(function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i<t.length;i++)o(t[i]);return o}return r})()({1:[function(require,module,exports){
(function (global){
'use strict';

var objectAssign = require('object-assign');

// compare and isBuffer taken from https://github.com/feross/buffer/blob/680e9e5e488f22aac27599a57dc844a6315928dd/index.js
// original notice:

/*!
 * The buffer module from node.js, for the browser.
 *
 * @author   Feross Aboukhadijeh <feross@feross.org> <http://feross.org>
 * @license  MIT
 */
function compare(a, b) {
  if (a === b) {
    return 0;
  }

  var x = a.length;
  var y = b.length;

  for (var i = 0, len = Math.min(x, y); i < len; ++i) {
    if (a[i] !== b[i]) {
      x = a[i];
      y = b[i];
      break;
    }
  }

  if (x < y) {
    return -1;
  }
  if (y < x) {
    return 1;
  }
  return 0;
}
function isBuffer(b) {
  if (global.Buffer && typeof global.Buffer.isBuffer === 'function') {
    return global.Buffer.isBuffer(b);
  }
  return !!(b != null && b._isBuffer);
}

// based on node assert, original notice:
// NB: The URL to the CommonJS spec is kept just for tradition.
//     node-assert has evolved a lot since then, both in API and behavior.

// http://wiki.commonjs.org/wiki/Unit_Testing/1.0
//
// THIS IS NOT TESTED NOR LIKELY TO WORK OUTSIDE V8!
//
// Originally from narwhal.js (http://narwhaljs.org)
// Copyright (c) 2009 Thomas Robinson <280north.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the 'Software'), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

var util = require('util/');
var hasOwn = Object.prototype.hasOwnProperty;
var pSlice = Array.prototype.slice;
var functionsHaveNames = (function () {
  return function foo() {}.name === 'foo';
}());
function pToString (obj) {
  return Object.prototype.toString.call(obj);
}
function isView(arrbuf) {
  if (isBuffer(arrbuf)) {
    return false;
  }
  if (typeof global.ArrayBuffer !== 'function') {
    return false;
  }
  if (typeof ArrayBuffer.isView === 'function') {
    return ArrayBuffer.isView(arrbuf);
  }
  if (!arrbuf) {
    return false;
  }
  if (arrbuf instanceof DataView) {
    return true;
  }
  if (arrbuf.buffer && arrbuf.buffer instanceof ArrayBuffer) {
    return true;
  }
  return false;
}
// 1. The assert module provides functions that throw
// AssertionError's when particular conditions are not met. The
// assert module must conform to the following interface.

var assert = module.exports = ok;

// 2. The AssertionError is defined in assert.
// new assert.AssertionError({ message: message,
//                             actual: actual,
//                             expected: expected })

var regex = /\s*function\s+([^\(\s]*)\s*/;
// based on https://github.com/ljharb/function.prototype.name/blob/adeeeec8bfcc6068b187d7d9fb3d5bb1d3a30899/implementation.js
function getName(func) {
  if (!util.isFunction(func)) {
    return;
  }
  if (functionsHaveNames) {
    return func.name;
  }
  var str = func.toString();
  var match = str.match(regex);
  return match && match[1];
}
assert.AssertionError = function AssertionError(options) {
  this.name = 'AssertionError';
  this.actual = options.actual;
  this.expected = options.expected;
  this.operator = options.operator;
  if (options.message) {
    this.message = options.message;
    this.generatedMessage = false;
  } else {
    this.message = getMessage(this);
    this.generatedMessage = true;
  }
  var stackStartFunction = options.stackStartFunction || fail;
  if (Error.captureStackTrace) {
    Error.captureStackTrace(this, stackStartFunction);
  } else {
    // non v8 browsers so we can have a stacktrace
    var err = new Error();
    if (err.stack) {
      var out = err.stack;

      // try to strip useless frames
      var fn_name = getName(stackStartFunction);
      var idx = out.indexOf('\n' + fn_name);
      if (idx >= 0) {
        // once we have located the function frame
        // we need to strip out everything before it (and its line)
        var next_line = out.indexOf('\n', idx + 1);
        out = out.substring(next_line + 1);
      }

      this.stack = out;
    }
  }
};

// assert.AssertionError instanceof Error
util.inherits(assert.AssertionError, Error);

function truncate(s, n) {
  if (typeof s === 'string') {
    return s.length < n ? s : s.slice(0, n);
  } else {
    return s;
  }
}
function inspect(something) {
  if (functionsHaveNames || !util.isFunction(something)) {
    return util.inspect(something);
  }
  var rawname = getName(something);
  var name = rawname ? ': ' + rawname : '';
  return '[Function' +  name + ']';
}
function getMessage(self) {
  return truncate(inspect(self.actual), 128) + ' ' +
         self.operator + ' ' +
         truncate(inspect(self.expected), 128);
}

// At present only the three keys mentioned above are used and
// understood by the spec. Implementations or sub modules can pass
// other keys to the AssertionError's constructor - they will be
// ignored.

// 3. All of the following functions must throw an AssertionError
// when a corresponding condition is not met, with a message that
// may be undefined if not provided.  All assertion methods provide
// both the actual and expected values to the assertion error for
// display purposes.

function fail(actual, expected, message, operator, stackStartFunction) {
  throw new assert.AssertionError({
    message: message,
    actual: actual,
    expected: expected,
    operator: operator,
    stackStartFunction: stackStartFunction
  });
}

// EXTENSION! allows for well behaved errors defined elsewhere.
assert.fail = fail;

// 4. Pure assertion tests whether a value is truthy, as determined
// by !!guard.
// assert.ok(guard, message_opt);
// This statement is equivalent to assert.equal(true, !!guard,
// message_opt);. To test strictly for the value true, use
// assert.strictEqual(true, guard, message_opt);.

function ok(value, message) {
  if (!value) fail(value, true, message, '==', assert.ok);
}
assert.ok = ok;

// 5. The equality assertion tests shallow, coercive equality with
// ==.
// assert.equal(actual, expected, message_opt);

assert.equal = function equal(actual, expected, message) {
  if (actual != expected) fail(actual, expected, message, '==', assert.equal);
};

// 6. The non-equality assertion tests for whether two objects are not equal
// with != assert.notEqual(actual, expected, message_opt);

assert.notEqual = function notEqual(actual, expected, message) {
  if (actual == expected) {
    fail(actual, expected, message, '!=', assert.notEqual);
  }
};

// 7. The equivalence assertion tests a deep equality relation.
// assert.deepEqual(actual, expected, message_opt);

assert.deepEqual = function deepEqual(actual, expected, message) {
  if (!_deepEqual(actual, expected, false)) {
    fail(actual, expected, message, 'deepEqual', assert.deepEqual);
  }
};

assert.deepStrictEqual = function deepStrictEqual(actual, expected, message) {
  if (!_deepEqual(actual, expected, true)) {
    fail(actual, expected, message, 'deepStrictEqual', assert.deepStrictEqual);
  }
};

function _deepEqual(actual, expected, strict, memos) {
  // 7.1. All identical values are equivalent, as determined by ===.
  if (actual === expected) {
    return true;
  } else if (isBuffer(actual) && isBuffer(expected)) {
    return compare(actual, expected) === 0;

  // 7.2. If the expected value is a Date object, the actual value is
  // equivalent if it is also a Date object that refers to the same time.
  } else if (util.isDate(actual) && util.isDate(expected)) {
    return actual.getTime() === expected.getTime();

  // 7.3 If the expected value is a RegExp object, the actual value is
  // equivalent if it is also a RegExp object with the same source and
  // properties (`global`, `multiline`, `lastIndex`, `ignoreCase`).
  } else if (util.isRegExp(actual) && util.isRegExp(expected)) {
    return actual.source === expected.source &&
           actual.global === expected.global &&
           actual.multiline === expected.multiline &&
           actual.lastIndex === expected.lastIndex &&
           actual.ignoreCase === expected.ignoreCase;

  // 7.4. Other pairs that do not both pass typeof value == 'object',
  // equivalence is determined by ==.
  } else if ((actual === null || typeof actual !== 'object') &&
             (expected === null || typeof expected !== 'object')) {
    return strict ? actual === expected : actual == expected;

  // If both values are instances of typed arrays, wrap their underlying
  // ArrayBuffers in a Buffer each to increase performance
  // This optimization requires the arrays to have the same type as checked by
  // Object.prototype.toString (aka pToString). Never perform binary
  // comparisons for Float*Arrays, though, since e.g. +0 === -0 but their
  // bit patterns are not identical.
  } else if (isView(actual) && isView(expected) &&
             pToString(actual) === pToString(expected) &&
             !(actual instanceof Float32Array ||
               actual instanceof Float64Array)) {
    return compare(new Uint8Array(actual.buffer),
                   new Uint8Array(expected.buffer)) === 0;

  // 7.5 For all other Object pairs, including Array objects, equivalence is
  // determined by having the same number of owned properties (as verified
  // with Object.prototype.hasOwnProperty.call), the same set of keys
  // (although not necessarily the same order), equivalent values for every
  // corresponding key, and an identical 'prototype' property. Note: this
  // accounts for both named and indexed properties on Arrays.
  } else if (isBuffer(actual) !== isBuffer(expected)) {
    return false;
  } else {
    memos = memos || {actual: [], expected: []};

    var actualIndex = memos.actual.indexOf(actual);
    if (actualIndex !== -1) {
      if (actualIndex === memos.expected.indexOf(expected)) {
        return true;
      }
    }

    memos.actual.push(actual);
    memos.expected.push(expected);

    return objEquiv(actual, expected, strict, memos);
  }
}

function isArguments(object) {
  return Object.prototype.toString.call(object) == '[object Arguments]';
}

function objEquiv(a, b, strict, actualVisitedObjects) {
  if (a === null || a === undefined || b === null || b === undefined)
    return false;
  // if one is a primitive, the other must be same
  if (util.isPrimitive(a) || util.isPrimitive(b))
    return a === b;
  if (strict && Object.getPrototypeOf(a) !== Object.getPrototypeOf(b))
    return false;
  var aIsArgs = isArguments(a);
  var bIsArgs = isArguments(b);
  if ((aIsArgs && !bIsArgs) || (!aIsArgs && bIsArgs))
    return false;
  if (aIsArgs) {
    a = pSlice.call(a);
    b = pSlice.call(b);
    return _deepEqual(a, b, strict);
  }
  var ka = objectKeys(a);
  var kb = objectKeys(b);
  var key, i;
  // having the same number of owned properties (keys incorporates
  // hasOwnProperty)
  if (ka.length !== kb.length)
    return false;
  //the same set of keys (although not necessarily the same order),
  ka.sort();
  kb.sort();
  //~~~cheap key test
  for (i = ka.length - 1; i >= 0; i--) {
    if (ka[i] !== kb[i])
      return false;
  }
  //equivalent values for every corresponding key, and
  //~~~possibly expensive deep test
  for (i = ka.length - 1; i >= 0; i--) {
    key = ka[i];
    if (!_deepEqual(a[key], b[key], strict, actualVisitedObjects))
      return false;
  }
  return true;
}

// 8. The non-equivalence assertion tests for any deep inequality.
// assert.notDeepEqual(actual, expected, message_opt);

assert.notDeepEqual = function notDeepEqual(actual, expected, message) {
  if (_deepEqual(actual, expected, false)) {
    fail(actual, expected, message, 'notDeepEqual', assert.notDeepEqual);
  }
};

assert.notDeepStrictEqual = notDeepStrictEqual;
function notDeepStrictEqual(actual, expected, message) {
  if (_deepEqual(actual, expected, true)) {
    fail(actual, expected, message, 'notDeepStrictEqual', notDeepStrictEqual);
  }
}


// 9. The strict equality assertion tests strict equality, as determined by ===.
// assert.strictEqual(actual, expected, message_opt);

assert.strictEqual = function strictEqual(actual, expected, message) {
  if (actual !== expected) {
    fail(actual, expected, message, '===', assert.strictEqual);
  }
};

// 10. The strict non-equality assertion tests for strict inequality, as
// determined by !==.  assert.notStrictEqual(actual, expected, message_opt);

assert.notStrictEqual = function notStrictEqual(actual, expected, message) {
  if (actual === expected) {
    fail(actual, expected, message, '!==', assert.notStrictEqual);
  }
};

function expectedException(actual, expected) {
  if (!actual || !expected) {
    return false;
  }

  if (Object.prototype.toString.call(expected) == '[object RegExp]') {
    return expected.test(actual);
  }

  try {
    if (actual instanceof expected) {
      return true;
    }
  } catch (e) {
    // Ignore.  The instanceof check doesn't work for arrow functions.
  }

  if (Error.isPrototypeOf(expected)) {
    return false;
  }

  return expected.call({}, actual) === true;
}

function _tryBlock(block) {
  var error;
  try {
    block();
  } catch (e) {
    error = e;
  }
  return error;
}

function _throws(shouldThrow, block, expected, message) {
  var actual;

  if (typeof block !== 'function') {
    throw new TypeError('"block" argument must be a function');
  }

  if (typeof expected === 'string') {
    message = expected;
    expected = null;
  }

  actual = _tryBlock(block);

  message = (expected && expected.name ? ' (' + expected.name + ').' : '.') +
            (message ? ' ' + message : '.');

  if (shouldThrow && !actual) {
    fail(actual, expected, 'Missing expected exception' + message);
  }

  var userProvidedMessage = typeof message === 'string';
  var isUnwantedException = !shouldThrow && util.isError(actual);
  var isUnexpectedException = !shouldThrow && actual && !expected;

  if ((isUnwantedException &&
      userProvidedMessage &&
      expectedException(actual, expected)) ||
      isUnexpectedException) {
    fail(actual, expected, 'Got unwanted exception' + message);
  }

  if ((shouldThrow && actual && expected &&
      !expectedException(actual, expected)) || (!shouldThrow && actual)) {
    throw actual;
  }
}

// 11. Expected to throw an error:
// assert.throws(block, Error_opt, message_opt);

assert.throws = function(block, /*optional*/error, /*optional*/message) {
  _throws(true, block, error, message);
};

// EXTENSION! This is annoying to write outside this module.
assert.doesNotThrow = function(block, /*optional*/error, /*optional*/message) {
  _throws(false, block, error, message);
};

assert.ifError = function(err) { if (err) throw err; };

// Expose a strict only variant of assert
function strict(value, message) {
  if (!value) fail(value, true, message, '==', strict);
}
assert.strict = objectAssign(strict, assert, {
  equal: assert.strictEqual,
  deepEqual: assert.deepStrictEqual,
  notEqual: assert.notStrictEqual,
  notDeepEqual: assert.notDeepStrictEqual
});
assert.strict.strict = assert.strict;

var objectKeys = Object.keys || function (obj) {
  var keys = [];
  for (var key in obj) {
    if (hasOwn.call(obj, key)) keys.push(key);
  }
  return keys;
};

}).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {})
},{"object-assign":19,"util/":4}],2:[function(require,module,exports){
if (typeof Object.create === 'function') {
  // implementation from standard node.js 'util' module
  module.exports = function inherits(ctor, superCtor) {
    ctor.super_ = superCtor
    ctor.prototype = Object.create(superCtor.prototype, {
      constructor: {
        value: ctor,
        enumerable: false,
        writable: true,
        configurable: true
      }
    });
  };
} else {
  // old school shim for old browsers
  module.exports = function inherits(ctor, superCtor) {
    ctor.super_ = superCtor
    var TempCtor = function () {}
    TempCtor.prototype = superCtor.prototype
    ctor.prototype = new TempCtor()
    ctor.prototype.constructor = ctor
  }
}

},{}],3:[function(require,module,exports){
module.exports = function isBuffer(arg) {
  return arg && typeof arg === 'object'
    && typeof arg.copy === 'function'
    && typeof arg.fill === 'function'
    && typeof arg.readUInt8 === 'function';
}
},{}],4:[function(require,module,exports){
(function (process,global){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

var formatRegExp = /%[sdj%]/g;
exports.format = function(f) {
  if (!isString(f)) {
    var objects = [];
    for (var i = 0; i < arguments.length; i++) {
      objects.push(inspect(arguments[i]));
    }
    return objects.join(' ');
  }

  var i = 1;
  var args = arguments;
  var len = args.length;
  var str = String(f).replace(formatRegExp, function(x) {
    if (x === '%%') return '%';
    if (i >= len) return x;
    switch (x) {
      case '%s': return String(args[i++]);
      case '%d': return Number(args[i++]);
      case '%j':
        try {
          return JSON.stringify(args[i++]);
        } catch (_) {
          return '[Circular]';
        }
      default:
        return x;
    }
  });
  for (var x = args[i]; i < len; x = args[++i]) {
    if (isNull(x) || !isObject(x)) {
      str += ' ' + x;
    } else {
      str += ' ' + inspect(x);
    }
  }
  return str;
};


// Mark that a method should not be used.
// Returns a modified function which warns once by default.
// If --no-deprecation is set, then it is a no-op.
exports.deprecate = function(fn, msg) {
  // Allow for deprecating things in the process of starting up.
  if (isUndefined(global.process)) {
    return function() {
      return exports.deprecate(fn, msg).apply(this, arguments);
    };
  }

  if (process.noDeprecation === true) {
    return fn;
  }

  var warned = false;
  function deprecated() {
    if (!warned) {
      if (process.throwDeprecation) {
        throw new Error(msg);
      } else if (process.traceDeprecation) {
        console.trace(msg);
      } else {
        console.error(msg);
      }
      warned = true;
    }
    return fn.apply(this, arguments);
  }

  return deprecated;
};


var debugs = {};
var debugEnviron;
exports.debuglog = function(set) {
  if (isUndefined(debugEnviron))
    debugEnviron = process.env.NODE_DEBUG || '';
  set = set.toUpperCase();
  if (!debugs[set]) {
    if (new RegExp('\\b' + set + '\\b', 'i').test(debugEnviron)) {
      var pid = process.pid;
      debugs[set] = function() {
        var msg = exports.format.apply(exports, arguments);
        console.error('%s %d: %s', set, pid, msg);
      };
    } else {
      debugs[set] = function() {};
    }
  }
  return debugs[set];
};


/**
 * Echos the value of a value. Trys to print the value out
 * in the best way possible given the different types.
 *
 * @param {Object} obj The object to print out.
 * @param {Object} opts Optional options object that alters the output.
 */
/* legacy: obj, showHidden, depth, colors*/
function inspect(obj, opts) {
  // default options
  var ctx = {
    seen: [],
    stylize: stylizeNoColor
  };
  // legacy...
  if (arguments.length >= 3) ctx.depth = arguments[2];
  if (arguments.length >= 4) ctx.colors = arguments[3];
  if (isBoolean(opts)) {
    // legacy...
    ctx.showHidden = opts;
  } else if (opts) {
    // got an "options" object
    exports._extend(ctx, opts);
  }
  // set default options
  if (isUndefined(ctx.showHidden)) ctx.showHidden = false;
  if (isUndefined(ctx.depth)) ctx.depth = 2;
  if (isUndefined(ctx.colors)) ctx.colors = false;
  if (isUndefined(ctx.customInspect)) ctx.customInspect = true;
  if (ctx.colors) ctx.stylize = stylizeWithColor;
  return formatValue(ctx, obj, ctx.depth);
}
exports.inspect = inspect;


// http://en.wikipedia.org/wiki/ANSI_escape_code#graphics
inspect.colors = {
  'bold' : [1, 22],
  'italic' : [3, 23],
  'underline' : [4, 24],
  'inverse' : [7, 27],
  'white' : [37, 39],
  'grey' : [90, 39],
  'black' : [30, 39],
  'blue' : [34, 39],
  'cyan' : [36, 39],
  'green' : [32, 39],
  'magenta' : [35, 39],
  'red' : [31, 39],
  'yellow' : [33, 39]
};

// Don't use 'blue' not visible on cmd.exe
inspect.styles = {
  'special': 'cyan',
  'number': 'yellow',
  'boolean': 'yellow',
  'undefined': 'grey',
  'null': 'bold',
  'string': 'green',
  'date': 'magenta',
  // "name": intentionally not styling
  'regexp': 'red'
};


function stylizeWithColor(str, styleType) {
  var style = inspect.styles[styleType];

  if (style) {
    return '\u001b[' + inspect.colors[style][0] + 'm' + str +
           '\u001b[' + inspect.colors[style][1] + 'm';
  } else {
    return str;
  }
}


function stylizeNoColor(str, styleType) {
  return str;
}


function arrayToHash(array) {
  var hash = {};

  array.forEach(function(val, idx) {
    hash[val] = true;
  });

  return hash;
}


function formatValue(ctx, value, recurseTimes) {
  // Provide a hook for user-specified inspect functions.
  // Check that value is an object with an inspect function on it
  if (ctx.customInspect &&
      value &&
      isFunction(value.inspect) &&
      // Filter out the util module, it's inspect function is special
      value.inspect !== exports.inspect &&
      // Also filter out any prototype objects using the circular check.
      !(value.constructor && value.constructor.prototype === value)) {
    var ret = value.inspect(recurseTimes, ctx);
    if (!isString(ret)) {
      ret = formatValue(ctx, ret, recurseTimes);
    }
    return ret;
  }

  // Primitive types cannot have properties
  var primitive = formatPrimitive(ctx, value);
  if (primitive) {
    return primitive;
  }

  // Look up the keys of the object.
  var keys = Object.keys(value);
  var visibleKeys = arrayToHash(keys);

  if (ctx.showHidden) {
    keys = Object.getOwnPropertyNames(value);
  }

  // IE doesn't make error fields non-enumerable
  // http://msdn.microsoft.com/en-us/library/ie/dww52sbt(v=vs.94).aspx
  if (isError(value)
      && (keys.indexOf('message') >= 0 || keys.indexOf('description') >= 0)) {
    return formatError(value);
  }

  // Some type of object without properties can be shortcutted.
  if (keys.length === 0) {
    if (isFunction(value)) {
      var name = value.name ? ': ' + value.name : '';
      return ctx.stylize('[Function' + name + ']', 'special');
    }
    if (isRegExp(value)) {
      return ctx.stylize(RegExp.prototype.toString.call(value), 'regexp');
    }
    if (isDate(value)) {
      return ctx.stylize(Date.prototype.toString.call(value), 'date');
    }
    if (isError(value)) {
      return formatError(value);
    }
  }

  var base = '', array = false, braces = ['{', '}'];

  // Make Array say that they are Array
  if (isArray(value)) {
    array = true;
    braces = ['[', ']'];
  }

  // Make functions say that they are functions
  if (isFunction(value)) {
    var n = value.name ? ': ' + value.name : '';
    base = ' [Function' + n + ']';
  }

  // Make RegExps say that they are RegExps
  if (isRegExp(value)) {
    base = ' ' + RegExp.prototype.toString.call(value);
  }

  // Make dates with properties first say the date
  if (isDate(value)) {
    base = ' ' + Date.prototype.toUTCString.call(value);
  }

  // Make error with message first say the error
  if (isError(value)) {
    base = ' ' + formatError(value);
  }

  if (keys.length === 0 && (!array || value.length == 0)) {
    return braces[0] + base + braces[1];
  }

  if (recurseTimes < 0) {
    if (isRegExp(value)) {
      return ctx.stylize(RegExp.prototype.toString.call(value), 'regexp');
    } else {
      return ctx.stylize('[Object]', 'special');
    }
  }

  ctx.seen.push(value);

  var output;
  if (array) {
    output = formatArray(ctx, value, recurseTimes, visibleKeys, keys);
  } else {
    output = keys.map(function(key) {
      return formatProperty(ctx, value, recurseTimes, visibleKeys, key, array);
    });
  }

  ctx.seen.pop();

  return reduceToSingleString(output, base, braces);
}


function formatPrimitive(ctx, value) {
  if (isUndefined(value))
    return ctx.stylize('undefined', 'undefined');
  if (isString(value)) {
    var simple = '\'' + JSON.stringify(value).replace(/^"|"$/g, '')
                                             .replace(/'/g, "\\'")
                                             .replace(/\\"/g, '"') + '\'';
    return ctx.stylize(simple, 'string');
  }
  if (isNumber(value))
    return ctx.stylize('' + value, 'number');
  if (isBoolean(value))
    return ctx.stylize('' + value, 'boolean');
  // For some reason typeof null is "object", so special case here.
  if (isNull(value))
    return ctx.stylize('null', 'null');
}


function formatError(value) {
  return '[' + Error.prototype.toString.call(value) + ']';
}


function formatArray(ctx, value, recurseTimes, visibleKeys, keys) {
  var output = [];
  for (var i = 0, l = value.length; i < l; ++i) {
    if (hasOwnProperty(value, String(i))) {
      output.push(formatProperty(ctx, value, recurseTimes, visibleKeys,
          String(i), true));
    } else {
      output.push('');
    }
  }
  keys.forEach(function(key) {
    if (!key.match(/^\d+$/)) {
      output.push(formatProperty(ctx, value, recurseTimes, visibleKeys,
          key, true));
    }
  });
  return output;
}


function formatProperty(ctx, value, recurseTimes, visibleKeys, key, array) {
  var name, str, desc;
  desc = Object.getOwnPropertyDescriptor(value, key) || { value: value[key] };
  if (desc.get) {
    if (desc.set) {
      str = ctx.stylize('[Getter/Setter]', 'special');
    } else {
      str = ctx.stylize('[Getter]', 'special');
    }
  } else {
    if (desc.set) {
      str = ctx.stylize('[Setter]', 'special');
    }
  }
  if (!hasOwnProperty(visibleKeys, key)) {
    name = '[' + key + ']';
  }
  if (!str) {
    if (ctx.seen.indexOf(desc.value) < 0) {
      if (isNull(recurseTimes)) {
        str = formatValue(ctx, desc.value, null);
      } else {
        str = formatValue(ctx, desc.value, recurseTimes - 1);
      }
      if (str.indexOf('\n') > -1) {
        if (array) {
          str = str.split('\n').map(function(line) {
            return '  ' + line;
          }).join('\n').substr(2);
        } else {
          str = '\n' + str.split('\n').map(function(line) {
            return '   ' + line;
          }).join('\n');
        }
      }
    } else {
      str = ctx.stylize('[Circular]', 'special');
    }
  }
  if (isUndefined(name)) {
    if (array && key.match(/^\d+$/)) {
      return str;
    }
    name = JSON.stringify('' + key);
    if (name.match(/^"([a-zA-Z_][a-zA-Z_0-9]*)"$/)) {
      name = name.substr(1, name.length - 2);
      name = ctx.stylize(name, 'name');
    } else {
      name = name.replace(/'/g, "\\'")
                 .replace(/\\"/g, '"')
                 .replace(/(^"|"$)/g, "'");
      name = ctx.stylize(name, 'string');
    }
  }

  return name + ': ' + str;
}


function reduceToSingleString(output, base, braces) {
  var numLinesEst = 0;
  var length = output.reduce(function(prev, cur) {
    numLinesEst++;
    if (cur.indexOf('\n') >= 0) numLinesEst++;
    return prev + cur.replace(/\u001b\[\d\d?m/g, '').length + 1;
  }, 0);

  if (length > 60) {
    return braces[0] +
           (base === '' ? '' : base + '\n ') +
           ' ' +
           output.join(',\n  ') +
           ' ' +
           braces[1];
  }

  return braces[0] + base + ' ' + output.join(', ') + ' ' + braces[1];
}


// NOTE: These type checking functions intentionally don't use `instanceof`
// because it is fragile and can be easily faked with `Object.create()`.
function isArray(ar) {
  return Array.isArray(ar);
}
exports.isArray = isArray;

function isBoolean(arg) {
  return typeof arg === 'boolean';
}
exports.isBoolean = isBoolean;

function isNull(arg) {
  return arg === null;
}
exports.isNull = isNull;

function isNullOrUndefined(arg) {
  return arg == null;
}
exports.isNullOrUndefined = isNullOrUndefined;

function isNumber(arg) {
  return typeof arg === 'number';
}
exports.isNumber = isNumber;

function isString(arg) {
  return typeof arg === 'string';
}
exports.isString = isString;

function isSymbol(arg) {
  return typeof arg === 'symbol';
}
exports.isSymbol = isSymbol;

function isUndefined(arg) {
  return arg === void 0;
}
exports.isUndefined = isUndefined;

function isRegExp(re) {
  return isObject(re) && objectToString(re) === '[object RegExp]';
}
exports.isRegExp = isRegExp;

function isObject(arg) {
  return typeof arg === 'object' && arg !== null;
}
exports.isObject = isObject;

function isDate(d) {
  return isObject(d) && objectToString(d) === '[object Date]';
}
exports.isDate = isDate;

function isError(e) {
  return isObject(e) &&
      (objectToString(e) === '[object Error]' || e instanceof Error);
}
exports.isError = isError;

function isFunction(arg) {
  return typeof arg === 'function';
}
exports.isFunction = isFunction;

function isPrimitive(arg) {
  return arg === null ||
         typeof arg === 'boolean' ||
         typeof arg === 'number' ||
         typeof arg === 'string' ||
         typeof arg === 'symbol' ||  // ES6 symbol
         typeof arg === 'undefined';
}
exports.isPrimitive = isPrimitive;

exports.isBuffer = require('./support/isBuffer');

function objectToString(o) {
  return Object.prototype.toString.call(o);
}


function pad(n) {
  return n < 10 ? '0' + n.toString(10) : n.toString(10);
}


var months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep',
              'Oct', 'Nov', 'Dec'];

// 26 Feb 16:19:34
function timestamp() {
  var d = new Date();
  var time = [pad(d.getHours()),
              pad(d.getMinutes()),
              pad(d.getSeconds())].join(':');
  return [d.getDate(), months[d.getMonth()], time].join(' ');
}


// log is just a thin wrapper to console.log that prepends a timestamp
exports.log = function() {
  console.log('%s - %s', timestamp(), exports.format.apply(exports, arguments));
};


/**
 * Inherit the prototype methods from one constructor into another.
 *
 * The Function.prototype.inherits from lang.js rewritten as a standalone
 * function (not on Function.prototype). NOTE: If this file is to be loaded
 * during bootstrapping this function needs to be rewritten using some native
 * functions as prototype setup using normal JavaScript does not work as
 * expected during bootstrapping (see mirror.js in r114903).
 *
 * @param {function} ctor Constructor function which needs to inherit the
 *     prototype.
 * @param {function} superCtor Constructor function to inherit prototype from.
 */
exports.inherits = require('inherits');

exports._extend = function(origin, add) {
  // Don't do anything if add isn't an object
  if (!add || !isObject(add)) return origin;

  var keys = Object.keys(add);
  var i = keys.length;
  while (i--) {
    origin[keys[i]] = add[keys[i]];
  }
  return origin;
};

function hasOwnProperty(obj, prop) {
  return Object.prototype.hasOwnProperty.call(obj, prop);
}

}).call(this,require('_process'),typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {})
},{"./support/isBuffer":3,"_process":21,"inherits":2}],5:[function(require,module,exports){
'use strict'

exports.byteLength = byteLength
exports.toByteArray = toByteArray
exports.fromByteArray = fromByteArray

var lookup = []
var revLookup = []
var Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array

var code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
for (var i = 0, len = code.length; i < len; ++i) {
  lookup[i] = code[i]
  revLookup[code.charCodeAt(i)] = i
}

// Support decoding URL-safe base64 strings, as Node.js does.
// See: https://en.wikipedia.org/wiki/Base64#URL_applications
revLookup['-'.charCodeAt(0)] = 62
revLookup['_'.charCodeAt(0)] = 63

function getLens (b64) {
  var len = b64.length

  if (len % 4 > 0) {
    throw new Error('Invalid string. Length must be a multiple of 4')
  }

  // Trim off extra bytes after placeholder bytes are found
  // See: https://github.com/beatgammit/base64-js/issues/42
  var validLen = b64.indexOf('=')
  if (validLen === -1) validLen = len

  var placeHoldersLen = validLen === len
    ? 0
    : 4 - (validLen % 4)

  return [validLen, placeHoldersLen]
}

// base64 is 4/3 + up to two characters of the original data
function byteLength (b64) {
  var lens = getLens(b64)
  var validLen = lens[0]
  var placeHoldersLen = lens[1]
  return ((validLen + placeHoldersLen) * 3 / 4) - placeHoldersLen
}

function _byteLength (b64, validLen, placeHoldersLen) {
  return ((validLen + placeHoldersLen) * 3 / 4) - placeHoldersLen
}

function toByteArray (b64) {
  var tmp
  var lens = getLens(b64)
  var validLen = lens[0]
  var placeHoldersLen = lens[1]

  var arr = new Arr(_byteLength(b64, validLen, placeHoldersLen))

  var curByte = 0

  // if there are placeholders, only get up to the last complete 4 chars
  var len = placeHoldersLen > 0
    ? validLen - 4
    : validLen

  var i
  for (i = 0; i < len; i += 4) {
    tmp =
      (revLookup[b64.charCodeAt(i)] << 18) |
      (revLookup[b64.charCodeAt(i + 1)] << 12) |
      (revLookup[b64.charCodeAt(i + 2)] << 6) |
      revLookup[b64.charCodeAt(i + 3)]
    arr[curByte++] = (tmp >> 16) & 0xFF
    arr[curByte++] = (tmp >> 8) & 0xFF
    arr[curByte++] = tmp & 0xFF
  }

  if (placeHoldersLen === 2) {
    tmp =
      (revLookup[b64.charCodeAt(i)] << 2) |
      (revLookup[b64.charCodeAt(i + 1)] >> 4)
    arr[curByte++] = tmp & 0xFF
  }

  if (placeHoldersLen === 1) {
    tmp =
      (revLookup[b64.charCodeAt(i)] << 10) |
      (revLookup[b64.charCodeAt(i + 1)] << 4) |
      (revLookup[b64.charCodeAt(i + 2)] >> 2)
    arr[curByte++] = (tmp >> 8) & 0xFF
    arr[curByte++] = tmp & 0xFF
  }

  return arr
}

function tripletToBase64 (num) {
  return lookup[num >> 18 & 0x3F] +
    lookup[num >> 12 & 0x3F] +
    lookup[num >> 6 & 0x3F] +
    lookup[num & 0x3F]
}

function encodeChunk (uint8, start, end) {
  var tmp
  var output = []
  for (var i = start; i < end; i += 3) {
    tmp =
      ((uint8[i] << 16) & 0xFF0000) +
      ((uint8[i + 1] << 8) & 0xFF00) +
      (uint8[i + 2] & 0xFF)
    output.push(tripletToBase64(tmp))
  }
  return output.join('')
}

function fromByteArray (uint8) {
  var tmp
  var len = uint8.length
  var extraBytes = len % 3 // if we have 1 byte left, pad 2 bytes
  var parts = []
  var maxChunkLength = 16383 // must be multiple of 3

  // go through the array every three bytes, we'll deal with trailing stuff later
  for (var i = 0, len2 = len - extraBytes; i < len2; i += maxChunkLength) {
    parts.push(encodeChunk(
      uint8, i, (i + maxChunkLength) > len2 ? len2 : (i + maxChunkLength)
    ))
  }

  // pad the end with zeros, but make sure to not forget the extra bytes
  if (extraBytes === 1) {
    tmp = uint8[len - 1]
    parts.push(
      lookup[tmp >> 2] +
      lookup[(tmp << 4) & 0x3F] +
      '=='
    )
  } else if (extraBytes === 2) {
    tmp = (uint8[len - 2] << 8) + uint8[len - 1]
    parts.push(
      lookup[tmp >> 10] +
      lookup[(tmp >> 4) & 0x3F] +
      lookup[(tmp << 2) & 0x3F] +
      '='
    )
  }

  return parts.join('')
}

},{}],6:[function(require,module,exports){
'use strict'
var DuplexStream = require('readable-stream').Duplex
  , util         = require('util')
  , Buffer       = require('safe-buffer').Buffer

function BufferList (callback) {
  if (!(this instanceof BufferList))
    return new BufferList(callback)

  this._bufs  = []
  this.length = 0

  if (typeof callback == 'function') {
    this._callback = callback

    var piper = function piper (err) {
      if (this._callback) {
        this._callback(err)
        this._callback = null
      }
    }.bind(this)

    this.on('pipe', function onPipe (src) {
      src.on('error', piper)
    })
    this.on('unpipe', function onUnpipe (src) {
      src.removeListener('error', piper)
    })
  } else {
    this.append(callback)
  }

  DuplexStream.call(this)
}


util.inherits(BufferList, DuplexStream)


BufferList.prototype._offset = function _offset (offset) {
  var tot = 0, i = 0, _t
  if (offset === 0) return [ 0, 0 ]
  for (; i < this._bufs.length; i++) {
    _t = tot + this._bufs[i].length
    if (offset < _t || i == this._bufs.length - 1) {
      return [ i, offset - tot ]
    }
    tot = _t
  }
}

BufferList.prototype._reverseOffset = function (blOffset) {
  var bufferId = blOffset[0]
  var offset = blOffset[1]
  for (var i = 0; i < bufferId; i++) {
    offset += this._bufs[i].length
  }
  return offset
}

BufferList.prototype.append = function append (buf) {
  var i = 0

  if (Buffer.isBuffer(buf)) {
    this._appendBuffer(buf)
  } else if (Array.isArray(buf)) {
    for (; i < buf.length; i++)
      this.append(buf[i])
  } else if (buf instanceof BufferList) {
    // unwrap argument into individual BufferLists
    for (; i < buf._bufs.length; i++)
      this.append(buf._bufs[i])
  } else if (buf != null) {
    // coerce number arguments to strings, since Buffer(number) does
    // uninitialized memory allocation
    if (typeof buf == 'number')
      buf = buf.toString()

    this._appendBuffer(Buffer.from(buf))
  }

  return this
}


BufferList.prototype._appendBuffer = function appendBuffer (buf) {
  this._bufs.push(buf)
  this.length += buf.length
}


BufferList.prototype._write = function _write (buf, encoding, callback) {
  this._appendBuffer(buf)

  if (typeof callback == 'function')
    callback()
}


BufferList.prototype._read = function _read (size) {
  if (!this.length)
    return this.push(null)

  size = Math.min(size, this.length)
  this.push(this.slice(0, size))
  this.consume(size)
}


BufferList.prototype.end = function end (chunk) {
  DuplexStream.prototype.end.call(this, chunk)

  if (this._callback) {
    this._callback(null, this.slice())
    this._callback = null
  }
}


BufferList.prototype.get = function get (index) {
  if (index > this.length || index < 0) {
    return undefined
  }
  var offset = this._offset(index)
  return this._bufs[offset[0]][offset[1]]
}


BufferList.prototype.slice = function slice (start, end) {
  if (typeof start == 'number' && start < 0)
    start += this.length
  if (typeof end == 'number' && end < 0)
    end += this.length
  return this.copy(null, 0, start, end)
}


BufferList.prototype.copy = function copy (dst, dstStart, srcStart, srcEnd) {
  if (typeof srcStart != 'number' || srcStart < 0)
    srcStart = 0
  if (typeof srcEnd != 'number' || srcEnd > this.length)
    srcEnd = this.length
  if (srcStart >= this.length)
    return dst || Buffer.alloc(0)
  if (srcEnd <= 0)
    return dst || Buffer.alloc(0)

  var copy   = !!dst
    , off    = this._offset(srcStart)
    , len    = srcEnd - srcStart
    , bytes  = len
    , bufoff = (copy && dstStart) || 0
    , start  = off[1]
    , l
    , i

  // copy/slice everything
  if (srcStart === 0 && srcEnd == this.length) {
    if (!copy) { // slice, but full concat if multiple buffers
      return this._bufs.length === 1
        ? this._bufs[0]
        : Buffer.concat(this._bufs, this.length)
    }

    // copy, need to copy individual buffers
    for (i = 0; i < this._bufs.length; i++) {
      this._bufs[i].copy(dst, bufoff)
      bufoff += this._bufs[i].length
    }

    return dst
  }

  // easy, cheap case where it's a subset of one of the buffers
  if (bytes <= this._bufs[off[0]].length - start) {
    return copy
      ? this._bufs[off[0]].copy(dst, dstStart, start, start + bytes)
      : this._bufs[off[0]].slice(start, start + bytes)
  }

  if (!copy) // a slice, we need something to copy in to
    dst = Buffer.allocUnsafe(len)

  for (i = off[0]; i < this._bufs.length; i++) {
    l = this._bufs[i].length - start

    if (bytes > l) {
      this._bufs[i].copy(dst, bufoff, start)
    } else {
      this._bufs[i].copy(dst, bufoff, start, start + bytes)
      break
    }

    bufoff += l
    bytes -= l

    if (start)
      start = 0
  }

  return dst
}

BufferList.prototype.shallowSlice = function shallowSlice (start, end) {
  start = start || 0
  end = typeof end !== 'number' ? this.length : end

  if (start < 0)
    start += this.length
  if (end < 0)
    end += this.length

  if (start === end) {
    return new BufferList()
  }
  var startOffset = this._offset(start)
    , endOffset = this._offset(end)
    , buffers = this._bufs.slice(startOffset[0], endOffset[0] + 1)

  if (endOffset[1] == 0)
    buffers.pop()
  else
    buffers[buffers.length-1] = buffers[buffers.length-1].slice(0, endOffset[1])

  if (startOffset[1] != 0)
    buffers[0] = buffers[0].slice(startOffset[1])

  return new BufferList(buffers)
}

BufferList.prototype.toString = function toString (encoding, start, end) {
  return this.slice(start, end).toString(encoding)
}

BufferList.prototype.consume = function consume (bytes) {
  while (this._bufs.length) {
    if (bytes >= this._bufs[0].length) {
      bytes -= this._bufs[0].length
      this.length -= this._bufs[0].length
      this._bufs.shift()
    } else {
      this._bufs[0] = this._bufs[0].slice(bytes)
      this.length -= bytes
      break
    }
  }
  return this
}


BufferList.prototype.duplicate = function duplicate () {
  var i = 0
    , copy = new BufferList()

  for (; i < this._bufs.length; i++)
    copy.append(this._bufs[i])

  return copy
}


BufferList.prototype.destroy = function destroy () {
  this._bufs.length = 0
  this.length = 0
  this.push(null)
}


BufferList.prototype.indexOf = function (search, offset, encoding) {
  if (encoding === undefined && typeof offset === 'string') {
    encoding = offset
    offset = undefined
  }
  if (typeof search === 'function' || Array.isArray(search)) {
    throw new TypeError('The "value" argument must be one of type string, Buffer, BufferList, or Uint8Array.')
  } else if (typeof search === 'number') {
      search = Buffer.from([search])
  } else if (typeof search === 'string') {
    search = Buffer.from(search, encoding)
  } else if (search instanceof BufferList) {
    search = search.slice()
  } else if (!Buffer.isBuffer(search)) {
    search = Buffer.from(search)
  }

  offset = Number(offset || 0)
  if (isNaN(offset)) {
    offset = 0
  }

  if (offset < 0) {
    offset = this.length + offset
  }

  if (offset < 0) {
    offset = 0
  }

  if (search.length === 0) {
    return offset > this.length ? this.length : offset
  }

  var blOffset = this._offset(offset)
  var blIndex = blOffset[0] // index of which internal buffer we're working on
  var buffOffset = blOffset[1] // offset of the internal buffer we're working on

  // scan over each buffer
  for (blIndex; blIndex < this._bufs.length; blIndex++) {
    var buff = this._bufs[blIndex]
    while(buffOffset < buff.length) {
      var availableWindow = buff.length - buffOffset
      if (availableWindow >= search.length) {
        var nativeSearchResult = buff.indexOf(search, buffOffset)
        if (nativeSearchResult !== -1) {
          return this._reverseOffset([blIndex, nativeSearchResult])
        }
        buffOffset = buff.length - search.length + 1 // end of native search window
      } else {
        var revOffset = this._reverseOffset([blIndex, buffOffset])
        if (this._match(revOffset, search)) {
          return revOffset
        }
        buffOffset++
      }
    }
    buffOffset = 0
  }
  return -1
}

BufferList.prototype._match = function(offset, search) {
  if (this.length - offset < search.length) {
    return false
  }
  for (var searchOffset = 0; searchOffset < search.length ; searchOffset++) {
    if(this.get(offset + searchOffset) !== search[searchOffset]){
      return false
    }
  }
  return true
}


;(function () {
  var methods = {
      'readDoubleBE' : 8
    , 'readDoubleLE' : 8
    , 'readFloatBE'  : 4
    , 'readFloatLE'  : 4
    , 'readInt32BE'  : 4
    , 'readInt32LE'  : 4
    , 'readUInt32BE' : 4
    , 'readUInt32LE' : 4
    , 'readInt16BE'  : 2
    , 'readInt16LE'  : 2
    , 'readUInt16BE' : 2
    , 'readUInt16LE' : 2
    , 'readInt8'     : 1
    , 'readUInt8'    : 1
    , 'readIntBE'    : null
    , 'readIntLE'    : null
    , 'readUIntBE'   : null
    , 'readUIntLE'   : null
  }

  for (var m in methods) {
    (function (m) {
      if (methods[m] === null) {
        BufferList.prototype[m] = function (offset, byteLength) {
          return this.slice(offset, offset + byteLength)[m](0, byteLength)
        }
      }
      else {
        BufferList.prototype[m] = function (offset) {
          return this.slice(offset, offset + methods[m])[m](0)
        }
      }
    }(m))
  }
}())


module.exports = BufferList

},{"readable-stream":30,"safe-buffer":32,"util":38}],7:[function(require,module,exports){

},{}],8:[function(require,module,exports){
(function (Buffer){
/*!
 * The buffer module from node.js, for the browser.
 *
 * @author   Feross Aboukhadijeh <https://feross.org>
 * @license  MIT
 */
/* eslint-disable no-proto */

'use strict'

var base64 = require('base64-js')
var ieee754 = require('ieee754')

exports.Buffer = Buffer
exports.SlowBuffer = SlowBuffer
exports.INSPECT_MAX_BYTES = 50

var K_MAX_LENGTH = 0x7fffffff
exports.kMaxLength = K_MAX_LENGTH

/**
 * If `Buffer.TYPED_ARRAY_SUPPORT`:
 *   === true    Use Uint8Array implementation (fastest)
 *   === false   Print warning and recommend using `buffer` v4.x which has an Object
 *               implementation (most compatible, even IE6)
 *
 * Browsers that support typed arrays are IE 10+, Firefox 4+, Chrome 7+, Safari 5.1+,
 * Opera 11.6+, iOS 4.2+.
 *
 * We report that the browser does not support typed arrays if the are not subclassable
 * using __proto__. Firefox 4-29 lacks support for adding new properties to `Uint8Array`
 * (See: https://bugzilla.mozilla.org/show_bug.cgi?id=695438). IE 10 lacks support
 * for __proto__ and has a buggy typed array implementation.
 */
Buffer.TYPED_ARRAY_SUPPORT = typedArraySupport()

if (!Buffer.TYPED_ARRAY_SUPPORT && typeof console !== 'undefined' &&
    typeof console.error === 'function') {
  console.error(
    'This browser lacks typed array (Uint8Array) support which is required by ' +
    '`buffer` v5.x. Use `buffer` v4.x if you require old browser support.'
  )
}

function typedArraySupport () {
  // Can typed array instances can be augmented?
  try {
    var arr = new Uint8Array(1)
    arr.__proto__ = { __proto__: Uint8Array.prototype, foo: function () { return 42 } }
    return arr.foo() === 42
  } catch (e) {
    return false
  }
}

Object.defineProperty(Buffer.prototype, 'parent', {
  enumerable: true,
  get: function () {
    if (!Buffer.isBuffer(this)) return undefined
    return this.buffer
  }
})

Object.defineProperty(Buffer.prototype, 'offset', {
  enumerable: true,
  get: function () {
    if (!Buffer.isBuffer(this)) return undefined
    return this.byteOffset
  }
})

function createBuffer (length) {
  if (length > K_MAX_LENGTH) {
    throw new RangeError('The value "' + length + '" is invalid for option "size"')
  }
  // Return an augmented `Uint8Array` instance
  var buf = new Uint8Array(length)
  buf.__proto__ = Buffer.prototype
  return buf
}

/**
 * The Buffer constructor returns instances of `Uint8Array` that have their
 * prototype changed to `Buffer.prototype`. Furthermore, `Buffer` is a subclass of
 * `Uint8Array`, so the returned instances will have all the node `Buffer` methods
 * and the `Uint8Array` methods. Square bracket notation works as expected -- it
 * returns a single octet.
 *
 * The `Uint8Array` prototype remains unmodified.
 */

function Buffer (arg, encodingOrOffset, length) {
  // Common case.
  if (typeof arg === 'number') {
    if (typeof encodingOrOffset === 'string') {
      throw new TypeError(
        'The "string" argument must be of type string. Received type number'
      )
    }
    return allocUnsafe(arg)
  }
  return from(arg, encodingOrOffset, length)
}

// Fix subarray() in ES2016. See: https://github.com/feross/buffer/pull/97
if (typeof Symbol !== 'undefined' && Symbol.species != null &&
    Buffer[Symbol.species] === Buffer) {
  Object.defineProperty(Buffer, Symbol.species, {
    value: null,
    configurable: true,
    enumerable: false,
    writable: false
  })
}

Buffer.poolSize = 8192 // not used by this implementation

function from (value, encodingOrOffset, length) {
  if (typeof value === 'string') {
    return fromString(value, encodingOrOffset)
  }

  if (ArrayBuffer.isView(value)) {
    return fromArrayLike(value)
  }

  if (value == null) {
    throw TypeError(
      'The first argument must be one of type string, Buffer, ArrayBuffer, Array, ' +
      'or Array-like Object. Received type ' + (typeof value)
    )
  }

  if (isInstance(value, ArrayBuffer) ||
      (value && isInstance(value.buffer, ArrayBuffer))) {
    return fromArrayBuffer(value, encodingOrOffset, length)
  }

  if (typeof value === 'number') {
    throw new TypeError(
      'The "value" argument must not be of type number. Received type number'
    )
  }

  var valueOf = value.valueOf && value.valueOf()
  if (valueOf != null && valueOf !== value) {
    return Buffer.from(valueOf, encodingOrOffset, length)
  }

  var b = fromObject(value)
  if (b) return b

  if (typeof Symbol !== 'undefined' && Symbol.toPrimitive != null &&
      typeof value[Symbol.toPrimitive] === 'function') {
    return Buffer.from(
      value[Symbol.toPrimitive]('string'), encodingOrOffset, length
    )
  }

  throw new TypeError(
    'The first argument must be one of type string, Buffer, ArrayBuffer, Array, ' +
    'or Array-like Object. Received type ' + (typeof value)
  )
}

/**
 * Functionally equivalent to Buffer(arg, encoding) but throws a TypeError
 * if value is a number.
 * Buffer.from(str[, encoding])
 * Buffer.from(array)
 * Buffer.from(buffer)
 * Buffer.from(arrayBuffer[, byteOffset[, length]])
 **/
Buffer.from = function (value, encodingOrOffset, length) {
  return from(value, encodingOrOffset, length)
}

// Note: Change prototype *after* Buffer.from is defined to workaround Chrome bug:
// https://github.com/feross/buffer/pull/148
Buffer.prototype.__proto__ = Uint8Array.prototype
Buffer.__proto__ = Uint8Array

function assertSize (size) {
  if (typeof size !== 'number') {
    throw new TypeError('"size" argument must be of type number')
  } else if (size < 0) {
    throw new RangeError('The value "' + size + '" is invalid for option "size"')
  }
}

function alloc (size, fill, encoding) {
  assertSize(size)
  if (size <= 0) {
    return createBuffer(size)
  }
  if (fill !== undefined) {
    // Only pay attention to encoding if it's a string. This
    // prevents accidentally sending in a number that would
    // be interpretted as a start offset.
    return typeof encoding === 'string'
      ? createBuffer(size).fill(fill, encoding)
      : createBuffer(size).fill(fill)
  }
  return createBuffer(size)
}

/**
 * Creates a new filled Buffer instance.
 * alloc(size[, fill[, encoding]])
 **/
Buffer.alloc = function (size, fill, encoding) {
  return alloc(size, fill, encoding)
}

function allocUnsafe (size) {
  assertSize(size)
  return createBuffer(size < 0 ? 0 : checked(size) | 0)
}

/**
 * Equivalent to Buffer(num), by default creates a non-zero-filled Buffer instance.
 * */
Buffer.allocUnsafe = function (size) {
  return allocUnsafe(size)
}
/**
 * Equivalent to SlowBuffer(num), by default creates a non-zero-filled Buffer instance.
 */
Buffer.allocUnsafeSlow = function (size) {
  return allocUnsafe(size)
}

function fromString (string, encoding) {
  if (typeof encoding !== 'string' || encoding === '') {
    encoding = 'utf8'
  }

  if (!Buffer.isEncoding(encoding)) {
    throw new TypeError('Unknown encoding: ' + encoding)
  }

  var length = byteLength(string, encoding) | 0
  var buf = createBuffer(length)

  var actual = buf.write(string, encoding)

  if (actual !== length) {
    // Writing a hex string, for example, that contains invalid characters will
    // cause everything after the first invalid character to be ignored. (e.g.
    // 'abxxcd' will be treated as 'ab')
    buf = buf.slice(0, actual)
  }

  return buf
}

function fromArrayLike (array) {
  var length = array.length < 0 ? 0 : checked(array.length) | 0
  var buf = createBuffer(length)
  for (var i = 0; i < length; i += 1) {
    buf[i] = array[i] & 255
  }
  return buf
}

function fromArrayBuffer (array, byteOffset, length) {
  if (byteOffset < 0 || array.byteLength < byteOffset) {
    throw new RangeError('"offset" is outside of buffer bounds')
  }

  if (array.byteLength < byteOffset + (length || 0)) {
    throw new RangeError('"length" is outside of buffer bounds')
  }

  var buf
  if (byteOffset === undefined && length === undefined) {
    buf = new Uint8Array(array)
  } else if (length === undefined) {
    buf = new Uint8Array(array, byteOffset)
  } else {
    buf = new Uint8Array(array, byteOffset, length)
  }

  // Return an augmented `Uint8Array` instance
  buf.__proto__ = Buffer.prototype
  return buf
}

function fromObject (obj) {
  if (Buffer.isBuffer(obj)) {
    var len = checked(obj.length) | 0
    var buf = createBuffer(len)

    if (buf.length === 0) {
      return buf
    }

    obj.copy(buf, 0, 0, len)
    return buf
  }

  if (obj.length !== undefined) {
    if (typeof obj.length !== 'number' || numberIsNaN(obj.length)) {
      return createBuffer(0)
    }
    return fromArrayLike(obj)
  }

  if (obj.type === 'Buffer' && Array.isArray(obj.data)) {
    return fromArrayLike(obj.data)
  }
}

function checked (length) {
  // Note: cannot use `length < K_MAX_LENGTH` here because that fails when
  // length is NaN (which is otherwise coerced to zero.)
  if (length >= K_MAX_LENGTH) {
    throw new RangeError('Attempt to allocate Buffer larger than maximum ' +
                         'size: 0x' + K_MAX_LENGTH.toString(16) + ' bytes')
  }
  return length | 0
}

function SlowBuffer (length) {
  if (+length != length) { // eslint-disable-line eqeqeq
    length = 0
  }
  return Buffer.alloc(+length)
}

Buffer.isBuffer = function isBuffer (b) {
  return b != null && b._isBuffer === true &&
    b !== Buffer.prototype // so Buffer.isBuffer(Buffer.prototype) will be false
}

Buffer.compare = function compare (a, b) {
  if (isInstance(a, Uint8Array)) a = Buffer.from(a, a.offset, a.byteLength)
  if (isInstance(b, Uint8Array)) b = Buffer.from(b, b.offset, b.byteLength)
  if (!Buffer.isBuffer(a) || !Buffer.isBuffer(b)) {
    throw new TypeError(
      'The "buf1", "buf2" arguments must be one of type Buffer or Uint8Array'
    )
  }

  if (a === b) return 0

  var x = a.length
  var y = b.length

  for (var i = 0, len = Math.min(x, y); i < len; ++i) {
    if (a[i] !== b[i]) {
      x = a[i]
      y = b[i]
      break
    }
  }

  if (x < y) return -1
  if (y < x) return 1
  return 0
}

Buffer.isEncoding = function isEncoding (encoding) {
  switch (String(encoding).toLowerCase()) {
    case 'hex':
    case 'utf8':
    case 'utf-8':
    case 'ascii':
    case 'latin1':
    case 'binary':
    case 'base64':
    case 'ucs2':
    case 'ucs-2':
    case 'utf16le':
    case 'utf-16le':
      return true
    default:
      return false
  }
}

Buffer.concat = function concat (list, length) {
  if (!Array.isArray(list)) {
    throw new TypeError('"list" argument must be an Array of Buffers')
  }

  if (list.length === 0) {
    return Buffer.alloc(0)
  }

  var i
  if (length === undefined) {
    length = 0
    for (i = 0; i < list.length; ++i) {
      length += list[i].length
    }
  }

  var buffer = Buffer.allocUnsafe(length)
  var pos = 0
  for (i = 0; i < list.length; ++i) {
    var buf = list[i]
    if (isInstance(buf, Uint8Array)) {
      buf = Buffer.from(buf)
    }
    if (!Buffer.isBuffer(buf)) {
      throw new TypeError('"list" argument must be an Array of Buffers')
    }
    buf.copy(buffer, pos)
    pos += buf.length
  }
  return buffer
}

function byteLength (string, encoding) {
  if (Buffer.isBuffer(string)) {
    return string.length
  }
  if (ArrayBuffer.isView(string) || isInstance(string, ArrayBuffer)) {
    return string.byteLength
  }
  if (typeof string !== 'string') {
    throw new TypeError(
      'The "string" argument must be one of type string, Buffer, or ArrayBuffer. ' +
      'Received type ' + typeof string
    )
  }

  var len = string.length
  var mustMatch = (arguments.length > 2 && arguments[2] === true)
  if (!mustMatch && len === 0) return 0

  // Use a for loop to avoid recursion
  var loweredCase = false
  for (;;) {
    switch (encoding) {
      case 'ascii':
      case 'latin1':
      case 'binary':
        return len
      case 'utf8':
      case 'utf-8':
        return utf8ToBytes(string).length
      case 'ucs2':
      case 'ucs-2':
      case 'utf16le':
      case 'utf-16le':
        return len * 2
      case 'hex':
        return len >>> 1
      case 'base64':
        return base64ToBytes(string).length
      default:
        if (loweredCase) {
          return mustMatch ? -1 : utf8ToBytes(string).length // assume utf8
        }
        encoding = ('' + encoding).toLowerCase()
        loweredCase = true
    }
  }
}
Buffer.byteLength = byteLength

function slowToString (encoding, start, end) {
  var loweredCase = false

  // No need to verify that "this.length <= MAX_UINT32" since it's a read-only
  // property of a typed array.

