } ftl::cuda::dibr_merge( f.createTexture<float4>(Channel::Points), temp_.getTexture<int>(Channel::Depth), params, stream ); //LOG(INFO) << "DIBR DONE"; } // TODO: Add the depth splatting step.. temp_.createTexture<float4>(Channel::Colour); temp_.createTexture<float>(Channel::Contribution); // Accumulate attribute contributions for each pixel for (auto &f : scene_->frames) { // Convert colour from BGR to BGRA if needed if (f.get<GpuMat>(channel).type() == CV_8UC3) { // Convert to 4 channel colour auto &col = f.get<GpuMat>(Channel::Colour); GpuMat tmp(col.size(), CV_8UC4); cv::cuda::swap(col, tmp); cv::cuda::cvtColor(tmp,col, cv::COLOR_BGR2BGRA); } if (is_float) { ftl::cuda::dibr_attribute( f.createTexture<float>(channel), f.createTexture<float4>(Channel::Points), temp_.getTexture<int>(Channel::Depth), temp_.getTexture<float4>(Channel::Colour), temp_.getTexture<float>(Channel::Contribution), params, stream ); } else if (channel == Channel::Colour || channel == Channel::Right) { ftl::cuda::dibr_attribute( f.createTexture<uchar4>(Channel::Colour), f.createTexture<float4>(Channel::Points), temp_.getTexture<int>(Channel::Depth), temp_.getTexture<float4>(Channel::Colour), temp_.getTexture<float>(Channel::Contribution), params, stream ); } else { ftl::cuda::dibr_attribute( f.createTexture<uchar4>(channel), f.createTexture<float4>(Channel::Points), temp_.getTexture<int>(Channel::Depth), temp_.getTexture<float4>(Channel::Colour), temp_.getTexture<float>(Channel::Contribution), params, stream ); } } if (is_float) { // Normalise attribute contributions ftl::cuda::dibr_normalise( temp_.createTexture<float4>(Channel::Colour), out.createTexture<float>(channel), temp_.createTexture<float>(Channel::Contribution), stream ); } else { // Normalise attribute contributions ftl::cuda::dibr_normalise( temp_.createTexture<float4>(Channel::Colour), out.createTexture<uchar4>(channel), temp_.createTexture<float>(Channel::Contribution), stream ); } } bool Splatter::render(ftl::rgbd::VirtualSource *src, ftl::rgbd::Frame &out, cudaStream_t stream) { SHARED_LOCK(scene_->mtx, lk); if (!src->isReady()) return false; const auto &camera = src->parameters(); //cudaSafeCall(cudaSetDevice(scene_->getCUDADevice())); // Create all the required channels out.create<GpuMat>(Channel::Depth, Format<float>(camera.width, camera.height)); out.create<GpuMat>(Channel::Colour, Format<uchar4>(camera.width, camera.height)); // FIXME: Use source resolutions, not virtual resolution temp_.create<GpuMat>(Channel::Colour, Format<float4>(camera.width, camera.height)); temp_.create<GpuMat>(Channel::Colour2, Format<uchar4>(camera.width, camera.height)); temp_.create<GpuMat>(Channel::Contribution, Format<float>(camera.width, camera.height)); temp_.create<GpuMat>(Channel::Depth, Format<int>(camera.width, camera.height)); temp_.create<GpuMat>(Channel::Depth2, Format<int>(camera.width, camera.height)); temp_.create<GpuMat>(Channel::Normals, Format<float4>(camera.width, camera.height)); cv::cuda::Stream cvstream = cv::cuda::StreamAccessor::wrapStream(stream); // Create buffers if they don't exist /*if ((unsigned int)depth1_.width() != camera.width || (unsigned int)depth1_.height() != camera.height) { depth1_ = ftl::cuda::TextureObject<int>(camera.width, camera.height); } if ((unsigned int)depth3_.width() != camera.width || (unsigned int)depth3_.height() != camera.height) { depth3_ = ftl::cuda::TextureObject<int>(camera.width, camera.height); } if ((unsigned int)colour1_.width() != camera.width || (unsigned int)colour1_.height() != camera.height) { colour1_ = ftl::cuda::TextureObject<uchar4>(camera.width, camera.height); } if ((unsigned int)colour_tmp_.width() != camera.width || (unsigned int)colour_tmp_.height() != camera.height) { colour_tmp_ = ftl::cuda::TextureObject<float4>(camera.width, camera.height); } if ((unsigned int)normal1_.width() != camera.width || (unsigned int)normal1_.height() != camera.height) { normal1_ = ftl::cuda::TextureObject<float4>(camera.width, camera.height); } if ((unsigned int)depth2_.width() != camera.width || (unsigned int)depth2_.height() != camera.height) { depth2_ = ftl::cuda::TextureObject<float>(camera.width, camera.height); } if ((unsigned int)colour2_.width() != camera.width || (unsigned int)colour2_.height() != camera.height) { colour2_ = ftl::cuda::TextureObject<uchar4>(camera.width, camera.height); }*/ // Parameters object to pass to CUDA describing the camera SplatParams params; params.m_flags = 0; if (src->value("splatting", true) == false) params.m_flags |= ftl::render::kNoSplatting; if (src->value("upsampling", true) == false) params.m_flags |= ftl::render::kNoUpsampling; if (src->value("texturing", true) == false) params.m_flags |= ftl::render::kNoTexturing; params.m_viewMatrix = MatrixConversion::toCUDA(src->getPose().cast<float>().inverse()); params.m_viewMatrixInverse = MatrixConversion::toCUDA(src->getPose().cast<float>()); params.camera = camera; // Clear all channels to 0 or max depth out.get<GpuMat>(Channel::Depth).setTo(cv::Scalar(1000.0f), cvstream); out.get<GpuMat>(Channel::Colour).setTo(cv::Scalar(76,76,76), cvstream); //LOG(INFO) << "Render ready: " << camera.width << "," << camera.height; temp_.createTexture<int>(Channel::Depth); renderChannel(params, out, Channel::Colour, stream); Channel chan = src->getChannel(); if (chan == Channel::Depth) { temp_.get<GpuMat>(Channel::Depth).convertTo(out.get<GpuMat>(Channel::Depth), CV_32F, 1.0f / 1000.0f, cvstream); } else if (chan == Channel::Contribution) { cv::cuda::swap(temp_.get<GpuMat>(Channel::Contribution), out.create<GpuMat>(Channel::Contribution)); } else if (chan == Channel::Right) { Eigen::Affine3f transform(Eigen::Translation3f(camera.baseline,0.0f,0.0f)); Eigen::Matrix4f matrix = src->getPose().cast<float>() * transform.matrix(); params.m_viewMatrix = MatrixConversion::toCUDA(matrix.inverse()); params.m_viewMatrixInverse = MatrixConversion::toCUDA(matrix); out.create<GpuMat>(Channel::Right, Format<uchar4>(camera.width, camera.height)); out.get<GpuMat>(Channel::Right).setTo(cv::Scalar(76,76,76), cvstream); renderChannel(params, out, Channel::Right, stream); } else if (chan != Channel::None) { if (ftl::rgbd::isFloatChannel(chan)) { out.create<GpuMat>(chan, Format<float>(camera.width, camera.height)); out.get<GpuMat>(chan).setTo(cv::Scalar(0.0f), cvstream); } else { out.create<GpuMat>(chan, Format<uchar4>(camera.width, camera.height)); out.get<GpuMat>(chan).setTo(cv::Scalar(76,76,76,255), cvstream); } renderChannel(params, out, chan, stream); } return true; } //void Splatter::setOutputDevice(int device) { // device_ = device; //}