  // This behaves neither like String nor Uint8Array in that we set start/end
  // to their upper/lower bounds if the value passed is out of range.
  // undefined is handled specially as per ECMA-262 6th Edition,
  // Section 13.3.3.7 Runtime Semantics: KeyedBindingInitialization.
  if (start === undefined || start < 0) {
    start = 0
  }
  // Return early if start > this.length. Done here to prevent potential uint32
  // coercion fail below.
  if (start > this.length) {
    return ''
  }

  if (end === undefined || end > this.length) {
    end = this.length
  }

  if (end <= 0) {
    return ''
  }

  // Force coersion to uint32. This will also coerce falsey/NaN values to 0.
  end >>>= 0
  start >>>= 0

  if (end <= start) {
    return ''
  }

  if (!encoding) encoding = 'utf8'

  while (true) {
    switch (encoding) {
      case 'hex':
        return hexSlice(this, start, end)

      case 'utf8':
      case 'utf-8':
        return utf8Slice(this, start, end)

      case 'ascii':
        return asciiSlice(this, start, end)

      case 'latin1':
      case 'binary':
        return latin1Slice(this, start, end)

      case 'base64':
        return base64Slice(this, start, end)

      case 'ucs2':
      case 'ucs-2':
      case 'utf16le':
      case 'utf-16le':
        return utf16leSlice(this, start, end)

      default:
        if (loweredCase) throw new TypeError('Unknown encoding: ' + encoding)
        encoding = (encoding + '').toLowerCase()
        loweredCase = true
    }
  }
}

// This property is used by `Buffer.isBuffer` (and the `is-buffer` npm package)
// to detect a Buffer instance. It's not possible to use `instanceof Buffer`
// reliably in a browserify context because there could be multiple different
// copies of the 'buffer' package in use. This method works even for Buffer
// instances that were created from another copy of the `buffer` package.
// See: https://github.com/feross/buffer/issues/154
Buffer.prototype._isBuffer = true

function swap (b, n, m) {
  var i = b[n]
  b[n] = b[m]
  b[m] = i
}

Buffer.prototype.swap16 = function swap16 () {
  var len = this.length
  if (len % 2 !== 0) {
    throw new RangeError('Buffer size must be a multiple of 16-bits')
  }
  for (var i = 0; i < len; i += 2) {
    swap(this, i, i + 1)
  }
  return this
}

Buffer.prototype.swap32 = function swap32 () {
  var len = this.length
  if (len % 4 !== 0) {
    throw new RangeError('Buffer size must be a multiple of 32-bits')
  }
  for (var i = 0; i < len; i += 4) {
    swap(this, i, i + 3)
    swap(this, i + 1, i + 2)
  }
  return this
}

Buffer.prototype.swap64 = function swap64 () {
  var len = this.length
  if (len % 8 !== 0) {
    throw new RangeError('Buffer size must be a multiple of 64-bits')
  }
  for (var i = 0; i < len; i += 8) {
    swap(this, i, i + 7)
    swap(this, i + 1, i + 6)
    swap(this, i + 2, i + 5)
    swap(this, i + 3, i + 4)
  }
  return this
}

Buffer.prototype.toString = function toString () {
  var length = this.length
  if (length === 0) return ''
  if (arguments.length === 0) return utf8Slice(this, 0, length)
  return slowToString.apply(this, arguments)
}

Buffer.prototype.toLocaleString = Buffer.prototype.toString

Buffer.prototype.equals = function equals (b) {
  if (!Buffer.isBuffer(b)) throw new TypeError('Argument must be a Buffer')
  if (this === b) return true
  return Buffer.compare(this, b) === 0
}

Buffer.prototype.inspect = function inspect () {
  var str = ''
  var max = exports.INSPECT_MAX_BYTES
  str = this.toString('hex', 0, max).replace(/(.{2})/g, '$1 ').trim()
  if (this.length > max) str += ' ... '
  return '<Buffer ' + str + '>'
}

Buffer.prototype.compare = function compare (target, start, end, thisStart, thisEnd) {
  if (isInstance(target, Uint8Array)) {
    target = Buffer.from(target, target.offset, target.byteLength)
  }
  if (!Buffer.isBuffer(target)) {
    throw new TypeError(
      'The "target" argument must be one of type Buffer or Uint8Array. ' +
      'Received type ' + (typeof target)
    )
  }

  if (start === undefined) {
    start = 0
  }
  if (end === undefined) {
    end = target ? target.length : 0
  }
  if (thisStart === undefined) {
    thisStart = 0
  }
  if (thisEnd === undefined) {
    thisEnd = this.length
  }

  if (start < 0 || end > target.length || thisStart < 0 || thisEnd > this.length) {
    throw new RangeError('out of range index')
  }

  if (thisStart >= thisEnd && start >= end) {
    return 0
  }
  if (thisStart >= thisEnd) {
    return -1
  }
  if (start >= end) {
    return 1
  }

  start >>>= 0
  end >>>= 0
  thisStart >>>= 0
  thisEnd >>>= 0

  if (this === target) return 0

  var x = thisEnd - thisStart
  var y = end - start
  var len = Math.min(x, y)

  var thisCopy = this.slice(thisStart, thisEnd)
  var targetCopy = target.slice(start, end)

  for (var i = 0; i < len; ++i) {
    if (thisCopy[i] !== targetCopy[i]) {
      x = thisCopy[i]
      y = targetCopy[i]
      break
    }
  }

  if (x < y) return -1
  if (y < x) return 1
  return 0
}

// Finds either the first index of `val` in `buffer` at offset >= `byteOffset`,
// OR the last index of `val` in `buffer` at offset <= `byteOffset`.
//
// Arguments:
// - buffer - a Buffer to search
// - val - a string, Buffer, or number
// - byteOffset - an index into `buffer`; will be clamped to an int32
// - encoding - an optional encoding, relevant is val is a string
// - dir - true for indexOf, false for lastIndexOf
function bidirectionalIndexOf (buffer, val, byteOffset, encoding, dir) {
  // Empty buffer means no match
  if (buffer.length === 0) return -1

  // Normalize byteOffset
  if (typeof byteOffset === 'string') {
    encoding = byteOffset
    byteOffset = 0
  } else if (byteOffset > 0x7fffffff) {
    byteOffset = 0x7fffffff
  } else if (byteOffset < -0x80000000) {
    byteOffset = -0x80000000
  }
  byteOffset = +byteOffset // Coerce to Number.
  if (numberIsNaN(byteOffset)) {
    // byteOffset: it it's undefined, null, NaN, "foo", etc, search whole buffer
    byteOffset = dir ? 0 : (buffer.length - 1)
  }

  // Normalize byteOffset: negative offsets start from the end of the buffer
  if (byteOffset < 0) byteOffset = buffer.length + byteOffset
  if (byteOffset >= buffer.length) {
    if (dir) return -1
    else byteOffset = buffer.length - 1
  } else if (byteOffset < 0) {
    if (dir) byteOffset = 0
    else return -1
  }

  // Normalize val
  if (typeof val === 'string') {
    val = Buffer.from(val, encoding)
  }

  // Finally, search either indexOf (if dir is true) or lastIndexOf
  if (Buffer.isBuffer(val)) {
    // Special case: looking for empty string/buffer always fails
    if (val.length === 0) {
      return -1
    }
    return arrayIndexOf(buffer, val, byteOffset, encoding, dir)
  } else if (typeof val === 'number') {
    val = val & 0xFF // Search for a byte value [0-255]
    if (typeof Uint8Array.prototype.indexOf === 'function') {
      if (dir) {
        return Uint8Array.prototype.indexOf.call(buffer, val, byteOffset)
      } else {
        return Uint8Array.prototype.lastIndexOf.call(buffer, val, byteOffset)
      }
    }
    return arrayIndexOf(buffer, [ val ], byteOffset, encoding, dir)
  }

  throw new TypeError('val must be string, number or Buffer')
}

function arrayIndexOf (arr, val, byteOffset, encoding, dir) {
  var indexSize = 1
  var arrLength = arr.length
  var valLength = val.length

  if (encoding !== undefined) {
    encoding = String(encoding).toLowerCase()
    if (encoding === 'ucs2' || encoding === 'ucs-2' ||
        encoding === 'utf16le' || encoding === 'utf-16le') {
      if (arr.length < 2 || val.length < 2) {
        return -1
      }
      indexSize = 2
      arrLength /= 2
      valLength /= 2
      byteOffset /= 2
    }
  }

  function read (buf, i) {
    if (indexSize === 1) {
      return buf[i]
    } else {
      return buf.readUInt16BE(i * indexSize)
    }
  }

  var i
  if (dir) {
    var foundIndex = -1
    for (i = byteOffset; i < arrLength; i++) {
      if (read(arr, i) === read(val, foundIndex === -1 ? 0 : i - foundIndex)) {
        if (foundIndex === -1) foundIndex = i
        if (i - foundIndex + 1 === valLength) return foundIndex * indexSize
      } else {
        if (foundIndex !== -1) i -= i - foundIndex
        foundIndex = -1
      }
    }
  } else {
    if (byteOffset + valLength > arrLength) byteOffset = arrLength - valLength
    for (i = byteOffset; i >= 0; i--) {
      var found = true
      for (var j = 0; j < valLength; j++) {
        if (read(arr, i + j) !== read(val, j)) {
          found = false
          break
        }
      }
      if (found) return i
    }
  }

  return -1
}

Buffer.prototype.includes = function includes (val, byteOffset, encoding) {
  return this.indexOf(val, byteOffset, encoding) !== -1
}

Buffer.prototype.indexOf = function indexOf (val, byteOffset, encoding) {
  return bidirectionalIndexOf(this, val, byteOffset, encoding, true)
}

Buffer.prototype.lastIndexOf = function lastIndexOf (val, byteOffset, encoding) {
  return bidirectionalIndexOf(this, val, byteOffset, encoding, false)
}

function hexWrite (buf, string, offset, length) {
  offset = Number(offset) || 0
  var remaining = buf.length - offset
  if (!length) {
    length = remaining
  } else {
    length = Number(length)
    if (length > remaining) {
      length = remaining
    }
  }

  var strLen = string.length

  if (length > strLen / 2) {
    length = strLen / 2
  }
  for (var i = 0; i < length; ++i) {
    var parsed = parseInt(string.substr(i * 2, 2), 16)
    if (numberIsNaN(parsed)) return i
    buf[offset + i] = parsed
  }
  return i
}

function utf8Write (buf, string, offset, length) {
  return blitBuffer(utf8ToBytes(string, buf.length - offset), buf, offset, length)
}

function asciiWrite (buf, string, offset, length) {
  return blitBuffer(asciiToBytes(string), buf, offset, length)
}

function latin1Write (buf, string, offset, length) {
  return asciiWrite(buf, string, offset, length)
}

function base64Write (buf, string, offset, length) {
  return blitBuffer(base64ToBytes(string), buf, offset, length)
}

function ucs2Write (buf, string, offset, length) {
  return blitBuffer(utf16leToBytes(string, buf.length - offset), buf, offset, length)
}

Buffer.prototype.write = function write (string, offset, length, encoding) {
  // Buffer#write(string)
  if (offset === undefined) {
    encoding = 'utf8'
    length = this.length
    offset = 0
  // Buffer#write(string, encoding)
  } else if (length === undefined && typeof offset === 'string') {
    encoding = offset
    length = this.length
    offset = 0
  // Buffer#write(string, offset[, length][, encoding])
  } else if (isFinite(offset)) {
    offset = offset >>> 0
    if (isFinite(length)) {
      length = length >>> 0
      if (encoding === undefined) encoding = 'utf8'
    } else {
      encoding = length
      length = undefined
    }
  } else {
    throw new Error(
      'Buffer.write(string, encoding, offset[, length]) is no longer supported'
    )
  }

  var remaining = this.length - offset
  if (length === undefined || length > remaining) length = remaining

  if ((string.length > 0 && (length < 0 || offset < 0)) || offset > this.length) {
    throw new RangeError('Attempt to write outside buffer bounds')
  }

  if (!encoding) encoding = 'utf8'

  var loweredCase = false
  for (;;) {
    switch (encoding) {
      case 'hex':
        return hexWrite(this, string, offset, length)

      case 'utf8':
      case 'utf-8':
        return utf8Write(this, string, offset, length)

      case 'ascii':
        return asciiWrite(this, string, offset, length)

      case 'latin1':
      case 'binary':
        return latin1Write(this, string, offset, length)

      case 'base64':
        // Warning: maxLength not taken into account in base64Write
        return base64Write(this, string, offset, length)

      case 'ucs2':
      case 'ucs-2':
      case 'utf16le':
      case 'utf-16le':
        return ucs2Write(this, string, offset, length)

      default:
        if (loweredCase) throw new TypeError('Unknown encoding: ' + encoding)
        encoding = ('' + encoding).toLowerCase()
        loweredCase = true
    }
  }
}

Buffer.prototype.toJSON = function toJSON () {
  return {
    type: 'Buffer',
    data: Array.prototype.slice.call(this._arr || this, 0)
  }
}

function base64Slice (buf, start, end) {
  if (start === 0 && end === buf.length) {
    return base64.fromByteArray(buf)
  } else {
    return base64.fromByteArray(buf.slice(start, end))
  }
}

function utf8Slice (buf, start, end) {
  end = Math.min(buf.length, end)
  var res = []

  var i = start
  while (i < end) {
    var firstByte = buf[i]
    var codePoint = null
    var bytesPerSequence = (firstByte > 0xEF) ? 4
      : (firstByte > 0xDF) ? 3
        : (firstByte > 0xBF) ? 2
          : 1

    if (i + bytesPerSequence <= end) {
      var secondByte, thirdByte, fourthByte, tempCodePoint

      switch (bytesPerSequence) {
        case 1:
          if (firstByte < 0x80) {
            codePoint = firstByte
          }
          break
        case 2:
          secondByte = buf[i + 1]
          if ((secondByte & 0xC0) === 0x80) {
            tempCodePoint = (firstByte & 0x1F) << 0x6 | (secondByte & 0x3F)
            if (tempCodePoint > 0x7F) {
              codePoint = tempCodePoint
            }
          }
          break
        case 3:
          secondByte = buf[i + 1]
          thirdByte = buf[i + 2]
          if ((secondByte & 0xC0) === 0x80 && (thirdByte & 0xC0) === 0x80) {
            tempCodePoint = (firstByte & 0xF) << 0xC | (secondByte & 0x3F) << 0x6 | (thirdByte & 0x3F)
            if (tempCodePoint > 0x7FF && (tempCodePoint < 0xD800 || tempCodePoint > 0xDFFF)) {
              codePoint = tempCodePoint
            }
          }
          break
        case 4:
          secondByte = buf[i + 1]
          thirdByte = buf[i + 2]
          fourthByte = buf[i + 3]
          if ((secondByte & 0xC0) === 0x80 && (thirdByte & 0xC0) === 0x80 && (fourthByte & 0xC0) === 0x80) {
            tempCodePoint = (firstByte & 0xF) << 0x12 | (secondByte & 0x3F) << 0xC | (thirdByte & 0x3F) << 0x6 | (fourthByte & 0x3F)
            if (tempCodePoint > 0xFFFF && tempCodePoint < 0x110000) {
              codePoint = tempCodePoint
            }
          }
      }
    }

    if (codePoint === null) {
      // we did not generate a valid codePoint so insert a
      // replacement char (U+FFFD) and advance only 1 byte
      codePoint = 0xFFFD
      bytesPerSequence = 1
    } else if (codePoint > 0xFFFF) {
      // encode to utf16 (surrogate pair dance)
      codePoint -= 0x10000
      res.push(codePoint >>> 10 & 0x3FF | 0xD800)
      codePoint = 0xDC00 | codePoint & 0x3FF
    }

    res.push(codePoint)
    i += bytesPerSequence
  }

  return decodeCodePointsArray(res)
}

// Based on http://stackoverflow.com/a/22747272/680742, the browser with
// the lowest limit is Chrome, with 0x10000 args.
// We go 1 magnitude less, for safety
var MAX_ARGUMENTS_LENGTH = 0x1000

function decodeCodePointsArray (codePoints) {
  var len = codePoints.length
  if (len <= MAX_ARGUMENTS_LENGTH) {
    return String.fromCharCode.apply(String, codePoints) // avoid extra slice()
  }

  // Decode in chunks to avoid "call stack size exceeded".
  var res = ''
  var i = 0
  while (i < len) {
    res += String.fromCharCode.apply(
      String,
      codePoints.slice(i, i += MAX_ARGUMENTS_LENGTH)
    )
  }
  return res
}

function asciiSlice (buf, start, end) {
  var ret = ''
  end = Math.min(buf.length, end)

  for (var i = start; i < end; ++i) {
    ret += String.fromCharCode(buf[i] & 0x7F)
  }
  return ret
}

function latin1Slice (buf, start, end) {
  var ret = ''
  end = Math.min(buf.length, end)

  for (var i = start; i < end; ++i) {
    ret += String.fromCharCode(buf[i])
  }
  return ret
}

function hexSlice (buf, start, end) {
  var len = buf.length

  if (!start || start < 0) start = 0
  if (!end || end < 0 || end > len) end = len

  var out = ''
  for (var i = start; i < end; ++i) {
    out += toHex(buf[i])
  }
  return out
}

function utf16leSlice (buf, start, end) {
  var bytes = buf.slice(start, end)
  var res = ''
  for (var i = 0; i < bytes.length; i += 2) {
    res += String.fromCharCode(bytes[i] + (bytes[i + 1] * 256))
  }
  return res
}

Buffer.prototype.slice = function slice (start, end) {
  var len = this.length
  start = ~~start
  end = end === undefined ? len : ~~end

  if (start < 0) {
    start += len
    if (start < 0) start = 0
  } else if (start > len) {
    start = len
  }

  if (end < 0) {
    end += len
    if (end < 0) end = 0
  } else if (end > len) {
    end = len
  }

  if (end < start) end = start

  var newBuf = this.subarray(start, end)
  // Return an augmented `Uint8Array` instance
  newBuf.__proto__ = Buffer.prototype
  return newBuf
}

/*
 * Need to make sure that buffer isn't trying to write out of bounds.
 */
function checkOffset (offset, ext, length) {
  if ((offset % 1) !== 0 || offset < 0) throw new RangeError('offset is not uint')
  if (offset + ext > length) throw new RangeError('Trying to access beyond buffer length')
}

Buffer.prototype.readUIntLE = function readUIntLE (offset, byteLength, noAssert) {
  offset = offset >>> 0
  byteLength = byteLength >>> 0
  if (!noAssert) checkOffset(offset, byteLength, this.length)

  var val = this[offset]
  var mul = 1
  var i = 0
  while (++i < byteLength && (mul *= 0x100)) {
    val += this[offset + i] * mul
  }

  return val
}

Buffer.prototype.readUIntBE = function readUIntBE (offset, byteLength, noAssert) {
  offset = offset >>> 0
  byteLength = byteLength >>> 0
  if (!noAssert) {
    checkOffset(offset, byteLength, this.length)
  }

  var val = this[offset + --byteLength]
  var mul = 1
  while (byteLength > 0 && (mul *= 0x100)) {
    val += this[offset + --byteLength] * mul
  }

  return val
}

Buffer.prototype.readUInt8 = function readUInt8 (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 1, this.length)
  return this[offset]
}

Buffer.prototype.readUInt16LE = function readUInt16LE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 2, this.length)
  return this[offset] | (this[offset + 1] << 8)
}

Buffer.prototype.readUInt16BE = function readUInt16BE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 2, this.length)
  return (this[offset] << 8) | this[offset + 1]
}

Buffer.prototype.readUInt32LE = function readUInt32LE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 4, this.length)

  return ((this[offset]) |
      (this[offset + 1] << 8) |
      (this[offset + 2] << 16)) +
      (this[offset + 3] * 0x1000000)
}

Buffer.prototype.readUInt32BE = function readUInt32BE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 4, this.length)

  return (this[offset] * 0x1000000) +
    ((this[offset + 1] << 16) |
    (this[offset + 2] << 8) |
    this[offset + 3])
}

Buffer.prototype.readIntLE = function readIntLE (offset, byteLength, noAssert) {
  offset = offset >>> 0
  byteLength = byteLength >>> 0
  if (!noAssert) checkOffset(offset, byteLength, this.length)

  var val = this[offset]
  var mul = 1
  var i = 0
  while (++i < byteLength && (mul *= 0x100)) {
    val += this[offset + i] * mul
  }
  mul *= 0x80

  if (val >= mul) val -= Math.pow(2, 8 * byteLength)

  return val
}

Buffer.prototype.readIntBE = function readIntBE (offset, byteLength, noAssert) {
  offset = offset >>> 0
  byteLength = byteLength >>> 0
  if (!noAssert) checkOffset(offset, byteLength, this.length)

  var i = byteLength
  var mul = 1
  var val = this[offset + --i]
  while (i > 0 && (mul *= 0x100)) {
    val += this[offset + --i] * mul
  }
  mul *= 0x80

  if (val >= mul) val -= Math.pow(2, 8 * byteLength)

  return val
}

Buffer.prototype.readInt8 = function readInt8 (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 1, this.length)
  if (!(this[offset] & 0x80)) return (this[offset])
  return ((0xff - this[offset] + 1) * -1)
}

Buffer.prototype.readInt16LE = function readInt16LE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 2, this.length)
  var val = this[offset] | (this[offset + 1] << 8)
  return (val & 0x8000) ? val | 0xFFFF0000 : val
}

Buffer.prototype.readInt16BE = function readInt16BE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 2, this.length)
  var val = this[offset + 1] | (this[offset] << 8)
  return (val & 0x8000) ? val | 0xFFFF0000 : val
}

Buffer.prototype.readInt32LE = function readInt32LE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 4, this.length)

  return (this[offset]) |
    (this[offset + 1] << 8) |
    (this[offset + 2] << 16) |
    (this[offset + 3] << 24)
}

Buffer.prototype.readInt32BE = function readInt32BE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 4, this.length)

  return (this[offset] << 24) |
    (this[offset + 1] << 16) |
    (this[offset + 2] << 8) |
    (this[offset + 3])
}

Buffer.prototype.readFloatLE = function readFloatLE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 4, this.length)
  return ieee754.read(this, offset, true, 23, 4)
}

Buffer.prototype.readFloatBE = function readFloatBE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 4, this.length)
  return ieee754.read(this, offset, false, 23, 4)
}

Buffer.prototype.readDoubleLE = function readDoubleLE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 8, this.length)
  return ieee754.read(this, offset, true, 52, 8)
}

Buffer.prototype.readDoubleBE = function readDoubleBE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 8, this.length)
  return ieee754.read(this, offset, false, 52, 8)
}

function checkInt (buf, value, offset, ext, max, min) {
  if (!Buffer.isBuffer(buf)) throw new TypeError('"buffer" argument must be a Buffer instance')
  if (value > max || value < min) throw new RangeError('"value" argument is out of bounds')
  if (offset + ext > buf.length) throw new RangeError('Index out of range')
}

Buffer.prototype.writeUIntLE = function writeUIntLE (value, offset, byteLength, noAssert) {
  value = +value
  offset = offset >>> 0
  byteLength = byteLength >>> 0
  if (!noAssert) {
    var maxBytes = Math.pow(2, 8 * byteLength) - 1
    checkInt(this, value, offset, byteLength, maxBytes, 0)
  }

  var mul = 1
  var i = 0
  this[offset] = value & 0xFF
  while (++i < byteLength && (mul *= 0x100)) {
    this[offset + i] = (value / mul) & 0xFF
  }

  return offset + byteLength
}

Buffer.prototype.writeUIntBE = function writeUIntBE (value, offset, byteLength, noAssert) {
  value = +value
  offset = offset >>> 0
  byteLength = byteLength >>> 0
  if (!noAssert) {
    var maxBytes = Math.pow(2, 8 * byteLength) - 1
    checkInt(this, value, offset, byteLength, maxBytes, 0)
  }

  var i = byteLength - 1
  var mul = 1
  this[offset + i] = value & 0xFF
  while (--i >= 0 && (mul *= 0x100)) {
    this[offset + i] = (value / mul) & 0xFF
  }

  return offset + byteLength
}

Buffer.prototype.writeUInt8 = function writeUInt8 (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 1, 0xff, 0)
  this[offset] = (value & 0xff)
  return offset + 1
}

Buffer.prototype.writeUInt16LE = function writeUInt16LE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 2, 0xffff, 0)
  this[offset] = (value & 0xff)
  this[offset + 1] = (value >>> 8)
  return offset + 2
}

Buffer.prototype.writeUInt16BE = function writeUInt16BE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 2, 0xffff, 0)
  this[offset] = (value >>> 8)
  this[offset + 1] = (value & 0xff)
  return offset + 2
}

Buffer.prototype.writeUInt32LE = function writeUInt32LE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 4, 0xffffffff, 0)
  this[offset + 3] = (value >>> 24)
  this[offset + 2] = (value >>> 16)
  this[offset + 1] = (value >>> 8)
  this[offset] = (value & 0xff)
  return offset + 4
}

Buffer.prototype.writeUInt32BE = function writeUInt32BE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 4, 0xffffffff, 0)
  this[offset] = (value >>> 24)
  this[offset + 1] = (value >>> 16)
  this[offset + 2] = (value >>> 8)
  this[offset + 3] = (value & 0xff)
  return offset + 4
}

Buffer.prototype.writeIntLE = function writeIntLE (value, offset, byteLength, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) {
    var limit = Math.pow(2, (8 * byteLength) - 1)

    checkInt(this, value, offset, byteLength, limit - 1, -limit)
  }

  var i = 0
  var mul = 1
  var sub = 0
  this[offset] = value & 0xFF
  while (++i < byteLength && (mul *= 0x100)) {
    if (value < 0 && sub === 0 && this[offset + i - 1] !== 0) {
      sub = 1
    }
    this[offset + i] = ((value / mul) >> 0) - sub & 0xFF
  }

  return offset + byteLength
}

Buffer.prototype.writeIntBE = function writeIntBE (value, offset, byteLength, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) {
    var limit = Math.pow(2, (8 * byteLength) - 1)

    checkInt(this, value, offset, byteLength, limit - 1, -limit)
  }

  var i = byteLength - 1
  var mul = 1
  var sub = 0
  this[offset + i] = value & 0xFF
  while (--i >= 0 && (mul *= 0x100)) {
    if (value < 0 && sub === 0 && this[offset + i + 1] !== 0) {
      sub = 1
    }
    this[offset + i] = ((value / mul) >> 0) - sub & 0xFF
  }

  return offset + byteLength
}

Buffer.prototype.writeInt8 = function writeInt8 (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 1, 0x7f, -0x80)
  if (value < 0) value = 0xff + value + 1
  this[offset] = (value & 0xff)
  return offset + 1
}

Buffer.prototype.writeInt16LE = function writeInt16LE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 2, 0x7fff, -0x8000)
  this[offset] = (value & 0xff)
  this[offset + 1] = (value >>> 8)
  return offset + 2
}

Buffer.prototype.writeInt16BE = function writeInt16BE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 2, 0x7fff, -0x8000)
  this[offset] = (value >>> 8)
  this[offset + 1] = (value & 0xff)
  return offset + 2
}

Buffer.prototype.writeInt32LE = function writeInt32LE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 4, 0x7fffffff, -0x80000000)
  this[offset] = (value & 0xff)
  this[offset + 1] = (value >>> 8)
  this[offset + 2] = (value >>> 16)
  this[offset + 3] = (value >>> 24)
  return offset + 4
}

Buffer.prototype.writeInt32BE = function writeInt32BE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 4, 0x7fffffff, -0x80000000)
  if (value < 0) value = 0xffffffff + value + 1
  this[offset] = (value >>> 24)
  this[offset + 1] = (value >>> 16)
  this[offset + 2] = (value >>> 8)
  this[offset + 3] = (value & 0xff)
  return offset + 4
}

function checkIEEE754 (buf, value, offset, ext, max, min) {
  if (offset + ext > buf.length) throw new RangeError('Index out of range')
  if (offset < 0) throw new RangeError('Index out of range')
}

function writeFloat (buf, value, offset, littleEndian, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) {
    checkIEEE754(buf, value, offset, 4, 3.4028234663852886e+38, -3.4028234663852886e+38)
  }
  ieee754.write(buf, value, offset, littleEndian, 23, 4)
  return offset + 4
}

Buffer.prototype.writeFloatLE = function writeFloatLE (value, offset, noAssert) {
  return writeFloat(this, value, offset, true, noAssert)
}

Buffer.prototype.writeFloatBE = function writeFloatBE (value, offset, noAssert) {
  return writeFloat(this, value, offset, false, noAssert)
}

function writeDouble (buf, value, offset, littleEndian, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) {
    checkIEEE754(buf, value, offset, 8, 1.7976931348623157E+308, -1.7976931348623157E+308)
  }
  ieee754.write(buf, value, offset, littleEndian, 52, 8)
  return offset + 8
}

Buffer.prototype.writeDoubleLE = function writeDoubleLE (value, offset, noAssert) {
  return writeDouble(this, value, offset, true, noAssert)
}

Buffer.prototype.writeDoubleBE = function writeDoubleBE (value, offset, noAssert) {
  return writeDouble(this, value, offset, false, noAssert)
}

// copy(targetBuffer, targetStart=0, sourceStart=0, sourceEnd=buffer.length)
Buffer.prototype.copy = function copy (target, targetStart, start, end) {
  if (!Buffer.isBuffer(target)) throw new TypeError('argument should be a Buffer')
  if (!start) start = 0
  if (!end && end !== 0) end = this.length
  if (targetStart >= target.length) targetStart = target.length
  if (!targetStart) targetStart = 0
  if (end > 0 && end < start) end = start

  // Copy 0 bytes; we're done
  if (end === start) return 0
  if (target.length === 0 || this.length === 0) return 0

  // Fatal error conditions
  if (targetStart < 0) {
    throw new RangeError('targetStart out of bounds')
  }
  if (start < 0 || start >= this.length) throw new RangeError('Index out of range')
  if (end < 0) throw new RangeError('sourceEnd out of bounds')

  // Are we oob?
  if (end > this.length) end = this.length
  if (target.length - targetStart < end - start) {
    end = target.length - targetStart + start
  }

  var len = end - start

  if (this === target && typeof Uint8Array.prototype.copyWithin === 'function') {
    // Use built-in when available, missing from IE11
    this.copyWithin(targetStart, start, end)
  } else if (this === target && start < targetStart && targetStart < end) {
    // descending copy from end
    for (var i = len - 1; i >= 0; --i) {
      target[i + targetStart] = this[i + start]
    }
  } else {
    Uint8Array.prototype.set.call(
      target,
      this.subarray(start, end),
      targetStart
    )
  }

  return len
}

// Usage:
//    buffer.fill(number[, offset[, end]])
//    buffer.fill(buffer[, offset[, end]])
//    buffer.fill(string[, offset[, end]][, encoding])
Buffer.prototype.fill = function fill (val, start, end, encoding) {
  // Handle string cases:
  if (typeof val === 'string') {
    if (typeof start === 'string') {
      encoding = start
      start = 0
      end = this.length
    } else if (typeof end === 'string') {
      encoding = end
      end = this.length
    }
    if (encoding !== undefined && typeof encoding !== 'string') {
      throw new TypeError('encoding must be a string')
    }
    if (typeof encoding === 'string' && !Buffer.isEncoding(encoding)) {
      throw new TypeError('Unknown encoding: ' + encoding)
    }
    if (val.length === 1) {
      var code = val.charCodeAt(0)
      if ((encoding === 'utf8' && code < 128) ||
          encoding === 'latin1') {
        // Fast path: If `val` fits into a single byte, use that numeric value.
        val = code
      }
    }
  } else if (typeof val === 'number') {
    val = val & 255
  }

  // Invalid ranges are not set to a default, so can range check early.
  if (start < 0 || this.length < start || this.length < end) {
    throw new RangeError('Out of range index')
  }

  if (end <= start) {
    return this
  }

  start = start >>> 0
  end = end === undefined ? this.length : end >>> 0

  if (!val) val = 0

  var i
  if (typeof val === 'number') {
    for (i = start; i < end; ++i) {
      this[i] = val
    }
  } else {
    var bytes = Buffer.isBuffer(val)
      ? val
      : Buffer.from(val, encoding)
    var len = bytes.length
    if (len === 0) {
      throw new TypeError('The value "' + val +
        '" is invalid for argument "value"')
    }
    for (i = 0; i < end - start; ++i) {
      this[i + start] = bytes[i % len]
    }
  }

  return this
}

// HELPER FUNCTIONS
// ================

var INVALID_BASE64_RE = /[^+/0-9A-Za-z-_]/g

function base64clean (str) {
  // Node takes equal signs as end of the Base64 encoding
  str = str.split('=')[0]
  // Node strips out invalid characters like \n and \t from the string, base64-js does not
  str = str.trim().replace(INVALID_BASE64_RE, '')
  // Node converts strings with length < 2 to ''
  if (str.length < 2) return ''
  // Node allows for non-padded base64 strings (missing trailing ===), base64-js does not
  while (str.length % 4 !== 0) {
    str = str + '='
  }
  return str
}

function toHex (n) {
  if (n < 16) return '0' + n.toString(16)
  return n.toString(16)
}

function utf8ToBytes (string, units) {
  units = units || Infinity
  var codePoint
  var length = string.length
  var leadSurrogate = null
  var bytes = []

  for (var i = 0; i < length; ++i) {
    codePoint = string.charCodeAt(i)

    // is surrogate component
    if (codePoint > 0xD7FF && codePoint < 0xE000) {
      // last char was a lead
      if (!leadSurrogate) {
        // no lead yet
        if (codePoint > 0xDBFF) {
          // unexpected trail
          if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
          continue
        } else if (i + 1 === length) {
          // unpaired lead
          if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
          continue
        }

        // valid lead
        leadSurrogate = codePoint

        continue
      }

      // 2 leads in a row
      if (codePoint < 0xDC00) {
        if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
        leadSurrogate = codePoint
        continue
      }

      // valid surrogate pair
      codePoint = (leadSurrogate - 0xD800 << 10 | codePoint - 0xDC00) + 0x10000
    } else if (leadSurrogate) {
      // valid bmp char, but last char was a lead
      if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
    }

    leadSurrogate = null

    // encode utf8
    if (codePoint < 0x80) {
      if ((units -= 1) < 0) break
      bytes.push(codePoint)
    } else if (codePoint < 0x800) {
      if ((units -= 2) < 0) break
      bytes.push(
        codePoint >> 0x6 | 0xC0,
        codePoint & 0x3F | 0x80
      )
    } else if (codePoint < 0x10000) {
      if ((units -= 3) < 0) break
      bytes.push(
        codePoint >> 0xC | 0xE0,
        codePoint >> 0x6 & 0x3F | 0x80,
        codePoint & 0x3F | 0x80
      )
    } else if (codePoint < 0x110000) {
      if ((units -= 4) < 0) break
      bytes.push(
        codePoint >> 0x12 | 0xF0,
        codePoint >> 0xC & 0x3F | 0x80,
        codePoint >> 0x6 & 0x3F | 0x80,
        codePoint & 0x3F | 0x80
      )
    } else {
      throw new Error('Invalid code point')
    }
  }

  return bytes
}

function asciiToBytes (str) {
  var byteArray = []
  for (var i = 0; i < str.length; ++i) {
    // Node's code seems to be doing this and not & 0x7F..
    byteArray.push(str.charCodeAt(i) & 0xFF)
  }
  return byteArray
}

function utf16leToBytes (str, units) {
  var c, hi, lo
  var byteArray = []
  for (var i = 0; i < str.length; ++i) {
    if ((units -= 2) < 0) break

    c = str.charCodeAt(i)
    hi = c >> 8
    lo = c % 256
    byteArray.push(lo)
    byteArray.push(hi)
  }

  return byteArray
}

function base64ToBytes (str) {
  return base64.toByteArray(base64clean(str))
}

function blitBuffer (src, dst, offset, length) {
  for (var i = 0; i < length; ++i) {
    if ((i + offset >= dst.length) || (i >= src.length)) break
    dst[i + offset] = src[i]
  }
  return i
}

// ArrayBuffer or Uint8Array objects from other contexts (i.e. iframes) do not pass
// the `instanceof` check but they should be treated as of that type.
// See: https://github.com/feross/buffer/issues/166
function isInstance (obj, type) {
  return obj instanceof type ||
    (obj != null && obj.constructor != null && obj.constructor.name != null &&
      obj.constructor.name === type.name)
}
function numberIsNaN (obj) {
  // For IE11 support
  return obj !== obj // eslint-disable-line no-self-compare
}

}).call(this,require("buffer").Buffer)
},{"base64-js":5,"buffer":8,"ieee754":11}],9:[function(require,module,exports){
(function (Buffer){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

// NOTE: These type checking functions intentionally don't use `instanceof`
// because it is fragile and can be easily faked with `Object.create()`.

function isArray(arg) {
  if (Array.isArray) {
    return Array.isArray(arg);
  }
  return objectToString(arg) === '[object Array]';
}
exports.isArray = isArray;

function isBoolean(arg) {
  return typeof arg === 'boolean';
}
exports.isBoolean = isBoolean;

function isNull(arg) {
  return arg === null;
}
exports.isNull = isNull;

function isNullOrUndefined(arg) {
  return arg == null;
}
exports.isNullOrUndefined = isNullOrUndefined;

function isNumber(arg) {
  return typeof arg === 'number';
}
exports.isNumber = isNumber;

function isString(arg) {
  return typeof arg === 'string';
}
exports.isString = isString;

function isSymbol(arg) {
  return typeof arg === 'symbol';
}
exports.isSymbol = isSymbol;

function isUndefined(arg) {
  return arg === void 0;
}
exports.isUndefined = isUndefined;

function isRegExp(re) {
  return objectToString(re) === '[object RegExp]';
}
exports.isRegExp = isRegExp;

function isObject(arg) {
  return typeof arg === 'object' && arg !== null;
}
exports.isObject = isObject;

function isDate(d) {
  return objectToString(d) === '[object Date]';
}
exports.isDate = isDate;

function isError(e) {
  return (objectToString(e) === '[object Error]' || e instanceof Error);
}
exports.isError = isError;

function isFunction(arg) {
  return typeof arg === 'function';
}
exports.isFunction = isFunction;

function isPrimitive(arg) {
  return arg === null ||
         typeof arg === 'boolean' ||
         typeof arg === 'number' ||
         typeof arg === 'string' ||
         typeof arg === 'symbol' ||  // ES6 symbol
         typeof arg === 'undefined';
}
exports.isPrimitive = isPrimitive;

exports.isBuffer = Buffer.isBuffer;

function objectToString(o) {
  return Object.prototype.toString.call(o);
}

}).call(this,{"isBuffer":require("../../is-buffer/index.js")})
},{"../../is-buffer/index.js":13}],10:[function(require,module,exports){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

var objectCreate = Object.create || objectCreatePolyfill
var objectKeys = Object.keys || objectKeysPolyfill
var bind = Function.prototype.bind || functionBindPolyfill

function EventEmitter() {
  if (!this._events || !Object.prototype.hasOwnProperty.call(this, '_events')) {
    this._events = objectCreate(null);
    this._eventsCount = 0;
  }

  this._maxListeners = this._maxListeners || undefined;
}
module.exports = EventEmitter;

// Backwards-compat with node 0.10.x
EventEmitter.EventEmitter = EventEmitter;

EventEmitter.prototype._events = undefined;
EventEmitter.prototype._maxListeners = undefined;

// By default EventEmitters will print a warning if more than 10 listeners are
// added to it. This is a useful default which helps finding memory leaks.
var defaultMaxListeners = 10;

var hasDefineProperty;
try {
  var o = {};
  if (Object.defineProperty) Object.defineProperty(o, 'x', { value: 0 });
  hasDefineProperty = o.x === 0;
} catch (err) { hasDefineProperty = false }
if (hasDefineProperty) {
  Object.defineProperty(EventEmitter, 'defaultMaxListeners', {
    enumerable: true,
    get: function() {
      return defaultMaxListeners;
    },
    set: function(arg) {
      // check whether the input is a positive number (whose value is zero or
      // greater and not a NaN).
      if (typeof arg !== 'number' || arg < 0 || arg !== arg)
        throw new TypeError('"defaultMaxListeners" must be a positive number');
      defaultMaxListeners = arg;
    }
  });
} else {
  EventEmitter.defaultMaxListeners = defaultMaxListeners;
}

// Obviously not all Emitters should be limited to 10. This function allows
// that to be increased. Set to zero for unlimited.
EventEmitter.prototype.setMaxListeners = function setMaxListeners(n) {
  if (typeof n !== 'number' || n < 0 || isNaN(n))
    throw new TypeError('"n" argument must be a positive number');
  this._maxListeners = n;
  return this;
};

function $getMaxListeners(that) {
  if (that._maxListeners === undefined)
    return EventEmitter.defaultMaxListeners;
  return that._maxListeners;
}

EventEmitter.prototype.getMaxListeners = function getMaxListeners() {
  return $getMaxListeners(this);
};

// These standalone emit* functions are used to optimize calling of event
// handlers for fast cases because emit() itself often has a variable number of
// arguments and can be deoptimized because of that. These functions always have
// the same number of arguments and thus do not get deoptimized, so the code
// inside them can execute faster.
function emitNone(handler, isFn, self) {
  if (isFn)
    handler.call(self);
  else {
    var len = handler.length;
    var listeners = arrayClone(handler, len);
    for (var i = 0; i < len; ++i)
      listeners[i].call(self);
  }
}
function emitOne(handler, isFn, self, arg1) {
  if (isFn)
    handler.call(self, arg1);
  else {
    var len = handler.length;
    var listeners = arrayClone(handler, len);
    for (var i = 0; i < len; ++i)
      listeners[i].call(self, arg1);
  }
}
function emitTwo(handler, isFn, self, arg1, arg2) {
  if (isFn)
    handler.call(self, arg1, arg2);
  else {
    var len = handler.length;
    var listeners = arrayClone(handler, len);
    for (var i = 0; i < len; ++i)
      listeners[i].call(self, arg1, arg2);
  }
}
function emitThree(handler, isFn, self, arg1, arg2, arg3) {
  if (isFn)
    handler.call(self, arg1, arg2, arg3);
  else {
    var len = handler.length;
    var listeners = arrayClone(handler, len);
    for (var i = 0; i < len; ++i)
      listeners[i].call(self, arg1, arg2, arg3);
  }
}

function emitMany(handler, isFn, self, args) {
  if (isFn)
    handler.apply(self, args);
  else {
    var len = handler.length;
    var listeners = arrayClone(handler, len);
    for (var i = 0; i < len; ++i)
      listeners[i].apply(self, args);
  }
}

EventEmitter.prototype.emit = function emit(type) {
  var er, handler, len, args, i, events;
  var doError = (type === 'error');

  events = this._events;
  if (events)
    doError = (doError && events.error == null);
  else if (!doError)
    return false;

  // If there is no 'error' event listener then throw.
  if (doError) {
    if (arguments.length > 1)
      er = arguments[1];
    if (er instanceof Error) {
      throw er; // Unhandled 'error' event
    } else {
      // At least give some kind of context to the user
      var err = new Error('Unhandled "error" event. (' + er + ')');
      err.context = er;
      throw err;
    }
    return false;
  }

  handler = events[type];

  if (!handler)
    return false;

  var isFn = typeof handler === 'function';
  len = arguments.length;
  switch (len) {
      // fast cases
    case 1:
      emitNone(handler, isFn, this);
      break;
    case 2:
      emitOne(handler, isFn, this, arguments[1]);
      break;
    case 3:
      emitTwo(handler, isFn, this, arguments[1], arguments[2]);
      break;
    case 4:
      emitThree(handler, isFn, this, arguments[1], arguments[2], arguments[3]);
      break;
      // slower
    default:
      args = new Array(len - 1);
      for (i = 1; i < len; i++)
        args[i - 1] = arguments[i];
      emitMany(handler, isFn, this, args);
  }

  return true;
};

function _addListener(target, type, listener, prepend) {
  var m;
  var events;
  var existing;

  if (typeof listener !== 'function')
    throw new TypeError('"listener" argument must be a function');

  events = target._events;
  if (!events) {
    events = target._events = objectCreate(null);
    target._eventsCount = 0;
  } else {
    // To avoid recursion in the case that type === "newListener"! Before
    // adding it to the listeners, first emit "newListener".
    if (events.newListener) {
      target.emit('newListener', type,
          listener.listener ? listener.listener : listener);

      // Re-assign `events` because a newListener handler could have caused the
      // this._events to be assigned to a new object
      events = target._events;
    }
    existing = events[type];
  }

  if (!existing) {
    // Optimize the case of one listener. Don't need the extra array object.
    existing = events[type] = listener;
    ++target._eventsCount;
  } else {
    if (typeof existing === 'function') {
      // Adding the second element, need to change to array.
      existing = events[type] =
          prepend ? [listener, existing] : [existing, listener];
    } else {
      // If we've already got an array, just append.
      if (prepend) {
        existing.unshift(listener);
      } else {
        existing.push(listener);
      }
    }

    // Check for listener leak
    if (!existing.warned) {
      m = $getMaxListeners(target);
      if (m && m > 0 && existing.length > m) {
        existing.warned = true;
        var w = new Error('Possible EventEmitter memory leak detected. ' +
            existing.length + ' "' + String(type) + '" listeners ' +
            'added. Use emitter.setMaxListeners() to ' +
            'increase limit.');
        w.name = 'MaxListenersExceededWarning';
        w.emitter = target;
        w.type = type;
        w.count = existing.length;
        if (typeof console === 'object' && console.warn) {
          console.warn('%s: %s', w.name, w.message);
        }
      }
    }
  }

  return target;
}

EventEmitter.prototype.addListener = function addListener(type, listener) {
  return _addListener(this, type, listener, false);
};

EventEmitter.prototype.on = EventEmitter.prototype.addListener;

EventEmitter.prototype.prependListener =
    function prependListener(type, listener) {
      return _addListener(this, type, listener, true);
    };

function onceWrapper() {
  if (!this.fired) {
    this.target.removeListener(this.type, this.wrapFn);
    this.fired = true;
    switch (arguments.length) {
      case 0:
        return this.listener.call(this.target);
      case 1:
        return this.listener.call(this.target, arguments[0]);
      case 2:
        return this.listener.call(this.target, arguments[0], arguments[1]);
      case 3:
        return this.listener.call(this.target, arguments[0], arguments[1],
            arguments[2]);
      default:
        var args = new Array(arguments.length);
        for (var i = 0; i < args.length; ++i)
          args[i] = arguments[i];
        this.listener.apply(this.target, args);
    }
  }
}

function _onceWrap(target, type, listener) {
  var state = { fired: false, wrapFn: undefined, target: target, type: type, listener: listener };
  var wrapped = bind.call(onceWrapper, state);
  wrapped.listener = listener;
  state.wrapFn = wrapped;
  return wrapped;
}

EventEmitter.prototype.once = function once(type, listener) {
  if (typeof listener !== 'function')
    throw new TypeError('"listener" argument must be a function');
  this.on(type, _onceWrap(this, type, listener));
  return this;
};

EventEmitter.prototype.prependOnceListener =
    function prependOnceListener(type, listener) {
      if (typeof listener !== 'function')
        throw new TypeError('"listener" argument must be a function');
      this.prependListener(type, _onceWrap(this, type, listener));
      return this;
    };

// Emits a 'removeListener' event if and only if the listener was removed.
EventEmitter.prototype.removeListener =
    function removeListener(type, listener) {
      var list, events, position, i, originalListener;

      if (typeof listener !== 'function')
        throw new TypeError('"listener" argument must be a function');

      events = this._events;
      if (!events)
        return this;

      list = events[type];
      if (!list)
        return this;

      if (list === listener || list.listener === listener) {
        if (--this._eventsCount === 0)
          this._events = objectCreate(null);
        else {
          delete events[type];
          if (events.removeListener)
            this.emit('removeListener', type, list.listener || listener);
        }
      } else if (typeof list !== 'function') {
        position = -1;

        for (i = list.length - 1; i >= 0; i--) {
          if (list[i] === listener || list[i].listener === listener) {
            originalListener = list[i].listener;
            position = i;
            break;
          }
        }

        if (position < 0)
          return this;

        if (position === 0)
          list.shift();
        else
          spliceOne(list, position);

        if (list.length === 1)
          events[type] = list[0];

        if (events.removeListener)
          this.emit('removeListener', type, originalListener || listener);
      }

      return this;
    };

EventEmitter.prototype.removeAllListeners =
    function removeAllListeners(type) {
      var listeners, events, i;

      events = this._events;
      if (!events)
        return this;

      // not listening for removeListener, no need to emit
      if (!events.removeListener) {
        if (arguments.length === 0) {
          this._events = objectCreate(null);
          this._eventsCount = 0;
        } else if (events[type]) {
          if (--this._eventsCount === 0)
            this._events = objectCreate(null);
          else
            delete events[type];
        }
        return this;
      }

      // emit removeListener for all listeners on all events
      if (arguments.length === 0) {
        var keys = objectKeys(events);
        var key;
        for (i = 0; i < keys.length; ++i) {
          key = keys[i];
          if (key === 'removeListener') continue;
          this.removeAllListeners(key);
        }
        this.removeAllListeners('removeListener');
        this._events = objectCreate(null);
        this._eventsCount = 0;
        return this;
      }

      listeners = events[type];

      if (typeof listeners === 'function') {
        this.removeListener(type, listeners);
      } else if (listeners) {
        // LIFO order
        for (i = listeners.length - 1; i >= 0; i--) {
          this.removeListener(type, listeners[i]);
        }
      }

      return this;
    };

function _listeners(target, type, unwrap) {
  var events = target._events;

  if (!events)
    return [];

  var evlistener = events[type];
  if (!evlistener)
    return [];

  if (typeof evlistener === 'function')
    return unwrap ? [evlistener.listener || evlistener] : [evlistener];

  return unwrap ? unwrapListeners(evlistener) : arrayClone(evlistener, evlistener.length);
}

EventEmitter.prototype.listeners = function listeners(type) {
  return _listeners(this, type, true);
};

EventEmitter.prototype.rawListeners = function rawListeners(type) {
  return _listeners(this, type, false);
};

EventEmitter.listenerCount = function(emitter, type) {
  if (typeof emitter.listenerCount === 'function') {
    return emitter.listenerCount(type);
  } else {
    return listenerCount.call(emitter, type);
  }
};

EventEmitter.prototype.listenerCount = listenerCount;
function listenerCount(type) {
  var events = this._events;

  if (events) {
    var evlistener = events[type];

    if (typeof evlistener === 'function') {
      return 1;
    } else if (evlistener) {
      return evlistener.length;
    }
  }

  return 0;
}

EventEmitter.prototype.eventNames = function eventNames() {
  return this._eventsCount > 0 ? Reflect.ownKeys(this._events) : [];
};

// About 1.5x faster than the two-arg version of Array#splice().
function spliceOne(list, index) {
  for (var i = index, k = i + 1, n = list.length; k < n; i += 1, k += 1)
    list[i] = list[k];
  list.pop();
}

function arrayClone(arr, n) {
  var copy = new Array(n);
  for (var i = 0; i < n; ++i)
    copy[i] = arr[i];
  return copy;
}

function unwrapListeners(arr) {
  var ret = new Array(arr.length);
  for (var i = 0; i < ret.length; ++i) {
    ret[i] = arr[i].listener || arr[i];
  }
  return ret;
}

function objectCreatePolyfill(proto) {
  var F = function() {};
  F.prototype = proto;
  return new F;
}
function objectKeysPolyfill(obj) {
  var keys = [];
  for (var k in obj) if (Object.prototype.hasOwnProperty.call(obj, k)) {
    keys.push(k);
  }
  return k;
}
function functionBindPolyfill(context) {
  var fn = this;
  return function () {
    return fn.apply(context, arguments);
  };
}

},{}],11:[function(require,module,exports){
exports.read = function (buffer, offset, isLE, mLen, nBytes) {
  var e, m
  var eLen = (nBytes * 8) - mLen - 1
  var eMax = (1 << eLen) - 1
  var eBias = eMax >> 1
  var nBits = -7
  var i = isLE ? (nBytes - 1) : 0
  var d = isLE ? -1 : 1
  var s = buffer[offset + i]

  i += d

  e = s & ((1 << (-nBits)) - 1)
  s >>= (-nBits)
  nBits += eLen
  for (; nBits > 0; e = (e * 256) + buffer[offset + i], i += d, nBits -= 8) {}

  m = e & ((1 << (-nBits)) - 1)
  e >>= (-nBits)
  nBits += mLen
  for (; nBits > 0; m = (m * 256) + buffer[offset + i], i += d, nBits -= 8) {}

  if (e === 0) {
    e = 1 - eBias
  } else if (e === eMax) {
    return m ? NaN : ((s ? -1 : 1) * Infinity)
  } else {
    m = m + Math.pow(2, mLen)
    e = e - eBias
  }
  return (s ? -1 : 1) * m * Math.pow(2, e - mLen)
}

exports.write = function (buffer, value, offset, isLE, mLen, nBytes) {
  var e, m, c
  var eLen = (nBytes * 8) - mLen - 1
  var eMax = (1 << eLen) - 1
  var eBias = eMax >> 1
  var rt = (mLen === 23 ? Math.pow(2, -24) - Math.pow(2, -77) : 0)
  var i = isLE ? 0 : (nBytes - 1)
  var d = isLE ? 1 : -1
  var s = value < 0 || (value === 0 && 1 / value < 0) ? 1 : 0

  value = Math.abs(value)

  if (isNaN(value) || value === Infinity) {
    m = isNaN(value) ? 1 : 0
    e = eMax
  } else {
    e = Math.floor(Math.log(value) / Math.LN2)
    if (value * (c = Math.pow(2, -e)) < 1) {
      e--
      c *= 2
    }
    if (e + eBias >= 1) {
      value += rt / c
    } else {
      value += rt * Math.pow(2, 1 - eBias)
    }
    if (value * c >= 2) {
      e++
      c /= 2
    }

    if (e + eBias >= eMax) {
      m = 0
      e = eMax
    } else if (e + eBias >= 1) {
      m = ((value * c) - 1) * Math.pow(2, mLen)
      e = e + eBias
    } else {
      m = value * Math.pow(2, eBias - 1) * Math.pow(2, mLen)
      e = 0
    }
  }

  for (; mLen >= 8; buffer[offset + i] = m & 0xff, i += d, m /= 256, mLen -= 8) {}

  e = (e << mLen) | m
  eLen += mLen
  for (; eLen > 0; buffer[offset + i] = e & 0xff, i += d, e /= 256, eLen -= 8) {}

  buffer[offset + i - d] |= s * 128
}

},{}],12:[function(require,module,exports){
arguments[4][2][0].apply(exports,arguments)
},{"dup":2}],13:[function(require,module,exports){
/*!
 * Determine if an object is a Buffer
 *
 * @author   Feross Aboukhadijeh <https://feross.org>
 * @license  MIT
 */

// The _isBuffer check is for Safari 5-7 support, because it's missing
// Object.prototype.constructor. Remove this eventually
module.exports = function (obj) {
  return obj != null && (isBuffer(obj) || isSlowBuffer(obj) || !!obj._isBuffer)
}

function isBuffer (obj) {
  return !!obj.constructor && typeof obj.constructor.isBuffer === 'function' && obj.constructor.isBuffer(obj)
}

// For Node v0.10 support. Remove this eventually.
function isSlowBuffer (obj) {
  return typeof obj.readFloatLE === 'function' && typeof obj.slice === 'function' && isBuffer(obj.slice(0, 0))
}

},{}],14:[function(require,module,exports){
var toString = {}.toString;

module.exports = Array.isArray || function (arr) {
  return toString.call(arr) == '[object Array]';
};

},{}],15:[function(require,module,exports){
'use strict'

var Buffer = require('safe-buffer').Buffer
var assert = require('assert')
var bl = require('bl')
var streams = require('./lib/streams')
var buildDecode = require('./lib/decoder')
var buildEncode = require('./lib/encoder')

function msgpack (options) {
  var encodingTypes = []
  var decodingTypes = []

  options = options || {
    forceFloat64: false,
    compatibilityMode: false,
    disableTimestampEncoding: false // if true, skips encoding Dates using the msgpack timestamp ext format (-1)
  }

  function registerEncoder (check, encode) {
    assert(check, 'must have an encode function')
    assert(encode, 'must have an encode function')

    encodingTypes.push({
      check: check, encode: encode
    })

    return this
  }

  function registerDecoder (type, decode) {
    assert(type >= 0, 'must have a non-negative type')
    assert(decode, 'must have a decode function')

    decodingTypes.push({
      type: type, decode: decode
    })

    return this
  }

  function register (type, constructor, encode, decode) {
    assert(constructor, 'must have a constructor')
    assert(encode, 'must have an encode function')
    assert(type >= 0, 'must have a non-negative type')
    assert(decode, 'must have a decode function')

    function check (obj) {
      return (obj instanceof constructor)
    }

    function reEncode (obj) {
      var buf = bl()
      var header = Buffer.allocUnsafe(1)

      header.writeInt8(type, 0)

      buf.append(header)
      buf.append(encode(obj))

      return buf
    }

    this.registerEncoder(check, reEncode)
    this.registerDecoder(type, decode)

    return this
  }

  return {
    encode: buildEncode(encodingTypes, options.forceFloat64, options.compatibilityMode, options.disableTimestampEncoding),
    decode: buildDecode(decodingTypes),
    register: register,
    registerEncoder: registerEncoder,
    registerDecoder: registerDecoder,
    encoder: streams.encoder,
    decoder: streams.decoder,
    // needed for levelup support
    buffer: true,
    type: 'msgpack5',
    IncompleteBufferError: buildDecode.IncompleteBufferError
  }
}

module.exports = msgpack

},{"./lib/decoder":16,"./lib/encoder":17,"./lib/streams":18,"assert":1,"bl":6,"safe-buffer":32}],16:[function(require,module,exports){
'use strict'

var bl = require('bl')
var util = require('util')

function IncompleteBufferError (message) {
  Error.call(this) // super constructor
  if (Error.captureStackTrace) {
    Error.captureStackTrace(this, this.constructor) // super helper method to include stack trace in error object
  }
  this.name = this.constructor.name
  this.message = message || 'unable to decode'
}

util.inherits(IncompleteBufferError, Error)

module.exports = function buildDecode (decodingTypes) {
  return decode

  function getSize (first) {
    switch (first) {
      case 0xc4:
        return 2
      case 0xc5:
        return 3
      case 0xc6:
        return 5
      case 0xc7:
        return 3
      case 0xc8:
        return 4
      case 0xc9:
        return 6
      case 0xca:
        return 5
      case 0xcb:
        return 9
      case 0xcc:
        return 2
      case 0xcd:
        return 3
      case 0xce:
        return 5
      case 0xcf:
        return 9
      case 0xd0:
        return 2
      case 0xd1:
        return 3
      case 0xd2:
        return 5
      case 0xd3:
        return 9
      case 0xd4:
        return 3
      case 0xd5:
        return 4
      case 0xd6:
        return 6
      case 0xd7:
        return 10
      case 0xd8:
        return 18
      case 0xd9:
        return 2
      case 0xda:
        return 3
      case 0xdb:
        return 5
      case 0xde:
        return 3
      default:
        return -1
    }
  }

  function hasMinBufferSize (first, length) {
    var size = getSize(first)

    if (size !== -1 && length < size) {
      return false
    } else {
      return true
    }
  }

  function isValidDataSize (dataLength, bufLength, headerLength) {
    return bufLength >= headerLength + dataLength
  }

  function buildDecodeResult (value, bytesConsumed) {
    return {
      value: value,
      bytesConsumed: bytesConsumed
    }
  }

  function decode (buf) {
    if (!(buf instanceof bl)) {
      buf = bl().append(buf)
    }

    var result = tryDecode(buf)
    if (result) {
      buf.consume(result.bytesConsumed)
      return result.value
    } else {
      throw new IncompleteBufferError()
    }
  }

  function tryDecode (buf, offset) {
    offset = offset === undefined ? 0 : offset
    var bufLength = buf.length - offset
    if (bufLength <= 0) {
      return null
    }

    var first = buf.readUInt8(offset)
    var length
    var result = 0
    var type
    var bytePos

    if (!hasMinBufferSize(first, bufLength)) {
      return null
    }

    switch (first) {
      case 0xc0:
        return buildDecodeResult(null, 1)
      case 0xc2:
        return buildDecodeResult(false, 1)
      case 0xc3:
        return buildDecodeResult(true, 1)
      case 0xcc:
        // 1-byte unsigned int
        result = buf.readUInt8(offset + 1)
        return buildDecodeResult(result, 2)
      case 0xcd:
        // 2-bytes BE unsigned int
        result = buf.readUInt16BE(offset + 1)
        return buildDecodeResult(result, 3)
      case 0xce:
        // 4-bytes BE unsigned int
        result = buf.readUInt32BE(offset + 1)
        return buildDecodeResult(result, 5)
      case 0xcf:
        // 8-bytes BE unsigned int
        // Read long byte by byte, big-endian
        for (bytePos = 7; bytePos >= 0; bytePos--) {
          result += (buf.readUInt8(offset + bytePos + 1) * Math.pow(2, (8 * (7 - bytePos))))
        }
        return buildDecodeResult(result, 9)
      case 0xd0:
        // 1-byte signed int
        result = buf.readInt8(offset + 1)
        return buildDecodeResult(result, 2)
      case 0xd1:
        // 2-bytes signed int
        result = buf.readInt16BE(offset + 1)
        return buildDecodeResult(result, 3)
      case 0xd2:
        // 4-bytes signed int
        result = buf.readInt32BE(offset + 1)
        return buildDecodeResult(result, 5)
      case 0xd3:
        result = readInt64BE(buf.slice(offset + 1, offset + 9), 0)
        return buildDecodeResult(result, 9)
      case 0xca:
        // 4-bytes float
        result = buf.readFloatBE(offset + 1)
        return buildDecodeResult(result, 5)
      case 0xcb:
        // 8-bytes double
        result = buf.readDoubleBE(offset + 1)
        return buildDecodeResult(result, 9)
      case 0xd9:
        // strings up to 2^8 - 1 bytes
        length = buf.readUInt8(offset + 1)
        if (!isValidDataSize(length, bufLength, 2)) {
          return null
        }
        result = buf.toString('utf8', offset + 2, offset + 2 + length)
        return buildDecodeResult(result, 2 + length)
      case 0xda:
        // strings up to 2^16 - 2 bytes
        length = buf.readUInt16BE(offset + 1)
        if (!isValidDataSize(length, bufLength, 3)) {
          return null
        }
        result = buf.toString('utf8', offset + 3, offset + 3 + length)
        return buildDecodeResult(result, 3 + length)
      case 0xdb:
        // strings up to 2^32 - 4 bytes
        length = buf.readUInt32BE(offset + 1)
        if (!isValidDataSize(length, bufLength, 5)) {
          return null
        }
        result = buf.toString('utf8', offset + 5, offset + 5 + length)
        return buildDecodeResult(result, 5 + length)
      case 0xc4:
        // buffers up to 2^8 - 1 bytes
        length = buf.readUInt8(offset + 1)
        if (!isValidDataSize(length, bufLength, 2)) {
          return null
        }
        result = buf.slice(offset + 2, offset + 2 + length)
        return buildDecodeResult(result, 2 + length)
      case 0xc5:
        // buffers up to 2^16 - 1 bytes
        length = buf.readUInt16BE(offset + 1)
        if (!isValidDataSize(length, bufLength, 3)) {
          return null
        }
        result = buf.slice(offset + 3, offset + 3 + length)
        return buildDecodeResult(result, 3 + length)
      case 0xc6:
        // buffers up to 2^32 - 1 bytes
        length = buf.readUInt32BE(offset + 1)
        if (!isValidDataSize(length, bufLength, 5)) {
          return null
        }
        result = buf.slice(offset + 5, offset + 5 + length)
        return buildDecodeResult(result, 5 + length)
      case 0xdc:
        // array up to 2^16 elements - 2 bytes
        if (bufLength < 3) {
          return null
        }

        length = buf.readUInt16BE(offset + 1)
        return decodeArray(buf, offset, length, 3)
      case 0xdd:
        // array up to 2^32 elements - 4 bytes
        if (bufLength < 5) {
          return null
        }

        length = buf.readUInt32BE(offset + 1)
        return decodeArray(buf, offset, length, 5)
      case 0xde:
        // maps up to 2^16 elements - 2 bytes
        length = buf.readUInt16BE(offset + 1)
        return decodeMap(buf, offset, length, 3)
      case 0xdf:
        length = buf.readUInt32BE(offset + 1)
        return decodeMap(buf, offset, length, 5)
      case 0xd4:
        return decodeFixExt(buf, offset, 1)
      case 0xd5:
        return decodeFixExt(buf, offset, 2)
      case 0xd6:
        return decodeFixExt(buf, offset, 4)
      case 0xd7:
        return decodeFixExt(buf, offset, 8)
      case 0xd8:
        return decodeFixExt(buf, offset, 16)
      case 0xc7:
        // ext up to 2^8 - 1 bytes
        length = buf.readUInt8(offset + 1)
        type = buf.readUInt8(offset + 2)
        if (!isValidDataSize(length, bufLength, 3)) {
          return null
        }
        return decodeExt(buf, offset, type, length, 3)
      case 0xc8:
        // ext up to 2^16 - 1 bytes
        length = buf.readUInt16BE(offset + 1)
        type = buf.readUInt8(offset + 3)
        if (!isValidDataSize(length, bufLength, 4)) {
          return null
        }
        return decodeExt(buf, offset, type, length, 4)
      case 0xc9:
        // ext up to 2^32 - 1 bytes
        length = buf.readUInt32BE(offset + 1)
        type = buf.readUInt8(offset + 5)
        if (!isValidDataSize(length, bufLength, 6)) {
          return null
        }
        return decodeExt(buf, offset, type, length, 6)
    }

    if ((first & 0xf0) === 0x90) {
      // we have an array with less than 15 elements
      length = first & 0x0f
      return decodeArray(buf, offset, length, 1)
    } else if ((first & 0xf0) === 0x80) {
      // we have a map with less than 15 elements
      length = first & 0x0f
      return decodeMap(buf, offset, length, 1)
    } else if ((first & 0xe0) === 0xa0) {
      // fixstr up to 31 bytes
      length = first & 0x1f
      if (isValidDataSize(length, bufLength, 1)) {
        result = buf.toString('utf8', offset + 1, offset + length + 1)
        return buildDecodeResult(result, length + 1)
      } else {
        return null
      }
    } else if (first >= 0xe0) {
      // 5 bits negative ints
      result = first - 0x100
      return buildDecodeResult(result, 1)
    } else if (first < 0x80) {
      // 7-bits positive ints
      return buildDecodeResult(first, 1)
    } else {
      throw new Error('not implemented yet')
    }
  }

  function readInt64BE (buf, offset) {
    var negate = (buf[offset] & 0x80) == 0x80 // eslint-disable-line

    if (negate) {
      var carry = 1
      for (var i = offset + 7; i >= offset; i--) {
        var v = (buf[i] ^ 0xff) + carry
        buf[i] = v & 0xff
        carry = v >> 8
      }
    }

    var hi = buf.readUInt32BE(offset + 0)
    var lo = buf.readUInt32BE(offset + 4)
    return (hi * 4294967296 + lo) * (negate ? -1 : +1)
  }

  function decodeArray (buf, offset, length, headerLength) {
    var result = []
    var i
    var totalBytesConsumed = 0

    offset += headerLength
    for (i = 0; i < length; i++) {
      var decodeResult = tryDecode(buf, offset)
      if (decodeResult) {
        result.push(decodeResult.value)
        offset += decodeResult.bytesConsumed
        totalBytesConsumed += decodeResult.bytesConsumed
      } else {
        return null
      }
    }
    return buildDecodeResult(result, headerLength + totalBytesConsumed)
  }

  function decodeMap (buf, offset, length, headerLength) {
    var result = {}
    var key
    var i
    var totalBytesConsumed = 0

    offset += headerLength
    for (i = 0; i < length; i++) {
      var keyResult = tryDecode(buf, offset)
      if (keyResult) {
        offset += keyResult.bytesConsumed
        var valueResult = tryDecode(buf, offset)
        if (valueResult) {
          key = keyResult.value
          result[key] = valueResult.value
          offset += valueResult.bytesConsumed
          totalBytesConsumed += (keyResult.bytesConsumed + valueResult.bytesConsumed)
        } else {
          return null
        }
      } else {
        return null
      }
    }
    return buildDecodeResult(result, headerLength + totalBytesConsumed)
  }

  function decodeFixExt (buf, offset, size) {
    var type = buf.readInt8(offset + 1) // Signed
    return decodeExt(buf, offset, type, size, 2)
  }

  function decodeTimestamp (buf, size, headerSize) {
    var seconds
    var nanoseconds = 0

    switch (size) {
      case 4:
        // timestamp 32 stores the number of seconds that have elapsed since 1970-01-01 00:00:00 UTC in an 32-bit unsigned integer
        seconds = buf.readUInt32BE(0)
        break

      case 8:
        // Timestamp 64 stores the number of seconds and nanoseconds that have elapsed
        // since 1970-01-01 00:00:00 UTC in 32-bit unsigned integers, split 30/34 bits
        var upper = buf.readUInt32BE(0)
        var lower = buf.readUInt32BE(4)
        nanoseconds = upper / 4
        seconds = ((upper & 0x03) * Math.pow(2, 32)) + lower // If we use bitwise operators, we get truncated to 32bits
        break

      case 12:
        throw new Error('timestamp 96 is not yet implemented')
    }

    var millis = (seconds * 1000) + Math.round(nanoseconds / 1E6)
    return buildDecodeResult(new Date(millis), size + headerSize)
  }

  function decodeExt (buf, offset, type, size, headerSize) {
    var i,
      toDecode

    offset += headerSize

    // Pre-defined
    if (type < 0) { // Reserved for future extensions
      switch (type) {
        case -1: // Tiemstamp https://github.com/msgpack/msgpack/blob/master/spec.md#timestamp-extension-type
          toDecode = buf.slice(offset, offset + size)
          return decodeTimestamp(toDecode, size, headerSize)
      }
    }

    for (i = 0; i < decodingTypes.length; i++) {
      if (type === decodingTypes[i].type) {
        toDecode = buf.slice(offset, offset + size)
        var value = decodingTypes[i].decode(toDecode)
        return buildDecodeResult(value, headerSize + size)
      }
    }

    throw new Error('unable to find ext type ' + type)
  }
}

module.exports.IncompleteBufferError = IncompleteBufferError

},{"bl":6,"util":38}],17:[function(require,module,exports){
'use strict'

var Buffer = require('safe-buffer').Buffer
var bl = require('bl')

module.exports = function buildEncode (encodingTypes, forceFloat64, compatibilityMode, disableTimestampEncoding) {
  function encode (obj, avoidSlice) {
    var buf
    var len

    if (obj === undefined) {
      throw new Error('undefined is not encodable in msgpack!')
    } else if (isNaN(obj)) {
      throw new Error('NaN is not encodable in msgpack!')
    } else if (obj === null) {
      buf = Buffer.allocUnsafe(1)
      buf[0] = 0xc0
    } else if (obj === true) {
      buf = Buffer.allocUnsafe(1)
      buf[0] = 0xc3
    } else if (obj === false) {
      buf = Buffer.allocUnsafe(1)
      buf[0] = 0xc2
    } else if (typeof obj === 'string') {
      len = Buffer.byteLength(obj)
      if (len < 32) {
        buf = Buffer.allocUnsafe(1 + len)
        buf[0] = 0xa0 | len
        if (len > 0) {
          buf.write(obj, 1)
        }
      } else if (len <= 0xff && !compatibilityMode) {
        // str8, but only when not in compatibility mode
        buf = Buffer.allocUnsafe(2 + len)
        buf[0] = 0xd9
        buf[1] = len
        buf.write(obj, 2)
      } else if (len <= 0xffff) {
        buf = Buffer.allocUnsafe(3 + len)
        buf[0] = 0xda
        buf.writeUInt16BE(len, 1)
        buf.write(obj, 3)
      } else {
        buf = Buffer.allocUnsafe(5 + len)
        buf[0] = 0xdb
        buf.writeUInt32BE(len, 1)
        buf.write(obj, 5)
      }
    } else if (obj && (obj.readUInt32LE || obj instanceof Uint8Array)) {
      if (obj instanceof Uint8Array) {
        obj = Buffer.from(obj)
      }
      // weird hack to support Buffer
      // and Buffer-like objects
      if (obj.length <= 0xff) {
        buf = Buffer.allocUnsafe(2)
        buf[0] = 0xc4
        buf[1] = obj.length
      } else if (obj.length <= 0xffff) {
        buf = Buffer.allocUnsafe(3)
        buf[0] = 0xc5
        buf.writeUInt16BE(obj.length, 1)
      } else {
        buf = Buffer.allocUnsafe(5)
        buf[0] = 0xc6
        buf.writeUInt32BE(obj.length, 1)
      }

      buf = bl([buf, obj])
    } else if (Array.isArray(obj)) {
      if (obj.length < 16) {
        buf = Buffer.allocUnsafe(1)
        buf[0] = 0x90 | obj.length
      } else if (obj.length < 65536) {
        buf = Buffer.allocUnsafe(3)
        buf[0] = 0xdc
        buf.writeUInt16BE(obj.length, 1)
      } else {
        buf = Buffer.allocUnsafe(5)
        buf[0] = 0xdd
        buf.writeUInt32BE(obj.length, 1)
      }

      buf = obj.reduce(function (acc, obj) {
        acc.append(encode(obj, true))
        return acc
      }, bl().append(buf))
    } else if (!disableTimestampEncoding && typeof obj.getDate === 'function') {
      return encodeDate(obj)
    } else if (typeof obj === 'object') {
      buf = encodeExt(obj) || encodeObject(obj)
    } else if (typeof obj === 'number') {
      if (isFloat(obj)) {
        return encodeFloat(obj, forceFloat64)
      } else if (obj >= 0) {
        if (obj < 128) {
          buf = Buffer.allocUnsafe(1)
          buf[0] = obj
        } else if (obj < 256) {
          buf = Buffer.allocUnsafe(2)
          buf[0] = 0xcc
          buf[1] = obj
        } else if (obj < 65536) {
          buf = Buffer.allocUnsafe(3)
          buf[0] = 0xcd
          buf.writeUInt16BE(obj, 1)
        } else if (obj <= 0xffffffff) {
          buf = Buffer.allocUnsafe(5)
          buf[0] = 0xce
          buf.writeUInt32BE(obj, 1)
        } else if (obj <= 9007199254740991) {
          buf = Buffer.allocUnsafe(9)
          buf[0] = 0xcf
          write64BitUint(buf, obj)
        } else {
          return encodeFloat(obj, true)
        }
      } else {
        if (obj >= -32) {
          buf = Buffer.allocUnsafe(1)
          buf[0] = 0x100 + obj
        } else if (obj >= -128) {
          buf = Buffer.allocUnsafe(2)
          buf[0] = 0xd0
          buf.writeInt8(obj, 1)
        } else if (obj >= -32768) {
          buf = Buffer.allocUnsafe(3)
          buf[0] = 0xd1
          buf.writeInt16BE(obj, 1)
        } else if (obj > -214748365) {
          buf = Buffer.allocUnsafe(5)
          buf[0] = 0xd2
          buf.writeInt32BE(obj, 1)
        } else if (obj >= -9007199254740991) {
          buf = Buffer.allocUnsafe(9)
          buf[0] = 0xd3
          write64BitInt(buf, 1, obj)
        } else {
          return encodeFloat(obj, true)
        }
      }
    }

    if (!buf) {
      throw new Error('not implemented yet')
    }

    if (avoidSlice) {
      return buf
    } else {
      return buf.slice()
    }
  }

  function encodeDate (dt) {
    var encoded
    var millis = dt * 1
    var seconds = Math.floor(millis / 1000)
    var nanos = (millis - (seconds * 1000)) * 1E6

    if (nanos || seconds > 0xFFFFFFFF) {
      // Timestamp64
      encoded = Buffer.allocUnsafe(10)
      encoded[0] = 0xd7
      encoded[1] = -1

      var upperNanos = ((nanos * 4))
      var upperSeconds = seconds / Math.pow(2, 32)
      var upper = (upperNanos + upperSeconds) & 0xFFFFFFFF
      var lower = seconds & 0xFFFFFFFF

      encoded.writeInt32BE(upper, 2)
      encoded.writeInt32BE(lower, 6)
    } else {
      // Timestamp32
      encoded = Buffer.allocUnsafe(6)
      encoded[0] = 0xd6
      encoded[1] = -1
      encoded.writeUInt32BE(Math.floor(millis / 1000), 2)
    }
    return bl().append(encoded)
  }

  function encodeExt (obj) {
    var i
    var encoded
    var length = -1
    var headers = []

    for (i = 0; i < encodingTypes.length; i++) {
      if (encodingTypes[i].check(obj)) {
        encoded = encodingTypes[i].encode(obj)
        break
      }
    }

    if (!encoded) {
      return null
    }

    // we subtract 1 because the length does not
    // include the type
    length = encoded.length - 1

    if (length === 1) {
      headers.push(0xd4)
    } else if (length === 2) {
      headers.push(0xd5)
    } else if (length === 4) {
      headers.push(0xd6)
    } else if (length === 8) {
      headers.push(0xd7)
    } else if (length === 16) {
      headers.push(0xd8)
    } else if (length < 256) {
      headers.push(0xc7)
      headers.push(length)
    } else if (length < 0x10000) {
      headers.push(0xc8)
      headers.push(length >> 8)
      headers.push(length & 0x00ff)
    } else {
      headers.push(0xc9)
      headers.push(length >> 24)
      headers.push((length >> 16) & 0x000000ff)
      headers.push((length >> 8) & 0x000000ff)
      headers.push(length & 0x000000ff)
    }

    return bl().append(Buffer.from(headers)).append(encoded)
  }

  function encodeObject (obj) {
    var acc = []
    var length = 0
    var key
    var header

    for (key in obj) {
      if (obj.hasOwnProperty(key) &&
        obj[key] !== undefined &&
        typeof obj[key] !== 'function') {
        ++length
        acc.push(encode(key, true))
        acc.push(encode(obj[key], true))
      }
    }

    if (length < 16) {
      header = Buffer.allocUnsafe(1)
      header[0] = 0x80 | length
    } else if (length < 0xFFFF) {
      header = Buffer.allocUnsafe(3)
      header[0] = 0xde
      header.writeUInt16BE(length, 1)
    } else {
      header = Buffer.allocUnsafe(5)
      header[0] = 0xdf
      header.writeUInt32BE(length, 1)
    }

    acc.unshift(header)

    var result = acc.reduce(function (list, buf) {
      return list.append(buf)
    }, bl())

    return result
  }

  return encode
}

function write64BitUint (buf, obj) {
  // Write long byte by byte, in big-endian order
  for (var currByte = 7; currByte >= 0; currByte--) {
    buf[currByte + 1] = (obj & 0xff)
    obj = obj / 256
  }
}

function write64BitInt (buf, offset, num) {
  var negate = num < 0

  if (negate) {
    num = Math.abs(num)
  }

  var lo = num % 4294967296
  var hi = num / 4294967296
  buf.writeUInt32BE(Math.floor(hi), offset + 0)
  buf.writeUInt32BE(lo, offset + 4)

  if (negate) {
    var carry = 1
    for (var i = offset + 7; i >= offset; i--) {
      var v = (buf[i] ^ 0xff) + carry
      buf[i] = v & 0xff
      carry = v >> 8
    }
  }
}

function isFloat (n) {
  return n % 1 !== 0
}

function isNaN (n) {
  /* eslint-disable no-self-compare */
  return n !== n && typeof n === 'number'
  /* eslint-enable no-self-compare */
}

function encodeFloat (obj, forceFloat64) {
  var useDoublePrecision = true

  // If `fround` is supported, we can check if a float
  // is double or single precision by rounding the object
  // to single precision and comparing the difference.
  // If it's not supported, it's safer to use a 64 bit
  // float so we don't lose precision without meaning to.
  if (Math.fround) {
    useDoublePrecision = Math.fround(obj) !== obj
  }

  if (forceFloat64) {
    useDoublePrecision = true
  }

  var buf

  if (useDoublePrecision) {
    buf = Buffer.allocUnsafe(9)
    buf[0] = 0xcb
    buf.writeDoubleBE(obj, 1)
  } else {
    buf = Buffer.allocUnsafe(5)
    buf[0] = 0xca
    buf.writeFloatBE(obj, 1)
  }

  return buf
}

},{"bl":6,"safe-buffer":32}],18:[function(require,module,exports){
'use strict'

var Transform = require('readable-stream').Transform
var inherits = require('inherits')
var bl = require('bl')

function Base (opts) {
  opts = opts || {}

  opts.objectMode = true
  opts.highWaterMark = 16

  Transform.call(this, opts)

  this._msgpack = opts.msgpack
}

inherits(Base, Transform)

function Encoder (opts) {
  if (!(this instanceof Encoder)) {
    opts = opts || {}
    opts.msgpack = this
    return new Encoder(opts)
  }

  Base.call(this, opts)
  this._wrap = ('wrap' in opts) && opts.wrap
}

inherits(Encoder, Base)

Encoder.prototype._transform = function (obj, enc, done) {
  var buf = null

  try {
    buf = this._msgpack.encode(this._wrap ? obj.value : obj).slice(0)
  } catch (err) {
    this.emit('error', err)
    return done()
  }

  this.push(buf)
  done()
}

function Decoder (opts) {
  if (!(this instanceof Decoder)) {
    opts = opts || {}
    opts.msgpack = this
    return new Decoder(opts)
  }

  Base.call(this, opts)

  this._chunks = bl()
  this._wrap = ('wrap' in opts) && opts.wrap
}

inherits(Decoder, Base)

Decoder.prototype._transform = function (buf, enc, done) {
  if (buf) {
    this._chunks.append(buf)
  }

  try {
    var result = this._msgpack.decode(this._chunks)
    if (this._wrap) {
      result = {value: result}
    }
    this.push(result)
  } catch (err) {
    if (err instanceof this._msgpack.IncompleteBufferError) {
      done()
    } else {
      this.emit('error', err)
    }
    return
  }

  if (this._chunks.length > 0) {
    this._transform(null, enc, done)
  } else {
    done()
  }
}

module.exports.decoder = Decoder
module.exports.encoder = Encoder

},{"bl":6,"inherits":12,"readable-stream":30}],19:[function(require,module,exports){
/*
object-assign
(c) Sindre Sorhus
@license MIT
*/

'use strict';
/* eslint-disable no-unused-vars */
var getOwnPropertySymbols = Object.getOwnPropertySymbols;
var hasOwnProperty = Object.prototype.hasOwnProperty;
var propIsEnumerable = Object.prototype.propertyIsEnumerable;

function toObject(val) {
	if (val === null || val === undefined) {
		throw new TypeError('Object.assign cannot be called with null or undefined');
	}

	return Object(val);
}

function shouldUseNative() {
	try {
		if (!Object.assign) {
			return false;
		}

		// Detect buggy property enumeration order in older V8 versions.

		// https://bugs.chromium.org/p/v8/issues/detail?id=4118
		var test1 = new String('abc');  // eslint-disable-line no-new-wrappers
		test1[5] = 'de';
		if (Object.getOwnPropertyNames(test1)[0] === '5') {
			return false;
		}

		// https://bugs.chromium.org/p/v8/issues/detail?id=3056
		var test2 = {};
		for (var i = 0; i < 10; i++) {
			test2['_' + String.fromCharCode(i)] = i;
		}
		var order2 = Object.getOwnPropertyNames(test2).map(function (n) {
			return test2[n];
		});
		if (order2.join('') !== '0123456789') {
			return false;
		}

		// https://bugs.chromium.org/p/v8/issues/detail?id=3056
		var test3 = {};
		'abcdefghijklmnopqrst'.split('').forEach(function (letter) {
			test3[letter] = letter;
		});
		if (Object.keys(Object.assign({}, test3)).join('') !==
				'abcdefghijklmnopqrst') {
			return false;
		}

		return true;
	} catch (err) {
		// We don't expect any of the above to throw, but better to be safe.
		return false;
	}
}

module.exports = shouldUseNative() ? Object.assign : function (target, source) {
	var from;
	var to = toObject(target);
	var symbols;

	for (var s = 1; s < arguments.length; s++) {
		from = Object(arguments[s]);

		for (var key in from) {
			if (hasOwnProperty.call(from, key)) {
				to[key] = from[key];
			}
		}

		if (getOwnPropertySymbols) {
			symbols = getOwnPropertySymbols(from);
			for (var i = 0; i < symbols.length; i++) {
				if (propIsEnumerable.call(from, symbols[i])) {
					to[symbols[i]] = from[symbols[i]];
				}
			}
		}
	}

	return to;
};

},{}],20:[function(require,module,exports){
(function (process){
'use strict';

if (typeof process === 'undefined' ||
    !process.version ||
    process.version.indexOf('v0.') === 0 ||
    process.version.indexOf('v1.') === 0 && process.version.indexOf('v1.8.') !== 0) {
  module.exports = { nextTick: nextTick };
} else {
  module.exports = process
}

function nextTick(fn, arg1, arg2, arg3) {
  if (typeof fn !== 'function') {
    throw new TypeError('"callback" argument must be a function');
  }
  var len = arguments.length;
  var args, i;
  switch (len) {
  case 0:
  case 1:
    return process.nextTick(fn);
  case 2:
    return process.nextTick(function afterTickOne() {
      fn.call(null, arg1);
    });
  case 3:
    return process.nextTick(function afterTickTwo() {
      fn.call(null, arg1, arg2);
    });
  case 4:
    return process.nextTick(function afterTickThree() {
      fn.call(null, arg1, arg2, arg3);
    });
  default:
    args = new Array(len - 1);
    i = 0;
    while (i < args.length) {
      args[i++] = arguments[i];
    }
    return process.nextTick(function afterTick() {
      fn.apply(null, args);
    });
  }
}


}).call(this,require('_process'))
},{"_process":21}],21:[function(require,module,exports){
// shim for using process in browser
var process = module.exports = {};

// cached from whatever global is present so that test runners that stub it
// don't break things.  But we need to wrap it in a try catch in case it is
// wrapped in strict mode code which doesn't define any globals.  It's inside a
// function because try/catches deoptimize in certain engines.

var cachedSetTimeout;
var cachedClearTimeout;

function defaultSetTimout() {
    throw new Error('setTimeout has not been defined');
}
function defaultClearTimeout () {
    throw new Error('clearTimeout has not been defined');
}
(function () {
    try {
        if (typeof setTimeout === 'function') {
            cachedSetTimeout = setTimeout;
        } else {
            cachedSetTimeout = defaultSetTimout;
        }
    } catch (e) {
        cachedSetTimeout = defaultSetTimout;
    }
    try {
        if (typeof clearTimeout === 'function') {
            cachedClearTimeout = clearTimeout;
        } else {
            cachedClearTimeout = defaultClearTimeout;
        }
    } catch (e) {
        cachedClearTimeout = defaultClearTimeout;
    }
} ())
function runTimeout(fun) {
    if (cachedSetTimeout === setTimeout) {
        //normal enviroments in sane situations
        return setTimeout(fun, 0);
    }
    // if setTimeout wasn't available but was latter defined
    if ((cachedSetTimeout === defaultSetTimout || !cachedSetTimeout) && setTimeout) {
        cachedSetTimeout = setTimeout;
        return setTimeout(fun, 0);
    }
    try {
        // when when somebody has screwed with setTimeout but no I.E. maddness
        return cachedSetTimeout(fun, 0);
    } catch(e){
        try {
            // When we are in I.E. but the script has been evaled so I.E. doesn't trust the global object when called normally
            return cachedSetTimeout.call(null, fun, 0);
        } catch(e){
            // same as above but when it's a version of I.E. that must have the global object for 'this', hopfully our context correct otherwise it will throw a global error
            return cachedSetTimeout.call(this, fun, 0);
        }
    }


}
function runClearTimeout(marker) {
    if (cachedClearTimeout === clearTimeout) {
        //normal enviroments in sane situations
        return clearTimeout(marker);
    }
    // if clearTimeout wasn't available but was latter defined
    if ((cachedClearTimeout === defaultClearTimeout || !cachedClearTimeout) && clearTimeout) {
        cachedClearTimeout = clearTimeout;
        return clearTimeout(marker);
    }
    try {
        // when when somebody has screwed with setTimeout but no I.E. maddness
        return cachedClearTimeout(marker);
    } catch (e){
        try {
            // When we are in I.E. but the script has been evaled so I.E. doesn't  trust the global object when called normally
            return cachedClearTimeout.call(null, marker);
        } catch (e){
            // same as above but when it's a version of I.E. that must have the global object for 'this', hopfully our context correct otherwise it will throw a global error.
            // Some versions of I.E. have different rules for clearTimeout vs setTimeout
            return cachedClearTimeout.call(this, marker);
        }
    }



}
var queue = [];
var draining = false;
var currentQueue;
var queueIndex = -1;

function cleanUpNextTick() {
    if (!draining || !currentQueue) {
        return;
    }
    draining = false;
    if (currentQueue.length) {
        queue = currentQueue.concat(queue);
    } else {
        queueIndex = -1;
    }
    if (queue.length) {
        drainQueue();
    }
}

function drainQueue() {
    if (draining) {
        return;
    }
    var timeout = runTimeout(cleanUpNextTick);
    draining = true;

    var len = queue.length;
    while(len) {
        currentQueue = queue;
        queue = [];
        while (++queueIndex < len) {
            if (currentQueue) {
                currentQueue[queueIndex].run();
            }
        }
        queueIndex = -1;
        len = queue.length;
    }
    currentQueue = null;
    draining = false;
    runClearTimeout(timeout);
}

process.nextTick = function (fun) {
    var args = new Array(arguments.length - 1);
    if (arguments.length > 1) {
        for (var i = 1; i < arguments.length; i++) {
            args[i - 1] = arguments[i];
        }
    }
    queue.push(new Item(fun, args));
    if (queue.length === 1 && !draining) {
        runTimeout(drainQueue);
    }
};

// v8 likes predictible objects
function Item(fun, array) {
    this.fun = fun;
    this.array = array;
}
Item.prototype.run = function () {
    this.fun.apply(null, this.array);
};
process.title = 'browser';
process.browser = true;
process.env = {};
process.argv = [];
process.version = ''; // empty string to avoid regexp issues
process.versions = {};

function noop() {}

process.on = noop;
process.addListener = noop;
process.once = noop;
process.off = noop;
process.removeListener = noop;
process.removeAllListeners = noop;
process.emit = noop;
process.prependListener = noop;
process.prependOnceListener = noop;

process.listeners = function (name) { return [] }

process.binding = function (name) {
    throw new Error('process.binding is not supported');
};

process.cwd = function () { return '/' };
process.chdir = function (dir) {
    throw new Error('process.chdir is not supported');
};
process.umask = function() { return 0; };

},{}],22:[function(require,module,exports){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

// a duplex stream is just a stream that is both readable and writable.
// Since JS doesn't have multiple prototypal inheritance, this class
// prototypally inherits from Readable, and then parasitically from
// Writable.

'use strict';

/*<replacement>*/

var pna = require('process-nextick-args');
/*</replacement>*/

/*<replacement>*/
var objectKeys = Object.keys || function (obj) {
  var keys = [];
  for (var key in obj) {
    keys.push(key);
  }return keys;
};
/*</replacement>*/

module.exports = Duplex;

/*<replacement>*/
var util = Object.create(require('core-util-is'));
util.inherits = require('inherits');
/*</replacement>*/

var Readable = require('./_stream_readable');
var Writable = require('./_stream_writable');

util.inherits(Duplex, Readable);

{
  // avoid scope creep, the keys array can then be collected
  var keys = objectKeys(Writable.prototype);
  for (var v = 0; v < keys.length; v++) {
    var method = keys[v];
    if (!Duplex.prototype[method]) Duplex.prototype[method] = Writable.prototype[method];
  }
}

function Duplex(options) {
  if (!(this instanceof Duplex)) return new Duplex(options);

  Readable.call(this, options);
  Writable.call(this, options);

  if (options && options.readable === false) this.readable = false;

  if (options && options.writable === false) this.writable = false;

  this.allowHalfOpen = true;
  if (options && options.allowHalfOpen === false) this.allowHalfOpen = false;

  this.once('end', onend);
}

Object.defineProperty(Duplex.prototype, 'writableHighWaterMark', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function () {
    return this._writableState.highWaterMark;
  }
});

// the no-half-open enforcer
function onend() {
  // if we allow half-open state, or if the writable side ended,
  // then we're ok.
  if (this.allowHalfOpen || this._writableState.ended) return;

  // no more data can be written.
  // But allow more writes to happen in this tick.
  pna.nextTick(onEndNT, this);
}

function onEndNT(self) {
  self.end();
}

Object.defineProperty(Duplex.prototype, 'destroyed', {
  get: function () {
    if (this._readableState === undefined || this._writableState === undefined) {
      return false;
    }
    return this._readableState.destroyed && this._writableState.destroyed;
  },
  set: function (value) {
    // we ignore the value if the stream
    // has not been initialized yet
    if (this._readableState === undefined || this._writableState === undefined) {
      return;
    }

    // backward compatibility, the user is explicitly
    // managing destroyed
    this._readableState.destroyed = value;
    this._writableState.destroyed = value;
  }
});

Duplex.prototype._destroy = function (err, cb) {
  this.push(null);
  this.end();

  pna.nextTick(cb, err);
};
},{"./_stream_readable":24,"./_stream_writable":26,"core-util-is":9,"inherits":12,"process-nextick-args":20}],23:[function(require,module,exports){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

// a passthrough stream.
// basically just the most minimal sort of Transform stream.
// Every written chunk gets output as-is.

'use strict';

module.exports = PassThrough;

var Transform = require('./_stream_transform');

/*<replacement>*/
var util = Object.create(require('core-util-is'));
util.inherits = require('inherits');
/*</replacement>*/

util.inherits(PassThrough, Transform);

function PassThrough(options) {
  if (!(this instanceof PassThrough)) return new PassThrough(options);

  Transform.call(this, options);
}

PassThrough.prototype._transform = function (chunk, encoding, cb) {
  cb(null, chunk);
};
},{"./_stream_transform":25,"core-util-is":9,"inherits":12}],24:[function(require,module,exports){
(function (process,global){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

'use strict';

/*<replacement>*/

var pna = require('process-nextick-args');
/*</replacement>*/

module.exports = Readable;

/*<replacement>*/
var isArray = require('isarray');
/*</replacement>*/

/*<replacement>*/
var Duplex;
/*</replacement>*/

Readable.ReadableState = ReadableState;

/*<replacement>*/
var EE = require('events').EventEmitter;

var EElistenerCount = function (emitter, type) {
  return emitter.listeners(type).length;
};
/*</replacement>*/

/*<replacement>*/
var Stream = require('./internal/streams/stream');
/*</replacement>*/

/*<replacement>*/

var Buffer = require('safe-buffer').Buffer;
var OurUint8Array = global.Uint8Array || function () {};
function _uint8ArrayToBuffer(chunk) {
  return Buffer.from(chunk);
}
function _isUint8Array(obj) {
  return Buffer.isBuffer(obj) || obj instanceof OurUint8Array;
}

/*</replacement>*/

/*<replacement>*/
var util = Object.create(require('core-util-is'));
util.inherits = require('inherits');
/*</replacement>*/

/*<replacement>*/
var debugUtil = require('util');
var debug = void 0;
if (debugUtil && debugUtil.debuglog) {
  debug = debugUtil.debuglog('stream');
} else {
  debug = function () {};
}
/*</replacement>*/

var BufferList = require('./internal/streams/BufferList');
var destroyImpl = require('./internal/streams/destroy');
var StringDecoder;

util.inherits(Readable, Stream);

var kProxyEvents = ['error', 'close', 'destroy', 'pause', 'resume'];

function prependListener(emitter, event, fn) {
  // Sadly this is not cacheable as some libraries bundle their own
  // event emitter implementation with them.
  if (typeof emitter.prependListener === 'function') return emitter.prependListener(event, fn);

  // This is a hack to make sure that our error handler is attached before any
  // userland ones.  NEVER DO THIS. This is here only because this code needs
  // to continue to work with older versions of Node.js that do not include
  // the prependListener() method. The goal is to eventually remove this hack.
  if (!emitter._events || !emitter._events[event]) emitter.on(event, fn);else if (isArray(emitter._events[event])) emitter._events[event].unshift(fn);else emitter._events[event] = [fn, emitter._events[event]];
}

function ReadableState(options, stream) {
  Duplex = Duplex || require('./_stream_duplex');

  options = options || {};

  // Duplex streams are both readable and writable, but share
  // the same options object.
  // However, some cases require setting options to different
  // values for the readable and the writable sides of the duplex stream.
  // These options can be provided separately as readableXXX and writableXXX.
  var isDuplex = stream instanceof Duplex;

  // object stream flag. Used to make read(n) ignore n and to
  // make all the buffer merging and length checks go away
  this.objectMode = !!options.objectMode;

  if (isDuplex) this.objectMode = this.objectMode || !!options.readableObjectMode;

  // the point at which it stops calling _read() to fill the buffer
  // Note: 0 is a valid value, means "don't call _read preemptively ever"
  var hwm = options.highWaterMark;
  var readableHwm = options.readableHighWaterMark;
  var defaultHwm = this.objectMode ? 16 : 16 * 1024;

  if (hwm || hwm === 0) this.highWaterMark = hwm;else if (isDuplex && (readableHwm || readableHwm === 0)) this.highWaterMark = readableHwm;else this.highWaterMark = defaultHwm;

  // cast to ints.
  this.highWaterMark = Math.floor(this.highWaterMark);

  // A linked list is used to store data chunks instead of an array because the
  // linked list can remove elements from the beginning faster than
  // array.shift()
  this.buffer = new BufferList();
  this.length = 0;
  this.pipes = null;
  this.pipesCount = 0;
  this.flowing = null;
  this.ended = false;
  this.endEmitted = false;
  this.reading = false;

  // a flag to be able to tell if the event 'readable'/'data' is emitted
  // immediately, or on a later tick.  We set this to true at first, because
  // any actions that shouldn't happen until "later" should generally also
  // not happen before the first read call.
  this.sync = true;

  // whenever we return null, then we set a flag to say
  // that we're awaiting a 'readable' event emission.
  this.needReadable = false;
  this.emittedReadable = false;
  this.readableListening = false;
  this.resumeScheduled = false;

  // has it been destroyed
  this.destroyed = false;

  // Crypto is kind of old and crusty.  Historically, its default string
  // encoding is 'binary' so we have to make this configurable.
  // Everything else in the universe uses 'utf8', though.
  this.defaultEncoding = options.defaultEncoding || 'utf8';

  // the number of writers that are awaiting a drain event in .pipe()s
  this.awaitDrain = 0;

  // if true, a maybeReadMore has been scheduled
  this.readingMore = false;

  this.decoder = null;
  this.encoding = null;
  if (options.encoding) {
    if (!StringDecoder) StringDecoder = require('string_decoder/').StringDecoder;
    this.decoder = new StringDecoder(options.encoding);
    this.encoding = options.encoding;
  }
}

function Readable(options) {
  Duplex = Duplex || require('./_stream_duplex');

  if (!(this instanceof Readable)) return new Readable(options);

  this._readableState = new ReadableState(options, this);

  // legacy
  this.readable = true;

  if (options) {
    if (typeof options.read === 'function') this._read = options.read;

    if (typeof options.destroy === 'function') this._destroy = options.destroy;
  }

  Stream.call(this);
}

Object.defineProperty(Readable.prototype, 'destroyed', {
  get: function () {
    if (this._readableState === undefined) {
      return false;
    }
    return this._readableState.destroyed;
  },
  set: function (value) {
    // we ignore the value if the stream
    // has not been initialized yet
    if (!this._readableState) {
      return;
    }

    // backward compatibility, the user is explicitly
    // managing destroyed
    this._readableState.destroyed = value;
  }
});

Readable.prototype.destroy = destroyImpl.destroy;
Readable.prototype._undestroy = destroyImpl.undestroy;
Readable.prototype._destroy = function (err, cb) {
  this.push(null);
  cb(err);
};

// Manually shove something into the read() buffer.
// This returns true if the highWaterMark has not been hit yet,
// similar to how Writable.write() returns true if you should
// write() some more.
Readable.prototype.push = function (chunk, encoding) {
  var state = this._readableState;
  var skipChunkCheck;

  if (!state.objectMode) {
    if (typeof chunk === 'string') {
      encoding = encoding || state.defaultEncoding;
      if (encoding !== state.encoding) {
        chunk = Buffer.from(chunk, encoding);
        encoding = '';
      }
      skipChunkCheck = true;
    }
  } else {
    skipChunkCheck = true;
  }

  return readableAddChunk(this, chunk, encoding, false, skipChunkCheck);
};

// Unshift should *always* be something directly out of read()
Readable.prototype.unshift = function (chunk) {
  return readableAddChunk(this, chunk, null, true, false);
};

function readableAddChunk(stream, chunk, encoding, addToFront, skipChunkCheck) {
  var state = stream._readableState;
  if (chunk === null) {
    state.reading = false;
    onEofChunk(stream, state);
  } else {
    var er;
    if (!skipChunkCheck) er = chunkInvalid(state, chunk);
    if (er) {
      stream.emit('error', er);
    } else if (state.objectMode || chunk && chunk.length > 0) {
      if (typeof chunk !== 'string' && !state.objectMode && Object.getPrototypeOf(chunk) !== Buffer.prototype) {
        chunk = _uint8ArrayToBuffer(chunk);
      }

      if (addToFront) {
        if (state.endEmitted) stream.emit('error', new Error('stream.unshift() after end event'));else addChunk(stream, state, chunk, true);
      } else if (state.ended) {
        stream.emit('error', new Error('stream.push() after EOF'));
      } else {
        state.reading = false;
        if (state.decoder && !encoding) {
          chunk = state.decoder.write(chunk);
          if (state.objectMode || chunk.length !== 0) addChunk(stream, state, chunk, false);else maybeReadMore(stream, state);
        } else {
          addChunk(stream, state, chunk, false);
        }
      }
    } else if (!addToFront) {
      state.reading = false;
    }
  }

  return needMoreData(state);
}

function addChunk(stream, state, chunk, addToFront) {
  if (state.flowing && state.length === 0 && !state.sync) {
    stream.emit('data', chunk);
    stream.read(0);
  } else {
    // update the buffer info.
    state.length += state.objectMode ? 1 : chunk.length;
    if (addToFront) state.buffer.unshift(chunk);else state.buffer.push(chunk);

    if (state.needReadable) emitReadable(stream);
  }
  maybeReadMore(stream, state);
}

function chunkInvalid(state, chunk) {
  var er;
  if (!_isUint8Array(chunk) && typeof chunk !== 'string' && chunk !== undefined && !state.objectMode) {
    er = new TypeError('Invalid non-string/buffer chunk');
  }
  return er;
}

// if it's past the high water mark, we can push in some more.
// Also, if we have no data yet, we can stand some
// more bytes.  This is to work around cases where hwm=0,
// such as the repl.  Also, if the push() triggered a
// readable event, and the user called read(largeNumber) such that
// needReadable was set, then we ought to push more, so that another
// 'readable' event will be triggered.
function needMoreData(state) {
  return !state.ended && (state.needReadable || state.length < state.highWaterMark || state.length === 0);
}

Readable.prototype.isPaused = function () {
  return this._readableState.flowing === false;
};

// backwards compatibility.
Readable.prototype.setEncoding = function (enc) {
  if (!StringDecoder) StringDecoder = require('string_decoder/').StringDecoder;
  this._readableState.decoder = new StringDecoder(enc);
  this._readableState.encoding = enc;
  return this;
};

// Don't raise the hwm > 8MB
var MAX_HWM = 0x800000;
function computeNewHighWaterMark(n) {
  if (n >= MAX_HWM) {
    n = MAX_HWM;
  } else {
    // Get the next highest power of 2 to prevent increasing hwm excessively in
    // tiny amounts
    n--;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    n++;
  }
  return n;
}

// This function is designed to be inlinable, so please take care when making
// changes to the function body.
function howMuchToRead(n, state) {
  if (n <= 0 || state.length === 0 && state.ended) return 0;
  if (state.objectMode) return 1;
  if (n !== n) {
    // Only flow one buffer at a time
    if (state.flowing && state.length) return state.buffer.head.data.length;else return state.length;
  }
  // If we're asking for more than the current hwm, then raise the hwm.
  if (n > state.highWaterMark) state.highWaterMark = computeNewHighWaterMark(n);
  if (n <= state.length) return n;
  // Don't have enough
  if (!state.ended) {
    state.needReadable = true;
    return 0;
  }
  return state.length;
}

// you can override either this method, or the async _read(n) below.
Readable.prototype.read = function (n) {
  debug('read', n);
  n = parseInt(n, 10);
  var state = this._readableState;
  var nOrig = n;

  if (n !== 0) state.emittedReadable = false;

  // if we're doing read(0) to trigger a readable event, but we
  // already have a bunch of data in the buffer, then just trigger
  // the 'readable' event and move on.
  if (n === 0 && state.needReadable && (state.length >= state.highWaterMark || state.ended)) {
    debug('read: emitReadable', state.length, state.ended);
    if (state.length === 0 && state.ended) endReadable(this);else emitReadable(this);
    return null;
  }

  n = howMuchToRead(n, state);

  // if we've ended, and we're now clear, then finish it up.
  if (n === 0 && state.ended) {
    if (state.length === 0) endReadable(this);
    return null;
  }

  // All the actual chunk generation logic needs to be
  // *below* the call to _read.  The reason is that in certain
  // synthetic stream cases, such as passthrough streams, _read
  // may be a completely synchronous operation which may change
  // the state of the read buffer, providing enough data when
  // before there was *not* enough.
  //
  // So, the steps are:
  // 1. Figure out what the state of things will be after we do
  // a read from the buffer.
  //
  // 2. If that resulting state will trigger a _read, then call _read.
  // Note that this may be asynchronous, or synchronous.  Yes, it is
  // deeply ugly to write APIs this way, but that still doesn't mean
  // that the Readable class should behave improperly, as streams are
  // designed to be sync/async agnostic.
  // Take note if the _read call is sync or async (ie, if the read call
  // has returned yet), so that we know whether or not it's safe to emit
  // 'readable' etc.
  //
  // 3. Actually pull the requested chunks out of the buffer and return.

  // if we need a readable event, then we need to do some reading.
  var doRead = state.needReadable;
  debug('need readable', doRead);

  // if we currently have less than the highWaterMark, then also read some
  if (state.length === 0 || state.length - n < state.highWaterMark) {
    doRead = true;
    debug('length less than watermark', doRead);
  }

  // however, if we've ended, then there's no point, and if we're already
  // reading, then it's unnecessary.
  if (state.ended || state.reading) {
    doRead = false;
    debug('reading or ended', doRead);
  } else if (doRead) {
    debug('do read');
    state.reading = true;
    state.sync = true;
    // if the length is currently zero, then we *need* a readable event.
    if (state.length === 0) state.needReadable = true;
    // call internal read method
    this._read(state.highWaterMark);
    state.sync = false;
    // If _read pushed data synchronously, then `reading` will be false,
    // and we need to re-evaluate how much data we can return to the user.
    if (!state.reading) n = howMuchToRead(nOrig, state);
  }

  var ret;
  if (n > 0) ret = fromList(n, state);else ret = null;

  if (ret === null) {
    state.needReadable = true;
    n = 0;
  } else {
    state.length -= n;
  }

  if (state.length === 0) {
    // If we have nothing in the buffer, then we want to know
    // as soon as we *do* get something into the buffer.
    if (!state.ended) state.needReadable = true;

    // If we tried to read() past the EOF, then emit end on the next tick.
    if (nOrig !== n && state.ended) endReadable(this);
  }

  if (ret !== null) this.emit('data', ret);

  return ret;
};

function onEofChunk(stream, state) {
  if (state.ended) return;
  if (state.decoder) {
    var chunk = state.decoder.end();
    if (chunk && chunk.length) {
      state.buffer.push(chunk);
      state.length += state.objectMode ? 1 : chunk.length;
    }
  }
  state.ended = true;

  // emit 'readable' now to make sure it gets picked up.
  emitReadable(stream);
}

// Don't emit readable right away in sync mode, because this can trigger
// another read() call => stack overflow.  This way, it might trigger
// a nextTick recursion warning, but that's not so bad.
function emitReadable(stream) {
  var state = stream._readableState;
  state.needReadable = false;
  if (!state.emittedReadable) {
    debug('emitReadable', state.flowing);
    state.emittedReadable = true;
    if (state.sync) pna.nextTick(emitReadable_, stream);else emitReadable_(stream);
  }
}

function emitReadable_(stream) {
  debug('emit readable');
  stream.emit('readable');
  flow(stream);
}

// at this point, the user has presumably seen the 'readable' event,
// and called read() to consume some data.  that may have triggered
// in turn another _read(n) call, in which case reading = true if
// it's in progress.
// However, if we're not ended, or reading, and the length < hwm,
// then go ahead and try to read some more preemptively.
function maybeReadMore(stream, state) {
  if (!state.readingMore) {
    state.readingMore = true;
    pna.nextTick(maybeReadMore_, stream, state);
  }
}

function maybeReadMore_(stream, state) {
  var len = state.length;
  while (!state.reading && !state.flowing && !state.ended && state.length < state.highWaterMark) {
    debug('maybeReadMore read 0');
    stream.read(0);
    if (len === state.length)
      // didn't get any data, stop spinning.
      break;else len = state.length;
  }
  state.readingMore = false;
}

// abstract method.  to be overridden in specific implementation classes.
// call cb(er, data) where data is <= n in length.
// for virtual (non-string, non-buffer) streams, "length" is somewhat
// arbitrary, and perhaps not very meaningful.
Readable.prototype._read = function (n) {
  this.emit('error', new Error('_read() is not implemented'));
};

Readable.prototype.pipe = function (dest, pipeOpts) {
  var src = this;
  var state = this._readableState;

  switch (state.pipesCount) {
    case 0:
      state.pipes = dest;
      break;
    case 1:
      state.pipes = [state.pipes, dest];
      break;
    default:
      state.pipes.push(dest);
      break;
  }
  state.pipesCount += 1;
  debug('pipe count=%d opts=%j', state.pipesCount, pipeOpts);

  var doEnd = (!pipeOpts || pipeOpts.end !== false) && dest !== process.stdout && dest !== process.stderr;

  var endFn = doEnd ? onend : unpipe;
  if (state.endEmitted) pna.nextTick(endFn);else src.once('end', endFn);

  dest.on('unpipe', onunpipe);
  function onunpipe(readable, unpipeInfo) {
    debug('onunpipe');
    if (readable === src) {
      if (unpipeInfo && unpipeInfo.hasUnpiped === false) {
        unpipeInfo.hasUnpiped = true;
        cleanup();
      }
    }
  }

  function onend() {
    debug('onend');
    dest.end();
  }

  // when the dest drains, it reduces the awaitDrain counter
  // on the source.  This would be more elegant with a .once()
  // handler in flow(), but adding and removing repeatedly is
  // too slow.
  var ondrain = pipeOnDrain(src);
  dest.on('drain', ondrain);

  var cleanedUp = false;
  function cleanup() {
    debug('cleanup');
    // cleanup event handlers once the pipe is broken
    dest.removeListener('close', onclose);
    dest.removeListener('finish', onfinish);
    dest.removeListener('drain', ondrain);
    dest.removeListener('error', onerror);
    dest.removeListener('unpipe', onunpipe);
    src.removeListener('end', onend);
    src.removeListener('end', unpipe);
    src.removeListener('data', ondata);

    cleanedUp = true;

    // if the reader is waiting for a drain event from this
    // specific writer, then it would cause it to never start
    // flowing again.
    // So, if this is awaiting a drain, then we just call it now.
    // If we don't know, then assume that we are waiting for one.
    if (state.awaitDrain && (!dest._writableState || dest._writableState.needDrain)) ondrain();
  }

  // If the user pushes more data while we're writing to dest then we'll end up
  // in ondata again. However, we only want to increase awaitDrain once because
  // dest will only emit one 'drain' event for the multiple writes.
  // => Introduce a guard on increasing awaitDrain.
  var increasedAwaitDrain = false;
  src.on('data', ondata);
  function ondata(chunk) {
    debug('ondata');
    increasedAwaitDrain = false;
    var ret = dest.write(chunk);
    if (false === ret && !increasedAwaitDrain) {
      // If the user unpiped during `dest.write()`, it is possible
      // to get stuck in a permanently paused state if that write
      // also returned false.
      // => Check whether `dest` is still a piping destination.
      if ((state.pipesCount === 1 && state.pipes === dest || state.pipesCount > 1 && indexOf(state.pipes, dest) !== -1) && !cleanedUp) {
        debug('false write response, pause', src._readableState.awaitDrain);
        src._readableState.awaitDrain++;
        increasedAwaitDrain = true;
      }
      src.pause();
    }
  }

  // if the dest has an error, then stop piping into it.
  // however, don't suppress the throwing behavior for this.
  function onerror(er) {
    debug('onerror', er);
    unpipe();
    dest.removeListener('error', onerror);
    if (EElistenerCount(dest, 'error') === 0) dest.emit('error', er);
  }

  // Make sure our error handler is attached before userland ones.
  prependListener(dest, 'error', onerror);

  // Both close and finish should trigger unpipe, but only once.
  function onclose() {
    dest.removeListener('finish', onfinish);
    unpipe();
  }
  dest.once('close', onclose);
  function onfinish() {
    debug('onfinish');
    dest.removeListener('close', onclose);
    unpipe();
  }
  dest.once('finish', onfinish);

  function unpipe() {
    debug('unpipe');
    src.unpipe(dest);
  }

  // tell the dest that it's being piped to
  dest.emit('pipe', src);

  // start the flow if it hasn't been started already.
  if (!state.flowing) {
    debug('pipe resume');
    src.resume();
  }

  return dest;
};

function pipeOnDrain(src) {
  return function () {
    var state = src._readableState;
    debug('pipeOnDrain', state.awaitDrain);
    if (state.awaitDrain) state.awaitDrain--;
    if (state.awaitDrain === 0 && EElistenerCount(src, 'data')) {
      state.flowing = true;
      flow(src);
    }
  };
}

Readable.prototype.unpipe = function (dest) {
  var state = this._readableState;
  var unpipeInfo = { hasUnpiped: false };

  // if we're not piping anywhere, then do nothing.
  if (state.pipesCount === 0) return this;

  // just one destination.  most common case.
  if (state.pipesCount === 1) {
    // passed in one, but it's not the right one.
    if (dest && dest !== state.pipes) return this;

    if (!dest) dest = state.pipes;

    // got a match.
    state.pipes = null;
    state.pipesCount = 0;
    state.flowing = false;
    if (dest) dest.emit('unpipe', this, unpipeInfo);
    return this;
  }

  // slow case. multiple pipe destinations.

  if (!dest) {
    // remove all.
    var dests = state.pipes;
    var len = state.pipesCount;
    state.pipes = null;
    state.pipesCount = 0;
    state.flowing = false;

    for (var i = 0; i < len; i++) {
      dests[i].emit('unpipe', this, unpipeInfo);
    }return this;
  }

  // try to find the right one.
  var index = indexOf(state.pipes, dest);
  if (index === -1) return this;

  state.pipes.splice(index, 1);
  state.pipesCount -= 1;
  if (state.pipesCount === 1) state.pipes = state.pipes[0];

  dest.emit('unpipe', this, unpipeInfo);

  return this;
};

// set up data events if they are asked for
// Ensure readable listeners eventually get something
Readable.prototype.on = function (ev, fn) {
  var res = Stream.prototype.on.call(this, ev, fn);

  if (ev === 'data') {
    // Start flowing on next tick if stream isn't explicitly paused
    if (this._readableState.flowing !== false) this.resume();
  } else if (ev === 'readable') {
    var state = this._readableState;
    if (!state.endEmitted && !state.readableListening) {
      state.readableListening = state.needReadable = true;
      state.emittedReadable = false;
      if (!state.reading) {
        pna.nextTick(nReadingNextTick, this);
      } else if (state.length) {
        emitReadable(this);
      }
    }
  }

  return res;
};
Readable.prototype.addListener = Readable.prototype.on;

function nReadingNextTick(self) {
  debug('readable nexttick read 0');
  self.read(0);
}

// pause() and resume() are remnants of the legacy readable stream API
// If the user uses them, then switch into old mode.
Readable.prototype.resume = function () {
  var state = this._readableState;
  if (!state.flowing) {
    debug('resume');
    state.flowing = true;
    resume(this, state);
  }
  return this;
};

function resume(stream, state) {
  if (!state.resumeScheduled) {
    state.resumeScheduled = true;
    pna.nextTick(resume_, stream, state);
  }
}

function resume_(stream, state) {
  if (!state.reading) {
    debug('resume read 0');
    stream.read(0);
  }

  state.resumeScheduled = false;
  state.awaitDrain = 0;
  stream.emit('resume');
  flow(stream);
  if (state.flowing && !state.reading) stream.read(0);
}

Readable.prototype.pause = function () {
  debug('call pause flowing=%j', this._readableState.flowing);
  if (false !== this._readableState.flowing) {
    debug('pause');
    this._readableState.flowing = false;
    this.emit('pause');
  }
  return this;
};

function flow(stream) {
  var state = stream._readableState;
  debug('flow', state.flowing);
  while (state.flowing && stream.read() !== null) {}
}

// wrap an old-style stream as the async data source.
// This is *not* part of the readable stream interface.
// It is an ugly unfortunate mess of history.
Readable.prototype.wrap = function (stream) {
  var _this = this;

  var state = this._readableState;
  var paused = false;

  stream.on('end', function () {
    debug('wrapped end');
    if (state.decoder && !state.ended) {
      var chunk = state.decoder.end();
      if (chunk && chunk.length) _this.push(chunk);
    }

    _this.push(null);
  });

  stream.on('data', function (chunk) {
    debug('wrapped data');
    if (state.decoder) chunk = state.decoder.write(chunk);

    // don't skip over falsy values in objectMode
    if (state.objectMode && (chunk === null || chunk === undefined)) return;else if (!state.objectMode && (!chunk || !chunk.length)) return;

    var ret = _this.push(chunk);
    if (!ret) {
      paused = true;
      stream.pause();
    }
  });

  // proxy all the other methods.
  // important when wrapping filters and duplexes.
  for (var i in stream) {
    if (this[i] === undefined && typeof stream[i] === 'function') {
      this[i] = function (method) {
        return function () {
          return stream[method].apply(stream, arguments);
        };
      }(i);
    }
  }

  // proxy certain important events.
  for (var n = 0; n < kProxyEvents.length; n++) {
    stream.on(kProxyEvents[n], this.emit.bind(this, kProxyEvents[n]));
  }

  // when we try to consume some more bytes, simply unpause the
  // underlying stream.
  this._read = function (n) {
    debug('wrapped _read', n);
    if (paused) {
      paused = false;
      stream.resume();
    }
  };

  return this;
};

Object.defineProperty(Readable.prototype, 'readableHighWaterMark', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function () {
    return this._readableState.highWaterMark;
  }
});

// exposed for testing purposes only.
Readable._fromList = fromList;

// Pluck off n bytes from an array of buffers.
// Length is the combined lengths of all the buffers in the list.
// This function is designed to be inlinable, so please take care when making
// changes to the function body.
function fromList(n, state) {
  // nothing buffered
  if (state.length === 0) return null;

  var ret;
  if (state.objectMode) ret = state.buffer.shift();else if (!n || n >= state.length) {
    // read it all, truncate the list
    if (state.decoder) ret = state.buffer.join('');else if (state.buffer.length === 1) ret = state.buffer.head.data;else ret = state.buffer.concat(state.length);
    state.buffer.clear();
  } else {
    // read part of list
    ret = fromListPartial(n, state.buffer, state.decoder);
  }

  return ret;
}

// Extracts only enough buffered data to satisfy the amount requested.
// This function is designed to be inlinable, so please take care when making
// changes to the function body.
function fromListPartial(n, list, hasStrings) {
  var ret;
  if (n < list.head.data.length) {
    // slice is the same for buffers and strings
    ret = list.head.data.slice(0, n);
    list.head.data = list.head.data.slice(n);
  } else if (n === list.head.data.length) {
    // first chunk is a perfect match
    ret = list.shift();
  } else {
    // result spans more than one buffer
    ret = hasStrings ? copyFromBufferString(n, list) : copyFromBuffer(n, list);
  }
  return ret;
}

// Copies a specified amount of characters from the list of buffered data
// chunks.
// This function is designed to be inlinable, so please take care when making
// changes to the function body.
function copyFromBufferString(n, list) {
  var p = list.head;
  var c = 1;
  var ret = p.data;
  n -= ret.length;
  while (p = p.next) {
    var str = p.data;
    var nb = n > str.length ? str.length : n;
    if (nb === str.length) ret += str;else ret += str.slice(0, n);
    n -= nb;
    if (n === 0) {
      if (nb === str.length) {
        ++c;
        if (p.next) list.head = p.next;else list.head = list.tail = null;
      } else {
        list.head = p;
        p.data = str.slice(nb);
      }
      break;
    }
    ++c;
  }
  list.length -= c;
  return ret;
}

// Copies a specified amount of bytes from the list of buffered data chunks.
// This function is designed to be inlinable, so please take care when making
// changes to the function body.
function copyFromBuffer(n, list) {
  var ret = Buffer.allocUnsafe(n);
  var p = list.head;
  var c = 1;
  p.data.copy(ret);
  n -= p.data.length;
  while (p = p.next) {
    var buf = p.data;
    var nb = n > buf.length ? buf.length : n;
    buf.copy(ret, ret.length - n, 0, nb);
    n -= nb;
    if (n === 0) {
      if (nb === buf.length) {
        ++c;
        if (p.next) list.head = p.next;else list.head = list.tail = null;
      } else {
        list.head = p;
        p.data = buf.slice(nb);
      }
      break;
    }
    ++c;
  }
  list.length -= c;
  return ret;
}

function endReadable(stream) {
  var state = stream._readableState;

  // If we get here before consuming all the bytes, then that is a
  // bug in node.  Should never happen.
  if (state.length > 0) throw new Error('"endReadable()" called on non-empty stream');

  if (!state.endEmitted) {
    state.ended = true;
    pna.nextTick(endReadableNT, state, stream);
  }
}

function endReadableNT(state, stream) {
  // Check that we didn't get one last unshift.
  if (!state.endEmitted && state.length === 0) {
    state.endEmitted = true;
    stream.readable = false;
    stream.emit('end');
  }
}

function indexOf(xs, x) {
  for (var i = 0, l = xs.length; i < l; i++) {
    if (xs[i] === x) return i;
  }
  return -1;
}
}).call(this,require('_process'),typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {})
},{"./_stream_duplex":22,"./internal/streams/BufferList":27,"./internal/streams/destroy":28,"./internal/streams/stream":29,"_process":21,"core-util-is":9,"events":10,"inherits":12,"isarray":14,"process-nextick-args":20,"safe-buffer":32,"string_decoder/":33,"util":7}],25:[function(require,module,exports){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

// a transform stream is a readable/writable stream where you do
// something with the data.  Sometimes it's called a "filter",
// but that's not a great name for it, since that implies a thing where
// some bits pass through, and others are simply ignored.  (That would
// be a valid example of a transform, of course.)
//
// While the output is causally related to the input, it's not a
// necessarily symmetric or synchronous transformation.  For example,
// a zlib stream might take multiple plain-text writes(), and then
// emit a single compressed chunk some time in the future.
//
// Here's how this works:
//
// The Transform stream has all the aspects of the readable and writable
// stream classes.  When you write(chunk), that calls _write(chunk,cb)
// internally, and returns false if there's a lot of pending writes
// buffered up.  When you call read(), that calls _read(n) until
// there's enough pending readable data buffered up.
//
// In a transform stream, the written data is placed in a buffer.  When
// _read(n) is called, it transforms the queued up data, calling the
// buffered _write cb's as it consumes chunks.  If consuming a single
// written chunk would result in multiple output chunks, then the first
// outputted bit calls the readcb, and subsequent chunks just go into
// the read buffer, and will cause it to emit 'readable' if necessary.
//
// This way, back-pressure is actually determined by the reading side,
// since _read has to be called to start processing a new chunk.  However,
// a pathological inflate type of transform can cause excessive buffering
// here.  For example, imagine a stream where every byte of input is
// interpreted as an integer from 0-255, and then results in that many
// bytes of output.  Writing the 4 bytes {ff,ff,ff,ff} would result in
// 1kb of data being output.  In this case, you could write a very small
// amount of input, and end up with a very large amount of output.  In
// such a pathological inflating mechanism, there'd be no way to tell
// the system to stop doing the transform.  A single 4MB write could
// cause the system to run out of memory.
//
// However, even in such a pathological case, only a single written chunk
// would be consumed, and then the rest would wait (un-transformed) until
// the results of the previous transformed chunk were consumed.

'use strict';

module.exports = Transform;

var Duplex = require('./_stream_duplex');

/*<replacement>*/
var util = Object.create(require('core-util-is'));
util.inherits = require('inherits');
/*</replacement>*/

util.inherits(Transform, Duplex);

function afterTransform(er, data) {
  var ts = this._transformState;
  ts.transforming = false;

  var cb = ts.writecb;

  if (!cb) {
    return this.emit('error', new Error('write callback called multiple times'));
  }

  ts.writechunk = null;
  ts.writecb = null;

  if (data != null) // single equals check for both `null` and `undefined`
    this.push(data);

  cb(er);

  var rs = this._readableState;
  rs.reading = false;
  if (rs.needReadable || rs.length < rs.highWaterMark) {
    this._read(rs.highWaterMark);
  }
}

function Transform(options) {
  if (!(this instanceof Transform)) return new Transform(options);

  Duplex.call(this, options);

  this._transformState = {
    afterTransform: afterTransform.bind(this),
    needTransform: false,
    transforming: false,
    writecb: null,
    writechunk: null,
    writeencoding: null
  };

  // start out asking for a readable event once data is transformed.
  this._readableState.needReadable = true;

  // we have implemented the _read method, and done the other things
  // that Readable wants before the first _read call, so unset the
  // sync guard flag.
  this._readableState.sync = false;

  if (options) {
    if (typeof options.transform === 'function') this._transform = options.transform;

    if (typeof options.flush === 'function') this._flush = options.flush;
  }

  // When the writable side finishes, then flush out anything remaining.
  this.on('prefinish', prefinish);
}

function prefinish() {
  var _this = this;

  if (typeof this._flush === 'function') {
    this._flush(function (er, data) {
      done(_this, er, data);
    });
  } else {
    done(this, null, null);
  }
}

Transform.prototype.push = function (chunk, encoding) {
  this._transformState.needTransform = false;
  return Duplex.prototype.push.call(this, chunk, encoding);
};

// This is the part where you do stuff!
// override this function in implementation classes.
// 'chunk' is an input chunk.
//
// Call `push(newChunk)` to pass along transformed output
// to the readable side.  You may call 'push' zero or more times.
//
// Call `cb(err)` when you are done with this chunk.  If you pass
// an error, then that'll put the hurt on the whole operation.  If you
// never call cb(), then you'll never get another chunk.
Transform.prototype._transform = function (chunk, encoding, cb) {
  throw new Error('_transform() is not implemented');
};

Transform.prototype._write = function (chunk, encoding, cb) {
  var ts = this._transformState;
  ts.writecb = cb;
  ts.writechunk = chunk;
  ts.writeencoding = encoding;
  if (!ts.transforming) {
    var rs = this._readableState;
    if (ts.needTransform || rs.needReadable || rs.length < rs.highWaterMark) this._read(rs.highWaterMark);
  }
};

// Doesn't matter what the args are here.
// _transform does all the work.
// That we got here means that the readable side wants more data.
Transform.prototype._read = function (n) {
  var ts = this._transformState;

  if (ts.writechunk !== null && ts.writecb && !ts.transforming) {
    ts.transforming = true;
    this._transform(ts.writechunk, ts.writeencoding, ts.afterTransform);
  } else {
    // mark that we need a transform, so that any data that comes in
    // will get processed, now that we've asked for it.
    ts.needTransform = true;
  }
};

Transform.prototype._destroy = function (err, cb) {
  var _this2 = this;

  Duplex.prototype._destroy.call(this, err, function (err2) {
    cb(err2);
    _this2.emit('close');
  });
};

function done(stream, er, data) {
  if (er) return stream.emit('error', er);

  if (data != null) // single equals check for both `null` and `undefined`
    stream.push(data);

  // if there's nothing in the write buffer, then that means
  // that nothing more will ever be provided
  if (stream._writableState.length) throw new Error('Calling transform done when ws.length != 0');

  if (stream._transformState.transforming) throw new Error('Calling transform done when still transforming');

  return stream.push(null);
}
},{"./_stream_duplex":22,"core-util-is":9,"inherits":12}],26:[function(require,module,exports){
(function (process,global,setImmediate){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

// A bit simpler than readable streams.
// Implement an async ._write(chunk, encoding, cb), and it'll handle all
// the drain event emission and buffering.

'use strict';

/*<replacement>*/

var pna = require('process-nextick-args');
/*</replacement>*/

module.exports = Writable;

/* <replacement> */
function WriteReq(chunk, encoding, cb) {
  this.chunk = chunk;
  this.encoding = encoding;
  this.callback = cb;
  this.next = null;
}

// It seems a linked list but it is not
// there will be only 2 of these for each stream
function CorkedRequest(state) {
  var _this = this;

  this.next = null;
  this.entry = null;
  this.finish = function () {
    onCorkedFinish(_this, state);
  };
}
/* </replacement> */

/*<replacement>*/
var asyncWrite = !process.browser && ['v0.10', 'v0.9.'].indexOf(process.version.slice(0, 5)) > -1 ? setImmediate : pna.nextTick;
/*</replacement>*/

/*<replacement>*/
var Duplex;
/*</replacement>*/

Writable.WritableState = WritableState;

/*<replacement>*/
var util = Object.create(require('core-util-is'));
util.inherits = require('inherits');
/*</replacement>*/

/*<replacement>*/
var internalUtil = {
  deprecate: require('util-deprecate')
};
/*</replacement>*/

/*<replacement>*/
var Stream = require('./internal/streams/stream');
/*</replacement>*/

/*<replacement>*/

var Buffer = require('safe-buffer').Buffer;
var OurUint8Array = global.Uint8Array || function () {};
function _uint8ArrayToBuffer(chunk) {
  return Buffer.from(chunk);
}
function _isUint8Array(obj) {
  return Buffer.isBuffer(obj) || obj instanceof OurUint8Array;
}

/*</replacement>*/

var destroyImpl = require('./internal/streams/destroy');

util.inherits(Writable, Stream);

function nop() {}

function WritableState(options, stream) {
  Duplex = Duplex || require('./_stream_duplex');

  options = options || {};

  // Duplex streams are both readable and writable, but share
  // the same options object.
  // However, some cases require setting options to different
  // values for the readable and the writable sides of the duplex stream.
  // These options can be provided separately as readableXXX and writableXXX.
  var isDuplex = stream instanceof Duplex;

  // object stream flag to indicate whether or not this stream
  // contains buffers or objects.
  this.objectMode = !!options.objectMode;

  if (isDuplex) this.objectMode = this.objectMode || !!options.writableObjectMode;

  // the point at which write() starts returning false
  // Note: 0 is a valid value, means that we always return false if
  // the entire buffer is not flushed immediately on write()
  var hwm = options.highWaterMark;
  var writableHwm = options.writableHighWaterMark;
  var defaultHwm = this.objectMode ? 16 : 16 * 1024;

  if (hwm || hwm === 0) this.highWaterMark = hwm;else if (isDuplex && (writableHwm || writableHwm === 0)) this.highWaterMark = writableHwm;else this.highWaterMark = defaultHwm;

  // cast to ints.
  this.highWaterMark = Math.floor(this.highWaterMark);

  // if _final has been called
  this.finalCalled = false;

  // drain event flag.
  this.needDrain = false;
  // at the start of calling end()
  this.ending = false;
  // when end() has been called, and returned
  this.ended = false;
  // when 'finish' is emitted
  this.finished = false;

  // has it been destroyed
  this.destroyed = false;

  // should we decode strings into buffers before passing to _write?
  // this is here so that some node-core streams can optimize string
  // handling at a lower level.
  var noDecode = options.decodeStrings === false;
  this.decodeStrings = !noDecode;

  // Crypto is kind of old and crusty.  Historically, its default string
  // encoding is 'binary' so we have to make this configurable.
  // Everything else in the universe uses 'utf8', though.
  this.defaultEncoding = options.defaultEncoding || 'utf8';

  // not an actual buffer we keep track of, but a measurement
  // of how much we're waiting to get pushed to some underlying
  // socket or file.
  this.length = 0;

  // a flag to see when we're in the middle of a write.
  this.writing = false;

  // when true all writes will be buffered until .uncork() call
  this.corked = 0;

  // a flag to be able to tell if the onwrite cb is called immediately,
  // or on a later tick.  We set this to true at first, because any
  // actions that shouldn't happen until "later" should generally also
  // not happen before the first write call.
  this.sync = true;

  // a flag to know if we're processing previously buffered items, which
  // may call the _write() callback in the same tick, so that we don't
  // end up in an overlapped onwrite situation.
  this.bufferProcessing = false;

  // the callback that's passed to _write(chunk,cb)
  this.onwrite = function (er) {
    onwrite(stream, er);
  };

  // the callback that the user supplies to write(chunk,encoding,cb)
  this.writecb = null;

  // the amount that is being written when _write is called.
  this.writelen = 0;

  this.bufferedRequest = null;
  this.lastBufferedRequest = null;

  // number of pending user-supplied write callbacks
  // this must be 0 before 'finish' can be emitted
  this.pendingcb = 0;

  // emit prefinish if the only thing we're waiting for is _write cbs
  // This is relevant for synchronous Transform streams
  this.prefinished = false;

  // True if the error was already emitted and should not be thrown again
  this.errorEmitted = false;

  // count buffered requests
  this.bufferedRequestCount = 0;

  // allocate the first CorkedRequest, there is always
  // one allocated and free to use, and we maintain at most two
  this.corkedRequestsFree = new CorkedRequest(this);
}

WritableState.prototype.getBuffer = function getBuffer() {
  var current = this.bufferedRequest;
  var out = [];
  while (current) {
    out.push(current);
    current = current.next;
  }
  return out;
};

(function () {
  try {
    Object.defineProperty(WritableState.prototype, 'buffer', {
      get: internalUtil.deprecate(function () {
        return this.getBuffer();
      }, '_writableState.buffer is deprecated. Use _writableState.getBuffer ' + 'instead.', 'DEP0003')
    });
  } catch (_) {}
})();

// Test _writableState for inheritance to account for Duplex streams,
// whose prototype chain only points to Readable.
var realHasInstance;
if (typeof Symbol === 'function' && Symbol.hasInstance && typeof Function.prototype[Symbol.hasInstance] === 'function') {
  realHasInstance = Function.prototype[Symbol.hasInstance];
  Object.defineProperty(Writable, Symbol.hasInstance, {
    value: function (object) {
      if (realHasInstance.call(this, object)) return true;
      if (this !== Writable) return false;

      return object && object._writableState instanceof WritableState;
    }
  });
} else {
  realHasInstance = function (object) {
    return object instanceof this;
  };
}

function Writable(options) {
  Duplex = Duplex || require('./_stream_duplex');

  // Writable ctor is applied to Duplexes, too.
  // `realHasInstance` is necessary because using plain `instanceof`
  // would return false, as no `_writableState` property is attached.

  // Trying to use the custom `instanceof` for Writable here will also break the
  // Node.js LazyTransform implementation, which has a non-trivial getter for
  // `_writableState` that would lead to infinite recursion.
  if (!realHasInstance.call(Writable, this) && !(this instanceof Duplex)) {
    return new Writable(options);
  }

  this._writableState = new WritableState(options, this);

  // legacy.
  this.writable = true;

  if (options) {
    if (typeof options.write === 'function') this._write = options.write;

    if (typeof options.writev === 'function') this._writev = options.writev;

    if (typeof options.destroy === 'function') this._destroy = options.destroy;

    if (typeof options.final === 'function') this._final = options.final;
  }

  Stream.call(this);
}

// Otherwise people can pipe Writable streams, which is just wrong.
Writable.prototype.pipe = function () {
  this.emit('error', new Error('Cannot pipe, not readable'));
};

function writeAfterEnd(stream, cb) {
  var er = new Error('write after end');
  // TODO: defer error events consistently everywhere, not just the cb
  stream.emit('error', er);
  pna.nextTick(cb, er);
}

// Checks that a user-supplied chunk is valid, especially for the particular
// mode the stream is in. Currently this means that `null` is never accepted
// and undefined/non-string values are only allowed in object mode.
function validChunk(stream, state, chunk, cb) {
  var valid = true;
  var er = false;

  if (chunk === null) {
    er = new TypeError('May not write null values to stream');
  } else if (typeof chunk !== 'string' && chunk !== undefined && !state.objectMode) {
    er = new TypeError('Invalid non-string/buffer chunk');
  }
  if (er) {
    stream.emit('error', er);
    pna.nextTick(cb, er);
    valid = false;
  }
  return valid;
}

Writable.prototype.write = function (chunk, encoding, cb) {
  var state = this._writableState;
  var ret = false;
  var isBuf = !state.objectMode && _isUint8Array(chunk);

  if (isBuf && !Buffer.isBuffer(chunk)) {
    chunk = _uint8ArrayToBuffer(chunk);
  }

  if (typeof encoding === 'function') {
    cb = encoding;
    encoding = null;
  }

  if (isBuf) encoding = 'buffer';else if (!encoding) encoding = state.defaultEncoding;

  if (typeof cb !== 'function') cb = nop;

  if (state.ended) writeAfterEnd(this, cb);else if (isBuf || validChunk(this, state, chunk, cb)) {
    state.pendingcb++;
    ret = writeOrBuffer(this, state, isBuf, chunk, encoding, cb);
  }

  return ret;
};

Writable.prototype.cork = function () {
  var state = this._writableState;

  state.corked++;
};

Writable.prototype.uncork = function () {
  var state = this._writableState;

  if (state.corked) {
    state.corked--;

    if (!state.writing && !state.corked && !state.finished && !state.bufferProcessing && state.bufferedRequest) clearBuffer(this, state);
  }
};

Writable.prototype.setDefaultEncoding = function setDefaultEncoding(encoding) {
  // node::ParseEncoding() requires lower case.
  if (typeof encoding === 'string') encoding = encoding.toLowerCase();
  if (!(['hex', 'utf8', 'utf-8', 'ascii', 'binary', 'base64', 'ucs2', 'ucs-2', 'utf16le', 'utf-16le', 'raw'].indexOf((encoding + '').toLowerCase()) > -1)) throw new TypeError('Unknown encoding: ' + encoding);
  this._writableState.defaultEncoding = encoding;
  return this;
};

function decodeChunk(state, chunk, encoding) {
  if (!state.objectMode && state.decodeStrings !== false && typeof chunk === 'string') {
    chunk = Buffer.from(chunk, encoding);
  }
  return chunk;
}

Object.defineProperty(Writable.prototype, 'writableHighWaterMark', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function () {
    return this._writableState.highWaterMark;
  }
});

// if we're already writing something, then just put this
// in the queue, and wait our turn.  Otherwise, call _write
// If we return false, then we need a drain event, so set that flag.
function writeOrBuffer(stream, state, isBuf, chunk, encoding, cb) {
  if (!isBuf) {
    var newChunk = decodeChunk(state, chunk, encoding);
    if (chunk !== newChunk) {
      isBuf = true;
      encoding = 'buffer';
      chunk = newChunk;
    }
  }
  var len = state.objectMode ? 1 : chunk.length;

  state.length += len;

  var ret = state.length < state.highWaterMark;
  // we must ensure that previous needDrain will not be reset to false.
  if (!ret) state.needDrain = true;

  if (state.writing || state.corked) {
    var last = state.lastBufferedRequest;
    state.lastBufferedRequest = {
      chunk: chunk,
      encoding: encoding,
      isBuf: isBuf,
      callback: cb,
      next: null
    };
    if (last) {
      last.next = state.lastBufferedRequest;
    } else {
      state.bufferedRequest = state.lastBufferedRequest;
    }
    state.bufferedRequestCount += 1;
  } else {
    doWrite(stream, state, false, len, chunk, encoding, cb);
  }

  return ret;
}

function doWrite(stream, state, writev, len, chunk, encoding, cb) {
  state.writelen = len;
  state.writecb = cb;
  state.writing = true;
  state.sync = true;
  if (writev) stream._writev(chunk, state.onwrite);else stream._write(chunk, encoding, state.onwrite);
  state.sync = false;
}

function onwriteError(stream, state, sync, er, cb) {
  --state.pendingcb;

  if (sync) {
    // defer the callback if we are being called synchronously
    // to avoid piling up things on the stack
    pna.nextTick(cb, er);
    // this can emit finish, and it will always happen
    // after error
    pna.nextTick(finishMaybe, stream, state);
    stream._writableState.errorEmitted = true;
    stream.emit('error', er);
  } else {
    // the caller expect this to happen before if
    // it is async
    cb(er);
    stream._writableState.errorEmitted = true;
    stream.emit('error', er);
    // this can emit finish, but finish must
    // always follow error
    finishMaybe(stream, state);
  }
}

function onwriteStateUpdate(state) {
  state.writing = false;
  state.writecb = null;
  state.length -= state.writelen;
  state.writelen = 0;
}

function onwrite(stream, er) {
  var state = stream._writableState;
  var sync = state.sync;
  var cb = state.writecb;

  onwriteStateUpdate(state);

  if (er) onwriteError(stream, state, sync, er, cb);else {
    // Check if we're actually ready to finish, but don't emit yet
    var finished = needFinish(state);

    if (!finished && !state.corked && !state.bufferProcessing && state.bufferedRequest) {
      clearBuffer(stream, state);
    }

    if (sync) {
      /*<replacement>*/
      asyncWrite(afterWrite, stream, state, finished, cb);
      /*</replacement>*/
    } else {
      afterWrite(stream, state, finished, cb);
    }
  }
}

function afterWrite(stream, state, finished, cb) {
  if (!finished) onwriteDrain(stream, state);
  state.pendingcb--;
  cb();
  finishMaybe(stream, state);
}

// Must force callback to be called on nextTick, so that we don't
// emit 'drain' before the write() consumer gets the 'false' return
// value, and has a chance to attach a 'drain' listener.
function onwriteDrain(stream, state) {
  if (state.length === 0 && state.needDrain) {
    state.needDrain = false;
    stream.emit('drain');
  }
}

// if there's something in the buffer waiting, then process it
function clearBuffer(stream, state) {
  state.bufferProcessing = true;
  var entry = state.bufferedRequest;

  if (stream._writev && entry && entry.next) {
    // Fast case, write everything using _writev()
    var l = state.bufferedRequestCount;
    var buffer = new Array(l);
    var holder = state.corkedRequestsFree;
    holder.entry = entry;

    var count = 0;
    var allBuffers = true;
    while (entry) {
      buffer[count] = entry;
      if (!entry.isBuf) allBuffers = false;
      entry = entry.next;
      count += 1;
    }
    buffer.allBuffers = allBuffers;

    doWrite(stream, state, true, state.length, buffer, '', holder.finish);

    // doWrite is almost always async, defer these to save a bit of time
    // as the hot path ends with doWrite
    state.pendingcb++;
    state.lastBufferedRequest = null;
    if (holder.next) {
      state.corkedRequestsFree = holder.next;
      holder.next = null;
    } else {
      state.corkedRequestsFree = new CorkedRequest(state);
    }
    state.bufferedRequestCount = 0;
  } else {
    // Slow case, write chunks one-by-one
    while (entry) {
      var chunk = entry.chunk;
      var encoding = entry.encoding;
      var cb = entry.callback;
      var len = state.objectMode ? 1 : chunk.length;

      doWrite(stream, state, false, len, chunk, encoding, cb);
      entry = entry.next;
      state.bufferedRequestCount--;
      // if we didn't call the onwrite immediately, then
      // it means that we need to wait until it does.
      // also, that means that the chunk and cb are currently
      // being processed, so move the buffer counter past them.
      if (state.writing) {
        break;
      }
    }

    if (entry === null) state.lastBufferedRequest = null;
  }

  state.bufferedRequest = entry;
  state.bufferProcessing = false;
}

Writable.prototype._write = function (chunk, encoding, cb) {
  cb(new Error('_write() is not implemented'));
};

Writable.prototype._writev = null;

Writable.prototype.end = function (chunk, encoding, cb) {
  var state = this._writableState;

  if (typeof chunk === 'function') {
    cb = chunk;
    chunk = null;
    encoding = null;
  } else if (typeof encoding === 'function') {
    cb = encoding;
    encoding = null;
  }

  if (chunk !== null && chunk !== undefined) this.write(chunk, encoding);

  // .end() fully uncorks
  if (state.corked) {
    state.corked = 1;
    this.uncork();
  }

  // ignore unnecessary end() calls.
  if (!state.ending && !state.finished) endWritable(this, state, cb);
};

function needFinish(state) {
  return state.ending && state.length === 0 && state.bufferedRequest === null && !state.finished && !state.writing;
}
function callFinal(stream, state) {
  stream._final(function (err) {
    state.pendingcb--;
    if (err) {
      stream.emit('error', err);
    }
    state.prefinished = true;
    stream.emit('prefinish');
    finishMaybe(stream, state);
  });
}
function prefinish(stream, state) {
  if (!state.prefinished && !state.finalCalled) {
    if (typeof stream._final === 'function') {
      state.pendingcb++;
      state.finalCalled = true;
      pna.nextTick(callFinal, stream, state);
    } else {
      state.prefinished = true;
      stream.emit('prefinish');
    }
  }
}

function finishMaybe(stream, state) {
  var need = needFinish(state);
  if (need) {
    prefinish(stream, state);
    if (state.pendingcb === 0) {
      state.finished = true;
      stream.emit('finish');
    }
  }
  return need;
}

function endWritable(stream, state, cb) {
  state.ending = true;
  finishMaybe(stream, state);
  if (cb) {
    if (state.finished) pna.nextTick(cb);else stream.once('finish', cb);
  }
  state.ended = true;
  stream.writable = false;
}

function onCorkedFinish(corkReq, state, err) {
  var entry = corkReq.entry;
  corkReq.entry = null;
  while (entry) {
    var cb = entry.callback;
    state.pendingcb--;
    cb(err);
    entry = entry.next;
  }
  if (state.corkedRequestsFree) {
    state.corkedRequestsFree.next = corkReq;
  } else {
    state.corkedRequestsFree = corkReq;
  }
}

Object.defineProperty(Writable.prototype, 'destroyed', {
  get: function () {
    if (this._writableState === undefined) {
      return false;
    }
    return this._writableState.destroyed;
  },
  set: function (value) {
    // we ignore the value if the stream
    // has not been initialized yet
    if (!this._writableState) {
      return;
    }

    // backward compatibility, the user is explicitly
    // managing destroyed
    this._writableState.destroyed = value;
  }
});

Writable.prototype.destroy = destroyImpl.destroy;
Writable.prototype._undestroy = destroyImpl.undestroy;
Writable.prototype._destroy = function (err, cb) {
  this.end();
  cb(err);
};
}).call(this,require('_process'),typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {},require("timers").setImmediate)
},{"./_stream_duplex":22,"./internal/streams/destroy":28,"./internal/streams/stream":29,"_process":21,"core-util-is":9,"inherits":12,"process-nextick-args":20,"safe-buffer":32,"timers":35,"util-deprecate":36}],27:[function(require,module,exports){
'use strict';

function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } }

var Buffer = require('safe-buffer').Buffer;
var util = require('util');

function copyBuffer(src, target, offset) {
  src.copy(target, offset);
}

module.exports = function () {
  function BufferList() {
    _classCallCheck(this, BufferList);

    this.head = null;
    this.tail = null;
    this.length = 0;
  }

  BufferList.prototype.push = function push(v) {
    var entry = { data: v, next: null };
    if (this.length > 0) this.tail.next = entry;else this.head = entry;
    this.tail = entry;
    ++this.length;
  };

  BufferList.prototype.unshift = function unshift(v) {
    var entry = { data: v, next: this.head };
    if (this.length === 0) this.tail = entry;
    this.head = entry;
    ++this.length;
  };

  BufferList.prototype.shift = function shift() {
    if (this.length === 0) return;
    var ret = this.head.data;
    if (this.length === 1) this.head = this.tail = null;else this.head = this.head.next;
    --this.length;
    return ret;
  };

  BufferList.prototype.clear = function clear() {
    this.head = this.tail = null;
    this.length = 0;
  };

  BufferList.prototype.join = function join(s) {
    if (this.length === 0) return '';
    var p = this.head;
    var ret = '' + p.data;
    while (p = p.next) {
      ret += s + p.data;
    }return ret;
  };

  BufferList.prototype.concat = function concat(n) {
    if (this.length === 0) return Buffer.alloc(0);
    if (this.length === 1) return this.head.data;
    var ret = Buffer.allocUnsafe(n >>> 0);
    var p = this.head;
    var i = 0;
    while (p) {
      copyBuffer(p.data, ret, i);
      i += p.data.length;
      p = p.next;
    }
    return ret;
  };

  return BufferList;
}();

if (util && util.inspect && util.inspect.custom) {
  module.exports.prototype[util.inspect.custom] = function () {
    var obj = util.inspect({ length: this.length });
    return this.constructor.name + ' ' + obj;
  };
}
},{"safe-buffer":32,"util":7}],28:[function(require,module,exports){
'use strict';

/*<replacement>*/

var pna = require('process-nextick-args');
/*</replacement>*/

// undocumented cb() API, needed for core, not for public API
function destroy(err, cb) {
  var _this = this;

  var readableDestroyed = this._readableState && this._readableState.destroyed;
  var writableDestroyed = this._writableState && this._writableState.destroyed;

  if (readableDestroyed || writableDestroyed) {
    if (cb) {
      cb(err);
    } else if (err && (!this._writableState || !this._writableState.errorEmitted)) {
      pna.nextTick(emitErrorNT, this, err);
    }
    return this;
  }

  // we set destroyed to true before firing error callbacks in order
  // to make it re-entrance safe in case destroy() is called within callbacks

  if (this._readableState) {
    this._readableState.destroyed = true;
  }

  // if this is a duplex stream mark the writable part as destroyed as well
  if (this._writableState) {
    this._writableState.destroyed = true;
  }

  this._destroy(err || null, function (err) {
    if (!cb && err) {
      pna.nextTick(emitErrorNT, _this, err);
      if (_this._writableState) {
        _this._writableState.errorEmitted = true;
      }
    } else if (cb) {
      cb(err);
    }
  });

  return this;
}

function undestroy() {
  if (this._readableState) {
    this._readableState.destroyed = false;
    this._readableState.reading = false;
    this._readableState.ended = false;
    this._readableState.endEmitted = false;
  }

  if (this._writableState) {
    this._writableState.destroyed = false;
    this._writableState.ended = false;
    this._writableState.ending = false;
    this._writableState.finished = false;
    this._writableState.errorEmitted = false;
  }
}

function emitErrorNT(self, err) {
  self.emit('error', err);
}

module.exports = {
  destroy: destroy,
  undestroy: undestroy
};
},{"process-nextick-args":20}],29:[function(require,module,exports){
module.exports = require('events').EventEmitter;

},{"events":10}],30:[function(require,module,exports){
exports = module.exports = require('./lib/_stream_readable.js');
exports.Stream = exports;
exports.Readable = exports;
exports.Writable = require('./lib/_stream_writable.js');
exports.Duplex = require('./lib/_stream_duplex.js');
exports.Transform = require('./lib/_stream_transform.js');
exports.PassThrough = require('./lib/_stream_passthrough.js');

},{"./lib/_stream_duplex.js":22,"./lib/_stream_passthrough.js":23,"./lib/_stream_readable.js":24,"./lib/_stream_transform.js":25,"./lib/_stream_writable.js":26}],31:[function(require,module,exports){
/*! @license Rematrix v0.7.0

	Copyright 2020 Julian Lloyd.

	Permission is hereby granted, free of charge, to any person obtaining a copy
	of this software and associated documentation files (the "Software"), to deal
	in the Software without restriction, including without limitation the rights
	to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
	copies of the Software, and to permit persons to whom the Software is
	furnished to do so, subject to the following conditions:

	The above copyright notice and this permission notice shall be included in
	all copies or substantial portions of the Software.

	THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
	IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
	FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
	AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
	LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
	OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
	THE SOFTWARE.
*/
(function (global, factory) {
  typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
  typeof define === 'function' && define.amd ? define(['exports'], factory) :
  (global = global || self, factory(global.Rematrix = {}));
}(this, (function (exports) { 'use strict';

  function format(source) {
    if (source && source.constructor === Array) {
      var values = source
        .filter(function (value) { return typeof value === 'number'; })
        .filter(function (value) { return !isNaN(value); });

      if (source.length === 6 && values.length === 6) {
        var matrix = identity();
        matrix[0] = values[0];
        matrix[1] = values[1];
        matrix[4] = values[2];
        matrix[5] = values[3];
        matrix[12] = values[4];
        matrix[13] = values[5];
        return matrix
      } else if (source.length === 16 && values.length === 16) {
        return source
      }
    }
    throw new TypeError('Expected a `number[]` with length 6 or 16.')
  }

  function fromString(source) {
    if (typeof source === 'string') {
      var match = source.match(/matrix(3d)?\(([^)]+)\)/);
      if (match) {
        var raw = match[2].split(', ').map(parseFloat);
        return format(raw)
      }
    }
    throw new TypeError('Expected a string containing `matrix()` or `matrix3d()')
  }

  function identity() {
    var matrix = [];
    for (var i = 0; i < 16; i++) {
      i % 5 == 0 ? matrix.push(1) : matrix.push(0);
    }
    return matrix
  }

  function inverse(source) {
    var m = format(source);

    var s0 = m[0] * m[5] - m[4] * m[1];
    var s1 = m[0] * m[6] - m[4] * m[2];
    var s2 = m[0] * m[7] - m[4] * m[3];
    var s3 = m[1] * m[6] - m[5] * m[2];
    var s4 = m[1] * m[7] - m[5] * m[3];
    var s5 = m[2] * m[7] - m[6] * m[3];

    var c5 = m[10] * m[15] - m[14] * m[11];
    var c4 = m[9] * m[15] - m[13] * m[11];
    var c3 = m[9] * m[14] - m[13] * m[10];
    var c2 = m[8] * m[15] - m[12] * m[11];
    var c1 = m[8] * m[14] - m[12] * m[10];
    var c0 = m[8] * m[13] - m[12] * m[9];

    var determinant = 1 / (s0 * c5 - s1 * c4 + s2 * c3 + s3 * c2 - s4 * c1 + s5 * c0);

    if (isNaN(determinant) || determinant === Infinity) {
      throw new Error('Inverse determinant attempted to divide by zero.')
    }

    return [
      (m[5] * c5 - m[6] * c4 + m[7] * c3) * determinant,
      (-m[1] * c5 + m[2] * c4 - m[3] * c3) * determinant,
      (m[13] * s5 - m[14] * s4 + m[15] * s3) * determinant,
      (-m[9] * s5 + m[10] * s4 - m[11] * s3) * determinant,

      (-m[4] * c5 + m[6] * c2 - m[7] * c1) * determinant,
      (m[0] * c5 - m[2] * c2 + m[3] * c1) * determinant,
      (-m[12] * s5 + m[14] * s2 - m[15] * s1) * determinant,
      (m[8] * s5 - m[10] * s2 + m[11] * s1) * determinant,

      (m[4] * c4 - m[5] * c2 + m[7] * c0) * determinant,
      (-m[0] * c4 + m[1] * c2 - m[3] * c0) * determinant,
      (m[12] * s4 - m[13] * s2 + m[15] * s0) * determinant,
      (-m[8] * s4 + m[9] * s2 - m[11] * s0) * determinant,

      (-m[4] * c3 + m[5] * c1 - m[6] * c0) * determinant,
      (m[0] * c3 - m[1] * c1 + m[2] * c0) * determinant,
      (-m[12] * s3 + m[13] * s1 - m[14] * s0) * determinant,
      (m[8] * s3 - m[9] * s1 + m[10] * s0) * determinant ]
  }

  function multiply(matrixA, matrixB) {
    var fma = format(matrixA);
    var fmb = format(matrixB);
    var product = [];

    for (var i = 0; i < 4; i++) {
      var row = [fma[i], fma[i + 4], fma[i + 8], fma[i + 12]];
      for (var j = 0; j < 4; j++) {
        var k = j * 4;
        var col = [fmb[k], fmb[k + 1], fmb[k + 2], fmb[k + 3]];
        var result = row[0] * col[0] + row[1] * col[1] + row[2] * col[2] + row[3] * col[3];

        product[i + k] = result;
      }
    }

    return product
  }

  function perspective(distance) {
    var matrix = identity();
    matrix[11] = -1 / distance;
    return matrix
  }

  function rotate(angle) {
    return rotateZ(angle)
  }

  function rotateX(angle) {
    var theta = (Math.PI / 180) * angle;
    var matrix = identity();

    matrix[5] = matrix[10] = Math.cos(theta);
    matrix[6] = matrix[9] = Math.sin(theta);
    matrix[9] *= -1;

    return matrix
  }

  function rotateY(angle) {
    var theta = (Math.PI / 180) * angle;
    var matrix = identity();

    matrix[0] = matrix[10] = Math.cos(theta);
    matrix[2] = matrix[8] = Math.sin(theta);
    matrix[2] *= -1;

    return matrix
  }

  function rotateZ(angle) {
    var theta = (Math.PI / 180) * angle;
    var matrix = identity();

    matrix[0] = matrix[5] = Math.cos(theta);
    matrix[1] = matrix[4] = Math.sin(theta);
    matrix[4] *= -1;

    return matrix
  }

  function scale(scalar, scalarY) {
    var matrix = identity();

    matrix[0] = scalar;
    matrix[5] = typeof scalarY === 'number' ? scalarY : scalar;

    return matrix
  }

  function scaleX(scalar) {
    var matrix = identity();
    matrix[0] = scalar;
    return matrix
  }

  function scaleY(scalar) {
    var matrix = identity();
    matrix[5] = scalar;
    return matrix
  }

  function scaleZ(scalar) {
    var matrix = identity();
    matrix[10] = scalar;
    return matrix
  }

  function skew(angleX, angleY) {
    var thetaX = (Math.PI / 180) * angleX;
    var matrix = identity();

    matrix[4] = Math.tan(thetaX);

    if (angleY) {
      var thetaY = (Math.PI / 180) * angleY;
      matrix[1] = Math.tan(thetaY);
    }

    return matrix
  }

  function skewX(angle) {
    var theta = (Math.PI / 180) * angle;
    var matrix = identity();

    matrix[4] = Math.tan(theta);

    return matrix
  }

  function skewY(angle) {
    var theta = (Math.PI / 180) * angle;
    var matrix = identity();

    matrix[1] = Math.tan(theta);

    return matrix
  }

  function toString(source) {
    return ("matrix3d(" + (format(source).join(', ')) + ")")
  }

  function translate(distanceX, distanceY) {
    var matrix = identity();
    matrix[12] = distanceX;

    if (distanceY) {
      matrix[13] = distanceY;
    }

    return matrix
  }

  function translate3d(distanceX, distanceY, distanceZ) {
    var matrix = identity();
    if (distanceX !== undefined && distanceY !== undefined && distanceZ !== undefined) {
      matrix[12] = distanceX;
      matrix[13] = distanceY;
      matrix[14] = distanceZ;
    }
    return matrix
  }

  function translateX(distance) {
    var matrix = identity();
    matrix[12] = distance;
    return matrix
  }

  function translateY(distance) {
    var matrix = identity();
    matrix[13] = distance;
    return matrix
  }

  function translateZ(distance) {
    var matrix = identity();
    matrix[14] = distance;
    return matrix
  }

  exports.format = format;
  exports.fromString = fromString;
  exports.identity = identity;
  exports.inverse = inverse;
  exports.multiply = multiply;
  exports.perspective = perspective;
  exports.rotate = rotate;
  exports.rotateX = rotateX;
  exports.rotateY = rotateY;
  exports.rotateZ = rotateZ;
  exports.scale = scale;
  exports.scaleX = scaleX;
  exports.scaleY = scaleY;
  exports.scaleZ = scaleZ;
  exports.skew = skew;
  exports.skewX = skewX;
  exports.skewY = skewY;
  exports.toString = toString;
  exports.translate = translate;
  exports.translate3d = translate3d;
  exports.translateX = translateX;
  exports.translateY = translateY;
  exports.translateZ = translateZ;

  Object.defineProperty(exports, '__esModule', { value: true });

})));

},{}],32:[function(require,module,exports){
/* eslint-disable node/no-deprecated-api */
var buffer = require('buffer')
var Buffer = buffer.Buffer

// alternative to using Object.keys for old browsers
function copyProps (src, dst) {
  for (var key in src) {
    dst[key] = src[key]
  }
}
if (Buffer.from && Buffer.alloc && Buffer.allocUnsafe && Buffer.allocUnsafeSlow) {
  module.exports = buffer
} else {
  // Copy properties from require('buffer')
  copyProps(buffer, exports)
  exports.Buffer = SafeBuffer
}

function SafeBuffer (arg, encodingOrOffset, length) {
  return Buffer(arg, encodingOrOffset, length)
}

// Copy static methods from Buffer
copyProps(Buffer, SafeBuffer)

SafeBuffer.from = function (arg, encodingOrOffset, length) {
  if (typeof arg === 'number') {
    throw new TypeError('Argument must not be a number')
  }
  return Buffer(arg, encodingOrOffset, length)
}

SafeBuffer.alloc = function (size, fill, encoding) {
  if (typeof size !== 'number') {
    throw new TypeError('Argument must be a number')
  }
  var buf = Buffer(size)
  if (fill !== undefined) {
    if (typeof encoding === 'string') {
      buf.fill(fill, encoding)
    } else {
      buf.fill(fill)
    }
  } else {
    buf.fill(0)
  }
  return buf
}

SafeBuffer.allocUnsafe = function (size) {
  if (typeof size !== 'number') {
    throw new TypeError('Argument must be a number')
  }
  return Buffer(size)
}

SafeBuffer.allocUnsafeSlow = function (size) {
  if (typeof size !== 'number') {
    throw new TypeError('Argument must be a number')
  }
  return buffer.SlowBuffer(size)
}

},{"buffer":8}],33:[function(require,module,exports){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

'use strict';

/*<replacement>*/

var Buffer = require('safe-buffer').Buffer;
/*</replacement>*/

var isEncoding = Buffer.isEncoding || function (encoding) {
  encoding = '' + encoding;
  switch (encoding && encoding.toLowerCase()) {
    case 'hex':case 'utf8':case 'utf-8':case 'ascii':case 'binary':case 'base64':case 'ucs2':case 'ucs-2':case 'utf16le':case 'utf-16le':case 'raw':
      return true;
    default:
      return false;
  }
};

function _normalizeEncoding(enc) {
  if (!enc) return 'utf8';
  var retried;
  while (true) {
    switch (enc) {
      case 'utf8':
      case 'utf-8':
        return 'utf8';
      case 'ucs2':
      case 'ucs-2':
      case 'utf16le':
      case 'utf-16le':
        return 'utf16le';
      case 'latin1':
      case 'binary':
        return 'latin1';
      case 'base64':
      case 'ascii':
      case 'hex':
        return enc;
      default:
        if (retried) return; // undefined
        enc = ('' + enc).toLowerCase();
        retried = true;
    }
  }
};

// Do not cache `Buffer.isEncoding` when checking encoding names as some
// modules monkey-patch it to support additional encodings
function normalizeEncoding(enc) {
  var nenc = _normalizeEncoding(enc);
  if (typeof nenc !== 'string' && (Buffer.isEncoding === isEncoding || !isEncoding(enc))) throw new Error('Unknown encoding: ' + enc);
  return nenc || enc;
}

// StringDecoder provides an interface for efficiently splitting a series of
// buffers into a series of JS strings without breaking apart multi-byte
// characters.
exports.StringDecoder = StringDecoder;
function StringDecoder(encoding) {
  this.encoding = normalizeEncoding(encoding);
  var nb;
  switch (this.encoding) {
    case 'utf16le':
      this.text = utf16Text;
      this.end = utf16End;
      nb = 4;
      break;
    case 'utf8':
      this.fillLast = utf8FillLast;
      nb = 4;
      break;
    case 'base64':
      this.text = base64Text;
      this.end = base64End;
      nb = 3;
      break;
    default:
      this.write = simpleWrite;
      this.end = simpleEnd;
      return;
  }
  this.lastNeed = 0;
  this.lastTotal = 0;
  this.lastChar = Buffer.allocUnsafe(nb);
}

StringDecoder.prototype.write = function (buf) {
  if (buf.length === 0) return '';
  var r;
  var i;
  if (this.lastNeed) {
    r = this.fillLast(buf);
    if (r === undefined) return '';
    i = this.lastNeed;
    this.lastNeed = 0;
  } else {
    i = 0;
  }
  if (i < buf.length) return r ? r + this.text(buf, i) : this.text(buf, i);
  return r || '';
};

StringDecoder.prototype.end = utf8End;

// Returns only complete characters in a Buffer
StringDecoder.prototype.text = utf8Text;

// Attempts to complete a partial non-UTF-8 character using bytes from a Buffer
StringDecoder.prototype.fillLast = function (buf) {
  if (this.lastNeed <= buf.length) {
    buf.copy(this.lastChar, this.lastTotal - this.lastNeed, 0, this.lastNeed);
    return this.lastChar.toString(this.encoding, 0, this.lastTotal);
  }
  buf.copy(this.lastChar, this.lastTotal - this.lastNeed, 0, buf.length);
  this.lastNeed -= buf.length;
};

// Checks the type of a UTF-8 byte, whether it's ASCII, a leading byte, or a
// continuation byte. If an invalid byte is detected, -2 is returned.
function utf8CheckByte(byte) {
  if (byte <= 0x7F) return 0;else if (byte >> 5 === 0x06) return 2;else if (byte >> 4 === 0x0E) return 3;else if (byte >> 3 === 0x1E) return 4;
  return byte >> 6 === 0x02 ? -1 : -2;
}

// Checks at most 3 bytes at the end of a Buffer in order to detect an
// incomplete multi-byte UTF-8 character. The total number of bytes (2, 3, or 4)
// needed to complete the UTF-8 character (if applicable) are returned.
function utf8CheckIncomplete(self, buf, i) {
  var j = buf.length - 1;
  if (j < i) return 0;
  var nb = utf8CheckByte(buf[j]);
  if (nb >= 0) {
    if (nb > 0) self.lastNeed = nb - 1;
    return nb;
  }
  if (--j < i || nb === -2) return 0;
  nb = utf8CheckByte(buf[j]);
  if (nb >= 0) {
    if (nb > 0) self.lastNeed = nb - 2;
    return nb;
  }
  if (--j < i || nb === -2) return 0;
  nb = utf8CheckByte(buf[j]);
  if (nb >= 0) {
    if (nb > 0) {
      if (nb === 2) nb = 0;else self.lastNeed = nb - 3;
    }
    return nb;
  }
  return 0;
}

// Validates as many continuation bytes for a multi-byte UTF-8 character as
// needed or are available. If we see a non-continuation byte where we expect
// one, we "replace" the validated continuation bytes we've seen so far with
// a single UTF-8 replacement character ('\ufffd'), to match v8's UTF-8 decoding
// behavior. The continuation byte check is included three times in the case
// where all of the continuation bytes for a character exist in the same buffer.
// It is also done this way as a slight performance increase instead of using a
// loop.
function utf8CheckExtraBytes(self, buf, p) {
  if ((buf[0] & 0xC0) !== 0x80) {
    self.lastNeed = 0;
    return '\ufffd';
  }
  if (self.lastNeed > 1 && buf.length > 1) {
    if ((buf[1] & 0xC0) !== 0x80) {
      self.lastNeed = 1;
      return '\ufffd';
    }
    if (self.lastNeed > 2 && buf.length > 2) {
      if ((buf[2] & 0xC0) !== 0x80) {
        self.lastNeed = 2;
        return '\ufffd';
      }
    }
  }
}

// Attempts to complete a multi-byte UTF-8 character using bytes from a Buffer.
function utf8FillLast(buf) {
  var p = this.lastTotal - this.lastNeed;
  var r = utf8CheckExtraBytes(this, buf, p);
  if (r !== undefined) return r;
  if (this.lastNeed <= buf.length) {
    buf.copy(this.lastChar, p, 0, this.lastNeed);
    return this.lastChar.toString(this.encoding, 0, this.lastTotal);
  }
  buf.copy(this.lastChar, p, 0, buf.length);
  this.lastNeed -= buf.length;
}

// Returns all complete UTF-8 characters in a Buffer. If the Buffer ended on a
// partial character, the character's bytes are buffered until the required
// number of bytes are available.
function utf8Text(buf, i) {
  var total = utf8CheckIncomplete(this, buf, i);
  if (!this.lastNeed) return buf.toString('utf8', i);
  this.lastTotal = total;
  var end = buf.length - (total - this.lastNeed);
  buf.copy(this.lastChar, 0, end);
  return buf.toString('utf8', i, end);
}

// For UTF-8, a replacement character is added when ending on a partial
// character.
function utf8End(buf) {
  var r = buf && buf.length ? this.write(buf) : '';
  if (this.lastNeed) return r + '\ufffd';
  return r;
}

// UTF-16LE typically needs two bytes per character, but even if we have an even
// number of bytes available, we need to check if we end on a leading/high
// surrogate. In that case, we need to wait for the next two bytes in order to
// decode the last character properly.
function utf16Text(buf, i) {
  if ((buf.length - i) % 2 === 0) {
    var r = buf.toString('utf16le', i);
    if (r) {
      var c = r.charCodeAt(r.length - 1);
      if (c >= 0xD800 && c <= 0xDBFF) {
        this.lastNeed = 2;
        this.lastTotal = 4;
        this.lastChar[0] = buf[buf.length - 2];
        this.lastChar[1] = buf[buf.length - 1];
        return r.slice(0, -1);
      }
    }
    return r;
  }
  this.lastNeed = 1;
  this.lastTotal = 2;
  this.lastChar[0] = buf[buf.length - 1];
  return buf.toString('utf16le', i, buf.length - 1);
}

// For UTF-16LE we do not explicitly append special replacement characters if we
// end on a partial character, we simply let v8 handle that.
function utf16End(buf) {
  var r = buf && buf.length ? this.write(buf) : '';
  if (this.lastNeed) {
    var end = this.lastTotal - this.lastNeed;
    return r + this.lastChar.toString('utf16le', 0, end);
  }
  return r;
}

function base64Text(buf, i) {
  var n = (buf.length - i) % 3;
  if (n === 0) return buf.toString('base64', i);
  this.lastNeed = 3 - n;
  this.lastTotal = 3;
  if (n === 1) {
    this.lastChar[0] = buf[buf.length - 1];
  } else {
    this.lastChar[0] = buf[buf.length - 2];
    this.lastChar[1] = buf[buf.length - 1];
  }
  return buf.toString('base64', i, buf.length - n);
}

function base64End(buf) {
  var r = buf && buf.length ? this.write(buf) : '';
  if (this.lastNeed) return r + this.lastChar.toString('base64', 0, 3 - this.lastNeed);
  return r;
}

// Pass bytes on through for single-byte encodings (e.g. ascii, latin1, hex)
function simpleWrite(buf) {
  return buf.toString(this.encoding);
}

function simpleEnd(buf) {
  return buf && buf.length ? this.write(buf) : '';
}
},{"safe-buffer":32}],34:[function(require,module,exports){
(function (global, factory) {
	typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
	typeof define === 'function' && define.amd ? define(['exports'], factory) :
	(global = global || self, factory(global.THREE = {}));
}(this, (function (exports) { 'use strict';

	// Polyfills

	if ( Number.EPSILON === undefined ) {

		Number.EPSILON = Math.pow( 2, - 52 );

	}

	if ( Number.isInteger === undefined ) {

		// Missing in IE
		// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger

		Number.isInteger = function ( value ) {

			return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value;

		};

	}

	//

	if ( Math.sign === undefined ) {

		// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign

		Math.sign = function ( x ) {

			return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;

		};

	}

	if ( 'name' in Function.prototype === false ) {

		// Missing in IE
		// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name

		Object.defineProperty( Function.prototype, 'name', {

			get: function () {

				return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ];

			}

		} );

	}

	if ( Object.assign === undefined ) {

		// Missing in IE
		// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

		Object.assign = function ( target ) {

			if ( target === undefined || target === null ) {

				throw new TypeError( 'Cannot convert undefined or null to object' );

			}

			var output = Object( target );

			for ( var index = 1; index < arguments.length; index ++ ) {

				var source = arguments[ index ];

				if ( source !== undefined && source !== null ) {

					for ( var nextKey in source ) {

						if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) {

							output[ nextKey ] = source[ nextKey ];

						}

					}

				}

			}

			return output;

		};

	}

	var REVISION = '116';
	var MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 };
	var TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 };
	var CullFaceNone = 0;
	var CullFaceBack = 1;
	var CullFaceFront = 2;
	var CullFaceFrontBack = 3;
	var FrontFaceDirectionCW = 0;
	var FrontFaceDirectionCCW = 1;
	var BasicShadowMap = 0;
	var PCFShadowMap = 1;
	var PCFSoftShadowMap = 2;
	var VSMShadowMap = 3;
	var FrontSide = 0;
	var BackSide = 1;
	var DoubleSide = 2;
	var FlatShading = 1;
	var SmoothShading = 2;
	var NoBlending = 0;
	var NormalBlending = 1;
	var AdditiveBlending = 2;
	var SubtractiveBlending = 3;
	var MultiplyBlending = 4;
	var CustomBlending = 5;
	var AddEquation = 100;
	var SubtractEquation = 101;
	var ReverseSubtractEquation = 102;
	var MinEquation = 103;
	var MaxEquation = 104;
	var ZeroFactor = 200;
	var OneFactor = 201;
	var SrcColorFactor = 202;
	var OneMinusSrcColorFactor = 203;
	var SrcAlphaFactor = 204;
	var OneMinusSrcAlphaFactor = 205;
	var DstAlphaFactor = 206;
	var OneMinusDstAlphaFactor = 207;
	var DstColorFactor = 208;
	var OneMinusDstColorFactor = 209;
	var SrcAlphaSaturateFactor = 210;
	var NeverDepth = 0;
	var AlwaysDepth = 1;
	var LessDepth = 2;
	var LessEqualDepth = 3;
	var EqualDepth = 4;
	var GreaterEqualDepth = 5;
	var GreaterDepth = 6;
	var NotEqualDepth = 7;
	var MultiplyOperation = 0;
	var MixOperation = 1;
	var AddOperation = 2;
	var NoToneMapping = 0;
	var LinearToneMapping = 1;
	var ReinhardToneMapping = 2;
	var Uncharted2ToneMapping = 3;
	var CineonToneMapping = 4;
	var ACESFilmicToneMapping = 5;

	var UVMapping = 300;
	var CubeReflectionMapping = 301;
	var CubeRefractionMapping = 302;
	var EquirectangularReflectionMapping = 303;
	var EquirectangularRefractionMapping = 304;
	var SphericalReflectionMapping = 305;
	var CubeUVReflectionMapping = 306;
	var CubeUVRefractionMapping = 307;
	var RepeatWrapping = 1000;
	var ClampToEdgeWrapping = 1001;
	var MirroredRepeatWrapping = 1002;
	var NearestFilter = 1003;
	var NearestMipmapNearestFilter = 1004;
	var NearestMipMapNearestFilter = 1004;
	var NearestMipmapLinearFilter = 1005;
	var NearestMipMapLinearFilter = 1005;
	var LinearFilter = 1006;
	var LinearMipmapNearestFilter = 1007;
	var LinearMipMapNearestFilter = 1007;
	var LinearMipmapLinearFilter = 1008;
	var LinearMipMapLinearFilter = 1008;
	var UnsignedByteType = 1009;
	var ByteType = 1010;
	var ShortType = 1011;
	var UnsignedShortType = 1012;
	var IntType = 1013;
	var UnsignedIntType = 1014;
	var FloatType = 1015;
	var HalfFloatType = 1016;
	var UnsignedShort4444Type = 1017;
	var UnsignedShort5551Type = 1018;
	var UnsignedShort565Type = 1019;
	var UnsignedInt248Type = 1020;
	var AlphaFormat = 1021;
	var RGBFormat = 1022;
	var RGBAFormat = 1023;
	var LuminanceFormat = 1024;
	var LuminanceAlphaFormat = 1025;
	var RGBEFormat = RGBAFormat;
	var DepthFormat = 1026;
	var DepthStencilFormat = 1027;
	var RedFormat = 1028;
	var RedIntegerFormat = 1029;
	var RGFormat = 1030;
	var RGIntegerFormat = 1031;
	var RGBIntegerFormat = 1032;
	var RGBAIntegerFormat = 1033;

	var RGB_S3TC_DXT1_Format = 33776;
	var RGBA_S3TC_DXT1_Format = 33777;
	var RGBA_S3TC_DXT3_Format = 33778;
	var RGBA_S3TC_DXT5_Format = 33779;
	var RGB_PVRTC_4BPPV1_Format = 35840;
	var RGB_PVRTC_2BPPV1_Format = 35841;
	var RGBA_PVRTC_4BPPV1_Format = 35842;
	var RGBA_PVRTC_2BPPV1_Format = 35843;
	var RGB_ETC1_Format = 36196;
	var RGB_ETC2_Format = 37492;
	var RGBA_ETC2_EAC_Format = 37496;
	var RGBA_ASTC_4x4_Format = 37808;
	var RGBA_ASTC_5x4_Format = 37809;
	var RGBA_ASTC_5x5_Format = 37810;
	var RGBA_ASTC_6x5_Format = 37811;
	var RGBA_ASTC_6x6_Format = 37812;
	var RGBA_ASTC_8x5_Format = 37813;
	var RGBA_ASTC_8x6_Format = 37814;
	var RGBA_ASTC_8x8_Format = 37815;
	var RGBA_ASTC_10x5_Format = 37816;
	var RGBA_ASTC_10x6_Format = 37817;
	var RGBA_ASTC_10x8_Format = 37818;
	var RGBA_ASTC_10x10_Format = 37819;
	var RGBA_ASTC_12x10_Format = 37820;
	var RGBA_ASTC_12x12_Format = 37821;
	var RGBA_BPTC_Format = 36492;
	var SRGB8_ALPHA8_ASTC_4x4_Format = 37840;
	var SRGB8_ALPHA8_ASTC_5x4_Format = 37841;
	var SRGB8_ALPHA8_ASTC_5x5_Format = 37842;
	var SRGB8_ALPHA8_ASTC_6x5_Format = 37843;
	var SRGB8_ALPHA8_ASTC_6x6_Format = 37844;
	var SRGB8_ALPHA8_ASTC_8x5_Format = 37845;
	var SRGB8_ALPHA8_ASTC_8x6_Format = 37846;
	var SRGB8_ALPHA8_ASTC_8x8_Format = 37847;
	var SRGB8_ALPHA8_ASTC_10x5_Format = 37848;
	var SRGB8_ALPHA8_ASTC_10x6_Format = 37849;
	var SRGB8_ALPHA8_ASTC_10x8_Format = 37850;
	var SRGB8_ALPHA8_ASTC_10x10_Format = 37851;
	var SRGB8_ALPHA8_ASTC_12x10_Format = 37852;
	var SRGB8_ALPHA8_ASTC_12x12_Format = 37853;
	var LoopOnce = 2200;
	var LoopRepeat = 2201;
	var LoopPingPong = 2202;
	var InterpolateDiscrete = 2300;
	var InterpolateLinear = 2301;
	var InterpolateSmooth = 2302;
	var ZeroCurvatureEnding = 2400;
	var ZeroSlopeEnding = 2401;
	var WrapAroundEnding = 2402;
	var NormalAnimationBlendMode = 2500;
	var AdditiveAnimationBlendMode = 2501;
	var TrianglesDrawMode = 0;
	var TriangleStripDrawMode = 1;
	var TriangleFanDrawMode = 2;
	var LinearEncoding = 3000;
	var sRGBEncoding = 3001;
	var GammaEncoding = 3007;
	var RGBEEncoding = 3002;
	var LogLuvEncoding = 3003;
	var RGBM7Encoding = 3004;
	var RGBM16Encoding = 3005;
	var RGBDEncoding = 3006;
	var BasicDepthPacking = 3200;
	var RGBADepthPacking = 3201;
	var TangentSpaceNormalMap = 0;
	var ObjectSpaceNormalMap = 1;

	var ZeroStencilOp = 0;
	var KeepStencilOp = 7680;
	var ReplaceStencilOp = 7681;
	var IncrementStencilOp = 7682;
	var DecrementStencilOp = 7683;
	var IncrementWrapStencilOp = 34055;
	var DecrementWrapStencilOp = 34056;
	var InvertStencilOp = 5386;

	var NeverStencilFunc = 512;
	var LessStencilFunc = 513;
	var EqualStencilFunc = 514;
	var LessEqualStencilFunc = 515;
	var GreaterStencilFunc = 516;
	var NotEqualStencilFunc = 517;
	var GreaterEqualStencilFunc = 518;
	var AlwaysStencilFunc = 519;

	var StaticDrawUsage = 35044;
	var DynamicDrawUsage = 35048;
	var StreamDrawUsage = 35040;
	var StaticReadUsage = 35045;
	var DynamicReadUsage = 35049;
	var StreamReadUsage = 35041;
	var StaticCopyUsage = 35046;
	var DynamicCopyUsage = 35050;
	var StreamCopyUsage = 35042;

	/**
	 * https://github.com/mrdoob/eventdispatcher.js/
	 */

	function EventDispatcher() {}

	Object.assign( EventDispatcher.prototype, {

		addEventListener: function ( type, listener ) {

			if ( this._listeners === undefined ) { this._listeners = {}; }

			var listeners = this._listeners;

			if ( listeners[ type ] === undefined ) {

				listeners[ type ] = [];

			}

			if ( listeners[ type ].indexOf( listener ) === - 1 ) {

				listeners[ type ].push( listener );

			}

		},

		hasEventListener: function ( type, listener ) {

			if ( this._listeners === undefined ) { return false; }

			var listeners = this._listeners;

			return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;

		},

		removeEventListener: function ( type, listener ) {

			if ( this._listeners === undefined ) { return; }

			var listeners = this._listeners;
			var listenerArray = listeners[ type ];

			if ( listenerArray !== undefined ) {

				var index = listenerArray.indexOf( listener );

				if ( index !== - 1 ) {

					listenerArray.splice( index, 1 );

				}

			}

		},

		dispatchEvent: function ( event ) {

			if ( this._listeners === undefined ) { return; }

			var listeners = this._listeners;
			var listenerArray = listeners[ event.type ];

			if ( listenerArray !== undefined ) {

				event.target = this;

				// Make a copy, in case listeners are removed while iterating.
				var array = listenerArray.slice( 0 );

				for ( var i = 0, l = array.length; i < l; i ++ ) {

					array[ i ].call( this, event );

				}

			}

		}

	} );

	/**
	 * @author alteredq / http://alteredqualia.com/
	 * @author mrdoob / http://mrdoob.com/
	 * @author WestLangley / http://github.com/WestLangley
	 * @author thezwap
	 */

	var _lut = [];

	for ( var i = 0; i < 256; i ++ ) {

		_lut[ i ] = ( i < 16 ? '0' : '' ) + ( i ).toString( 16 );

	}

	var MathUtils = {

		DEG2RAD: Math.PI / 180,
		RAD2DEG: 180 / Math.PI,

		generateUUID: function () {

			// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136

			var d0 = Math.random() * 0xffffffff | 0;
			var d1 = Math.random() * 0xffffffff | 0;
			var d2 = Math.random() * 0xffffffff | 0;
			var d3 = Math.random() * 0xffffffff | 0;
			var uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' +
				_lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' +
				_lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] +
				_lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ];

			// .toUpperCase() here flattens concatenated strings to save heap memory space.
			return uuid.toUpperCase();

		},

		clamp: function ( value, min, max ) {

			return Math.max( min, Math.min( max, value ) );

		},

		// compute euclidian modulo of m % n
		// https://en.wikipedia.org/wiki/Modulo_operation

		euclideanModulo: function ( n, m ) {

			return ( ( n % m ) + m ) % m;

		},

		// Linear mapping from range <a1, a2> to range <b1, b2>

		mapLinear: function ( x, a1, a2, b1, b2 ) {

			return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );

		},

		// https://en.wikipedia.org/wiki/Linear_interpolation

		lerp: function ( x, y, t ) {

			return ( 1 - t ) * x + t * y;

		},

		// http://en.wikipedia.org/wiki/Smoothstep

		smoothstep: function ( x, min, max ) {

			if ( x <= min ) { return 0; }
			if ( x >= max ) { return 1; }

			x = ( x - min ) / ( max - min );

			return x * x * ( 3 - 2 * x );

		},

		smootherstep: function ( x, min, max ) {

			if ( x <= min ) { return 0; }
			if ( x >= max ) { return 1; }

			x = ( x - min ) / ( max - min );

			return x * x * x * ( x * ( x * 6 - 15 ) + 10 );

		},

		// Random integer from <low, high> interval

		randInt: function ( low, high ) {

			return low + Math.floor( Math.random() * ( high - low + 1 ) );

		},

		// Random float from <low, high> interval

		randFloat: function ( low, high ) {

			return low + Math.random() * ( high - low );

		},

		// Random float from <-range/2, range/2> interval

		randFloatSpread: function ( range ) {

			return range * ( 0.5 - Math.random() );

		},

		degToRad: function ( degrees ) {

			return degrees * MathUtils.DEG2RAD;

		},

		radToDeg: function ( radians ) {

			return radians * MathUtils.RAD2DEG;

		},

		isPowerOfTwo: function ( value ) {

			return ( value & ( value - 1 ) ) === 0 && value !== 0;

		},

		ceilPowerOfTwo: function ( value ) {

			return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) );

		},

		floorPowerOfTwo: function ( value ) {

			return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) );

		},

		setQuaternionFromProperEuler: function ( q, a, b, c, order ) {

			// Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles

			// rotations are applied to the axes in the order specified by 'order'
			// rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
			// angles are in radians

			var cos = Math.cos;
			var sin = Math.sin;

			var c2 = cos( b / 2 );
			var s2 = sin( b / 2 );

			var c13 = cos( ( a + c ) / 2 );
			var s13 = sin( ( a + c ) / 2 );

			var c1_3 = cos( ( a - c ) / 2 );
			var s1_3 = sin( ( a - c ) / 2 );

			var c3_1 = cos( ( c - a ) / 2 );
			var s3_1 = sin( ( c - a ) / 2 );

			switch ( order ) {

				case 'XYX':
					q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 );
					break;

				case 'YZY':
					q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 );
					break;

				case 'ZXZ':
					q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 );
					break;

				case 'XZX':
					q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 );
					break;

				case 'YXY':
					q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 );
					break;

				case 'ZYZ':
					q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 );
					break;

				default:
					console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order );

			}

		}

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author philogb / http://blog.thejit.org/
	 * @author egraether / http://egraether.com/
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 */

	function Vector2( x, y ) {

		this.x = x || 0;
		this.y = y || 0;

	}

	Object.defineProperties( Vector2.prototype, {

		"width": {

			get: function () {

				return this.x;

			},

			set: function ( value ) {

				this.x = value;

			}

		},

		"height": {

			get: function () {

				return this.y;

			},

			set: function ( value ) {

				this.y = value;

			}

		}

	} );

	Object.assign( Vector2.prototype, {

		isVector2: true,

		set: function ( x, y ) {

			this.x = x;
			this.y = y;

			return this;

		},

		setScalar: function ( scalar ) {

			this.x = scalar;
			this.y = scalar;

			return this;

		},

		setX: function ( x ) {

			this.x = x;

			return this;

		},

		setY: function ( y ) {

			this.y = y;

			return this;

		},

		setComponent: function ( index, value ) {

			switch ( index ) {

				case 0: this.x = value; break;
				case 1: this.y = value; break;
				default: throw new Error( 'index is out of range: ' + index );

			}

			return this;

		},

		getComponent: function ( index ) {

			switch ( index ) {

				case 0: return this.x;
				case 1: return this.y;
				default: throw new Error( 'index is out of range: ' + index );

			}

		},

		clone: function () {

			return new this.constructor( this.x, this.y );

		},

		copy: function ( v ) {

			this.x = v.x;
			this.y = v.y;

			return this;

		},

		add: function ( v, w ) {

			if ( w !== undefined ) {

				console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
				return this.addVectors( v, w );

			}

			this.x += v.x;
			this.y += v.y;

			return this;

		},

		addScalar: function ( s ) {

			this.x += s;
			this.y += s;

			return this;

		},

		addVectors: function ( a, b ) {

			this.x = a.x + b.x;
			this.y = a.y + b.y;

			return this;

		},

		addScaledVector: function ( v, s ) {

			this.x += v.x * s;
			this.y += v.y * s;

			return this;

		},

		sub: function ( v, w ) {

			if ( w !== undefined ) {

				console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
				return this.subVectors( v, w );

			}

			this.x -= v.x;
			this.y -= v.y;

			return this;

		},

		subScalar: function ( s ) {

			this.x -= s;
			this.y -= s;

			return this;

		},

		subVectors: function ( a, b ) {

			this.x = a.x - b.x;
			this.y = a.y - b.y;

			return this;

		},

		multiply: function ( v ) {

			this.x *= v.x;
			this.y *= v.y;

			return this;

		},

		multiplyScalar: function ( scalar ) {

			this.x *= scalar;
			this.y *= scalar;

			return this;

		},

		divide: function ( v ) {

			this.x /= v.x;
			this.y /= v.y;

			return this;

		},

		divideScalar: function ( scalar ) {

			return this.multiplyScalar( 1 / scalar );

		},

		applyMatrix3: function ( m ) {

			var x = this.x, y = this.y;
			var e = m.elements;

			this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ];
			this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ];

			return this;

		},

		min: function ( v ) {

			this.x = Math.min( this.x, v.x );
			this.y = Math.min( this.y, v.y );

			return this;

		},

		max: function ( v ) {

			this.x = Math.max( this.x, v.x );
			this.y = Math.max( this.y, v.y );

			return this;

		},

		clamp: function ( min, max ) {

			// assumes min < max, componentwise

			this.x = Math.max( min.x, Math.min( max.x, this.x ) );
			this.y = Math.max( min.y, Math.min( max.y, this.y ) );

			return this;

		},

		clampScalar: function ( minVal, maxVal ) {

			this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
			this.y = Math.max( minVal, Math.min( maxVal, this.y ) );

			return this;

		},

		clampLength: function ( min, max ) {

			var length = this.length();

			return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

		},

		floor: function () {

			this.x = Math.floor( this.x );
			this.y = Math.floor( this.y );

			return this;

		},

		ceil: function () {

			this.x = Math.ceil( this.x );
			this.y = Math.ceil( this.y );

			return this;

		},

		round: function () {

			this.x = Math.round( this.x );
			this.y = Math.round( this.y );

			return this;

		},

		roundToZero: function () {

			this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
			this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );

			return this;

		},

		negate: function () {

			this.x = - this.x;
			this.y = - this.y;

			return this;

		},

		dot: function ( v ) {

			return this.x * v.x + this.y * v.y;

		},

		cross: function ( v ) {

			return this.x * v.y - this.y * v.x;

		},

		lengthSq: function () {

			return this.x * this.x + this.y * this.y;

		},

		length: function () {

			return Math.sqrt( this.x * this.x + this.y * this.y );

		},

		manhattanLength: function () {

			return Math.abs( this.x ) + Math.abs( this.y );

		},

		normalize: function () {

			return this.divideScalar( this.length() || 1 );

		},

		angle: function () {

			// computes the angle in radians with respect to the positive x-axis

			var angle = Math.atan2( - this.y, - this.x ) + Math.PI;

			return angle;

		},

		distanceTo: function ( v ) {

			return Math.sqrt( this.distanceToSquared( v ) );

		},

		distanceToSquared: function ( v ) {

			var dx = this.x - v.x, dy = this.y - v.y;
			return dx * dx + dy * dy;

		},

		manhattanDistanceTo: function ( v ) {

			return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );

		},

		setLength: function ( length ) {

			return this.normalize().multiplyScalar( length );

		},

		lerp: function ( v, alpha ) {

			this.x += ( v.x - this.x ) * alpha;
			this.y += ( v.y - this.y ) * alpha;

			return this;

		},

		lerpVectors: function ( v1, v2, alpha ) {

			return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );

		},

		equals: function ( v ) {

			return ( ( v.x === this.x ) && ( v.y === this.y ) );

		},

		fromArray: function ( array, offset ) {

			if ( offset === undefined ) { offset = 0; }

			this.x = array[ offset ];
			this.y = array[ offset + 1 ];

			return this;

		},

		toArray: function ( array, offset ) {

			if ( array === undefined ) { array = []; }
			if ( offset === undefined ) { offset = 0; }

			array[ offset ] = this.x;
			array[ offset + 1 ] = this.y;

			return array;

		},

		fromBufferAttribute: function ( attribute, index, offset ) {

			if ( offset !== undefined ) {

				console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' );

			}

			this.x = attribute.getX( index );
			this.y = attribute.getY( index );

			return this;

		},

		rotateAround: function ( center, angle ) {

			var c = Math.cos( angle ), s = Math.sin( angle );

			var x = this.x - center.x;
			var y = this.y - center.y;

			this.x = x * c - y * s + center.x;
			this.y = x * s + y * c + center.y;

			return this;

		},

		random: function () {

			this.x = Math.random();
			this.y = Math.random();

			return this;

		}

	} );

	/**
	 * @author alteredq / http://alteredqualia.com/
	 * @author WestLangley / http://github.com/WestLangley
	 * @author bhouston / http://clara.io
	 * @author tschw
	 */

	function Matrix3() {

		this.elements = [

			1, 0, 0,
			0, 1, 0,
			0, 0, 1

		];

		if ( arguments.length > 0 ) {

			console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );

		}

	}

	Object.assign( Matrix3.prototype, {

		isMatrix3: true,

		set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {

			var te = this.elements;

			te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
			te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
			te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;

			return this;

		},

		identity: function () {

			this.set(

				1, 0, 0,
				0, 1, 0,
				0, 0, 1

			);

			return this;

		},

		clone: function () {

			return new this.constructor().fromArray( this.elements );

		},

		copy: function ( m ) {

			var te = this.elements;
			var me = m.elements;

			te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
			te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
			te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];

			return this;

		},

		extractBasis: function ( xAxis, yAxis, zAxis ) {

			xAxis.setFromMatrix3Column( this, 0 );
			yAxis.setFromMatrix3Column( this, 1 );
			zAxis.setFromMatrix3Column( this, 2 );

			return this;

		},

		setFromMatrix4: function ( m ) {

			var me = m.elements;

			this.set(

				me[ 0 ], me[ 4 ], me[ 8 ],
				me[ 1 ], me[ 5 ], me[ 9 ],
				me[ 2 ], me[ 6 ], me[ 10 ]

			);

			return this;

		},

		multiply: function ( m ) {

			return this.multiplyMatrices( this, m );

		},

		premultiply: function ( m ) {

			return this.multiplyMatrices( m, this );

		},

		multiplyMatrices: function ( a, b ) {

			var ae = a.elements;
			var be = b.elements;
			var te = this.elements;

			var a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
			var a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
			var a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];

			var b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
			var b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
			var b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];

			te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
			te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
			te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;

			te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
			te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
			te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;

			te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
			te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
			te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;

			return this;

		},

		multiplyScalar: function ( s ) {

			var te = this.elements;

			te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
			te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
			te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;

			return this;

		},

		determinant: function () {

			var te = this.elements;

			var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
				d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
				g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];

			return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;

		},

		getInverse: function ( matrix, throwOnDegenerate ) {

			if ( throwOnDegenerate !== undefined ) {

				console.warn( "THREE.Matrix3: .getInverse() can no longer be configured to throw on degenerate." );

			}

			var me = matrix.elements,
				te = this.elements,

				n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ],
				n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ],
				n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],

				t11 = n33 * n22 - n32 * n23,
				t12 = n32 * n13 - n33 * n12,
				t13 = n23 * n12 - n22 * n13,

				det = n11 * t11 + n21 * t12 + n31 * t13;

			if ( det === 0 ) { return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 ); }

			var detInv = 1 / det;

			te[ 0 ] = t11 * detInv;
			te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
			te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;

			te[ 3 ] = t12 * detInv;
			te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
			te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;

			te[ 6 ] = t13 * detInv;
			te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
			te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;

			return this;

		},

		transpose: function () {

			var tmp, m = this.elements;

			tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
			tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
			tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;

			return this;

		},

		getNormalMatrix: function ( matrix4 ) {

			return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();

		},

		transposeIntoArray: function ( r ) {

			var m = this.elements;

			r[ 0 ] = m[ 0 ];
			r[ 1 ] = m[ 3 ];
			r[ 2 ] = m[ 6 ];
			r[ 3 ] = m[ 1 ];
			r[ 4 ] = m[ 4 ];
			r[ 5 ] = m[ 7 ];
			r[ 6 ] = m[ 2 ];
			r[ 7 ] = m[ 5 ];
			r[ 8 ] = m[ 8 ];

			return this;

		},

		setUvTransform: function ( tx, ty, sx, sy, rotation, cx, cy ) {

			var c = Math.cos( rotation );
			var s = Math.sin( rotation );

			this.set(
				sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx,
				- sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty,
				0, 0, 1
			);

		},

		scale: function ( sx, sy ) {

			var te = this.elements;

			te[ 0 ] *= sx; te[ 3 ] *= sx; te[ 6 ] *= sx;
			te[ 1 ] *= sy; te[ 4 ] *= sy; te[ 7 ] *= sy;

			return this;

		},

		rotate: function ( theta ) {

			var c = Math.cos( theta );
			var s = Math.sin( theta );

			var te = this.elements;

			var a11 = te[ 0 ], a12 = te[ 3 ], a13 = te[ 6 ];
			var a21 = te[ 1 ], a22 = te[ 4 ], a23 = te[ 7 ];

			te[ 0 ] = c * a11 + s * a21;
			te[ 3 ] = c * a12 + s * a22;
			te[ 6 ] = c * a13 + s * a23;

			te[ 1 ] = - s * a11 + c * a21;
			te[ 4 ] = - s * a12 + c * a22;
			te[ 7 ] = - s * a13 + c * a23;

			return this;

		},

		translate: function ( tx, ty ) {

			var te = this.elements;

			te[ 0 ] += tx * te[ 2 ]; te[ 3 ] += tx * te[ 5 ]; te[ 6 ] += tx * te[ 8 ];
			te[ 1 ] += ty * te[ 2 ]; te[ 4 ] += ty * te[ 5 ]; te[ 7 ] += ty * te[ 8 ];

			return this;

		},

		equals: function ( matrix ) {

			var te = this.elements;
			var me = matrix.elements;

			for ( var i = 0; i < 9; i ++ ) {

				if ( te[ i ] !== me[ i ] ) { return false; }

			}

			return true;

		},

		fromArray: function ( array, offset ) {

			if ( offset === undefined ) { offset = 0; }

			for ( var i = 0; i < 9; i ++ ) {

				this.elements[ i ] = array[ i + offset ];

			}

			return this;

		},

		toArray: function ( array, offset ) {

			if ( array === undefined ) { array = []; }
			if ( offset === undefined ) { offset = 0; }

			var te = this.elements;

			array[ offset ] = te[ 0 ];
			array[ offset + 1 ] = te[ 1 ];
			array[ offset + 2 ] = te[ 2 ];

			array[ offset + 3 ] = te[ 3 ];
			array[ offset + 4 ] = te[ 4 ];
			array[ offset + 5 ] = te[ 5 ];

			array[ offset + 6 ] = te[ 6 ];
			array[ offset + 7 ] = te[ 7 ];
			array[ offset + 8 ] = te[ 8 ];

			return array;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 * @author szimek / https://github.com/szimek/
	 */

	var _canvas;

	var ImageUtils = {

		getDataURL: function ( image ) {

			var canvas;

			if ( typeof HTMLCanvasElement == 'undefined' ) {

				return image.src;

			} else if ( image instanceof HTMLCanvasElement ) {

				canvas = image;

			} else {

				if ( _canvas === undefined ) { _canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); }

				_canvas.width = image.width;
				_canvas.height = image.height;

				var context = _canvas.getContext( '2d' );

				if ( image instanceof ImageData ) {

					context.putImageData( image, 0, 0 );

				} else {

					context.drawImage( image, 0, 0, image.width, image.height );

				}

				canvas = _canvas;

			}

			if ( canvas.width > 2048 || canvas.height > 2048 ) {

				return canvas.toDataURL( 'image/jpeg', 0.6 );

			} else {

				return canvas.toDataURL( 'image/png' );

			}

		}

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 * @author szimek / https://github.com/szimek/
	 */

	var textureId = 0;

	function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {

		Object.defineProperty( this, 'id', { value: textureId ++ } );

		this.uuid = MathUtils.generateUUID();

		this.name = '';

		this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE;
		this.mipmaps = [];

		this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING;

		this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping;
		this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping;

		this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
		this.minFilter = minFilter !== undefined ? minFilter : LinearMipmapLinearFilter;

		this.anisotropy = anisotropy !== undefined ? anisotropy : 1;

		this.format = format !== undefined ? format : RGBAFormat;
		this.internalFormat = null;
		this.type = type !== undefined ? type : UnsignedByteType;

		this.offset = new Vector2( 0, 0 );
		this.repeat = new Vector2( 1, 1 );
		this.center = new Vector2( 0, 0 );
		this.rotation = 0;

		this.matrixAutoUpdate = true;
		this.matrix = new Matrix3();

		this.generateMipmaps = true;
		this.premultiplyAlpha = false;
		this.flipY = true;
		this.unpackAlignment = 4;	// valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)

		// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
		//
		// Also changing the encoding after already used by a Material will not automatically make the Material
		// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
		this.encoding = encoding !== undefined ? encoding : LinearEncoding;

		this.version = 0;
		this.onUpdate = null;

	}

	Texture.DEFAULT_IMAGE = undefined;
	Texture.DEFAULT_MAPPING = UVMapping;

	Texture.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

		constructor: Texture,

		isTexture: true,

		updateMatrix: function () {

			this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y );

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( source ) {

			this.name = source.name;

			this.image = source.image;
			this.mipmaps = source.mipmaps.slice( 0 );

			this.mapping = source.mapping;

			this.wrapS = source.wrapS;
			this.wrapT = source.wrapT;

			this.magFilter = source.magFilter;
			this.minFilter = source.minFilter;

			this.anisotropy = source.anisotropy;

			this.format = source.format;
			this.internalFormat = source.internalFormat;
			this.type = source.type;

			this.offset.copy( source.offset );
			this.repeat.copy( source.repeat );
			this.center.copy( source.center );
			this.rotation = source.rotation;

			this.matrixAutoUpdate = source.matrixAutoUpdate;
			this.matrix.copy( source.matrix );

			this.generateMipmaps = source.generateMipmaps;
			this.premultiplyAlpha = source.premultiplyAlpha;
			this.flipY = source.flipY;
			this.unpackAlignment = source.unpackAlignment;
			this.encoding = source.encoding;

			return this;

		},

		toJSON: function ( meta ) {

			var isRootObject = ( meta === undefined || typeof meta === 'string' );

			if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) {

				return meta.textures[ this.uuid ];

			}

			var output = {

				metadata: {
					version: 4.5,
					type: 'Texture',
					generator: 'Texture.toJSON'
				},

				uuid: this.uuid,
				name: this.name,

				mapping: this.mapping,

				repeat: [ this.repeat.x, this.repeat.y ],
				offset: [ this.offset.x, this.offset.y ],
				center: [ this.center.x, this.center.y ],
				rotation: this.rotation,

				wrap: [ this.wrapS, this.wrapT ],

				format: this.format,
				type: this.type,
				encoding: this.encoding,

				minFilter: this.minFilter,
				magFilter: this.magFilter,
				anisotropy: this.anisotropy,

				flipY: this.flipY,

				premultiplyAlpha: this.premultiplyAlpha,
				unpackAlignment: this.unpackAlignment

			};

			if ( this.image !== undefined ) {

				// TODO: Move to THREE.Image

				var image = this.image;

				if ( image.uuid === undefined ) {

					image.uuid = MathUtils.generateUUID(); // UGH

				}

				if ( ! isRootObject && meta.images[ image.uuid ] === undefined ) {

					var url;

					if ( Array.isArray( image ) ) {

						// process array of images e.g. CubeTexture

						url = [];

						for ( var i = 0, l = image.length; i < l; i ++ ) {

							url.push( ImageUtils.getDataURL( image[ i ] ) );

						}

					} else {

						// process single image

						url = ImageUtils.getDataURL( image );

					}

					meta.images[ image.uuid ] = {
						uuid: image.uuid,
						url: url
					};

				}

				output.image = image.uuid;

			}

			if ( ! isRootObject ) {

				meta.textures[ this.uuid ] = output;

			}

			return output;

		},

		dispose: function () {

			this.dispatchEvent( { type: 'dispose' } );

		},

		transformUv: function ( uv ) {

			if ( this.mapping !== UVMapping ) { return uv; }

			uv.applyMatrix3( this.matrix );

			if ( uv.x < 0 || uv.x > 1 ) {

				switch ( this.wrapS ) {

					case RepeatWrapping:

						uv.x = uv.x - Math.floor( uv.x );
						break;

					case ClampToEdgeWrapping:

						uv.x = uv.x < 0 ? 0 : 1;
						break;

					case MirroredRepeatWrapping:

						if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {

							uv.x = Math.ceil( uv.x ) - uv.x;

						} else {

							uv.x = uv.x - Math.floor( uv.x );

						}

						break;

				}

			}

			if ( uv.y < 0 || uv.y > 1 ) {

				switch ( this.wrapT ) {

					case RepeatWrapping:

						uv.y = uv.y - Math.floor( uv.y );
						break;

					case ClampToEdgeWrapping:

						uv.y = uv.y < 0 ? 0 : 1;
						break;

					case MirroredRepeatWrapping:

						if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {

							uv.y = Math.ceil( uv.y ) - uv.y;

						} else {

							uv.y = uv.y - Math.floor( uv.y );

						}

						break;

				}

			}

			if ( this.flipY ) {

				uv.y = 1 - uv.y;

			}

			return uv;

		}

	} );

	Object.defineProperty( Texture.prototype, "needsUpdate", {

		set: function ( value ) {

			if ( value === true ) { this.version ++; }

		}

	} );

	/**
	 * @author supereggbert / http://www.paulbrunt.co.uk/
	 * @author philogb / http://blog.thejit.org/
	 * @author mikael emtinger / http://gomo.se/
	 * @author egraether / http://egraether.com/
	 * @author WestLangley / http://github.com/WestLangley
	 */

	function Vector4( x, y, z, w ) {

		this.x = x || 0;
		this.y = y || 0;
		this.z = z || 0;
		this.w = ( w !== undefined ) ? w : 1;

	}

	Object.defineProperties( Vector4.prototype, {

		"width": {

			get: function () {

				return this.z;

			},

			set: function ( value ) {

				this.z = value;

			}

		},

		"height": {

			get: function () {

				return this.w;

			},

			set: function ( value ) {

				this.w = value;

			}

		}

	} );

	Object.assign( Vector4.prototype, {

		isVector4: true,

		set: function ( x, y, z, w ) {

			this.x = x;
			this.y = y;
			this.z = z;
			this.w = w;

			return this;

		},

		setScalar: function ( scalar ) {

			this.x = scalar;
			this.y = scalar;
			this.z = scalar;
			this.w = scalar;

			return this;

		},

		setX: function ( x ) {

			this.x = x;

			return this;

		},

		setY: function ( y ) {

			this.y = y;

			return this;

		},

		setZ: function ( z ) {

			this.z = z;

			return this;

		},

		setW: function ( w ) {

			this.w = w;

			return this;

		},

		setComponent: function ( index, value ) {

			switch ( index ) {

				case 0: this.x = value; break;
				case 1: this.y = value; break;
				case 2: this.z = value; break;
				case 3: this.w = value; break;
				default: throw new Error( 'index is out of range: ' + index );

			}

			return this;

		},

		getComponent: function ( index ) {

			switch ( index ) {

				case 0: return this.x;
				case 1: return this.y;
				case 2: return this.z;
				case 3: return this.w;
				default: throw new Error( 'index is out of range: ' + index );

			}

		},

		clone: function () {

			return new this.constructor( this.x, this.y, this.z, this.w );

		},

		copy: function ( v ) {

			this.x = v.x;
			this.y = v.y;
			this.z = v.z;
			this.w = ( v.w !== undefined ) ? v.w : 1;

			return this;

		},

		add: function ( v, w ) {

			if ( w !== undefined ) {

				console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
				return this.addVectors( v, w );

			}

			this.x += v.x;
			this.y += v.y;
			this.z += v.z;
			this.w += v.w;

			return this;

		},

		addScalar: function ( s ) {

			this.x += s;
			this.y += s;
			this.z += s;
			this.w += s;

			return this;

		},

		addVectors: function ( a, b ) {

			this.x = a.x + b.x;
			this.y = a.y + b.y;
			this.z = a.z + b.z;
			this.w = a.w + b.w;

			return this;

		},

		addScaledVector: function ( v, s ) {

			this.x += v.x * s;
			this.y += v.y * s;
			this.z += v.z * s;
			this.w += v.w * s;

			return this;

		},

		sub: function ( v, w ) {

			if ( w !== undefined ) {

				console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
				return this.subVectors( v, w );

			}

			this.x -= v.x;
			this.y -= v.y;
			this.z -= v.z;
			this.w -= v.w;

			return this;

		},

		subScalar: function ( s ) {

			this.x -= s;
			this.y -= s;
			this.z -= s;
			this.w -= s;

			return this;

		},

		subVectors: function ( a, b ) {

			this.x = a.x - b.x;
			this.y = a.y - b.y;
			this.z = a.z - b.z;
			this.w = a.w - b.w;

			return this;

		},

		multiplyScalar: function ( scalar ) {

			this.x *= scalar;
			this.y *= scalar;
			this.z *= scalar;
			this.w *= scalar;

			return this;

		},

		applyMatrix4: function ( m ) {

			var x = this.x, y = this.y, z = this.z, w = this.w;
			var e = m.elements;

			this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
			this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
			this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
			this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;

			return this;

		},

		divideScalar: function ( scalar ) {

			return this.multiplyScalar( 1 / scalar );

		},

		setAxisAngleFromQuaternion: function ( q ) {

			// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm

			// q is assumed to be normalized

			this.w = 2 * Math.acos( q.w );

			var s = Math.sqrt( 1 - q.w * q.w );

			if ( s < 0.0001 ) {

				this.x = 1;
				this.y = 0;
				this.z = 0;

			} else {

				this.x = q.x / s;
				this.y = q.y / s;
				this.z = q.z / s;

			}

			return this;

		},

		setAxisAngleFromRotationMatrix: function ( m ) {

			// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm

			// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

			var angle, x, y, z,		// variables for result
				epsilon = 0.01,		// margin to allow for rounding errors
				epsilon2 = 0.1,		// margin to distinguish between 0 and 180 degrees

				te = m.elements,

				m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
				m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
				m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];

			if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
			     ( Math.abs( m13 - m31 ) < epsilon ) &&
			     ( Math.abs( m23 - m32 ) < epsilon ) ) {

				// singularity found
				// first check for identity matrix which must have +1 for all terms
				// in leading diagonal and zero in other terms

				if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
				     ( Math.abs( m13 + m31 ) < epsilon2 ) &&
				     ( Math.abs( m23 + m32 ) < epsilon2 ) &&
				     ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {

					// this singularity is identity matrix so angle = 0

					this.set( 1, 0, 0, 0 );

					return this; // zero angle, arbitrary axis

				}

				// otherwise this singularity is angle = 180

				angle = Math.PI;

				var xx = ( m11 + 1 ) / 2;
				var yy = ( m22 + 1 ) / 2;
				var zz = ( m33 + 1 ) / 2;
				var xy = ( m12 + m21 ) / 4;
				var xz = ( m13 + m31 ) / 4;
				var yz = ( m23 + m32 ) / 4;

				if ( ( xx > yy ) && ( xx > zz ) ) {

					// m11 is the largest diagonal term

					if ( xx < epsilon ) {

						x = 0;
						y = 0.707106781;
						z = 0.707106781;

					} else {

						x = Math.sqrt( xx );
						y = xy / x;
						z = xz / x;

					}

				} else if ( yy > zz ) {

					// m22 is the largest diagonal term

					if ( yy < epsilon ) {

						x = 0.707106781;
						y = 0;
						z = 0.707106781;

					} else {

						y = Math.sqrt( yy );
						x = xy / y;
						z = yz / y;

					}

				} else {

					// m33 is the largest diagonal term so base result on this

					if ( zz < epsilon ) {

						x = 0.707106781;
						y = 0.707106781;
						z = 0;

					} else {

						z = Math.sqrt( zz );
						x = xz / z;
						y = yz / z;

					}

				}

				this.set( x, y, z, angle );

				return this; // return 180 deg rotation

			}

			// as we have reached here there are no singularities so we can handle normally

			var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
			                   ( m13 - m31 ) * ( m13 - m31 ) +
			                   ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize

			if ( Math.abs( s ) < 0.001 ) { s = 1; }

			// prevent divide by zero, should not happen if matrix is orthogonal and should be
			// caught by singularity test above, but I've left it in just in case

			this.x = ( m32 - m23 ) / s;
			this.y = ( m13 - m31 ) / s;
			this.z = ( m21 - m12 ) / s;
			this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );

			return this;

		},

		min: function ( v ) {

			this.x = Math.min( this.x, v.x );
			this.y = Math.min( this.y, v.y );
			this.z = Math.min( this.z, v.z );
			this.w = Math.min( this.w, v.w );

			return this;

		},

		max: function ( v ) {

			this.x = Math.max( this.x, v.x );
			this.y = Math.max( this.y, v.y );
			this.z = Math.max( this.z, v.z );
			this.w = Math.max( this.w, v.w );

			return this;

		},

		clamp: function ( min, max ) {

			// assumes min < max, componentwise

			this.x = Math.max( min.x, Math.min( max.x, this.x ) );
			this.y = Math.max( min.y, Math.min( max.y, this.y ) );
			this.z = Math.max( min.z, Math.min( max.z, this.z ) );
			this.w = Math.max( min.w, Math.min( max.w, this.w ) );

			return this;

		},

		clampScalar: function ( minVal, maxVal ) {

			this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
			this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
			this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
			this.w = Math.max( minVal, Math.min( maxVal, this.w ) );

			return this;

		},

		clampLength: function ( min, max ) {

			var length = this.length();

			return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

		},

		floor: function () {

			this.x = Math.floor( this.x );
			this.y = Math.floor( this.y );
			this.z = Math.floor( this.z );
			this.w = Math.floor( this.w );

			return this;

		},

		ceil: function () {

			this.x = Math.ceil( this.x );
			this.y = Math.ceil( this.y );
			this.z = Math.ceil( this.z );
			this.w = Math.ceil( this.w );

			return this;

		},

		round: function () {

			this.x = Math.round( this.x );
			this.y = Math.round( this.y );
			this.z = Math.round( this.z );
			this.w = Math.round( this.w );

			return this;

		},

		roundToZero: function () {

			this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
			this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
			this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
			this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );

			return this;

		},

		negate: function () {

			this.x = - this.x;
			this.y = - this.y;
			this.z = - this.z;
			this.w = - this.w;

			return this;

		},

		dot: function ( v ) {

			return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;

		},

		lengthSq: function () {

			return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;

		},

		length: function () {

			return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );

		},

		manhattanLength: function () {

			return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );

		},

		normalize: function () {

			return this.divideScalar( this.length() || 1 );

		},

		setLength: function ( length ) {

			return this.normalize().multiplyScalar( length );

		},

		lerp: function ( v, alpha ) {

			this.x += ( v.x - this.x ) * alpha;
			this.y += ( v.y - this.y ) * alpha;
			this.z += ( v.z - this.z ) * alpha;
			this.w += ( v.w - this.w ) * alpha;

			return this;

		},

		lerpVectors: function ( v1, v2, alpha ) {

			return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );

		},

		equals: function ( v ) {

			return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );

		},

		fromArray: function ( array, offset ) {

			if ( offset === undefined ) { offset = 0; }

			this.x = array[ offset ];
			this.y = array[ offset + 1 ];
			this.z = array[ offset + 2 ];
			this.w = array[ offset + 3 ];

			return this;

		},

		toArray: function ( array, offset ) {

			if ( array === undefined ) { array = []; }
			if ( offset === undefined ) { offset = 0; }

			array[ offset ] = this.x;
			array[ offset + 1 ] = this.y;
			array[ offset + 2 ] = this.z;
			array[ offset + 3 ] = this.w;

			return array;

		},

		fromBufferAttribute: function ( attribute, index, offset ) {

			if ( offset !== undefined ) {

				console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );

			}

			this.x = attribute.getX( index );
			this.y = attribute.getY( index );
			this.z = attribute.getZ( index );
			this.w = attribute.getW( index );

			return this;

		},

		random: function () {

			this.x = Math.random();
			this.y = Math.random();
			this.z = Math.random();
			this.w = Math.random();

			return this;

		}

	} );

	/**
	 * @author szimek / https://github.com/szimek/
	 * @author alteredq / http://alteredqualia.com/
	 * @author Marius Kintel / https://github.com/kintel
	 */

	/*
	 In options, we can specify:
	 * Texture parameters for an auto-generated target texture
	 * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
	*/
	function WebGLRenderTarget( width, height, options ) {

		this.width = width;
		this.height = height;

		this.scissor = new Vector4( 0, 0, width, height );
		this.scissorTest = false;

		this.viewport = new Vector4( 0, 0, width, height );

		options = options || {};

		this.texture = new Texture( undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );

		this.texture.image = {};
		this.texture.image.width = width;
		this.texture.image.height = height;

		this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
		this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;

		this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
		this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;
		this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;

	}

	WebGLRenderTarget.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

		constructor: WebGLRenderTarget,

		isWebGLRenderTarget: true,

		setSize: function ( width, height ) {

			if ( this.width !== width || this.height !== height ) {

				this.width = width;
				this.height = height;

				this.texture.image.width = width;
				this.texture.image.height = height;

				this.dispose();

			}

			this.viewport.set( 0, 0, width, height );
			this.scissor.set( 0, 0, width, height );

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( source ) {

			this.width = source.width;
			this.height = source.height;

			this.viewport.copy( source.viewport );

			this.texture = source.texture.clone();

			this.depthBuffer = source.depthBuffer;
			this.stencilBuffer = source.stencilBuffer;
			this.depthTexture = source.depthTexture;

			return this;

		},

		dispose: function () {

			this.dispatchEvent( { type: 'dispose' } );

		}

	} );

	/**
	 * @author Mugen87 / https://github.com/Mugen87
	 * @author Matt DesLauriers / @mattdesl
	 */

	function WebGLMultisampleRenderTarget( width, height, options ) {

		WebGLRenderTarget.call( this, width, height, options );

		this.samples = 4;

	}

	WebGLMultisampleRenderTarget.prototype = Object.assign( Object.create( WebGLRenderTarget.prototype ), {

		constructor: WebGLMultisampleRenderTarget,

		isWebGLMultisampleRenderTarget: true,

		copy: function ( source ) {

			WebGLRenderTarget.prototype.copy.call( this, source );

			this.samples = source.samples;

			return this;

		}

	} );

	/**
	 * @author mikael emtinger / http://gomo.se/
	 * @author alteredq / http://alteredqualia.com/
	 * @author WestLangley / http://github.com/WestLangley
	 * @author bhouston / http://clara.io
	 */

	function Quaternion( x, y, z, w ) {

		this._x = x || 0;
		this._y = y || 0;
		this._z = z || 0;
		this._w = ( w !== undefined ) ? w : 1;

	}

	Object.assign( Quaternion, {

		slerp: function ( qa, qb, qm, t ) {

			return qm.copy( qa ).slerp( qb, t );

		},

		slerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {

			// fuzz-free, array-based Quaternion SLERP operation

			var x0 = src0[ srcOffset0 + 0 ],
				y0 = src0[ srcOffset0 + 1 ],
				z0 = src0[ srcOffset0 + 2 ],
				w0 = src0[ srcOffset0 + 3 ],

				x1 = src1[ srcOffset1 + 0 ],
				y1 = src1[ srcOffset1 + 1 ],
				z1 = src1[ srcOffset1 + 2 ],
				w1 = src1[ srcOffset1 + 3 ];

			if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {

				var s = 1 - t,

					cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,

					dir = ( cos >= 0 ? 1 : - 1 ),
					sqrSin = 1 - cos * cos;

				// Skip the Slerp for tiny steps to avoid numeric problems:
				if ( sqrSin > Number.EPSILON ) {

					var sin = Math.sqrt( sqrSin ),
						len = Math.atan2( sin, cos * dir );

					s = Math.sin( s * len ) / sin;
					t = Math.sin( t * len ) / sin;

				}

				var tDir = t * dir;

				x0 = x0 * s + x1 * tDir;
				y0 = y0 * s + y1 * tDir;
				z0 = z0 * s + z1 * tDir;
				w0 = w0 * s + w1 * tDir;

				// Normalize in case we just did a lerp:
				if ( s === 1 - t ) {

					var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );

					x0 *= f;
					y0 *= f;
					z0 *= f;
					w0 *= f;

				}

			}

			dst[ dstOffset ] = x0;
			dst[ dstOffset + 1 ] = y0;
			dst[ dstOffset + 2 ] = z0;
			dst[ dstOffset + 3 ] = w0;

		},

		multiplyQuaternionsFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) {

			var x0 = src0[ srcOffset0 ];
			var y0 = src0[ srcOffset0 + 1 ];
			var z0 = src0[ srcOffset0 + 2 ];
			var w0 = src0[ srcOffset0 + 3 ];

			var x1 = src1[ srcOffset1 ];
			var y1 = src1[ srcOffset1 + 1 ];
			var z1 = src1[ srcOffset1 + 2 ];
			var w1 = src1[ srcOffset1 + 3 ];

			dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
			dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
			dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
			dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;

			return dst;

		}

	} );

	Object.defineProperties( Quaternion.prototype, {

		x: {

			get: function () {

				return this._x;

			},

			set: function ( value ) {

				this._x = value;
				this._onChangeCallback();

			}

		},

		y: {

			get: function () {

				return this._y;

			},

			set: function ( value ) {

				this._y = value;
				this._onChangeCallback();

			}

		},

		z: {

			get: function () {

				return this._z;

			},

			set: function ( value ) {

				this._z = value;
				this._onChangeCallback();

			}

		},

		w: {

			get: function () {

				return this._w;

			},

			set: function ( value ) {

				this._w = value;
				this._onChangeCallback();

			}

		}

	} );

	Object.assign( Quaternion.prototype, {

		isQuaternion: true,

		set: function ( x, y, z, w ) {

			this._x = x;
			this._y = y;
			this._z = z;
			this._w = w;

			this._onChangeCallback();

			return this;

		},

		clone: function () {

			return new this.constructor( this._x, this._y, this._z, this._w );

		},

		copy: function ( quaternion ) {

			this._x = quaternion.x;
			this._y = quaternion.y;
			this._z = quaternion.z;
			this._w = quaternion.w;

			this._onChangeCallback();

			return this;

		},

		setFromEuler: function ( euler, update ) {

			if ( ! ( euler && euler.isEuler ) ) {

				throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );

			}

			var x = euler._x, y = euler._y, z = euler._z, order = euler.order;

			// http://www.mathworks.com/matlabcentral/fileexchange/
			// 	20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
			//	content/SpinCalc.m

			var cos = Math.cos;
			var sin = Math.sin;

			var c1 = cos( x / 2 );
			var c2 = cos( y / 2 );
			var c3 = cos( z / 2 );

			var s1 = sin( x / 2 );
			var s2 = sin( y / 2 );
			var s3 = sin( z / 2 );

			switch ( order ) {

				case 'XYZ':
					this._x = s1 * c2 * c3 + c1 * s2 * s3;
					this._y = c1 * s2 * c3 - s1 * c2 * s3;
					this._z = c1 * c2 * s3 + s1 * s2 * c3;
					this._w = c1 * c2 * c3 - s1 * s2 * s3;
					break;

				case 'YXZ':
					this._x = s1 * c2 * c3 + c1 * s2 * s3;
					this._y = c1 * s2 * c3 - s1 * c2 * s3;
					this._z = c1 * c2 * s3 - s1 * s2 * c3;
					this._w = c1 * c2 * c3 + s1 * s2 * s3;
					break;

				case 'ZXY':
					this._x = s1 * c2 * c3 - c1 * s2 * s3;
					this._y = c1 * s2 * c3 + s1 * c2 * s3;
					this._z = c1 * c2 * s3 + s1 * s2 * c3;
					this._w = c1 * c2 * c3 - s1 * s2 * s3;
					break;

				case 'ZYX':
					this._x = s1 * c2 * c3 - c1 * s2 * s3;
					this._y = c1 * s2 * c3 + s1 * c2 * s3;
					this._z = c1 * c2 * s3 - s1 * s2 * c3;
					this._w = c1 * c2 * c3 + s1 * s2 * s3;
					break;

				case 'YZX':
					this._x = s1 * c2 * c3 + c1 * s2 * s3;
					this._y = c1 * s2 * c3 + s1 * c2 * s3;
					this._z = c1 * c2 * s3 - s1 * s2 * c3;
					this._w = c1 * c2 * c3 - s1 * s2 * s3;
					break;

				case 'XZY':
					this._x = s1 * c2 * c3 - c1 * s2 * s3;
					this._y = c1 * s2 * c3 - s1 * c2 * s3;
					this._z = c1 * c2 * s3 + s1 * s2 * c3;
					this._w = c1 * c2 * c3 + s1 * s2 * s3;
					break;

				default:
					console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order );

			}

			if ( update !== false ) { this._onChangeCallback(); }

			return this;

		},

		setFromAxisAngle: function ( axis, angle ) {

			// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm

			// assumes axis is normalized

			var halfAngle = angle / 2, s = Math.sin( halfAngle );

			this._x = axis.x * s;
			this._y = axis.y * s;
			this._z = axis.z * s;
			this._w = Math.cos( halfAngle );

			this._onChangeCallback();

			return this;

		},

		setFromRotationMatrix: function ( m ) {

			// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm

			// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

			var te = m.elements,

				m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
				m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
				m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],

				trace = m11 + m22 + m33,
				s;

			if ( trace > 0 ) {

				s = 0.5 / Math.sqrt( trace + 1.0 );

				this._w = 0.25 / s;
				this._x = ( m32 - m23 ) * s;
				this._y = ( m13 - m31 ) * s;
				this._z = ( m21 - m12 ) * s;

			} else if ( m11 > m22 && m11 > m33 ) {

				s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );

				this._w = ( m32 - m23 ) / s;
				this._x = 0.25 * s;
				this._y = ( m12 + m21 ) / s;
				this._z = ( m13 + m31 ) / s;

			} else if ( m22 > m33 ) {

				s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );

				this._w = ( m13 - m31 ) / s;
				this._x = ( m12 + m21 ) / s;
				this._y = 0.25 * s;
				this._z = ( m23 + m32 ) / s;

			} else {

				s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );

				this._w = ( m21 - m12 ) / s;
				this._x = ( m13 + m31 ) / s;
				this._y = ( m23 + m32 ) / s;
				this._z = 0.25 * s;

			}

			this._onChangeCallback();

			return this;

		},

		setFromUnitVectors: function ( vFrom, vTo ) {

			// assumes direction vectors vFrom and vTo are normalized

			var EPS = 0.000001;

			var r = vFrom.dot( vTo ) + 1;

			if ( r < EPS ) {

				r = 0;

				if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {

					this._x = - vFrom.y;
					this._y = vFrom.x;
					this._z = 0;
					this._w = r;

				} else {

					this._x = 0;
					this._y = - vFrom.z;
					this._z = vFrom.y;
					this._w = r;

				}

			} else {

				// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3

				this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
				this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
				this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
				this._w = r;

			}

			return this.normalize();

		},

		angleTo: function ( q ) {

			return 2 * Math.acos( Math.abs( MathUtils.clamp( this.dot( q ), - 1, 1 ) ) );

		},

		rotateTowards: function ( q, step ) {

			var angle = this.angleTo( q );

			if ( angle === 0 ) { return this; }

			var t = Math.min( 1, step / angle );

			this.slerp( q, t );

			return this;

		},

		inverse: function () {

			// quaternion is assumed to have unit length

			return this.conjugate();

		},

		conjugate: function () {

			this._x *= - 1;
			this._y *= - 1;
			this._z *= - 1;

			this._onChangeCallback();

			return this;

		},

		dot: function ( v ) {

			return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;

		},

		lengthSq: function () {

			return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;

		},

		length: function () {

			return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );

		},

		normalize: function () {

			var l = this.length();

			if ( l === 0 ) {

				this._x = 0;
				this._y = 0;
				this._z = 0;
				this._w = 1;

			} else {

				l = 1 / l;

				this._x = this._x * l;
				this._y = this._y * l;
				this._z = this._z * l;
				this._w = this._w * l;

			}

			this._onChangeCallback();

			return this;

		},

		multiply: function ( q, p ) {

			if ( p !== undefined ) {

				console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
				return this.multiplyQuaternions( q, p );

			}

			return this.multiplyQuaternions( this, q );

		},

		premultiply: function ( q ) {

			return this.multiplyQuaternions( q, this );

		},

		multiplyQuaternions: function ( a, b ) {

			// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm

			var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
			var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;

			this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
			this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
			this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
			this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;

			this._onChangeCallback();

			return this;

		},

		slerp: function ( qb, t ) {

			if ( t === 0 ) { return this; }
			if ( t === 1 ) { return this.copy( qb ); }

			var x = this._x, y = this._y, z = this._z, w = this._w;

			// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/

			var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;

			if ( cosHalfTheta < 0 ) {

				this._w = - qb._w;
				this._x = - qb._x;
				this._y = - qb._y;
				this._z = - qb._z;

				cosHalfTheta = - cosHalfTheta;

			} else {

				this.copy( qb );

			}

			if ( cosHalfTheta >= 1.0 ) {

				this._w = w;
				this._x = x;
				this._y = y;
				this._z = z;

				return this;

			}

			var sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;

			if ( sqrSinHalfTheta <= Number.EPSILON ) {

				var s = 1 - t;
				this._w = s * w + t * this._w;
				this._x = s * x + t * this._x;
				this._y = s * y + t * this._y;
				this._z = s * z + t * this._z;

				this.normalize();
				this._onChangeCallback();

				return this;

			}

			var sinHalfTheta = Math.sqrt( sqrSinHalfTheta );
			var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
			var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
				ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;

			this._w = ( w * ratioA + this._w * ratioB );
			this._x = ( x * ratioA + this._x * ratioB );
			this._y = ( y * ratioA + this._y * ratioB );
			this._z = ( z * ratioA + this._z * ratioB );

			this._onChangeCallback();

			return this;

		},

		equals: function ( quaternion ) {

			return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );

		},

		fromArray: function ( array, offset ) {

			if ( offset === undefined ) { offset = 0; }

			this._x = array[ offset ];
			this._y = array[ offset + 1 ];
			this._z = array[ offset + 2 ];
			this._w = array[ offset + 3 ];

			this._onChangeCallback();

			return this;

		},

		toArray: function ( array, offset ) {

			if ( array === undefined ) { array = []; }
			if ( offset === undefined ) { offset = 0; }

			array[ offset ] = this._x;
			array[ offset + 1 ] = this._y;
			array[ offset + 2 ] = this._z;
			array[ offset + 3 ] = this._w;

			return array;

		},

		fromBufferAttribute: function ( attribute, index ) {

			this._x = attribute.getX( index );
			this._y = attribute.getY( index );
			this._z = attribute.getZ( index );
			this._w = attribute.getW( index );

			return this;

		},

		_onChange: function ( callback ) {

			this._onChangeCallback = callback;

			return this;

		},

		_onChangeCallback: function () {}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author kile / http://kile.stravaganza.org/
	 * @author philogb / http://blog.thejit.org/
	 * @author mikael emtinger / http://gomo.se/
	 * @author egraether / http://egraether.com/
	 * @author WestLangley / http://github.com/WestLangley
	 */

	var _vector = new Vector3();
	var _quaternion = new Quaternion();

	function Vector3( x, y, z ) {

		this.x = x || 0;
		this.y = y || 0;
		this.z = z || 0;

	}

	Object.assign( Vector3.prototype, {

		isVector3: true,

		set: function ( x, y, z ) {

			this.x = x;
			this.y = y;
			this.z = z;

			return this;

		},

		setScalar: function ( scalar ) {

			this.x = scalar;
			this.y = scalar;
			this.z = scalar;

			return this;

		},

		setX: function ( x ) {

			this.x = x;

			return this;

		},

		setY: function ( y ) {

			this.y = y;

			return this;

		},

		setZ: function ( z ) {

			this.z = z;

			return this;

		},

		setComponent: function ( index, value ) {

			switch ( index ) {

				case 0: this.x = value; break;
				case 1: this.y = value; break;
				case 2: this.z = value; break;
				default: throw new Error( 'index is out of range: ' + index );

			}

			return this;

		},

		getComponent: function ( index ) {

			switch ( index ) {

				case 0: return this.x;
				case 1: return this.y;
				case 2: return this.z;
				default: throw new Error( 'index is out of range: ' + index );

			}

		},

		clone: function () {

			return new this.constructor( this.x, this.y, this.z );

		},

		copy: function ( v ) {

			this.x = v.x;
			this.y = v.y;
			this.z = v.z;

			return this;

		},

		add: function ( v, w ) {

			if ( w !== undefined ) {

				console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
				return this.addVectors( v, w );

			}

			this.x += v.x;
			this.y += v.y;
			this.z += v.z;

			return this;

		},

		addScalar: function ( s ) {

			this.x += s;
			this.y += s;
			this.z += s;

			return this;

		},

		addVectors: function ( a, b ) {

			this.x = a.x + b.x;
			this.y = a.y + b.y;
			this.z = a.z + b.z;

			return this;

		},

		addScaledVector: function ( v, s ) {

			this.x += v.x * s;
			this.y += v.y * s;
			this.z += v.z * s;

			return this;

		},

		sub: function ( v, w ) {

			if ( w !== undefined ) {

				console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
				return this.subVectors( v, w );

			}

			this.x -= v.x;
			this.y -= v.y;
			this.z -= v.z;

			return this;

		},

		subScalar: function ( s ) {

			this.x -= s;
			this.y -= s;
			this.z -= s;

			return this;

		},

		subVectors: function ( a, b ) {

			this.x = a.x - b.x;
			this.y = a.y - b.y;
			this.z = a.z - b.z;

			return this;

		},

		multiply: function ( v, w ) {

			if ( w !== undefined ) {

				console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
				return this.multiplyVectors( v, w );

			}

			this.x *= v.x;
			this.y *= v.y;
			this.z *= v.z;

			return this;

		},

		multiplyScalar: function ( scalar ) {

			this.x *= scalar;
			this.y *= scalar;
			this.z *= scalar;

			return this;

		},

		multiplyVectors: function ( a, b ) {

			this.x = a.x * b.x;
			this.y = a.y * b.y;
			this.z = a.z * b.z;

			return this;

		},

		applyEuler: function ( euler ) {

			if ( ! ( euler && euler.isEuler ) ) {

				console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );

			}

			return this.applyQuaternion( _quaternion.setFromEuler( euler ) );

		},

		applyAxisAngle: function ( axis, angle ) {

			return this.applyQuaternion( _quaternion.setFromAxisAngle( axis, angle ) );

		},

		applyMatrix3: function ( m ) {

			var x = this.x, y = this.y, z = this.z;
			var e = m.elements;

			this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
			this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
			this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;

			return this;

		},

		applyNormalMatrix: function ( m ) {

			return this.applyMatrix3( m ).normalize();

		},

		applyMatrix4: function ( m ) {

			var x = this.x, y = this.y, z = this.z;
			var e = m.elements;

			var w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );

			this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;
			this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;
			this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;

			return this;

		},

		applyQuaternion: function ( q ) {

			var x = this.x, y = this.y, z = this.z;
			var qx = q.x, qy = q.y, qz = q.z, qw = q.w;

			// calculate quat * vector

			var ix = qw * x + qy * z - qz * y;
			var iy = qw * y + qz * x - qx * z;
			var iz = qw * z + qx * y - qy * x;
			var iw = - qx * x - qy * y - qz * z;

			// calculate result * inverse quat

			this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
			this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
			this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;

			return this;

		},

		project: function ( camera ) {

			return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix );

		},

		unproject: function ( camera ) {

			return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld );

		},

		transformDirection: function ( m ) {

			// input: THREE.Matrix4 affine matrix
			// vector interpreted as a direction

			var x = this.x, y = this.y, z = this.z;
			var e = m.elements;

			this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
			this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
			this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;

			return this.normalize();

		},

		divide: function ( v ) {

			this.x /= v.x;
			this.y /= v.y;
			this.z /= v.z;

			return this;

		},

		divideScalar: function ( scalar ) {

			return this.multiplyScalar( 1 / scalar );

		},

		min: function ( v ) {

			this.x = Math.min( this.x, v.x );
			this.y = Math.min( this.y, v.y );
			this.z = Math.min( this.z, v.z );

			return this;

		},

		max: function ( v ) {

			this.x = Math.max( this.x, v.x );
			this.y = Math.max( this.y, v.y );
			this.z = Math.max( this.z, v.z );

			return this;

		},

		clamp: function ( min, max ) {

			// assumes min < max, componentwise

			this.x = Math.max( min.x, Math.min( max.x, this.x ) );
			this.y = Math.max( min.y, Math.min( max.y, this.y ) );
			this.z = Math.max( min.z, Math.min( max.z, this.z ) );

			return this;

		},

		clampScalar: function ( minVal, maxVal ) {

			this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
			this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
			this.z = Math.max( minVal, Math.min( maxVal, this.z ) );

			return this;

		},

		clampLength: function ( min, max ) {

			var length = this.length();

			return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

		},

		floor: function () {

			this.x = Math.floor( this.x );
			this.y = Math.floor( this.y );
			this.z = Math.floor( this.z );

			return this;

		},

		ceil: function () {

			this.x = Math.ceil( this.x );
			this.y = Math.ceil( this.y );
			this.z = Math.ceil( this.z );

			return this;

		},

		round: function () {

			this.x = Math.round( this.x );
			this.y = Math.round( this.y );
			this.z = Math.round( this.z );

			return this;

		},

		roundToZero: function () {

			this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
			this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
			this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );

			return this;

		},

		negate: function () {

			this.x = - this.x;
			this.y = - this.y;
			this.z = - this.z;

			return this;

		},

		dot: function ( v ) {

			return this.x * v.x + this.y * v.y + this.z * v.z;

		},

		// TODO lengthSquared?

		lengthSq: function () {

			return this.x * this.x + this.y * this.y + this.z * this.z;

		},

		length: function () {

			return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );

		},

		manhattanLength: function () {

			return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );

		},

		normalize: function () {

			return this.divideScalar( this.length() || 1 );

		},

		setLength: function ( length ) {

			return this.normalize().multiplyScalar( length );

		},

		lerp: function ( v, alpha ) {

			this.x += ( v.x - this.x ) * alpha;
			this.y += ( v.y - this.y ) * alpha;
			this.z += ( v.z - this.z ) * alpha;

			return this;

		},

		lerpVectors: function ( v1, v2, alpha ) {

			return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );

		},

		cross: function ( v, w ) {

			if ( w !== undefined ) {

				console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
				return this.crossVectors( v, w );

			}

			return this.crossVectors( this, v );

		},

		crossVectors: function ( a, b ) {

			var ax = a.x, ay = a.y, az = a.z;
			var bx = b.x, by = b.y, bz = b.z;

			this.x = ay * bz - az * by;
			this.y = az * bx - ax * bz;
			this.z = ax * by - ay * bx;

			return this;

		},

		projectOnVector: function ( v ) {

			var denominator = v.lengthSq();

			if ( denominator === 0 ) { return this.set( 0, 0, 0 ); }

			var scalar = v.dot( this ) / denominator;

			return this.copy( v ).multiplyScalar( scalar );

		},

		projectOnPlane: function ( planeNormal ) {

			_vector.copy( this ).projectOnVector( planeNormal );

			return this.sub( _vector );

		},

		reflect: function ( normal ) {

			// reflect incident vector off plane orthogonal to normal
			// normal is assumed to have unit length

			return this.sub( _vector.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );

		},

		angleTo: function ( v ) {

			var denominator = Math.sqrt( this.lengthSq() * v.lengthSq() );

			if ( denominator === 0 ) { return Math.PI / 2; }

			var theta = this.dot( v ) / denominator;

			// clamp, to handle numerical problems

			return Math.acos( MathUtils.clamp( theta, - 1, 1 ) );

		},

		distanceTo: function ( v ) {

			return Math.sqrt( this.distanceToSquared( v ) );

		},

		distanceToSquared: function ( v ) {

			var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;

			return dx * dx + dy * dy + dz * dz;

		},

		manhattanDistanceTo: function ( v ) {

			return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );

		},

		setFromSpherical: function ( s ) {

			return this.setFromSphericalCoords( s.radius, s.phi, s.theta );

		},

		setFromSphericalCoords: function ( radius, phi, theta ) {

			var sinPhiRadius = Math.sin( phi ) * radius;

			this.x = sinPhiRadius * Math.sin( theta );
			this.y = Math.cos( phi ) * radius;
			this.z = sinPhiRadius * Math.cos( theta );

			return this;

		},

		setFromCylindrical: function ( c ) {

			return this.setFromCylindricalCoords( c.radius, c.theta, c.y );

		},

		setFromCylindricalCoords: function ( radius, theta, y ) {

			this.x = radius * Math.sin( theta );
			this.y = y;
			this.z = radius * Math.cos( theta );

			return this;

		},

		setFromMatrixPosition: function ( m ) {

			var e = m.elements;

			this.x = e[ 12 ];
			this.y = e[ 13 ];
			this.z = e[ 14 ];

			return this;

		},

		setFromMatrixScale: function ( m ) {

			var sx = this.setFromMatrixColumn( m, 0 ).length();
			var sy = this.setFromMatrixColumn( m, 1 ).length();
			var sz = this.setFromMatrixColumn( m, 2 ).length();

			this.x = sx;
			this.y = sy;
			this.z = sz;

			return this;

		},

		setFromMatrixColumn: function ( m, index ) {

			return this.fromArray( m.elements, index * 4 );

		},

		setFromMatrix3Column: function ( m, index ) {

			return this.fromArray( m.elements, index * 3 );

		},

		equals: function ( v ) {

			return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );

		},

		fromArray: function ( array, offset ) {

			if ( offset === undefined ) { offset = 0; }

			this.x = array[ offset ];
			this.y = array[ offset + 1 ];
			this.z = array[ offset + 2 ];

			return this;

		},

		toArray: function ( array, offset ) {

			if ( array === undefined ) { array = []; }
			if ( offset === undefined ) { offset = 0; }

			array[ offset ] = this.x;
			array[ offset + 1 ] = this.y;
			array[ offset + 2 ] = this.z;

			return array;

		},

		fromBufferAttribute: function ( attribute, index, offset ) {

			if ( offset !== undefined ) {

				console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' );

			}

			this.x = attribute.getX( index );
			this.y = attribute.getY( index );
			this.z = attribute.getZ( index );

			return this;

		},

		random: function () {

			this.x = Math.random();
			this.y = Math.random();
			this.z = Math.random();

			return this;

		}

	} );

	var _v1 = new Vector3();
	var _m1 = new Matrix4();
	var _zero = new Vector3( 0, 0, 0 );
	var _one = new Vector3( 1, 1, 1 );
	var _x = new Vector3();
	var _y = new Vector3();
	var _z = new Vector3();

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author supereggbert / http://www.paulbrunt.co.uk/
	 * @author philogb / http://blog.thejit.org/
	 * @author jordi_ros / http://plattsoft.com
	 * @author D1plo1d / http://github.com/D1plo1d
	 * @author alteredq / http://alteredqualia.com/
	 * @author mikael emtinger / http://gomo.se/
	 * @author timknip / http://www.floorplanner.com/
	 * @author bhouston / http://clara.io
	 * @author WestLangley / http://github.com/WestLangley
	 */

	function Matrix4() {

		this.elements = [

			1, 0, 0, 0,
			0, 1, 0, 0,
			0, 0, 1, 0,
			0, 0, 0, 1

		];

		if ( arguments.length > 0 ) {

			console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );

		}

	}

	Object.assign( Matrix4.prototype, {

		isMatrix4: true,

		set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {

			var te = this.elements;

			te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
			te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
			te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
			te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;

			return this;

		},

		identity: function () {

			this.set(

				1, 0, 0, 0,
				0, 1, 0, 0,
				0, 0, 1, 0,
				0, 0, 0, 1

			);

			return this;

		},

		clone: function () {

			return new Matrix4().fromArray( this.elements );

		},

		copy: function ( m ) {

			var te = this.elements;
			var me = m.elements;

			te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
			te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
			te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
			te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];

			return this;

		},

		copyPosition: function ( m ) {

			var te = this.elements, me = m.elements;

			te[ 12 ] = me[ 12 ];
			te[ 13 ] = me[ 13 ];
			te[ 14 ] = me[ 14 ];

			return this;

		},

		extractBasis: function ( xAxis, yAxis, zAxis ) {

			xAxis.setFromMatrixColumn( this, 0 );
			yAxis.setFromMatrixColumn( this, 1 );
			zAxis.setFromMatrixColumn( this, 2 );

			return this;

		},

		makeBasis: function ( xAxis, yAxis, zAxis ) {

			this.set(
				xAxis.x, yAxis.x, zAxis.x, 0,
				xAxis.y, yAxis.y, zAxis.y, 0,
				xAxis.z, yAxis.z, zAxis.z, 0,
				0, 0, 0, 1
			);

			return this;

		},

		extractRotation: function ( m ) {

			// this method does not support reflection matrices

			var te = this.elements;
			var me = m.elements;

			var scaleX = 1 / _v1.setFromMatrixColumn( m, 0 ).length();
			var scaleY = 1 / _v1.setFromMatrixColumn( m, 1 ).length();
			var scaleZ = 1 / _v1.setFromMatrixColumn( m, 2 ).length();

			te[ 0 ] = me[ 0 ] * scaleX;
			te[ 1 ] = me[ 1 ] * scaleX;
			te[ 2 ] = me[ 2 ] * scaleX;
			te[ 3 ] = 0;

			te[ 4 ] = me[ 4 ] * scaleY;
			te[ 5 ] = me[ 5 ] * scaleY;
			te[ 6 ] = me[ 6 ] * scaleY;
			te[ 7 ] = 0;

			te[ 8 ] = me[ 8 ] * scaleZ;
			te[ 9 ] = me[ 9 ] * scaleZ;
			te[ 10 ] = me[ 10 ] * scaleZ;
			te[ 11 ] = 0;

			te[ 12 ] = 0;
			te[ 13 ] = 0;
			te[ 14 ] = 0;
			te[ 15 ] = 1;

			return this;

		},

		makeRotationFromEuler: function ( euler ) {

			if ( ! ( euler && euler.isEuler ) ) {

				console.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );

			}

			var te = this.elements;

			var x = euler.x, y = euler.y, z = euler.z;
			var a = Math.cos( x ), b = Math.sin( x );
			var c = Math.cos( y ), d = Math.sin( y );
			var e = Math.cos( z ), f = Math.sin( z );

			if ( euler.order === 'XYZ' ) {

				var ae = a * e, af = a * f, be = b * e, bf = b * f;

				te[ 0 ] = c * e;
				te[ 4 ] = - c * f;
				te[ 8 ] = d;

				te[ 1 ] = af + be * d;
				te[ 5 ] = ae - bf * d;
				te[ 9 ] = - b * c;

				te[ 2 ] = bf - ae * d;
				te[ 6 ] = be + af * d;
				te[ 10 ] = a * c;

			} else if ( euler.order === 'YXZ' ) {

				var ce = c * e, cf = c * f, de = d * e, df = d * f;

				te[ 0 ] = ce + df * b;
				te[ 4 ] = de * b - cf;
				te[ 8 ] = a * d;

				te[ 1 ] = a * f;
				te[ 5 ] = a * e;
				te[ 9 ] = - b;

				te[ 2 ] = cf * b - de;
				te[ 6 ] = df + ce * b;
				te[ 10 ] = a * c;

			} else if ( euler.order === 'ZXY' ) {

				var ce = c * e, cf = c * f, de = d * e, df = d * f;

				te[ 0 ] = ce - df * b;
				te[ 4 ] = - a * f;
				te[ 8 ] = de + cf * b;

				te[ 1 ] = cf + de * b;
				te[ 5 ] = a * e;
				te[ 9 ] = df - ce * b;

				te[ 2 ] = - a * d;
				te[ 6 ] = b;
				te[ 10 ] = a * c;

			} else if ( euler.order === 'ZYX' ) {

				var ae = a * e, af = a * f, be = b * e, bf = b * f;

				te[ 0 ] = c * e;
				te[ 4 ] = be * d - af;
				te[ 8 ] = ae * d + bf;

				te[ 1 ] = c * f;
				te[ 5 ] = bf * d + ae;
				te[ 9 ] = af * d - be;

				te[ 2 ] = - d;
				te[ 6 ] = b * c;
				te[ 10 ] = a * c;

			} else if ( euler.order === 'YZX' ) {

				var ac = a * c, ad = a * d, bc = b * c, bd = b * d;

				te[ 0 ] = c * e;
				te[ 4 ] = bd - ac * f;
				te[ 8 ] = bc * f + ad;

				te[ 1 ] = f;
				te[ 5 ] = a * e;
				te[ 9 ] = - b * e;

				te[ 2 ] = - d * e;
				te[ 6 ] = ad * f + bc;
				te[ 10 ] = ac - bd * f;

			} else if ( euler.order === 'XZY' ) {

				var ac = a * c, ad = a * d, bc = b * c, bd = b * d;

				te[ 0 ] = c * e;
				te[ 4 ] = - f;
				te[ 8 ] = d * e;

				te[ 1 ] = ac * f + bd;
				te[ 5 ] = a * e;
				te[ 9 ] = ad * f - bc;

				te[ 2 ] = bc * f - ad;
				te[ 6 ] = b * e;
				te[ 10 ] = bd * f + ac;

			}

			// bottom row
			te[ 3 ] = 0;
			te[ 7 ] = 0;
			te[ 11 ] = 0;

			// last column
			te[ 12 ] = 0;
			te[ 13 ] = 0;
			te[ 14 ] = 0;
			te[ 15 ] = 1;

			return this;

		},

		makeRotationFromQuaternion: function ( q ) {

			return this.compose( _zero, q, _one );

		},

		lookAt: function ( eye, target, up ) {

			var te = this.elements;

			_z.subVectors( eye, target );

			if ( _z.lengthSq() === 0 ) {

				// eye and target are in the same position

				_z.z = 1;

			}

			_z.normalize();
			_x.crossVectors( up, _z );

			if ( _x.lengthSq() === 0 ) {

				// up and z are parallel

				if ( Math.abs( up.z ) === 1 ) {

					_z.x += 0.0001;

				} else {

					_z.z += 0.0001;

				}

				_z.normalize();
				_x.crossVectors( up, _z );

			}

			_x.normalize();
			_y.crossVectors( _z, _x );

			te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x;
			te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y;
			te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z;

			return this;

		},

		multiply: function ( m, n ) {

			if ( n !== undefined ) {

				console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
				return this.multiplyMatrices( m, n );

			}

			return this.multiplyMatrices( this, m );

		},

		premultiply: function ( m ) {

			return this.multiplyMatrices( m, this );

		},

		multiplyMatrices: function ( a, b ) {

			var ae = a.elements;
			var be = b.elements;
			var te = this.elements;

			var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
			var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
			var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
			var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];

			var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
			var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
			var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
			var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];

			te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
			te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
			te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
			te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;

			te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
			te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
			te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
			te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;

			te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
			te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
			te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
			te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;

			te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
			te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
			te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
			te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;

			return this;

		},

		multiplyScalar: function ( s ) {

			var te = this.elements;

			te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
			te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
			te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
			te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;

			return this;

		},

		determinant: function () {

			var te = this.elements;

			var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
			var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
			var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
			var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];

			//TODO: make this more efficient
			//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )

			return (
				n41 * (
					+ n14 * n23 * n32
					 - n13 * n24 * n32
					 - n14 * n22 * n33
					 + n12 * n24 * n33
					 + n13 * n22 * n34
					 - n12 * n23 * n34
				) +
				n42 * (
					+ n11 * n23 * n34
					 - n11 * n24 * n33
					 + n14 * n21 * n33
					 - n13 * n21 * n34
					 + n13 * n24 * n31
					 - n14 * n23 * n31
				) +
				n43 * (
					+ n11 * n24 * n32
					 - n11 * n22 * n34
					 - n14 * n21 * n32
					 + n12 * n21 * n34
					 + n14 * n22 * n31
					 - n12 * n24 * n31
				) +
				n44 * (
					- n13 * n22 * n31
					 - n11 * n23 * n32
					 + n11 * n22 * n33
					 + n13 * n21 * n32
					 - n12 * n21 * n33
					 + n12 * n23 * n31
				)

			);

		},

		transpose: function () {

			var te = this.elements;
			var tmp;

			tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
			tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
			tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;

			tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
			tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
			tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;

			return this;

		},

		setPosition: function ( x, y, z ) {

			var te = this.elements;

			if ( x.isVector3 ) {

				te[ 12 ] = x.x;
				te[ 13 ] = x.y;
				te[ 14 ] = x.z;

			} else {

				te[ 12 ] = x;
				te[ 13 ] = y;
				te[ 14 ] = z;

			}

			return this;

		},

		getInverse: function ( m, throwOnDegenerate ) {

			if ( throwOnDegenerate !== undefined ) {

				console.warn( "THREE.Matrix4: .getInverse() can no longer be configured to throw on degenerate." );

			}

			// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
			var te = this.elements,
				me = m.elements,

				n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
				n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
				n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
				n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],

				t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
				t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
				t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
				t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;

			var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;

			if ( det === 0 ) { return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); }

			var detInv = 1 / det;

			te[ 0 ] = t11 * detInv;
			te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
			te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
			te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;

			te[ 4 ] = t12 * detInv;
			te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
			te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
			te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;

			te[ 8 ] = t13 * detInv;
			te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
			te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
			te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;

			te[ 12 ] = t14 * detInv;
			te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
			te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
			te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;

			return this;

		},

		scale: function ( v ) {

			var te = this.elements;
			var x = v.x, y = v.y, z = v.z;

			te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
			te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
			te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
			te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;

			return this;

		},

		getMaxScaleOnAxis: function () {

			var te = this.elements;

			var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
			var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
			var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];

			return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );

		},

		makeTranslation: function ( x, y, z ) {

			this.set(

				1, 0, 0, x,
				0, 1, 0, y,
				0, 0, 1, z,
				0, 0, 0, 1

			);

			return this;

		},

		makeRotationX: function ( theta ) {

			var c = Math.cos( theta ), s = Math.sin( theta );

			this.set(

				1, 0, 0, 0,
				0, c, - s, 0,
				0, s, c, 0,
				0, 0, 0, 1

			);

			return this;

		},

		makeRotationY: function ( theta ) {

			var c = Math.cos( theta ), s = Math.sin( theta );

			this.set(

				 c, 0, s, 0,
				 0, 1, 0, 0,
				- s, 0, c, 0,
				 0, 0, 0, 1

			);

			return this;

		},

		makeRotationZ: function ( theta ) {

			var c = Math.cos( theta ), s = Math.sin( theta );

			this.set(

				c, - s, 0, 0,
				s, c, 0, 0,
				0, 0, 1, 0,
				0, 0, 0, 1

			);

			return this;

		},

		makeRotationAxis: function ( axis, angle ) {

			// Based on http://www.gamedev.net/reference/articles/article1199.asp

			var c = Math.cos( angle );
			var s = Math.sin( angle );
			var t = 1 - c;
			var x = axis.x, y = axis.y, z = axis.z;
			var tx = t * x, ty = t * y;

			this.set(

				tx * x + c, tx * y - s * z, tx * z + s * y, 0,
				tx * y + s * z, ty * y + c, ty * z - s * x, 0,
				tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
				0, 0, 0, 1

			);

			 return this;

		},

		makeScale: function ( x, y, z ) {

			this.set(

				x, 0, 0, 0,
				0, y, 0, 0,
				0, 0, z, 0,
				0, 0, 0, 1

			);

			return this;

		},

		makeShear: function ( x, y, z ) {

			this.set(

				1, y, z, 0,
				x, 1, z, 0,
				x, y, 1, 0,
				0, 0, 0, 1

			);

			return this;

		},

		compose: function ( position, quaternion, scale ) {

			var te = this.elements;

			var x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w;
			var x2 = x + x,	y2 = y + y, z2 = z + z;
			var xx = x * x2, xy = x * y2, xz = x * z2;
			var yy = y * y2, yz = y * z2, zz = z * z2;
			var wx = w * x2, wy = w * y2, wz = w * z2;

			var sx = scale.x, sy = scale.y, sz = scale.z;

			te[ 0 ] = ( 1 - ( yy + zz ) ) * sx;
			te[ 1 ] = ( xy + wz ) * sx;
			te[ 2 ] = ( xz - wy ) * sx;
			te[ 3 ] = 0;

			te[ 4 ] = ( xy - wz ) * sy;
			te[ 5 ] = ( 1 - ( xx + zz ) ) * sy;
			te[ 6 ] = ( yz + wx ) * sy;
			te[ 7 ] = 0;

			te[ 8 ] = ( xz + wy ) * sz;
			te[ 9 ] = ( yz - wx ) * sz;
			te[ 10 ] = ( 1 - ( xx + yy ) ) * sz;
			te[ 11 ] = 0;

			te[ 12 ] = position.x;
			te[ 13 ] = position.y;
			te[ 14 ] = position.z;
			te[ 15 ] = 1;

			return this;

		},

		decompose: function ( position, quaternion, scale ) {

			var te = this.elements;

			var sx = _v1.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
			var sy = _v1.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
			var sz = _v1.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();

			// if determine is negative, we need to invert one scale
			var det = this.determinant();
			if ( det < 0 ) { sx = - sx; }

			position.x = te[ 12 ];
			position.y = te[ 13 ];
			position.z = te[ 14 ];

			// scale the rotation part
			_m1.copy( this );

			var invSX = 1 / sx;
			var invSY = 1 / sy;
			var invSZ = 1 / sz;

			_m1.elements[ 0 ] *= invSX;
			_m1.elements[ 1 ] *= invSX;
			_m1.elements[ 2 ] *= invSX;

			_m1.elements[ 4 ] *= invSY;
			_m1.elements[ 5 ] *= invSY;
			_m1.elements[ 6 ] *= invSY;

			_m1.elements[ 8 ] *= invSZ;
			_m1.elements[ 9 ] *= invSZ;
			_m1.elements[ 10 ] *= invSZ;

			quaternion.setFromRotationMatrix( _m1 );

			scale.x = sx;
			scale.y = sy;
			scale.z = sz;

			return this;

		},

		makePerspective: function ( left, right, top, bottom, near, far ) {

			if ( far === undefined ) {

				console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );

			}

			var te = this.elements;
			var x = 2 * near / ( right - left );
			var y = 2 * near / ( top - bottom );

			var a = ( right + left ) / ( right - left );
			var b = ( top + bottom ) / ( top - bottom );
			var c = - ( far + near ) / ( far - near );
			var d = - 2 * far * near / ( far - near );

			te[ 0 ] = x;	te[ 4 ] = 0;	te[ 8 ] = a;	te[ 12 ] = 0;
			te[ 1 ] = 0;	te[ 5 ] = y;	te[ 9 ] = b;	te[ 13 ] = 0;
			te[ 2 ] = 0;	te[ 6 ] = 0;	te[ 10 ] = c;	te[ 14 ] = d;
			te[ 3 ] = 0;	te[ 7 ] = 0;	te[ 11 ] = - 1;	te[ 15 ] = 0;

			return this;

		},

		makeOrthographic: function ( left, right, top, bottom, near, far ) {

			var te = this.elements;
			var w = 1.0 / ( right - left );
			var h = 1.0 / ( top - bottom );
			var p = 1.0 / ( far - near );

			var x = ( right + left ) * w;
			var y = ( top + bottom ) * h;
			var z = ( far + near ) * p;

			te[ 0 ] = 2 * w;	te[ 4 ] = 0;	te[ 8 ] = 0;	te[ 12 ] = - x;
			te[ 1 ] = 0;	te[ 5 ] = 2 * h;	te[ 9 ] = 0;	te[ 13 ] = - y;
			te[ 2 ] = 0;	te[ 6 ] = 0;	te[ 10 ] = - 2 * p;	te[ 14 ] = - z;
			te[ 3 ] = 0;	te[ 7 ] = 0;	te[ 11 ] = 0;	te[ 15 ] = 1;

			return this;

		},

		equals: function ( matrix ) {

			var te = this.elements;
			var me = matrix.elements;

			for ( var i = 0; i < 16; i ++ ) {

				if ( te[ i ] !== me[ i ] ) { return false; }

			}

			return true;

		},

		fromArray: function ( array, offset ) {

			if ( offset === undefined ) { offset = 0; }

			for ( var i = 0; i < 16; i ++ ) {

				this.elements[ i ] = array[ i + offset ];

			}

			return this;

		},

		toArray: function ( array, offset ) {

			if ( array === undefined ) { array = []; }
			if ( offset === undefined ) { offset = 0; }

			var te = this.elements;

			array[ offset ] = te[ 0 ];
			array[ offset + 1 ] = te[ 1 ];
			array[ offset + 2 ] = te[ 2 ];
			array[ offset + 3 ] = te[ 3 ];

			array[ offset + 4 ] = te[ 4 ];
			array[ offset + 5 ] = te[ 5 ];
			array[ offset + 6 ] = te[ 6 ];
			array[ offset + 7 ] = te[ 7 ];

			array[ offset + 8 ] = te[ 8 ];
			array[ offset + 9 ] = te[ 9 ];
			array[ offset + 10 ] = te[ 10 ];
			array[ offset + 11 ] = te[ 11 ];

			array[ offset + 12 ] = te[ 12 ];
			array[ offset + 13 ] = te[ 13 ];
			array[ offset + 14 ] = te[ 14 ];
			array[ offset + 15 ] = te[ 15 ];

			return array;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author WestLangley / http://github.com/WestLangley
	 * @author bhouston / http://clara.io
	 */

	var _matrix = new Matrix4();
	var _quaternion$1 = new Quaternion();

	function Euler( x, y, z, order ) {

		this._x = x || 0;
		this._y = y || 0;
		this._z = z || 0;
		this._order = order || Euler.DefaultOrder;

	}

	Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];

	Euler.DefaultOrder = 'XYZ';

	Object.defineProperties( Euler.prototype, {

		x: {

			get: function () {

				return this._x;

			},

			set: function ( value ) {

				this._x = value;
				this._onChangeCallback();

			}

		},

		y: {

			get: function () {

				return this._y;

			},

			set: function ( value ) {

				this._y = value;
				this._onChangeCallback();

			}

		},

		z: {

			get: function () {

				return this._z;

			},

			set: function ( value ) {

				this._z = value;
				this._onChangeCallback();

			}

		},

		order: {

			get: function () {

				return this._order;

			},

			set: function ( value ) {

				this._order = value;
				this._onChangeCallback();

			}

		}

	} );

	Object.assign( Euler.prototype, {

		isEuler: true,

		set: function ( x, y, z, order ) {

			this._x = x;
			this._y = y;
			this._z = z;
			this._order = order || this._order;

			this._onChangeCallback();

			return this;

		},

		clone: function () {

			return new this.constructor( this._x, this._y, this._z, this._order );

		},

		copy: function ( euler ) {

			this._x = euler._x;
			this._y = euler._y;
			this._z = euler._z;
			this._order = euler._order;

			this._onChangeCallback();

			return this;

		},

		setFromRotationMatrix: function ( m, order, update ) {

			var clamp = MathUtils.clamp;

			// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

			var te = m.elements;
			var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
			var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
			var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];

			order = order || this._order;

			switch ( order ) {

				case 'XYZ':

					this._y = Math.asin( clamp( m13, - 1, 1 ) );

					if ( Math.abs( m13 ) < 0.9999999 ) {

						this._x = Math.atan2( - m23, m33 );
						this._z = Math.atan2( - m12, m11 );

					} else {

						this._x = Math.atan2( m32, m22 );
						this._z = 0;

					}

					break;

				case 'YXZ':

					this._x = Math.asin( - clamp( m23, - 1, 1 ) );

					if ( Math.abs( m23 ) < 0.9999999 ) {

						this._y = Math.atan2( m13, m33 );
						this._z = Math.atan2( m21, m22 );

					} else {

						this._y = Math.atan2( - m31, m11 );
						this._z = 0;

					}

					break;

				case 'ZXY':

					this._x = Math.asin( clamp( m32, - 1, 1 ) );

					if ( Math.abs( m32 ) < 0.9999999 ) {

						this._y = Math.atan2( - m31, m33 );
						this._z = Math.atan2( - m12, m22 );

					} else {

						this._y = 0;
						this._z = Math.atan2( m21, m11 );

					}

					break;

				case 'ZYX':

					this._y = Math.asin( - clamp( m31, - 1, 1 ) );

					if ( Math.abs( m31 ) < 0.9999999 ) {

						this._x = Math.atan2( m32, m33 );
						this._z = Math.atan2( m21, m11 );

					} else {

						this._x = 0;
						this._z = Math.atan2( - m12, m22 );

					}

					break;

				case 'YZX':

					this._z = Math.asin( clamp( m21, - 1, 1 ) );

					if ( Math.abs( m21 ) < 0.9999999 ) {

						this._x = Math.atan2( - m23, m22 );
						this._y = Math.atan2( - m31, m11 );

					} else {

						this._x = 0;
						this._y = Math.atan2( m13, m33 );

					}

					break;

				case 'XZY':

					this._z = Math.asin( - clamp( m12, - 1, 1 ) );

					if ( Math.abs( m12 ) < 0.9999999 ) {

						this._x = Math.atan2( m32, m22 );
						this._y = Math.atan2( m13, m11 );

					} else {

						this._x = Math.atan2( - m23, m33 );
						this._y = 0;

					}

					break;

				default:

					console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order );

			}

			this._order = order;

			if ( update !== false ) { this._onChangeCallback(); }

			return this;

		},

		setFromQuaternion: function ( q, order, update ) {

			_matrix.makeRotationFromQuaternion( q );

			return this.setFromRotationMatrix( _matrix, order, update );

		},

		setFromVector3: function ( v, order ) {

			return this.set( v.x, v.y, v.z, order || this._order );

		},

		reorder: function ( newOrder ) {

			// WARNING: this discards revolution information -bhouston

			_quaternion$1.setFromEuler( this );

			return this.setFromQuaternion( _quaternion$1, newOrder );

		},

		equals: function ( euler ) {

			return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );

		},

		fromArray: function ( array ) {

			this._x = array[ 0 ];
			this._y = array[ 1 ];
			this._z = array[ 2 ];
			if ( array[ 3 ] !== undefined ) { this._order = array[ 3 ]; }

			this._onChangeCallback();

			return this;

		},

		toArray: function ( array, offset ) {

			if ( array === undefined ) { array = []; }
			if ( offset === undefined ) { offset = 0; }

			array[ offset ] = this._x;
			array[ offset + 1 ] = this._y;
			array[ offset + 2 ] = this._z;
			array[ offset + 3 ] = this._order;

			return array;

		},

		toVector3: function ( optionalResult ) {

			if ( optionalResult ) {

				return optionalResult.set( this._x, this._y, this._z );

			} else {

				return new Vector3( this._x, this._y, this._z );

			}

		},

		_onChange: function ( callback ) {

			this._onChangeCallback = callback;

			return this;

		},

		_onChangeCallback: function () {}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function Layers() {

		this.mask = 1 | 0;

	}

	Object.assign( Layers.prototype, {

		set: function ( channel ) {

			this.mask = 1 << channel | 0;

		},

		enable: function ( channel ) {

			this.mask |= 1 << channel | 0;

		},

		enableAll: function () {

			this.mask = 0xffffffff | 0;

		},

		toggle: function ( channel ) {

			this.mask ^= 1 << channel | 0;

		},

		disable: function ( channel ) {

			this.mask &= ~ ( 1 << channel | 0 );

		},

		disableAll: function () {

			this.mask = 0;

		},

		test: function ( layers ) {

			return ( this.mask & layers.mask ) !== 0;

		}

	} );

	var _object3DId = 0;

	var _v1$1 = new Vector3();
	var _q1 = new Quaternion();
	var _m1$1 = new Matrix4();
	var _target = new Vector3();

	var _position = new Vector3();
	var _scale = new Vector3();
	var _quaternion$2 = new Quaternion();

	var _xAxis = new Vector3( 1, 0, 0 );
	var _yAxis = new Vector3( 0, 1, 0 );
	var _zAxis = new Vector3( 0, 0, 1 );

	var _addedEvent = { type: 'added' };
	var _removedEvent = { type: 'removed' };

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author mikael emtinger / http://gomo.se/
	 * @author alteredq / http://alteredqualia.com/
	 * @author WestLangley / http://github.com/WestLangley
	 * @author elephantatwork / www.elephantatwork.ch
	 */

	function Object3D() {

		Object.defineProperty( this, 'id', { value: _object3DId ++ } );

		this.uuid = MathUtils.generateUUID();

		this.name = '';
		this.type = 'Object3D';

		this.parent = null;
		this.children = [];

		this.up = Object3D.DefaultUp.clone();

		var position = new Vector3();
		var rotation = new Euler();
		var quaternion = new Quaternion();
		var scale = new Vector3( 1, 1, 1 );

		function onRotationChange() {

			quaternion.setFromEuler( rotation, false );

		}

		function onQuaternionChange() {

			rotation.setFromQuaternion( quaternion, undefined, false );

		}

		rotation._onChange( onRotationChange );
		quaternion._onChange( onQuaternionChange );

		Object.defineProperties( this, {
			position: {
				configurable: true,
				enumerable: true,
				value: position
			},
			rotation: {
				configurable: true,
				enumerable: true,
				value: rotation
			},
			quaternion: {
				configurable: true,
				enumerable: true,
				value: quaternion
			},
			scale: {
				configurable: true,
				enumerable: true,
				value: scale
			},
			modelViewMatrix: {
				value: new Matrix4()
			},
			normalMatrix: {
				value: new Matrix3()
			}
		} );

		this.matrix = new Matrix4();
		this.matrixWorld = new Matrix4();

		this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
		this.matrixWorldNeedsUpdate = false;

		this.layers = new Layers();
		this.visible = true;

		this.castShadow = false;
		this.receiveShadow = false;

		this.frustumCulled = true;
		this.renderOrder = 0;

		this.userData = {};

	}

	Object3D.DefaultUp = new Vector3( 0, 1, 0 );
	Object3D.DefaultMatrixAutoUpdate = true;

	Object3D.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

		constructor: Object3D,

		isObject3D: true,

		onBeforeRender: function () {},
		onAfterRender: function () {},

		applyMatrix4: function ( matrix ) {

			if ( this.matrixAutoUpdate ) { this.updateMatrix(); }

			this.matrix.premultiply( matrix );

			this.matrix.decompose( this.position, this.quaternion, this.scale );

		},

		applyQuaternion: function ( q ) {

			this.quaternion.premultiply( q );

			return this;

		},

		setRotationFromAxisAngle: function ( axis, angle ) {

			// assumes axis is normalized

			this.quaternion.setFromAxisAngle( axis, angle );

		},

		setRotationFromEuler: function ( euler ) {

			this.quaternion.setFromEuler( euler, true );

		},

		setRotationFromMatrix: function ( m ) {

			// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

			this.quaternion.setFromRotationMatrix( m );

		},

		setRotationFromQuaternion: function ( q ) {

			// assumes q is normalized

			this.quaternion.copy( q );

		},

		rotateOnAxis: function ( axis, angle ) {

			// rotate object on axis in object space
			// axis is assumed to be normalized

			_q1.setFromAxisAngle( axis, angle );

			this.quaternion.multiply( _q1 );

			return this;

		},

		rotateOnWorldAxis: function ( axis, angle ) {

			// rotate object on axis in world space
			// axis is assumed to be normalized
			// method assumes no rotated parent

			_q1.setFromAxisAngle( axis, angle );

			this.quaternion.premultiply( _q1 );

			return this;

		},

		rotateX: function ( angle ) {

			return this.rotateOnAxis( _xAxis, angle );

		},

		rotateY: function ( angle ) {

			return this.rotateOnAxis( _yAxis, angle );

		},

		rotateZ: function ( angle ) {

			return this.rotateOnAxis( _zAxis, angle );

		},

		translateOnAxis: function ( axis, distance ) {

			// translate object by distance along axis in object space
			// axis is assumed to be normalized

			_v1$1.copy( axis ).applyQuaternion( this.quaternion );

			this.position.add( _v1$1.multiplyScalar( distance ) );

			return this;

		},

		translateX: function ( distance ) {

			return this.translateOnAxis( _xAxis, distance );

		},

		translateY: function ( distance ) {

			return this.translateOnAxis( _yAxis, distance );

		},

		translateZ: function ( distance ) {

			return this.translateOnAxis( _zAxis, distance );

		},

		localToWorld: function ( vector ) {

			return vector.applyMatrix4( this.matrixWorld );

		},

		worldToLocal: function ( vector ) {

			return vector.applyMatrix4( _m1$1.getInverse( this.matrixWorld ) );

		},

		lookAt: function ( x, y, z ) {

			// This method does not support objects having non-uniformly-scaled parent(s)

			if ( x.isVector3 ) {

				_target.copy( x );

			} else {

				_target.set( x, y, z );

			}

			var parent = this.parent;

			this.updateWorldMatrix( true, false );

			_position.setFromMatrixPosition( this.matrixWorld );

			if ( this.isCamera || this.isLight ) {

				_m1$1.lookAt( _position, _target, this.up );

			} else {

				_m1$1.lookAt( _target, _position, this.up );

			}

			this.quaternion.setFromRotationMatrix( _m1$1 );

			if ( parent ) {

				_m1$1.extractRotation( parent.matrixWorld );
				_q1.setFromRotationMatrix( _m1$1 );
				this.quaternion.premultiply( _q1.inverse() );

			}

		},

		add: function ( object ) {

			if ( arguments.length > 1 ) {

				for ( var i = 0; i < arguments.length; i ++ ) {

					this.add( arguments[ i ] );

				}

				return this;

			}

			if ( object === this ) {

				console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object );
				return this;

			}

			if ( ( object && object.isObject3D ) ) {

				if ( object.parent !== null ) {

					object.parent.remove( object );

				}

				object.parent = this;
				this.children.push( object );

				object.dispatchEvent( _addedEvent );

			} else {

				console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );

			}

			return this;

		},

		remove: function ( object ) {

			if ( arguments.length > 1 ) {

				for ( var i = 0; i < arguments.length; i ++ ) {

					this.remove( arguments[ i ] );

				}

				return this;

			}

			var index = this.children.indexOf( object );

			if ( index !== - 1 ) {

				object.parent = null;
				this.children.splice( index, 1 );

				object.dispatchEvent( _removedEvent );

			}

			return this;

		},

		attach: function ( object ) {

			// adds object as a child of this, while maintaining the object's world transform

			this.updateWorldMatrix( true, false );

			_m1$1.getInverse( this.matrixWorld );

			if ( object.parent !== null ) {

				object.parent.updateWorldMatrix( true, false );

				_m1$1.multiply( object.parent.matrixWorld );

			}

			object.applyMatrix4( _m1$1 );

			object.updateWorldMatrix( false, false );

			this.add( object );

			return this;

		},

		getObjectById: function ( id ) {

			return this.getObjectByProperty( 'id', id );

		},

		getObjectByName: function ( name ) {

			return this.getObjectByProperty( 'name', name );

		},

		getObjectByProperty: function ( name, value ) {

			if ( this[ name ] === value ) { return this; }

			for ( var i = 0, l = this.children.length; i < l; i ++ ) {

				var child = this.children[ i ];
				var object = child.getObjectByProperty( name, value );

				if ( object !== undefined ) {

					return object;

				}

			}

			return undefined;

		},

		getWorldPosition: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Object3D: .getWorldPosition() target is now required' );
				target = new Vector3();

			}

			this.updateMatrixWorld( true );

			return target.setFromMatrixPosition( this.matrixWorld );

		},

		getWorldQuaternion: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Object3D: .getWorldQuaternion() target is now required' );
				target = new Quaternion();

			}

			this.updateMatrixWorld( true );

			this.matrixWorld.decompose( _position, target, _scale );

			return target;

		},

		getWorldScale: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Object3D: .getWorldScale() target is now required' );
				target = new Vector3();

			}

			this.updateMatrixWorld( true );

			this.matrixWorld.decompose( _position, _quaternion$2, target );

			return target;

		},

		getWorldDirection: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Object3D: .getWorldDirection() target is now required' );
				target = new Vector3();

			}

			this.updateMatrixWorld( true );

			var e = this.matrixWorld.elements;

			return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize();

		},

		raycast: function () {},

		traverse: function ( callback ) {

			callback( this );

			var children = this.children;

			for ( var i = 0, l = children.length; i < l; i ++ ) {

				children[ i ].traverse( callback );

			}

		},

		traverseVisible: function ( callback ) {

			if ( this.visible === false ) { return; }

			callback( this );

			var children = this.children;

			for ( var i = 0, l = children.length; i < l; i ++ ) {

				children[ i ].traverseVisible( callback );

			}

		},

		traverseAncestors: function ( callback ) {

			var parent = this.parent;

			if ( parent !== null ) {

				callback( parent );

				parent.traverseAncestors( callback );

			}

		},

		updateMatrix: function () {

			this.matrix.compose( this.position, this.quaternion, this.scale );

			this.matrixWorldNeedsUpdate = true;

		},

		updateMatrixWorld: function ( force ) {

			if ( this.matrixAutoUpdate ) { this.updateMatrix(); }

			if ( this.matrixWorldNeedsUpdate || force ) {

				if ( this.parent === null ) {

					this.matrixWorld.copy( this.matrix );

				} else {

					this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );

				}

				this.matrixWorldNeedsUpdate = false;

				force = true;

			}

			// update children

			var children = this.children;

			for ( var i = 0, l = children.length; i < l; i ++ ) {

				children[ i ].updateMatrixWorld( force );

			}

		},

		updateWorldMatrix: function ( updateParents, updateChildren ) {

			var parent = this.parent;

			if ( updateParents === true && parent !== null ) {

				parent.updateWorldMatrix( true, false );

			}

			if ( this.matrixAutoUpdate ) { this.updateMatrix(); }

			if ( this.parent === null ) {

				this.matrixWorld.copy( this.matrix );

			} else {

				this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );

			}

			// update children

			if ( updateChildren === true ) {

				var children = this.children;

				for ( var i = 0, l = children.length; i < l; i ++ ) {

					children[ i ].updateWorldMatrix( false, true );

				}

			}

		},

		toJSON: function ( meta ) {

			// meta is a string when called from JSON.stringify
			var isRootObject = ( meta === undefined || typeof meta === 'string' );

			var output = {};

			// meta is a hash used to collect geometries, materials.
			// not providing it implies that this is the root object
			// being serialized.
			if ( isRootObject ) {

				// initialize meta obj
				meta = {
					geometries: {},
					materials: {},
					textures: {},
					images: {},
					shapes: {}
				};

				output.metadata = {
					version: 4.5,
					type: 'Object',
					generator: 'Object3D.toJSON'
				};

			}

			// standard Object3D serialization

			var object = {};

			object.uuid = this.uuid;
			object.type = this.type;

			if ( this.name !== '' ) { object.name = this.name; }
			if ( this.castShadow === true ) { object.castShadow = true; }
			if ( this.receiveShadow === true ) { object.receiveShadow = true; }
			if ( this.visible === false ) { object.visible = false; }
			if ( this.frustumCulled === false ) { object.frustumCulled = false; }
			if ( this.renderOrder !== 0 ) { object.renderOrder = this.renderOrder; }
			if ( JSON.stringify( this.userData ) !== '{}' ) { object.userData = this.userData; }

			object.layers = this.layers.mask;
			object.matrix = this.matrix.toArray();

			if ( this.matrixAutoUpdate === false ) { object.matrixAutoUpdate = false; }

			// object specific properties

			if ( this.isInstancedMesh ) {

				object.type = 'InstancedMesh';
				object.count = this.count;
				object.instanceMatrix = this.instanceMatrix.toJSON();

			}

			//

			function serialize( library, element ) {

				if ( library[ element.uuid ] === undefined ) {

					library[ element.uuid ] = element.toJSON( meta );

				}

				return element.uuid;

			}

			if ( this.isMesh || this.isLine || this.isPoints ) {

				object.geometry = serialize( meta.geometries, this.geometry );

				var parameters = this.geometry.parameters;

				if ( parameters !== undefined && parameters.shapes !== undefined ) {

					var shapes = parameters.shapes;

					if ( Array.isArray( shapes ) ) {

						for ( var i = 0, l = shapes.length; i < l; i ++ ) {

							var shape = shapes[ i ];

							serialize( meta.shapes, shape );

						}

					} else {

						serialize( meta.shapes, shapes );

					}

				}

			}

			if ( this.material !== undefined ) {

				if ( Array.isArray( this.material ) ) {

					var uuids = [];

					for ( var i = 0, l = this.material.length; i < l; i ++ ) {

						uuids.push( serialize( meta.materials, this.material[ i ] ) );

					}

					object.material = uuids;

				} else {

					object.material = serialize( meta.materials, this.material );

				}

			}

			//

			if ( this.children.length > 0 ) {

				object.children = [];

				for ( var i = 0; i < this.children.length; i ++ ) {

					object.children.push( this.children[ i ].toJSON( meta ).object );

				}

			}

			if ( isRootObject ) {

				var geometries = extractFromCache( meta.geometries );
				var materials = extractFromCache( meta.materials );
				var textures = extractFromCache( meta.textures );
				var images = extractFromCache( meta.images );
				var shapes = extractFromCache( meta.shapes );

				if ( geometries.length > 0 ) { output.geometries = geometries; }
				if ( materials.length > 0 ) { output.materials = materials; }
				if ( textures.length > 0 ) { output.textures = textures; }
				if ( images.length > 0 ) { output.images = images; }
				if ( shapes.length > 0 ) { output.shapes = shapes; }

			}

			output.object = object;

			return output;

			// extract data from the cache hash
			// remove metadata on each item
			// and return as array
			function extractFromCache( cache ) {

				var values = [];
				for ( var key in cache ) {

					var data = cache[ key ];
					delete data.metadata;
					values.push( data );

				}

				return values;

			}

		},

		clone: function ( recursive ) {

			return new this.constructor().copy( this, recursive );

		},

		copy: function ( source, recursive ) {

			if ( recursive === undefined ) { recursive = true; }

			this.name = source.name;

			this.up.copy( source.up );

			this.position.copy( source.position );
			this.quaternion.copy( source.quaternion );
			this.scale.copy( source.scale );

			this.matrix.copy( source.matrix );
			this.matrixWorld.copy( source.matrixWorld );

			this.matrixAutoUpdate = source.matrixAutoUpdate;
			this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;

			this.layers.mask = source.layers.mask;
			this.visible = source.visible;

			this.castShadow = source.castShadow;
			this.receiveShadow = source.receiveShadow;

			this.frustumCulled = source.frustumCulled;
			this.renderOrder = source.renderOrder;

			this.userData = JSON.parse( JSON.stringify( source.userData ) );

			if ( recursive === true ) {

				for ( var i = 0; i < source.children.length; i ++ ) {

					var child = source.children[ i ];
					this.add( child.clone() );

				}

			}

			return this;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function Scene() {

		Object3D.call( this );

		this.type = 'Scene';

		this.background = null;
		this.environment = null;
		this.fog = null;

		this.overrideMaterial = null;

		this.autoUpdate = true; // checked by the renderer

		if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {

			__THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef

		}

	}

	Scene.prototype = Object.assign( Object.create( Object3D.prototype ), {

		constructor: Scene,

		isScene: true,

		copy: function ( source, recursive ) {

			Object3D.prototype.copy.call( this, source, recursive );

			if ( source.background !== null ) { this.background = source.background.clone(); }
			if ( source.environment !== null ) { this.environment = source.environment.clone(); }
			if ( source.fog !== null ) { this.fog = source.fog.clone(); }

			if ( source.overrideMaterial !== null ) { this.overrideMaterial = source.overrideMaterial.clone(); }

			this.autoUpdate = source.autoUpdate;
			this.matrixAutoUpdate = source.matrixAutoUpdate;

			return this;

		},

		toJSON: function ( meta ) {

			var data = Object3D.prototype.toJSON.call( this, meta );

			if ( this.background !== null ) { data.object.background = this.background.toJSON( meta ); }
			if ( this.environment !== null ) { data.object.environment = this.environment.toJSON( meta ); }
			if ( this.fog !== null ) { data.object.fog = this.fog.toJSON(); }

			return data;

		},

		dispose: function () {

			this.dispatchEvent( { type: 'dispose' } );

		}

	} );

	var _points = [
		new Vector3(),
		new Vector3(),
		new Vector3(),
		new Vector3(),
		new Vector3(),
		new Vector3(),
		new Vector3(),
		new Vector3()
	];

	var _vector$1 = new Vector3();

	var _box = new Box3();

	// triangle centered vertices

	var _v0 = new Vector3();
	var _v1$2 = new Vector3();
	var _v2 = new Vector3();

	// triangle edge vectors

	var _f0 = new Vector3();
	var _f1 = new Vector3();
	var _f2 = new Vector3();

	var _center = new Vector3();
	var _extents = new Vector3();
	var _triangleNormal = new Vector3();
	var _testAxis = new Vector3();

	/**
	 * @author bhouston / http://clara.io
	 * @author WestLangley / http://github.com/WestLangley
	 */

	function Box3( min, max ) {

		this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity );
		this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity );

	}


	Object.assign( Box3.prototype, {

		isBox3: true,

		set: function ( min, max ) {

			this.min.copy( min );
			this.max.copy( max );

			return this;

		},

		setFromArray: function ( array ) {

			var minX = + Infinity;
			var minY = + Infinity;
			var minZ = + Infinity;

			var maxX = - Infinity;
			var maxY = - Infinity;
			var maxZ = - Infinity;

			for ( var i = 0, l = array.length; i < l; i += 3 ) {

				var x = array[ i ];
				var y = array[ i + 1 ];
				var z = array[ i + 2 ];

				if ( x < minX ) { minX = x; }
				if ( y < minY ) { minY = y; }
				if ( z < minZ ) { minZ = z; }

				if ( x > maxX ) { maxX = x; }
				if ( y > maxY ) { maxY = y; }
				if ( z > maxZ ) { maxZ = z; }

			}

			this.min.set( minX, minY, minZ );
			this.max.set( maxX, maxY, maxZ );

			return this;

		},

		setFromBufferAttribute: function ( attribute ) {

			var minX = + Infinity;
			var minY = + Infinity;
			var minZ = + Infinity;

			var maxX = - Infinity;
			var maxY = - Infinity;
			var maxZ = - Infinity;

			for ( var i = 0, l = attribute.count; i < l; i ++ ) {

				var x = attribute.getX( i );
				var y = attribute.getY( i );
				var z = attribute.getZ( i );

				if ( x < minX ) { minX = x; }
				if ( y < minY ) { minY = y; }
				if ( z < minZ ) { minZ = z; }

				if ( x > maxX ) { maxX = x; }
				if ( y > maxY ) { maxY = y; }
				if ( z > maxZ ) { maxZ = z; }

			}

			this.min.set( minX, minY, minZ );
			this.max.set( maxX, maxY, maxZ );

			return this;

		},

		setFromPoints: function ( points ) {

			this.makeEmpty();

			for ( var i = 0, il = points.length; i < il; i ++ ) {

				this.expandByPoint( points[ i ] );

			}

			return this;

		},

		setFromCenterAndSize: function ( center, size ) {

			var halfSize = _vector$1.copy( size ).multiplyScalar( 0.5 );

			this.min.copy( center ).sub( halfSize );
			this.max.copy( center ).add( halfSize );

			return this;

		},

		setFromObject: function ( object ) {

			this.makeEmpty();

			return this.expandByObject( object );

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( box ) {

			this.min.copy( box.min );
			this.max.copy( box.max );

			return this;

		},

		makeEmpty: function () {

			this.min.x = this.min.y = this.min.z = + Infinity;
			this.max.x = this.max.y = this.max.z = - Infinity;

			return this;

		},

		isEmpty: function () {

			// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes

			return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );

		},

		getCenter: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Box3: .getCenter() target is now required' );
				target = new Vector3();

			}

			return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );

		},

		getSize: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Box3: .getSize() target is now required' );
				target = new Vector3();

			}

			return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min );

		},

		expandByPoint: function ( point ) {

			this.min.min( point );
			this.max.max( point );

			return this;

		},

		expandByVector: function ( vector ) {

			this.min.sub( vector );
			this.max.add( vector );

			return this;

		},

		expandByScalar: function ( scalar ) {

			this.min.addScalar( - scalar );
			this.max.addScalar( scalar );

			return this;

		},

		expandByObject: function ( object ) {

			// Computes the world-axis-aligned bounding box of an object (including its children),
			// accounting for both the object's, and children's, world transforms

			object.updateWorldMatrix( false, false );

			var geometry = object.geometry;

			if ( geometry !== undefined ) {

				if ( geometry.boundingBox === null ) {

					geometry.computeBoundingBox();

				}

				_box.copy( geometry.boundingBox );
				_box.applyMatrix4( object.matrixWorld );

				this.union( _box );

			}

			var children = object.children;

			for ( var i = 0, l = children.length; i < l; i ++ ) {

				this.expandByObject( children[ i ] );

			}

			return this;

		},

		containsPoint: function ( point ) {

			return point.x < this.min.x || point.x > this.max.x ||
				point.y < this.min.y || point.y > this.max.y ||
				point.z < this.min.z || point.z > this.max.z ? false : true;

		},

		containsBox: function ( box ) {

			return this.min.x <= box.min.x && box.max.x <= this.max.x &&
				this.min.y <= box.min.y && box.max.y <= this.max.y &&
				this.min.z <= box.min.z && box.max.z <= this.max.z;

		},

		getParameter: function ( point, target ) {

			// This can potentially have a divide by zero if the box
			// has a size dimension of 0.

			if ( target === undefined ) {

				console.warn( 'THREE.Box3: .getParameter() target is now required' );
				target = new Vector3();

			}

			return target.set(
				( point.x - this.min.x ) / ( this.max.x - this.min.x ),
				( point.y - this.min.y ) / ( this.max.y - this.min.y ),
				( point.z - this.min.z ) / ( this.max.z - this.min.z )
			);

		},

		intersectsBox: function ( box ) {

			// using 6 splitting planes to rule out intersections.
			return box.max.x < this.min.x || box.min.x > this.max.x ||
				box.max.y < this.min.y || box.min.y > this.max.y ||
				box.max.z < this.min.z || box.min.z > this.max.z ? false : true;

		},

		intersectsSphere: function ( sphere ) {

			// Find the point on the AABB closest to the sphere center.
			this.clampPoint( sphere.center, _vector$1 );

			// If that point is inside the sphere, the AABB and sphere intersect.
			return _vector$1.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );

		},

		intersectsPlane: function ( plane ) {

			// We compute the minimum and maximum dot product values. If those values
			// are on the same side (back or front) of the plane, then there is no intersection.

			var min, max;

			if ( plane.normal.x > 0 ) {

				min = plane.normal.x * this.min.x;
				max = plane.normal.x * this.max.x;

			} else {

				min = plane.normal.x * this.max.x;
				max = plane.normal.x * this.min.x;

			}

			if ( plane.normal.y > 0 ) {

				min += plane.normal.y * this.min.y;
				max += plane.normal.y * this.max.y;

			} else {

				min += plane.normal.y * this.max.y;
				max += plane.normal.y * this.min.y;

			}

			if ( plane.normal.z > 0 ) {

				min += plane.normal.z * this.min.z;
				max += plane.normal.z * this.max.z;

			} else {

				min += plane.normal.z * this.max.z;
				max += plane.normal.z * this.min.z;

			}

			return ( min <= - plane.constant && max >= - plane.constant );

		},

		intersectsTriangle: function ( triangle ) {

			if ( this.isEmpty() ) {

				return false;

			}

			// compute box center and extents
			this.getCenter( _center );
			_extents.subVectors( this.max, _center );

			// translate triangle to aabb origin
			_v0.subVectors( triangle.a, _center );
			_v1$2.subVectors( triangle.b, _center );
			_v2.subVectors( triangle.c, _center );

			// compute edge vectors for triangle
			_f0.subVectors( _v1$2, _v0 );
			_f1.subVectors( _v2, _v1$2 );
			_f2.subVectors( _v0, _v2 );

			// test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
			// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
			// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
			var axes = [
				0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y,
				_f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x,
				- _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0
			];
			if ( ! satForAxes( axes, _v0, _v1$2, _v2, _extents ) ) {

				return false;

			}

			// test 3 face normals from the aabb
			axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ];
			if ( ! satForAxes( axes, _v0, _v1$2, _v2, _extents ) ) {

				return false;

			}

			// finally testing the face normal of the triangle
			// use already existing triangle edge vectors here
			_triangleNormal.crossVectors( _f0, _f1 );
			axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ];

			return satForAxes( axes, _v0, _v1$2, _v2, _extents );

		},

		clampPoint: function ( point, target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Box3: .clampPoint() target is now required' );
				target = new Vector3();

			}

			return target.copy( point ).clamp( this.min, this.max );

		},

		distanceToPoint: function ( point ) {

			var clampedPoint = _vector$1.copy( point ).clamp( this.min, this.max );

			return clampedPoint.sub( point ).length();

		},

		getBoundingSphere: function ( target ) {

			if ( target === undefined ) {

				console.error( 'THREE.Box3: .getBoundingSphere() target is now required' );
				//target = new Sphere(); // removed to avoid cyclic dependency

			}

			this.getCenter( target.center );

			target.radius = this.getSize( _vector$1 ).length() * 0.5;

			return target;

		},

		intersect: function ( box ) {

			this.min.max( box.min );
			this.max.min( box.max );

			// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
			if ( this.isEmpty() ) { this.makeEmpty(); }

			return this;

		},

		union: function ( box ) {

			this.min.min( box.min );
			this.max.max( box.max );

			return this;

		},

		applyMatrix4: function ( matrix ) {

			// transform of empty box is an empty box.
			if ( this.isEmpty() ) { return this; }

			// NOTE: I am using a binary pattern to specify all 2^3 combinations below
			_points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
			_points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
			_points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
			_points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
			_points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
			_points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
			_points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
			_points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111

			this.setFromPoints( _points );

			return this;

		},

		translate: function ( offset ) {

			this.min.add( offset );
			this.max.add( offset );

			return this;

		},

		equals: function ( box ) {

			return box.min.equals( this.min ) && box.max.equals( this.max );

		}

	} );

	function satForAxes( axes, v0, v1, v2, extents ) {

		var i, j;

		for ( i = 0, j = axes.length - 3; i <= j; i += 3 ) {

			_testAxis.fromArray( axes, i );
			// project the aabb onto the seperating axis
			var r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z );
			// project all 3 vertices of the triangle onto the seperating axis
			var p0 = v0.dot( _testAxis );
			var p1 = v1.dot( _testAxis );
			var p2 = v2.dot( _testAxis );
			// actual test, basically see if either of the most extreme of the triangle points intersects r
			if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) {

				// points of the projected triangle are outside the projected half-length of the aabb
				// the axis is seperating and we can exit
				return false;

			}

		}

		return true;

	}

	var _box$1 = new Box3();

	/**
	 * @author bhouston / http://clara.io
	 * @author mrdoob / http://mrdoob.com/
	 */

	function Sphere( center, radius ) {

		this.center = ( center !== undefined ) ? center : new Vector3();
		this.radius = ( radius !== undefined ) ? radius : - 1;

	}

	Object.assign( Sphere.prototype, {

		set: function ( center, radius ) {

			this.center.copy( center );
			this.radius = radius;

			return this;

		},

		setFromPoints: function ( points, optionalCenter ) {

			var center = this.center;

			if ( optionalCenter !== undefined ) {

				center.copy( optionalCenter );

			} else {

				_box$1.setFromPoints( points ).getCenter( center );

			}

			var maxRadiusSq = 0;

			for ( var i = 0, il = points.length; i < il; i ++ ) {

				maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );

			}

			this.radius = Math.sqrt( maxRadiusSq );

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( sphere ) {

			this.center.copy( sphere.center );
			this.radius = sphere.radius;

			return this;

		},

		isEmpty: function () {

			return ( this.radius < 0 );

		},

		makeEmpty: function () {

			this.center.set( 0, 0, 0 );
			this.radius = - 1;

			return this;

		},

		containsPoint: function ( point ) {

			return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );

		},

		distanceToPoint: function ( point ) {

			return ( point.distanceTo( this.center ) - this.radius );

		},

		intersectsSphere: function ( sphere ) {

			var radiusSum = this.radius + sphere.radius;

			return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );

		},

		intersectsBox: function ( box ) {

			return box.intersectsSphere( this );

		},

		intersectsPlane: function ( plane ) {

			return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius;

		},

		clampPoint: function ( point, target ) {

			var deltaLengthSq = this.center.distanceToSquared( point );

			if ( target === undefined ) {

				console.warn( 'THREE.Sphere: .clampPoint() target is now required' );
				target = new Vector3();

			}

			target.copy( point );

			if ( deltaLengthSq > ( this.radius * this.radius ) ) {

				target.sub( this.center ).normalize();
				target.multiplyScalar( this.radius ).add( this.center );

			}

			return target;

		},

		getBoundingBox: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Sphere: .getBoundingBox() target is now required' );
				target = new Box3();

			}

			if ( this.isEmpty() ) {

				// Empty sphere produces empty bounding box
				target.makeEmpty();
				return target;

			}

			target.set( this.center, this.center );
			target.expandByScalar( this.radius );

			return target;

		},

		applyMatrix4: function ( matrix ) {

			this.center.applyMatrix4( matrix );
			this.radius = this.radius * matrix.getMaxScaleOnAxis();

			return this;

		},

		translate: function ( offset ) {

			this.center.add( offset );

			return this;

		},

		equals: function ( sphere ) {

			return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );

		}

	} );

	var _vector$2 = new Vector3();
	var _segCenter = new Vector3();
	var _segDir = new Vector3();
	var _diff = new Vector3();

	var _edge1 = new Vector3();
	var _edge2 = new Vector3();
	var _normal = new Vector3();

	/**
	 * @author bhouston / http://clara.io
	 */

	function Ray( origin, direction ) {

		this.origin = ( origin !== undefined ) ? origin : new Vector3();
		this.direction = ( direction !== undefined ) ? direction : new Vector3( 0, 0, - 1 );

	}

	Object.assign( Ray.prototype, {

		set: function ( origin, direction ) {

			this.origin.copy( origin );
			this.direction.copy( direction );

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( ray ) {

			this.origin.copy( ray.origin );
			this.direction.copy( ray.direction );

			return this;

		},

		at: function ( t, target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Ray: .at() target is now required' );
				target = new Vector3();

			}

			return target.copy( this.direction ).multiplyScalar( t ).add( this.origin );

		},

		lookAt: function ( v ) {

			this.direction.copy( v ).sub( this.origin ).normalize();

			return this;

		},

		recast: function ( t ) {

			this.origin.copy( this.at( t, _vector$2 ) );

			return this;

		},

		closestPointToPoint: function ( point, target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Ray: .closestPointToPoint() target is now required' );
				target = new Vector3();

			}

			target.subVectors( point, this.origin );

			var directionDistance = target.dot( this.direction );

			if ( directionDistance < 0 ) {

				return target.copy( this.origin );

			}

			return target.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );

		},

		distanceToPoint: function ( point ) {

			return Math.sqrt( this.distanceSqToPoint( point ) );

		},

		distanceSqToPoint: function ( point ) {

			var directionDistance = _vector$2.subVectors( point, this.origin ).dot( this.direction );

			// point behind the ray

			if ( directionDistance < 0 ) {

				return this.origin.distanceToSquared( point );

			}

			_vector$2.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );

			return _vector$2.distanceToSquared( point );

		},

		distanceSqToSegment: function ( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {

			// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
			// It returns the min distance between the ray and the segment
			// defined by v0 and v1
			// It can also set two optional targets :
			// - The closest point on the ray
			// - The closest point on the segment

			_segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
			_segDir.copy( v1 ).sub( v0 ).normalize();
			_diff.copy( this.origin ).sub( _segCenter );

			var segExtent = v0.distanceTo( v1 ) * 0.5;
			var a01 = - this.direction.dot( _segDir );
			var b0 = _diff.dot( this.direction );
			var b1 = - _diff.dot( _segDir );
			var c = _diff.lengthSq();
			var det = Math.abs( 1 - a01 * a01 );
			var s0, s1, sqrDist, extDet;

			if ( det > 0 ) {

				// The ray and segment are not parallel.

				s0 = a01 * b1 - b0;
				s1 = a01 * b0 - b1;
				extDet = segExtent * det;

				if ( s0 >= 0 ) {

					if ( s1 >= - extDet ) {

						if ( s1 <= extDet ) {

							// region 0
							// Minimum at interior points of ray and segment.

							var invDet = 1 / det;
							s0 *= invDet;
							s1 *= invDet;
							sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;

						} else {

							// region 1

							s1 = segExtent;
							s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
							sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

						}

					} else {

						// region 5

						s1 = - segExtent;
						s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
						sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

					}

				} else {

					if ( s1 <= - extDet ) {

						// region 4

						s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
						s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
						sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

					} else if ( s1 <= extDet ) {

						// region 3

						s0 = 0;
						s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
						sqrDist = s1 * ( s1 + 2 * b1 ) + c;

					} else {

						// region 2

						s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
						s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
						sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

					}

				}

			} else {

				// Ray and segment are parallel.

				s1 = ( a01 > 0 ) ? - segExtent : segExtent;
				s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
				sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

			}

			if ( optionalPointOnRay ) {

				optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );

			}

			if ( optionalPointOnSegment ) {

				optionalPointOnSegment.copy( _segDir ).multiplyScalar( s1 ).add( _segCenter );

			}

			return sqrDist;

		},

		intersectSphere: function ( sphere, target ) {

			_vector$2.subVectors( sphere.center, this.origin );
			var tca = _vector$2.dot( this.direction );
			var d2 = _vector$2.dot( _vector$2 ) - tca * tca;
			var radius2 = sphere.radius * sphere.radius;

			if ( d2 > radius2 ) { return null; }

			var thc = Math.sqrt( radius2 - d2 );

			// t0 = first intersect point - entrance on front of sphere
			var t0 = tca - thc;

			// t1 = second intersect point - exit point on back of sphere
			var t1 = tca + thc;

			// test to see if both t0 and t1 are behind the ray - if so, return null
			if ( t0 < 0 && t1 < 0 ) { return null; }

			// test to see if t0 is behind the ray:
			// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
			// in order to always return an intersect point that is in front of the ray.
			if ( t0 < 0 ) { return this.at( t1, target ); }

			// else t0 is in front of the ray, so return the first collision point scaled by t0
			return this.at( t0, target );

		},

		intersectsSphere: function ( sphere ) {

			return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius );

		},

		distanceToPlane: function ( plane ) {

			var denominator = plane.normal.dot( this.direction );

			if ( denominator === 0 ) {

				// line is coplanar, return origin
				if ( plane.distanceToPoint( this.origin ) === 0 ) {

					return 0;

				}

				// Null is preferable to undefined since undefined means.... it is undefined

				return null;

			}

			var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;

			// Return if the ray never intersects the plane

			return t >= 0 ? t : null;

		},

		intersectPlane: function ( plane, target ) {

			var t = this.distanceToPlane( plane );

			if ( t === null ) {

				return null;

			}

			return this.at( t, target );

		},

		intersectsPlane: function ( plane ) {

			// check if the ray lies on the plane first

			var distToPoint = plane.distanceToPoint( this.origin );

			if ( distToPoint === 0 ) {

				return true;

			}

			var denominator = plane.normal.dot( this.direction );

			if ( denominator * distToPoint < 0 ) {

				return true;

			}

			// ray origin is behind the plane (and is pointing behind it)

			return false;

		},

		intersectBox: function ( box, target ) {

			var tmin, tmax, tymin, tymax, tzmin, tzmax;

			var invdirx = 1 / this.direction.x,
				invdiry = 1 / this.direction.y,
				invdirz = 1 / this.direction.z;

			var origin = this.origin;

			if ( invdirx >= 0 ) {

				tmin = ( box.min.x - origin.x ) * invdirx;
				tmax = ( box.max.x - origin.x ) * invdirx;

			} else {

				tmin = ( box.max.x - origin.x ) * invdirx;
				tmax = ( box.min.x - origin.x ) * invdirx;

			}

			if ( invdiry >= 0 ) {

				tymin = ( box.min.y - origin.y ) * invdiry;
				tymax = ( box.max.y - origin.y ) * invdiry;

			} else {

				tymin = ( box.max.y - origin.y ) * invdiry;
				tymax = ( box.min.y - origin.y ) * invdiry;

			}

			if ( ( tmin > tymax ) || ( tymin > tmax ) ) { return null; }

			// These lines also handle the case where tmin or tmax is NaN
			// (result of 0 * Infinity). x !== x returns true if x is NaN

			if ( tymin > tmin || tmin !== tmin ) { tmin = tymin; }

			if ( tymax < tmax || tmax !== tmax ) { tmax = tymax; }

			if ( invdirz >= 0 ) {

				tzmin = ( box.min.z - origin.z ) * invdirz;
				tzmax = ( box.max.z - origin.z ) * invdirz;

			} else {

				tzmin = ( box.max.z - origin.z ) * invdirz;
				tzmax = ( box.min.z - origin.z ) * invdirz;

			}

			if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) { return null; }

			if ( tzmin > tmin || tmin !== tmin ) { tmin = tzmin; }

			if ( tzmax < tmax || tmax !== tmax ) { tmax = tzmax; }

			//return point closest to the ray (positive side)

			if ( tmax < 0 ) { return null; }

			return this.at( tmin >= 0 ? tmin : tmax, target );

		},

		intersectsBox: function ( box ) {

			return this.intersectBox( box, _vector$2 ) !== null;

		},

		intersectTriangle: function ( a, b, c, backfaceCulling, target ) {

			// Compute the offset origin, edges, and normal.

			// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h

			_edge1.subVectors( b, a );
			_edge2.subVectors( c, a );
			_normal.crossVectors( _edge1, _edge2 );

			// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
			// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
			//   |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
			//   |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
			//   |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
			var DdN = this.direction.dot( _normal );
			var sign;

			if ( DdN > 0 ) {

				if ( backfaceCulling ) { return null; }
				sign = 1;

			} else if ( DdN < 0 ) {

				sign = - 1;
				DdN = - DdN;

			} else {

				return null;

			}

			_diff.subVectors( this.origin, a );
			var DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) );

			// b1 < 0, no intersection
			if ( DdQxE2 < 0 ) {

				return null;

			}

			var DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) );

			// b2 < 0, no intersection
			if ( DdE1xQ < 0 ) {

				return null;

			}

			// b1+b2 > 1, no intersection
			if ( DdQxE2 + DdE1xQ > DdN ) {

				return null;

			}

			// Line intersects triangle, check if ray does.
			var QdN = - sign * _diff.dot( _normal );

			// t < 0, no intersection
			if ( QdN < 0 ) {

				return null;

			}

			// Ray intersects triangle.
			return this.at( QdN / DdN, target );

		},

		applyMatrix4: function ( matrix4 ) {

			this.origin.applyMatrix4( matrix4 );
			this.direction.transformDirection( matrix4 );

			return this;

		},

		equals: function ( ray ) {

			return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );

		}

	} );

	/**
	 * @author bhouston / http://clara.io
	 */

	var _vector1 = new Vector3();
	var _vector2 = new Vector3();
	var _normalMatrix = new Matrix3();

	function Plane( normal, constant ) {

		// normal is assumed to be normalized

		this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 );
		this.constant = ( constant !== undefined ) ? constant : 0;

	}

	Object.assign( Plane.prototype, {

		isPlane: true,

		set: function ( normal, constant ) {

			this.normal.copy( normal );
			this.constant = constant;

			return this;

		},

		setComponents: function ( x, y, z, w ) {

			this.normal.set( x, y, z );
			this.constant = w;

			return this;

		},

		setFromNormalAndCoplanarPoint: function ( normal, point ) {

			this.normal.copy( normal );
			this.constant = - point.dot( this.normal );

			return this;

		},

		setFromCoplanarPoints: function ( a, b, c ) {

			var normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize();

			// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?

			this.setFromNormalAndCoplanarPoint( normal, a );

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( plane ) {

			this.normal.copy( plane.normal );
			this.constant = plane.constant;

			return this;

		},

		normalize: function () {

			// Note: will lead to a divide by zero if the plane is invalid.

			var inverseNormalLength = 1.0 / this.normal.length();
			this.normal.multiplyScalar( inverseNormalLength );
			this.constant *= inverseNormalLength;

			return this;

		},

		negate: function () {

			this.constant *= - 1;
			this.normal.negate();

			return this;

		},

		distanceToPoint: function ( point ) {

			return this.normal.dot( point ) + this.constant;

		},

		distanceToSphere: function ( sphere ) {

			return this.distanceToPoint( sphere.center ) - sphere.radius;

		},

		projectPoint: function ( point, target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Plane: .projectPoint() target is now required' );
				target = new Vector3();

			}

			return target.copy( this.normal ).multiplyScalar( - this.distanceToPoint( point ) ).add( point );

		},

		intersectLine: function ( line, target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Plane: .intersectLine() target is now required' );
				target = new Vector3();

			}

			var direction = line.delta( _vector1 );

			var denominator = this.normal.dot( direction );

			if ( denominator === 0 ) {

				// line is coplanar, return origin
				if ( this.distanceToPoint( line.start ) === 0 ) {

					return target.copy( line.start );

				}

				// Unsure if this is the correct method to handle this case.
				return undefined;

			}

			var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;

			if ( t < 0 || t > 1 ) {

				return undefined;

			}

			return target.copy( direction ).multiplyScalar( t ).add( line.start );

		},

		intersectsLine: function ( line ) {

			// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.

			var startSign = this.distanceToPoint( line.start );
			var endSign = this.distanceToPoint( line.end );

			return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );

		},

		intersectsBox: function ( box ) {

			return box.intersectsPlane( this );

		},

		intersectsSphere: function ( sphere ) {

			return sphere.intersectsPlane( this );

		},

		coplanarPoint: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Plane: .coplanarPoint() target is now required' );
				target = new Vector3();

			}

			return target.copy( this.normal ).multiplyScalar( - this.constant );

		},

		applyMatrix4: function ( matrix, optionalNormalMatrix ) {

			var normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix );

			var referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix );

			var normal = this.normal.applyMatrix3( normalMatrix ).normalize();

			this.constant = - referencePoint.dot( normal );

			return this;

		},

		translate: function ( offset ) {

			this.constant -= offset.dot( this.normal );

			return this;

		},

		equals: function ( plane ) {

			return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );

		}

	} );

	/**
	 * @author bhouston / http://clara.io
	 * @author mrdoob / http://mrdoob.com/
	 */

	var _v0$1 = new Vector3();
	var _v1$3 = new Vector3();
	var _v2$1 = new Vector3();
	var _v3 = new Vector3();

	var _vab = new Vector3();
	var _vac = new Vector3();
	var _vbc = new Vector3();
	var _vap = new Vector3();
	var _vbp = new Vector3();
	var _vcp = new Vector3();

	function Triangle( a, b, c ) {

		this.a = ( a !== undefined ) ? a : new Vector3();
		this.b = ( b !== undefined ) ? b : new Vector3();
		this.c = ( c !== undefined ) ? c : new Vector3();

	}

	Object.assign( Triangle, {

		getNormal: function ( a, b, c, target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Triangle: .getNormal() target is now required' );
				target = new Vector3();

			}

			target.subVectors( c, b );
			_v0$1.subVectors( a, b );
			target.cross( _v0$1 );

			var targetLengthSq = target.lengthSq();
			if ( targetLengthSq > 0 ) {

				return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) );

			}

			return target.set( 0, 0, 0 );

		},

		// static/instance method to calculate barycentric coordinates
		// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
		getBarycoord: function ( point, a, b, c, target ) {

			_v0$1.subVectors( c, a );
			_v1$3.subVectors( b, a );
			_v2$1.subVectors( point, a );

			var dot00 = _v0$1.dot( _v0$1 );
			var dot01 = _v0$1.dot( _v1$3 );
			var dot02 = _v0$1.dot( _v2$1 );
			var dot11 = _v1$3.dot( _v1$3 );
			var dot12 = _v1$3.dot( _v2$1 );

			var denom = ( dot00 * dot11 - dot01 * dot01 );

			if ( target === undefined ) {

				console.warn( 'THREE.Triangle: .getBarycoord() target is now required' );
				target = new Vector3();

			}

			// collinear or singular triangle
			if ( denom === 0 ) {

				// arbitrary location outside of triangle?
				// not sure if this is the best idea, maybe should be returning undefined
				return target.set( - 2, - 1, - 1 );

			}

			var invDenom = 1 / denom;
			var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
			var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;

			// barycentric coordinates must always sum to 1
			return target.set( 1 - u - v, v, u );

		},

		containsPoint: function ( point, a, b, c ) {

			Triangle.getBarycoord( point, a, b, c, _v3 );

			return ( _v3.x >= 0 ) && ( _v3.y >= 0 ) && ( ( _v3.x + _v3.y ) <= 1 );

		},

		getUV: function ( point, p1, p2, p3, uv1, uv2, uv3, target ) {

			this.getBarycoord( point, p1, p2, p3, _v3 );

			target.set( 0, 0 );
			target.addScaledVector( uv1, _v3.x );
			target.addScaledVector( uv2, _v3.y );
			target.addScaledVector( uv3, _v3.z );

			return target;

		},

		isFrontFacing: function ( a, b, c, direction ) {

			_v0$1.subVectors( c, b );
			_v1$3.subVectors( a, b );

			// strictly front facing
			return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false;

		}

	} );

	Object.assign( Triangle.prototype, {

		set: function ( a, b, c ) {

			this.a.copy( a );
			this.b.copy( b );
			this.c.copy( c );

			return this;

		},

		setFromPointsAndIndices: function ( points, i0, i1, i2 ) {

			this.a.copy( points[ i0 ] );
			this.b.copy( points[ i1 ] );
			this.c.copy( points[ i2 ] );

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( triangle ) {

			this.a.copy( triangle.a );
			this.b.copy( triangle.b );
			this.c.copy( triangle.c );

			return this;

		},

		getArea: function () {

			_v0$1.subVectors( this.c, this.b );
			_v1$3.subVectors( this.a, this.b );

			return _v0$1.cross( _v1$3 ).length() * 0.5;

		},

		getMidpoint: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Triangle: .getMidpoint() target is now required' );
				target = new Vector3();

			}

			return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );

		},

		getNormal: function ( target ) {

			return Triangle.getNormal( this.a, this.b, this.c, target );

		},

		getPlane: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Triangle: .getPlane() target is now required' );
				target = new Plane();

			}

			return target.setFromCoplanarPoints( this.a, this.b, this.c );

		},

		getBarycoord: function ( point, target ) {

			return Triangle.getBarycoord( point, this.a, this.b, this.c, target );

		},

		getUV: function ( point, uv1, uv2, uv3, target ) {

			return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, target );

		},

		containsPoint: function ( point ) {

			return Triangle.containsPoint( point, this.a, this.b, this.c );

		},

		isFrontFacing: function ( direction ) {

			return Triangle.isFrontFacing( this.a, this.b, this.c, direction );

		},

		intersectsBox: function ( box ) {

			return box.intersectsTriangle( this );

		},

		closestPointToPoint: function ( p, target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Triangle: .closestPointToPoint() target is now required' );
				target = new Vector3();

			}

			var a = this.a, b = this.b, c = this.c;
			var v, w;

			// algorithm thanks to Real-Time Collision Detection by Christer Ericson,
			// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
			// under the accompanying license; see chapter 5.1.5 for detailed explanation.
			// basically, we're distinguishing which of the voronoi regions of the triangle
			// the point lies in with the minimum amount of redundant computation.

			_vab.subVectors( b, a );
			_vac.subVectors( c, a );
			_vap.subVectors( p, a );
			var d1 = _vab.dot( _vap );
			var d2 = _vac.dot( _vap );
			if ( d1 <= 0 && d2 <= 0 ) {

				// vertex region of A; barycentric coords (1, 0, 0)
				return target.copy( a );

			}

			_vbp.subVectors( p, b );
			var d3 = _vab.dot( _vbp );
			var d4 = _vac.dot( _vbp );
			if ( d3 >= 0 && d4 <= d3 ) {

				// vertex region of B; barycentric coords (0, 1, 0)
				return target.copy( b );

			}

			var vc = d1 * d4 - d3 * d2;
			if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) {

				v = d1 / ( d1 - d3 );
				// edge region of AB; barycentric coords (1-v, v, 0)
				return target.copy( a ).addScaledVector( _vab, v );

			}

			_vcp.subVectors( p, c );
			var d5 = _vab.dot( _vcp );
			var d6 = _vac.dot( _vcp );
			if ( d6 >= 0 && d5 <= d6 ) {

				// vertex region of C; barycentric coords (0, 0, 1)
				return target.copy( c );

			}

			var vb = d5 * d2 - d1 * d6;
			if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) {

				w = d2 / ( d2 - d6 );
				// edge region of AC; barycentric coords (1-w, 0, w)
				return target.copy( a ).addScaledVector( _vac, w );

			}

			var va = d3 * d6 - d5 * d4;
			if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) {

				_vbc.subVectors( c, b );
				w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) );
				// edge region of BC; barycentric coords (0, 1-w, w)
				return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC

			}

			// face region
			var denom = 1 / ( va + vb + vc );
			// u = va * denom
			v = vb * denom;
			w = vc * denom;

			return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w );

		},

		equals: function ( triangle ) {

			return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	var _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
		'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
		'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
		'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
		'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
		'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
		'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
		'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
		'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
		'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
		'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
		'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
		'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
		'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
		'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
		'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
		'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
		'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
		'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
		'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
		'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
		'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
		'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
		'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };

	var _hslA = { h: 0, s: 0, l: 0 };
	var _hslB = { h: 0, s: 0, l: 0 };

	function Color( r, g, b ) {

		if ( g === undefined && b === undefined ) {

			// r is THREE.Color, hex or string
			return this.set( r );

		}

		return this.setRGB( r, g, b );

	}

	function hue2rgb( p, q, t ) {

		if ( t < 0 ) { t += 1; }
		if ( t > 1 ) { t -= 1; }
		if ( t < 1 / 6 ) { return p + ( q - p ) * 6 * t; }
		if ( t < 1 / 2 ) { return q; }
		if ( t < 2 / 3 ) { return p + ( q - p ) * 6 * ( 2 / 3 - t ); }
		return p;

	}

	function SRGBToLinear( c ) {

		return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 );

	}

	function LinearToSRGB( c ) {

		return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055;

	}

	Object.assign( Color.prototype, {

		isColor: true,

		r: 1, g: 1, b: 1,

		set: function ( value ) {

			if ( value && value.isColor ) {

				this.copy( value );

			} else if ( typeof value === 'number' ) {

				this.setHex( value );

			} else if ( typeof value === 'string' ) {

				this.setStyle( value );

			}

			return this;

		},

		setScalar: function ( scalar ) {

			this.r = scalar;
			this.g = scalar;
			this.b = scalar;

			return this;

		},

		setHex: function ( hex ) {

			hex = Math.floor( hex );

			this.r = ( hex >> 16 & 255 ) / 255;
			this.g = ( hex >> 8 & 255 ) / 255;
			this.b = ( hex & 255 ) / 255;

			return this;

		},

		setRGB: function ( r, g, b ) {

			this.r = r;
			this.g = g;
			this.b = b;

			return this;

		},

		setHSL: function ( h, s, l ) {

			// h,s,l ranges are in 0.0 - 1.0
			h = MathUtils.euclideanModulo( h, 1 );
			s = MathUtils.clamp( s, 0, 1 );
			l = MathUtils.clamp( l, 0, 1 );

			if ( s === 0 ) {

				this.r = this.g = this.b = l;

			} else {

				var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
				var q = ( 2 * l ) - p;

				this.r = hue2rgb( q, p, h + 1 / 3 );
				this.g = hue2rgb( q, p, h );
				this.b = hue2rgb( q, p, h - 1 / 3 );

			}

			return this;

		},

		setStyle: function ( style ) {

			function handleAlpha( string ) {

				if ( string === undefined ) { return; }

				if ( parseFloat( string ) < 1 ) {

					console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );

				}

			}


			var m;

			if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) {

				// rgb / hsl

				var color;
				var name = m[ 1 ];
				var components = m[ 2 ];

				switch ( name ) {

					case 'rgb':
					case 'rgba':

						if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

							// rgb(255,0,0) rgba(255,0,0,0.5)
							this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255;
							this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255;
							this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;

							handleAlpha( color[ 5 ] );

							return this;

						}

						if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

							// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
							this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100;
							this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100;
							this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;

							handleAlpha( color[ 5 ] );

							return this;

						}

						break;

					case 'hsl':
					case 'hsla':

						if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

							// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
							var h = parseFloat( color[ 1 ] ) / 360;
							var s = parseInt( color[ 2 ], 10 ) / 100;
							var l = parseInt( color[ 3 ], 10 ) / 100;

							handleAlpha( color[ 5 ] );

							return this.setHSL( h, s, l );

						}

						break;

				}

			} else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) {

				// hex color

				var hex = m[ 1 ];
				var size = hex.length;

				if ( size === 3 ) {

					// #ff0
					this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255;
					this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255;
					this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;

					return this;

				} else if ( size === 6 ) {

					// #ff0000
					this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255;
					this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255;
					this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;

					return this;

				}

			}

			if ( style && style.length > 0 ) {

				return this.setColorName( style );

			}

			return this;

		},

		setColorName: function ( style ) {

			// color keywords
			var hex = _colorKeywords[ style ];

			if ( hex !== undefined ) {

				// red
				this.setHex( hex );

			} else {

				// unknown color
				console.warn( 'THREE.Color: Unknown color ' + style );

			}

			return this;

		},

		clone: function () {

			return new this.constructor( this.r, this.g, this.b );

		},

		copy: function ( color ) {

			this.r = color.r;
			this.g = color.g;
			this.b = color.b;

			return this;

		},

		copyGammaToLinear: function ( color, gammaFactor ) {

			if ( gammaFactor === undefined ) { gammaFactor = 2.0; }

			this.r = Math.pow( color.r, gammaFactor );
			this.g = Math.pow( color.g, gammaFactor );
			this.b = Math.pow( color.b, gammaFactor );

			return this;

		},

		copyLinearToGamma: function ( color, gammaFactor ) {

			if ( gammaFactor === undefined ) { gammaFactor = 2.0; }

			var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;

			this.r = Math.pow( color.r, safeInverse );
			this.g = Math.pow( color.g, safeInverse );
			this.b = Math.pow( color.b, safeInverse );

			return this;

		},

		convertGammaToLinear: function ( gammaFactor ) {

			this.copyGammaToLinear( this, gammaFactor );

			return this;

		},

		convertLinearToGamma: function ( gammaFactor ) {

			this.copyLinearToGamma( this, gammaFactor );

			return this;

		},

		copySRGBToLinear: function ( color ) {

			this.r = SRGBToLinear( color.r );
			this.g = SRGBToLinear( color.g );
			this.b = SRGBToLinear( color.b );

			return this;

		},

		copyLinearToSRGB: function ( color ) {

			this.r = LinearToSRGB( color.r );
			this.g = LinearToSRGB( color.g );
			this.b = LinearToSRGB( color.b );

			return this;

		},

		convertSRGBToLinear: function () {

			this.copySRGBToLinear( this );

			return this;

		},

		convertLinearToSRGB: function () {

			this.copyLinearToSRGB( this );

			return this;

		},

		getHex: function () {

			return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;

		},

		getHexString: function () {

			return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );

		},

		getHSL: function ( target ) {

			// h,s,l ranges are in 0.0 - 1.0

			if ( target === undefined ) {

				console.warn( 'THREE.Color: .getHSL() target is now required' );
				target = { h: 0, s: 0, l: 0 };

			}

			var r = this.r, g = this.g, b = this.b;

			var max = Math.max( r, g, b );
			var min = Math.min( r, g, b );

			var hue, saturation;
			var lightness = ( min + max ) / 2.0;

			if ( min === max ) {

				hue = 0;
				saturation = 0;

			} else {

				var delta = max - min;

				saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );

				switch ( max ) {

					case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
					case g: hue = ( b - r ) / delta + 2; break;
					case b: hue = ( r - g ) / delta + 4; break;

				}

				hue /= 6;

			}

			target.h = hue;
			target.s = saturation;
			target.l = lightness;

			return target;

		},

		getStyle: function () {

			return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';

		},

		offsetHSL: function ( h, s, l ) {

			this.getHSL( _hslA );

			_hslA.h += h; _hslA.s += s; _hslA.l += l;

			this.setHSL( _hslA.h, _hslA.s, _hslA.l );

			return this;

		},

		add: function ( color ) {

			this.r += color.r;
			this.g += color.g;
			this.b += color.b;

			return this;

		},

		addColors: function ( color1, color2 ) {

			this.r = color1.r + color2.r;
			this.g = color1.g + color2.g;
			this.b = color1.b + color2.b;

			return this;

		},

		addScalar: function ( s ) {

			this.r += s;
			this.g += s;
			this.b += s;

			return this;

		},

		sub: function ( color ) {

			this.r = Math.max( 0, this.r - color.r );
			this.g = Math.max( 0, this.g - color.g );
			this.b = Math.max( 0, this.b - color.b );

			return this;

		},

		multiply: function ( color ) {

			this.r *= color.r;
			this.g *= color.g;
			this.b *= color.b;

			return this;

		},

		multiplyScalar: function ( s ) {

			this.r *= s;
			this.g *= s;
			this.b *= s;

			return this;

		},

		lerp: function ( color, alpha ) {

			this.r += ( color.r - this.r ) * alpha;
			this.g += ( color.g - this.g ) * alpha;
			this.b += ( color.b - this.b ) * alpha;

			return this;

		},

		lerpHSL: function ( color, alpha ) {

			this.getHSL( _hslA );
			color.getHSL( _hslB );

			var h = MathUtils.lerp( _hslA.h, _hslB.h, alpha );
			var s = MathUtils.lerp( _hslA.s, _hslB.s, alpha );
			var l = MathUtils.lerp( _hslA.l, _hslB.l, alpha );

			this.setHSL( h, s, l );

			return this;

		},

		equals: function ( c ) {

			return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );

		},

		fromArray: function ( array, offset ) {

			if ( offset === undefined ) { offset = 0; }

			this.r = array[ offset ];
			this.g = array[ offset + 1 ];
			this.b = array[ offset + 2 ];

			return this;

		},

		toArray: function ( array, offset ) {

			if ( array === undefined ) { array = []; }
			if ( offset === undefined ) { offset = 0; }

			array[ offset ] = this.r;
			array[ offset + 1 ] = this.g;
			array[ offset + 2 ] = this.b;

			return array;

		},

		toJSON: function () {

			return this.getHex();

		}

	} );

	Color.NAMES = _colorKeywords;

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 */

	function Face3( a, b, c, normal, color, materialIndex ) {

		this.a = a;
		this.b = b;
		this.c = c;

		this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3();
		this.vertexNormals = Array.isArray( normal ) ? normal : [];

		this.color = ( color && color.isColor ) ? color : new Color();
		this.vertexColors = Array.isArray( color ) ? color : [];

		this.materialIndex = materialIndex !== undefined ? materialIndex : 0;

	}

	Object.assign( Face3.prototype, {

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( source ) {

			this.a = source.a;
			this.b = source.b;
			this.c = source.c;

			this.normal.copy( source.normal );
			this.color.copy( source.color );

			this.materialIndex = source.materialIndex;

			for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) {

				this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();

			}

			for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) {

				this.vertexColors[ i ] = source.vertexColors[ i ].clone();

			}

			return this;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 */

	var materialId = 0;

	function Material() {

		Object.defineProperty( this, 'id', { value: materialId ++ } );

		this.uuid = MathUtils.generateUUID();

		this.name = '';
		this.type = 'Material';

		this.fog = true;

		this.blending = NormalBlending;
		this.side = FrontSide;
		this.flatShading = false;
		this.vertexColors = false;

		this.opacity = 1;
		this.transparent = false;

		this.blendSrc = SrcAlphaFactor;
		this.blendDst = OneMinusSrcAlphaFactor;
		this.blendEquation = AddEquation;
		this.blendSrcAlpha = null;
		this.blendDstAlpha = null;
		this.blendEquationAlpha = null;

		this.depthFunc = LessEqualDepth;
		this.depthTest = true;
		this.depthWrite = true;

		this.stencilWriteMask = 0xff;
		this.stencilFunc = AlwaysStencilFunc;
		this.stencilRef = 0;
		this.stencilFuncMask = 0xff;
		this.stencilFail = KeepStencilOp;
		this.stencilZFail = KeepStencilOp;
		this.stencilZPass = KeepStencilOp;
		this.stencilWrite = false;

		this.clippingPlanes = null;
		this.clipIntersection = false;
		this.clipShadows = false;

		this.shadowSide = null;

		this.colorWrite = true;

		this.precision = null; // override the renderer's default precision for this material

		this.polygonOffset = false;
		this.polygonOffsetFactor = 0;
		this.polygonOffsetUnits = 0;

		this.dithering = false;

		this.alphaTest = 0;
		this.premultipliedAlpha = false;

		this.visible = true;

		this.toneMapped = true;

		this.userData = {};

		this.version = 0;

	}

	Material.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

		constructor: Material,

		isMaterial: true,

		onBeforeCompile: function () {},

		setValues: function ( values ) {

			if ( values === undefined ) { return; }

			for ( var key in values ) {

				var newValue = values[ key ];

				if ( newValue === undefined ) {

					console.warn( "THREE.Material: '" + key + "' parameter is undefined." );
					continue;

				}

				// for backward compatability if shading is set in the constructor
				if ( key === 'shading' ) {

					console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );
					this.flatShading = ( newValue === FlatShading ) ? true : false;
					continue;

				}

				var currentValue = this[ key ];

				if ( currentValue === undefined ) {

					console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." );
					continue;

				}

				if ( currentValue && currentValue.isColor ) {

					currentValue.set( newValue );

				} else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {

					currentValue.copy( newValue );

				} else {

					this[ key ] = newValue;

				}

			}

		},

		toJSON: function ( meta ) {

			var isRoot = ( meta === undefined || typeof meta === 'string' );

			if ( isRoot ) {

				meta = {
					textures: {},
					images: {}
				};

			}

			var data = {
				metadata: {
					version: 4.5,
					type: 'Material',
					generator: 'Material.toJSON'
				}
			};

			// standard Material serialization
			data.uuid = this.uuid;
			data.type = this.type;

			if ( this.name !== '' ) { data.name = this.name; }

			if ( this.color && this.color.isColor ) { data.color = this.color.getHex(); }

			if ( this.roughness !== undefined ) { data.roughness = this.roughness; }
			if ( this.metalness !== undefined ) { data.metalness = this.metalness; }

			if ( this.sheen && this.sheen.isColor ) { data.sheen = this.sheen.getHex(); }
			if ( this.emissive && this.emissive.isColor ) { data.emissive = this.emissive.getHex(); }
			if ( this.emissiveIntensity && this.emissiveIntensity !== 1 ) { data.emissiveIntensity = this.emissiveIntensity; }

			if ( this.specular && this.specular.isColor ) { data.specular = this.specular.getHex(); }
			if ( this.shininess !== undefined ) { data.shininess = this.shininess; }
			if ( this.clearcoat !== undefined ) { data.clearcoat = this.clearcoat; }
			if ( this.clearcoatRoughness !== undefined ) { data.clearcoatRoughness = this.clearcoatRoughness; }

			if ( this.clearcoatMap && this.clearcoatMap.isTexture ) {

				data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid;

			}

			if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) {

				data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid;

			}

			if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) {

				data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid;
				data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();

			}

			if ( this.map && this.map.isTexture ) { data.map = this.map.toJSON( meta ).uuid; }
			if ( this.matcap && this.matcap.isTexture ) { data.matcap = this.matcap.toJSON( meta ).uuid; }
			if ( this.alphaMap && this.alphaMap.isTexture ) { data.alphaMap = this.alphaMap.toJSON( meta ).uuid; }
			if ( this.lightMap && this.lightMap.isTexture ) { data.lightMap = this.lightMap.toJSON( meta ).uuid; }

			if ( this.aoMap && this.aoMap.isTexture ) {

				data.aoMap = this.aoMap.toJSON( meta ).uuid;
				data.aoMapIntensity = this.aoMapIntensity;

			}

			if ( this.bumpMap && this.bumpMap.isTexture ) {

				data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
				data.bumpScale = this.bumpScale;

			}

			if ( this.normalMap && this.normalMap.isTexture ) {

				data.normalMap = this.normalMap.toJSON( meta ).uuid;
				data.normalMapType = this.normalMapType;
				data.normalScale = this.normalScale.toArray();

			}

			if ( this.displacementMap && this.displacementMap.isTexture ) {

				data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
				data.displacementScale = this.displacementScale;
				data.displacementBias = this.displacementBias;

			}

			if ( this.roughnessMap && this.roughnessMap.isTexture ) { data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; }
			if ( this.metalnessMap && this.metalnessMap.isTexture ) { data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; }

			if ( this.emissiveMap && this.emissiveMap.isTexture ) { data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; }
			if ( this.specularMap && this.specularMap.isTexture ) { data.specularMap = this.specularMap.toJSON( meta ).uuid; }

			if ( this.envMap && this.envMap.isTexture ) {

				data.envMap = this.envMap.toJSON( meta ).uuid;
				data.reflectivity = this.reflectivity; // Scale behind envMap
				data.refractionRatio = this.refractionRatio;

				if ( this.combine !== undefined ) { data.combine = this.combine; }
				if ( this.envMapIntensity !== undefined ) { data.envMapIntensity = this.envMapIntensity; }

			}

			if ( this.gradientMap && this.gradientMap.isTexture ) {

				data.gradientMap = this.gradientMap.toJSON( meta ).uuid;

			}

			if ( this.size !== undefined ) { data.size = this.size; }
			if ( this.sizeAttenuation !== undefined ) { data.sizeAttenuation = this.sizeAttenuation; }

			if ( this.blending !== NormalBlending ) { data.blending = this.blending; }
			if ( this.flatShading === true ) { data.flatShading = this.flatShading; }
			if ( this.side !== FrontSide ) { data.side = this.side; }
			if ( this.vertexColors ) { data.vertexColors = true; }

			if ( this.opacity < 1 ) { data.opacity = this.opacity; }
			if ( this.transparent === true ) { data.transparent = this.transparent; }

			data.depthFunc = this.depthFunc;
			data.depthTest = this.depthTest;
			data.depthWrite = this.depthWrite;

			data.stencilWrite = this.stencilWrite;
			data.stencilWriteMask = this.stencilWriteMask;
			data.stencilFunc = this.stencilFunc;
			data.stencilRef = this.stencilRef;
			data.stencilFuncMask = this.stencilFuncMask;
			data.stencilFail = this.stencilFail;
			data.stencilZFail = this.stencilZFail;
			data.stencilZPass = this.stencilZPass;

			// rotation (SpriteMaterial)
			if ( this.rotation && this.rotation !== 0 ) { data.rotation = this.rotation; }

			if ( this.polygonOffset === true ) { data.polygonOffset = true; }
			if ( this.polygonOffsetFactor !== 0 ) { data.polygonOffsetFactor = this.polygonOffsetFactor; }
			if ( this.polygonOffsetUnits !== 0 ) { data.polygonOffsetUnits = this.polygonOffsetUnits; }

			if ( this.linewidth && this.linewidth !== 1 ) { data.linewidth = this.linewidth; }
			if ( this.dashSize !== undefined ) { data.dashSize = this.dashSize; }
			if ( this.gapSize !== undefined ) { data.gapSize = this.gapSize; }
			if ( this.scale !== undefined ) { data.scale = this.scale; }

			if ( this.dithering === true ) { data.dithering = true; }

			if ( this.alphaTest > 0 ) { data.alphaTest = this.alphaTest; }
			if ( this.premultipliedAlpha === true ) { data.premultipliedAlpha = this.premultipliedAlpha; }

			if ( this.wireframe === true ) { data.wireframe = this.wireframe; }
			if ( this.wireframeLinewidth > 1 ) { data.wireframeLinewidth = this.wireframeLinewidth; }
			if ( this.wireframeLinecap !== 'round' ) { data.wireframeLinecap = this.wireframeLinecap; }
			if ( this.wireframeLinejoin !== 'round' ) { data.wireframeLinejoin = this.wireframeLinejoin; }

			if ( this.morphTargets === true ) { data.morphTargets = true; }
			if ( this.morphNormals === true ) { data.morphNormals = true; }
			if ( this.skinning === true ) { data.skinning = true; }

			if ( this.visible === false ) { data.visible = false; }

			if ( this.toneMapped === false ) { data.toneMapped = false; }

			if ( JSON.stringify( this.userData ) !== '{}' ) { data.userData = this.userData; }

			// TODO: Copied from Object3D.toJSON

			function extractFromCache( cache ) {

				var values = [];

				for ( var key in cache ) {

					var data = cache[ key ];
					delete data.metadata;
					values.push( data );

				}

				return values;

			}

			if ( isRoot ) {

				var textures = extractFromCache( meta.textures );
				var images = extractFromCache( meta.images );

				if ( textures.length > 0 ) { data.textures = textures; }
				if ( images.length > 0 ) { data.images = images; }

			}

			return data;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( source ) {

			this.name = source.name;

			this.fog = source.fog;

			this.blending = source.blending;
			this.side = source.side;
			this.flatShading = source.flatShading;
			this.vertexColors = source.vertexColors;

			this.opacity = source.opacity;
			this.transparent = source.transparent;

			this.blendSrc = source.blendSrc;
			this.blendDst = source.blendDst;
			this.blendEquation = source.blendEquation;
			this.blendSrcAlpha = source.blendSrcAlpha;
			this.blendDstAlpha = source.blendDstAlpha;
			this.blendEquationAlpha = source.blendEquationAlpha;

			this.depthFunc = source.depthFunc;
			this.depthTest = source.depthTest;
			this.depthWrite = source.depthWrite;

			this.stencilWriteMask = source.stencilWriteMask;
			this.stencilFunc = source.stencilFunc;
			this.stencilRef = source.stencilRef;
			this.stencilFuncMask = source.stencilFuncMask;
			this.stencilFail = source.stencilFail;
			this.stencilZFail = source.stencilZFail;
			this.stencilZPass = source.stencilZPass;
			this.stencilWrite = source.stencilWrite;

			var srcPlanes = source.clippingPlanes,
				dstPlanes = null;

			if ( srcPlanes !== null ) {

				var n = srcPlanes.length;
				dstPlanes = new Array( n );

				for ( var i = 0; i !== n; ++ i )
					{ dstPlanes[ i ] = srcPlanes[ i ].clone(); }

			}

			this.clippingPlanes = dstPlanes;
			this.clipIntersection = source.clipIntersection;
			this.clipShadows = source.clipShadows;

			this.shadowSide = source.shadowSide;

			this.colorWrite = source.colorWrite;

			this.precision = source.precision;

			this.polygonOffset = source.polygonOffset;
			this.polygonOffsetFactor = source.polygonOffsetFactor;
			this.polygonOffsetUnits = source.polygonOffsetUnits;

			this.dithering = source.dithering;

			this.alphaTest = source.alphaTest;
			this.premultipliedAlpha = source.premultipliedAlpha;

			this.visible = source.visible;

			this.toneMapped = source.toneMapped;

			this.userData = JSON.parse( JSON.stringify( source.userData ) );

			return this;

		},

		dispose: function () {

			this.dispatchEvent( { type: 'dispose' } );

		}

	} );

	Object.defineProperty( Material.prototype, 'needsUpdate', {

		set: function ( value ) {

			if ( value === true ) { this.version ++; }

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 *
	 * parameters = {
	 *  color: <hex>,
	 *  opacity: <float>,
	 *  map: new THREE.Texture( <Image> ),
	 *
	 *  lightMap: new THREE.Texture( <Image> ),
	 *  lightMapIntensity: <float>
	 *
	 *  aoMap: new THREE.Texture( <Image> ),
	 *  aoMapIntensity: <float>
	 *
	 *  specularMap: new THREE.Texture( <Image> ),
	 *
	 *  alphaMap: new THREE.Texture( <Image> ),
	 *
	 *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
	 *  combine: THREE.Multiply,
	 *  reflectivity: <float>,
	 *  refractionRatio: <float>,
	 *
	 *  depthTest: <bool>,
	 *  depthWrite: <bool>,
	 *
	 *  wireframe: <boolean>,
	 *  wireframeLinewidth: <float>,
	 *
	 *  skinning: <bool>,
	 *  morphTargets: <bool>
	 * }
	 */

	function MeshBasicMaterial( parameters ) {

		Material.call( this );

		this.type = 'MeshBasicMaterial';

		this.color = new Color( 0xffffff ); // emissive

		this.map = null;

		this.lightMap = null;
		this.lightMapIntensity = 1.0;

		this.aoMap = null;
		this.aoMapIntensity = 1.0;

		this.specularMap = null;

		this.alphaMap = null;

		this.envMap = null;
		this.combine = MultiplyOperation;
		this.reflectivity = 1;
		this.refractionRatio = 0.98;

		this.wireframe = false;
		this.wireframeLinewidth = 1;
		this.wireframeLinecap = 'round';
		this.wireframeLinejoin = 'round';

		this.skinning = false;
		this.morphTargets = false;

		this.setValues( parameters );

	}

	MeshBasicMaterial.prototype = Object.create( Material.prototype );
	MeshBasicMaterial.prototype.constructor = MeshBasicMaterial;

	MeshBasicMaterial.prototype.isMeshBasicMaterial = true;

	MeshBasicMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.color.copy( source.color );

		this.map = source.map;

		this.lightMap = source.lightMap;
		this.lightMapIntensity = source.lightMapIntensity;

		this.aoMap = source.aoMap;
		this.aoMapIntensity = source.aoMapIntensity;

		this.specularMap = source.specularMap;

		this.alphaMap = source.alphaMap;

		this.envMap = source.envMap;
		this.combine = source.combine;
		this.reflectivity = source.reflectivity;
		this.refractionRatio = source.refractionRatio;

		this.wireframe = source.wireframe;
		this.wireframeLinewidth = source.wireframeLinewidth;
		this.wireframeLinecap = source.wireframeLinecap;
		this.wireframeLinejoin = source.wireframeLinejoin;

		this.skinning = source.skinning;
		this.morphTargets = source.morphTargets;

		return this;

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	var _vector$3 = new Vector3();

	function BufferAttribute( array, itemSize, normalized ) {

		if ( Array.isArray( array ) ) {

			throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );

		}

		this.name = '';

		this.array = array;
		this.itemSize = itemSize;
		this.count = array !== undefined ? array.length / itemSize : 0;
		this.normalized = normalized === true;

		this.usage = StaticDrawUsage;
		this.updateRange = { offset: 0, count: - 1 };

		this.version = 0;

	}

	Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', {

		set: function ( value ) {

			if ( value === true ) { this.version ++; }

		}

	} );

	Object.assign( BufferAttribute.prototype, {

		isBufferAttribute: true,

		onUploadCallback: function () {},

		setUsage: function ( value ) {

			this.usage = value;

			return this;

		},

		copy: function ( source ) {

			this.name = source.name;
			this.array = new source.array.constructor( source.array );
			this.itemSize = source.itemSize;
			this.count = source.count;
			this.normalized = source.normalized;

			this.usage = source.usage;

			return this;

		},

		copyAt: function ( index1, attribute, index2 ) {

			index1 *= this.itemSize;
			index2 *= attribute.itemSize;

			for ( var i = 0, l = this.itemSize; i < l; i ++ ) {

				this.array[ index1 + i ] = attribute.array[ index2 + i ];

			}

			return this;

		},

		copyArray: function ( array ) {

			this.array.set( array );

			return this;

		},

		copyColorsArray: function ( colors ) {

			var array = this.array, offset = 0;

			for ( var i = 0, l = colors.length; i < l; i ++ ) {

				var color = colors[ i ];

				if ( color === undefined ) {

					console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i );
					color = new Color();

				}

				array[ offset ++ ] = color.r;
				array[ offset ++ ] = color.g;
				array[ offset ++ ] = color.b;

			}

			return this;

		},

		copyVector2sArray: function ( vectors ) {

			var array = this.array, offset = 0;

			for ( var i = 0, l = vectors.length; i < l; i ++ ) {

				var vector = vectors[ i ];

				if ( vector === undefined ) {

					console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i );
					vector = new Vector2();

				}

				array[ offset ++ ] = vector.x;
				array[ offset ++ ] = vector.y;

			}

			return this;

		},

		copyVector3sArray: function ( vectors ) {

			var array = this.array, offset = 0;

			for ( var i = 0, l = vectors.length; i < l; i ++ ) {

				var vector = vectors[ i ];

				if ( vector === undefined ) {

					console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i );
					vector = new Vector3();

				}

				array[ offset ++ ] = vector.x;
				array[ offset ++ ] = vector.y;
				array[ offset ++ ] = vector.z;

			}

			return this;

		},

		copyVector4sArray: function ( vectors ) {

			var array = this.array, offset = 0;

			for ( var i = 0, l = vectors.length; i < l; i ++ ) {

				var vector = vectors[ i ];

				if ( vector === undefined ) {

					console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i );
					vector = new Vector4();

				}

				array[ offset ++ ] = vector.x;
				array[ offset ++ ] = vector.y;
				array[ offset ++ ] = vector.z;
				array[ offset ++ ] = vector.w;

			}

			return this;

		},

		applyMatrix3: function ( m ) {

			for ( var i = 0, l = this.count; i < l; i ++ ) {

				_vector$3.x = this.getX( i );
				_vector$3.y = this.getY( i );
				_vector$3.z = this.getZ( i );

				_vector$3.applyMatrix3( m );

				this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );

			}

			return this;

		},

		applyMatrix4: function ( m ) {

			for ( var i = 0, l = this.count; i < l; i ++ ) {

				_vector$3.x = this.getX( i );
				_vector$3.y = this.getY( i );
				_vector$3.z = this.getZ( i );

				_vector$3.applyMatrix4( m );

				this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );

			}

			return this;

		},

		applyNormalMatrix: function ( m ) {

			for ( var i = 0, l = this.count; i < l; i ++ ) {

				_vector$3.x = this.getX( i );
				_vector$3.y = this.getY( i );
				_vector$3.z = this.getZ( i );

				_vector$3.applyNormalMatrix( m );

				this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );

			}

			return this;

		},

		transformDirection: function ( m ) {

			for ( var i = 0, l = this.count; i < l; i ++ ) {

				_vector$3.x = this.getX( i );
				_vector$3.y = this.getY( i );
				_vector$3.z = this.getZ( i );

				_vector$3.transformDirection( m );

				this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );

			}

			return this;

		},

		set: function ( value, offset ) {

			if ( offset === undefined ) { offset = 0; }

			this.array.set( value, offset );

			return this;

		},

		getX: function ( index ) {

			return this.array[ index * this.itemSize ];

		},

		setX: function ( index, x ) {

			this.array[ index * this.itemSize ] = x;

			return this;

		},

		getY: function ( index ) {

			return this.array[ index * this.itemSize + 1 ];

		},

		setY: function ( index, y ) {

			this.array[ index * this.itemSize + 1 ] = y;

			return this;

		},

		getZ: function ( index ) {

			return this.array[ index * this.itemSize + 2 ];

		},

		setZ: function ( index, z ) {

			this.array[ index * this.itemSize + 2 ] = z;

			return this;

		},

		getW: function ( index ) {

			return this.array[ index * this.itemSize + 3 ];

		},

		setW: function ( index, w ) {

			this.array[ index * this.itemSize + 3 ] = w;

			return this;

		},

		setXY: function ( index, x, y ) {

			index *= this.itemSize;

			this.array[ index + 0 ] = x;
			this.array[ index + 1 ] = y;

			return this;

		},

		setXYZ: function ( index, x, y, z ) {

			index *= this.itemSize;

			this.array[ index + 0 ] = x;
			this.array[ index + 1 ] = y;
			this.array[ index + 2 ] = z;

			return this;

		},

		setXYZW: function ( index, x, y, z, w ) {

			index *= this.itemSize;

			this.array[ index + 0 ] = x;
			this.array[ index + 1 ] = y;
			this.array[ index + 2 ] = z;
			this.array[ index + 3 ] = w;

			return this;

		},

		onUpload: function ( callback ) {

			this.onUploadCallback = callback;

			return this;

		},

		clone: function () {

			return new this.constructor( this.array, this.itemSize ).copy( this );

		},

		toJSON: function () {

			return {
				itemSize: this.itemSize,
				type: this.array.constructor.name,
				array: Array.prototype.slice.call( this.array ),
				normalized: this.normalized
			};

		}

	} );

	//

	function Int8BufferAttribute( array, itemSize, normalized ) {

		BufferAttribute.call( this, new Int8Array( array ), itemSize, normalized );

	}

	Int8BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
	Int8BufferAttribute.prototype.constructor = Int8BufferAttribute;


	function Uint8BufferAttribute( array, itemSize, normalized ) {

		BufferAttribute.call( this, new Uint8Array( array ), itemSize, normalized );

	}

	Uint8BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
	Uint8BufferAttribute.prototype.constructor = Uint8BufferAttribute;


	function Uint8ClampedBufferAttribute( array, itemSize, normalized ) {

		BufferAttribute.call( this, new Uint8ClampedArray( array ), itemSize, normalized );

	}

	Uint8ClampedBufferAttribute.prototype = Object.create( BufferAttribute.prototype );
	Uint8ClampedBufferAttribute.prototype.constructor = Uint8ClampedBufferAttribute;


	function Int16BufferAttribute( array, itemSize, normalized ) {

		BufferAttribute.call( this, new Int16Array( array ), itemSize, normalized );

	}

	Int16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
	Int16BufferAttribute.prototype.constructor = Int16BufferAttribute;


	function Uint16BufferAttribute( array, itemSize, normalized ) {

		BufferAttribute.call( this, new Uint16Array( array ), itemSize, normalized );

	}

	Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
	Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute;


	function Int32BufferAttribute( array, itemSize, normalized ) {

		BufferAttribute.call( this, new Int32Array( array ), itemSize, normalized );

	}

	Int32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
	Int32BufferAttribute.prototype.constructor = Int32BufferAttribute;


	function Uint32BufferAttribute( array, itemSize, normalized ) {

		BufferAttribute.call( this, new Uint32Array( array ), itemSize, normalized );

	}

	Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
	Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute;


	function Float32BufferAttribute( array, itemSize, normalized ) {

		BufferAttribute.call( this, new Float32Array( array ), itemSize, normalized );

	}

	Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
	Float32BufferAttribute.prototype.constructor = Float32BufferAttribute;


	function Float64BufferAttribute( array, itemSize, normalized ) {

		BufferAttribute.call( this, new Float64Array( array ), itemSize, normalized );

	}

	Float64BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
	Float64BufferAttribute.prototype.constructor = Float64BufferAttribute;

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function DirectGeometry() {

		this.vertices = [];
		this.normals = [];
		this.colors = [];
		this.uvs = [];
		this.uvs2 = [];

		this.groups = [];

		this.morphTargets = {};

		this.skinWeights = [];
		this.skinIndices = [];

		// this.lineDistances = [];

		this.boundingBox = null;
		this.boundingSphere = null;

		// update flags

		this.verticesNeedUpdate = false;
		this.normalsNeedUpdate = false;
		this.colorsNeedUpdate = false;
		this.uvsNeedUpdate = false;
		this.groupsNeedUpdate = false;

	}

	Object.assign( DirectGeometry.prototype, {

		computeGroups: function ( geometry ) {

			var group;
			var groups = [];
			var materialIndex = undefined;

			var faces = geometry.faces;

			for ( var i = 0; i < faces.length; i ++ ) {

				var face = faces[ i ];

				// materials

				if ( face.materialIndex !== materialIndex ) {

					materialIndex = face.materialIndex;

					if ( group !== undefined ) {

						group.count = ( i * 3 ) - group.start;
						groups.push( group );

					}

					group = {
						start: i * 3,
						materialIndex: materialIndex
					};

				}

			}

			if ( group !== undefined ) {

				group.count = ( i * 3 ) - group.start;
				groups.push( group );

			}

			this.groups = groups;

		},

		fromGeometry: function ( geometry ) {

			var faces = geometry.faces;
			var vertices = geometry.vertices;
			var faceVertexUvs = geometry.faceVertexUvs;

			var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0;
			var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0;

			// morphs

			var morphTargets = geometry.morphTargets;
			var morphTargetsLength = morphTargets.length;

			var morphTargetsPosition;

			if ( morphTargetsLength > 0 ) {

				morphTargetsPosition = [];

				for ( var i = 0; i < morphTargetsLength; i ++ ) {

					morphTargetsPosition[ i ] = {
						name: morphTargets[ i ].name,
					 	data: []
					};

				}

				this.morphTargets.position = morphTargetsPosition;

			}

			var morphNormals = geometry.morphNormals;
			var morphNormalsLength = morphNormals.length;

			var morphTargetsNormal;

			if ( morphNormalsLength > 0 ) {

				morphTargetsNormal = [];

				for ( var i = 0; i < morphNormalsLength; i ++ ) {

					morphTargetsNormal[ i ] = {
						name: morphNormals[ i ].name,
					 	data: []
					};

				}

				this.morphTargets.normal = morphTargetsNormal;

			}

			// skins

			var skinIndices = geometry.skinIndices;
			var skinWeights = geometry.skinWeights;

			var hasSkinIndices = skinIndices.length === vertices.length;
			var hasSkinWeights = skinWeights.length === vertices.length;

			//

			if ( vertices.length > 0 && faces.length === 0 ) {

				console.error( 'THREE.DirectGeometry: Faceless geometries are not supported.' );

			}

			for ( var i = 0; i < faces.length; i ++ ) {

				var face = faces[ i ];

				this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );

				var vertexNormals = face.vertexNormals;

				if ( vertexNormals.length === 3 ) {

					this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );

				} else {

					var normal = face.normal;

					this.normals.push( normal, normal, normal );

				}

				var vertexColors = face.vertexColors;

				if ( vertexColors.length === 3 ) {

					this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );

				} else {

					var color = face.color;

					this.colors.push( color, color, color );

				}

				if ( hasFaceVertexUv === true ) {

					var vertexUvs = faceVertexUvs[ 0 ][ i ];

					if ( vertexUvs !== undefined ) {

						this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );

					} else {

						console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );

						this.uvs.push( new Vector2(), new Vector2(), new Vector2() );

					}

				}

				if ( hasFaceVertexUv2 === true ) {

					var vertexUvs = faceVertexUvs[ 1 ][ i ];

					if ( vertexUvs !== undefined ) {

						this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );

					} else {

						console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );

						this.uvs2.push( new Vector2(), new Vector2(), new Vector2() );

					}

				}

				// morphs

				for ( var j = 0; j < morphTargetsLength; j ++ ) {

					var morphTarget = morphTargets[ j ].vertices;

					morphTargetsPosition[ j ].data.push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );

				}

				for ( var j = 0; j < morphNormalsLength; j ++ ) {

					var morphNormal = morphNormals[ j ].vertexNormals[ i ];

					morphTargetsNormal[ j ].data.push( morphNormal.a, morphNormal.b, morphNormal.c );

				}

				// skins

				if ( hasSkinIndices ) {

					this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );

				}

				if ( hasSkinWeights ) {

					this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );

				}

			}

			this.computeGroups( geometry );

			this.verticesNeedUpdate = geometry.verticesNeedUpdate;
			this.normalsNeedUpdate = geometry.normalsNeedUpdate;
			this.colorsNeedUpdate = geometry.colorsNeedUpdate;
			this.uvsNeedUpdate = geometry.uvsNeedUpdate;
			this.groupsNeedUpdate = geometry.groupsNeedUpdate;

			if ( geometry.boundingSphere !== null ) {

				this.boundingSphere = geometry.boundingSphere.clone();

			}

			if ( geometry.boundingBox !== null ) {

				this.boundingBox = geometry.boundingBox.clone();

			}

			return this;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function arrayMax( array ) {

		if ( array.length === 0 ) { return - Infinity; }

		var max = array[ 0 ];

		for ( var i = 1, l = array.length; i < l; ++ i ) {

			if ( array[ i ] > max ) { max = array[ i ]; }

		}

		return max;

	}

	/**
	 * @author alteredq / http://alteredqualia.com/
	 * @author mrdoob / http://mrdoob.com/
	 */

	var _bufferGeometryId = 1; // BufferGeometry uses odd numbers as Id

	var _m1$2 = new Matrix4();
	var _obj = new Object3D();
	var _offset = new Vector3();
	var _box$2 = new Box3();
	var _boxMorphTargets = new Box3();
	var _vector$4 = new Vector3();

	function BufferGeometry() {

		Object.defineProperty( this, 'id', { value: _bufferGeometryId += 2 } );

		this.uuid = MathUtils.generateUUID();

		this.name = '';
		this.type = 'BufferGeometry';

		this.index = null;
		this.attributes = {};

		this.morphAttributes = {};
		this.morphTargetsRelative = false;

		this.groups = [];

		this.boundingBox = null;
		this.boundingSphere = null;

		this.drawRange = { start: 0, count: Infinity };

		this.userData = {};

	}

	BufferGeometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

		constructor: BufferGeometry,

		isBufferGeometry: true,

		getIndex: function () {

			return this.index;

		},

		setIndex: function ( index ) {

			if ( Array.isArray( index ) ) {

				this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );

			} else {

				this.index = index;

			}

		},

		getAttribute: function ( name ) {

			return this.attributes[ name ];

		},

		setAttribute: function ( name, attribute ) {

			this.attributes[ name ] = attribute;

			return this;

		},

		deleteAttribute: function ( name ) {

			delete this.attributes[ name ];

			return this;

		},

		addGroup: function ( start, count, materialIndex ) {

			this.groups.push( {

				start: start,
				count: count,
				materialIndex: materialIndex !== undefined ? materialIndex : 0

			} );

		},

		clearGroups: function () {

			this.groups = [];

		},

		setDrawRange: function ( start, count ) {

			this.drawRange.start = start;
			this.drawRange.count = count;

		},

		applyMatrix4: function ( matrix ) {

			var position = this.attributes.position;

			if ( position !== undefined ) {

				position.applyMatrix4( matrix );

				position.needsUpdate = true;

			}

			var normal = this.attributes.normal;

			if ( normal !== undefined ) {

				var normalMatrix = new Matrix3().getNormalMatrix( matrix );

				normal.applyNormalMatrix( normalMatrix );

				normal.needsUpdate = true;

			}

			var tangent = this.attributes.tangent;

			if ( tangent !== undefined ) {

				tangent.transformDirection( matrix );

				tangent.needsUpdate = true;

			}

			if ( this.boundingBox !== null ) {

				this.computeBoundingBox();

			}

			if ( this.boundingSphere !== null ) {

				this.computeBoundingSphere();

			}

			return this;

		},

		rotateX: function ( angle ) {

			// rotate geometry around world x-axis

			_m1$2.makeRotationX( angle );

			this.applyMatrix4( _m1$2 );

			return this;

		},

		rotateY: function ( angle ) {

			// rotate geometry around world y-axis

			_m1$2.makeRotationY( angle );

			this.applyMatrix4( _m1$2 );

			return this;

		},

		rotateZ: function ( angle ) {

			// rotate geometry around world z-axis

			_m1$2.makeRotationZ( angle );

			this.applyMatrix4( _m1$2 );

			return this;

		},

		translate: function ( x, y, z ) {

			// translate geometry

			_m1$2.makeTranslation( x, y, z );

			this.applyMatrix4( _m1$2 );

			return this;

		},

		scale: function ( x, y, z ) {

			// scale geometry

			_m1$2.makeScale( x, y, z );

			this.applyMatrix4( _m1$2 );

			return this;

		},

		lookAt: function ( vector ) {

			_obj.lookAt( vector );

			_obj.updateMatrix();

			this.applyMatrix4( _obj.matrix );

			return this;

		},

		center: function () {

			this.computeBoundingBox();

			this.boundingBox.getCenter( _offset ).negate();

			this.translate( _offset.x, _offset.y, _offset.z );

			return this;

		},

		setFromObject: function ( object ) {

			// console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this );

			var geometry = object.geometry;

			if ( object.isPoints || object.isLine ) {

				var positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 );
				var colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 );

				this.setAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) );
				this.setAttribute( 'color', colors.copyColorsArray( geometry.colors ) );

				if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {

					var lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 );

					this.setAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );

				}

				if ( geometry.boundingSphere !== null ) {

					this.boundingSphere = geometry.boundingSphere.clone();

				}

				if ( geometry.boundingBox !== null ) {

					this.boundingBox = geometry.boundingBox.clone();

				}

			} else if ( object.isMesh ) {

				if ( geometry && geometry.isGeometry ) {

					this.fromGeometry( geometry );

				}

			}

			return this;

		},

		setFromPoints: function ( points ) {

			var position = [];

			for ( var i = 0, l = points.length; i < l; i ++ ) {

				var point = points[ i ];
				position.push( point.x, point.y, point.z || 0 );

			}

			this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) );

			return this;

		},

		updateFromObject: function ( object ) {

			var geometry = object.geometry;

			if ( object.isMesh ) {

				var direct = geometry.__directGeometry;

				if ( geometry.elementsNeedUpdate === true ) {

					direct = undefined;
					geometry.elementsNeedUpdate = false;

				}

				if ( direct === undefined ) {

					return this.fromGeometry( geometry );

				}

				direct.verticesNeedUpdate = geometry.verticesNeedUpdate;
				direct.normalsNeedUpdate = geometry.normalsNeedUpdate;
				direct.colorsNeedUpdate = geometry.colorsNeedUpdate;
				direct.uvsNeedUpdate = geometry.uvsNeedUpdate;
				direct.groupsNeedUpdate = geometry.groupsNeedUpdate;

				geometry.verticesNeedUpdate = false;
				geometry.normalsNeedUpdate = false;
				geometry.colorsNeedUpdate = false;
				geometry.uvsNeedUpdate = false;
				geometry.groupsNeedUpdate = false;

				geometry = direct;

			}

			var attribute;

			if ( geometry.verticesNeedUpdate === true ) {

				attribute = this.attributes.position;

				if ( attribute !== undefined ) {

					attribute.copyVector3sArray( geometry.vertices );
					attribute.needsUpdate = true;

				}

				geometry.verticesNeedUpdate = false;

			}

			if ( geometry.normalsNeedUpdate === true ) {

				attribute = this.attributes.normal;

				if ( attribute !== undefined ) {

					attribute.copyVector3sArray( geometry.normals );
					attribute.needsUpdate = true;

				}

				geometry.normalsNeedUpdate = false;

			}

			if ( geometry.colorsNeedUpdate === true ) {

				attribute = this.attributes.color;

				if ( attribute !== undefined ) {

					attribute.copyColorsArray( geometry.colors );
					attribute.needsUpdate = true;

				}

				geometry.colorsNeedUpdate = false;

			}

			if ( geometry.uvsNeedUpdate ) {

				attribute = this.attributes.uv;

				if ( attribute !== undefined ) {

					attribute.copyVector2sArray( geometry.uvs );
					attribute.needsUpdate = true;

				}

				geometry.uvsNeedUpdate = false;

			}

			if ( geometry.lineDistancesNeedUpdate ) {

				attribute = this.attributes.lineDistance;

				if ( attribute !== undefined ) {

					attribute.copyArray( geometry.lineDistances );
					attribute.needsUpdate = true;

				}

				geometry.lineDistancesNeedUpdate = false;

			}

			if ( geometry.groupsNeedUpdate ) {

				geometry.computeGroups( object.geometry );
				this.groups = geometry.groups;

				geometry.groupsNeedUpdate = false;

			}

			return this;

		},

		fromGeometry: function ( geometry ) {

			geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry );

			return this.fromDirectGeometry( geometry.__directGeometry );

		},

		fromDirectGeometry: function ( geometry ) {

			var positions = new Float32Array( geometry.vertices.length * 3 );
			this.setAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );

			if ( geometry.normals.length > 0 ) {

				var normals = new Float32Array( geometry.normals.length * 3 );
				this.setAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );

			}

			if ( geometry.colors.length > 0 ) {

				var colors = new Float32Array( geometry.colors.length * 3 );
				this.setAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );

			}

			if ( geometry.uvs.length > 0 ) {

				var uvs = new Float32Array( geometry.uvs.length * 2 );
				this.setAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );

			}

			if ( geometry.uvs2.length > 0 ) {

				var uvs2 = new Float32Array( geometry.uvs2.length * 2 );
				this.setAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );

			}

			// groups

			this.groups = geometry.groups;

			// morphs

			for ( var name in geometry.morphTargets ) {

				var array = [];
				var morphTargets = geometry.morphTargets[ name ];

				for ( var i = 0, l = morphTargets.length; i < l; i ++ ) {

					var morphTarget = morphTargets[ i ];

					var attribute = new Float32BufferAttribute( morphTarget.data.length * 3, 3 );
					attribute.name = morphTarget.name;

					array.push( attribute.copyVector3sArray( morphTarget.data ) );

				}

				this.morphAttributes[ name ] = array;

			}

			// skinning

			if ( geometry.skinIndices.length > 0 ) {

				var skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 );
				this.setAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );

			}

			if ( geometry.skinWeights.length > 0 ) {

				var skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 );
				this.setAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );

			}

			//

			if ( geometry.boundingSphere !== null ) {

				this.boundingSphere = geometry.boundingSphere.clone();

			}

			if ( geometry.boundingBox !== null ) {

				this.boundingBox = geometry.boundingBox.clone();

			}

			return this;

		},

		computeBoundingBox: function () {

			if ( this.boundingBox === null ) {

				this.boundingBox = new Box3();

			}

			var position = this.attributes.position;
			var morphAttributesPosition = this.morphAttributes.position;

			if ( position !== undefined ) {

				this.boundingBox.setFromBufferAttribute( position );

				// process morph attributes if present

				if ( morphAttributesPosition ) {

					for ( var i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {

						var morphAttribute = morphAttributesPosition[ i ];
						_box$2.setFromBufferAttribute( morphAttribute );

						if ( this.morphTargetsRelative ) {

							_vector$4.addVectors( this.boundingBox.min, _box$2.min );
							this.boundingBox.expandByPoint( _vector$4 );

							_vector$4.addVectors( this.boundingBox.max, _box$2.max );
							this.boundingBox.expandByPoint( _vector$4 );

						} else {

							this.boundingBox.expandByPoint( _box$2.min );
							this.boundingBox.expandByPoint( _box$2.max );

						}

					}

				}

			} else {

				this.boundingBox.makeEmpty();

			}

			if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {

				console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );

			}

		},

		computeBoundingSphere: function () {

			if ( this.boundingSphere === null ) {

				this.boundingSphere = new Sphere();

			}

			var position = this.attributes.position;
			var morphAttributesPosition = this.morphAttributes.position;

			if ( position ) {

				// first, find the center of the bounding sphere

				var center = this.boundingSphere.center;

				_box$2.setFromBufferAttribute( position );

				// process morph attributes if present

				if ( morphAttributesPosition ) {

					for ( var i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {

						var morphAttribute = morphAttributesPosition[ i ];
						_boxMorphTargets.setFromBufferAttribute( morphAttribute );

						if ( this.morphTargetsRelative ) {

							_vector$4.addVectors( _box$2.min, _boxMorphTargets.min );
							_box$2.expandByPoint( _vector$4 );

							_vector$4.addVectors( _box$2.max, _boxMorphTargets.max );
							_box$2.expandByPoint( _vector$4 );

						} else {

							_box$2.expandByPoint( _boxMorphTargets.min );
							_box$2.expandByPoint( _boxMorphTargets.max );

						}

					}

				}

				_box$2.getCenter( center );

				// second, try to find a boundingSphere with a radius smaller than the
				// boundingSphere of the boundingBox: sqrt(3) smaller in the best case

				var maxRadiusSq = 0;

				for ( var i = 0, il = position.count; i < il; i ++ ) {

					_vector$4.fromBufferAttribute( position, i );

					maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$4 ) );

				}

				// process morph attributes if present

				if ( morphAttributesPosition ) {

					for ( var i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {

						var morphAttribute = morphAttributesPosition[ i ];
						var morphTargetsRelative = this.morphTargetsRelative;

						for ( var j = 0, jl = morphAttribute.count; j < jl; j ++ ) {

							_vector$4.fromBufferAttribute( morphAttribute, j );

							if ( morphTargetsRelative ) {

								_offset.fromBufferAttribute( position, j );
								_vector$4.add( _offset );

							}

							maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$4 ) );

						}

					}

				}

				this.boundingSphere.radius = Math.sqrt( maxRadiusSq );

				if ( isNaN( this.boundingSphere.radius ) ) {

					console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );

				}

			}

		},

		computeFaceNormals: function () {

			// backwards compatibility

		},

		computeVertexNormals: function () {

			var index = this.index;
			var attributes = this.attributes;

			if ( attributes.position ) {

				var positions = attributes.position.array;

				if ( attributes.normal === undefined ) {

					this.setAttribute( 'normal', new BufferAttribute( new Float32Array( positions.length ), 3 ) );

				} else {

					// reset existing normals to zero

					var array = attributes.normal.array;

					for ( var i = 0, il = array.length; i < il; i ++ ) {

						array[ i ] = 0;

					}

				}

				var normals = attributes.normal.array;

				var vA, vB, vC;
				var pA = new Vector3(), pB = new Vector3(), pC = new Vector3();
				var cb = new Vector3(), ab = new Vector3();

				// indexed elements

				if ( index ) {

					var indices = index.array;

					for ( var i = 0, il = index.count; i < il; i += 3 ) {

						vA = indices[ i + 0 ] * 3;
						vB = indices[ i + 1 ] * 3;
						vC = indices[ i + 2 ] * 3;

						pA.fromArray( positions, vA );
						pB.fromArray( positions, vB );
						pC.fromArray( positions, vC );

						cb.subVectors( pC, pB );
						ab.subVectors( pA, pB );
						cb.cross( ab );

						normals[ vA ] += cb.x;
						normals[ vA + 1 ] += cb.y;
						normals[ vA + 2 ] += cb.z;

						normals[ vB ] += cb.x;
						normals[ vB + 1 ] += cb.y;
						normals[ vB + 2 ] += cb.z;

						normals[ vC ] += cb.x;
						normals[ vC + 1 ] += cb.y;
						normals[ vC + 2 ] += cb.z;

					}

				} else {

					// non-indexed elements (unconnected triangle soup)

					for ( var i = 0, il = positions.length; i < il; i += 9 ) {

						pA.fromArray( positions, i );
						pB.fromArray( positions, i + 3 );
						pC.fromArray( positions, i + 6 );

						cb.subVectors( pC, pB );
						ab.subVectors( pA, pB );
						cb.cross( ab );

						normals[ i ] = cb.x;
						normals[ i + 1 ] = cb.y;
						normals[ i + 2 ] = cb.z;

						normals[ i + 3 ] = cb.x;
						normals[ i + 4 ] = cb.y;
						normals[ i + 5 ] = cb.z;

						normals[ i + 6 ] = cb.x;
						normals[ i + 7 ] = cb.y;
						normals[ i + 8 ] = cb.z;

					}

				}

				this.normalizeNormals();

				attributes.normal.needsUpdate = true;

			}

		},

		merge: function ( geometry, offset ) {

			if ( ! ( geometry && geometry.isBufferGeometry ) ) {

				console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry );
				return;

			}

			if ( offset === undefined ) {

				offset = 0;

				console.warn(
					'THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. '
					+ 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.'
				);

			}

			var attributes = this.attributes;

			for ( var key in attributes ) {

				if ( geometry.attributes[ key ] === undefined ) { continue; }

				var attribute1 = attributes[ key ];
				var attributeArray1 = attribute1.array;

				var attribute2 = geometry.attributes[ key ];
				var attributeArray2 = attribute2.array;

				var attributeOffset = attribute2.itemSize * offset;
				var length = Math.min( attributeArray2.length, attributeArray1.length - attributeOffset );

				for ( var i = 0, j = attributeOffset; i < length; i ++, j ++ ) {

					attributeArray1[ j ] = attributeArray2[ i ];

				}

			}

			return this;

		},

		normalizeNormals: function () {

			var normals = this.attributes.normal;

			for ( var i = 0, il = normals.count; i < il; i ++ ) {

				_vector$4.x = normals.getX( i );
				_vector$4.y = normals.getY( i );
				_vector$4.z = normals.getZ( i );

				_vector$4.normalize();

				normals.setXYZ( i, _vector$4.x, _vector$4.y, _vector$4.z );

			}

		},

		toNonIndexed: function () {

			function convertBufferAttribute( attribute, indices ) {

				var array = attribute.array;
				var itemSize = attribute.itemSize;

				var array2 = new array.constructor( indices.length * itemSize );

				var index = 0, index2 = 0;

				for ( var i = 0, l = indices.length; i < l; i ++ ) {

					index = indices[ i ] * itemSize;

					for ( var j = 0; j < itemSize; j ++ ) {

						array2[ index2 ++ ] = array[ index ++ ];

					}

				}

				return new BufferAttribute( array2, itemSize );

			}

			//

			if ( this.index === null ) {

				console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' );
				return this;

			}

			var geometry2 = new BufferGeometry();

			var indices = this.index.array;
			var attributes = this.attributes;

			// attributes

			for ( var name in attributes ) {

				var attribute = attributes[ name ];

				var newAttribute = convertBufferAttribute( attribute, indices );

				geometry2.setAttribute( name, newAttribute );

			}

			// morph attributes

			var morphAttributes = this.morphAttributes;

			for ( name in morphAttributes ) {

				var morphArray = [];
				var morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes

				for ( var i = 0, il = morphAttribute.length; i < il; i ++ ) {

					var attribute = morphAttribute[ i ];

					var newAttribute = convertBufferAttribute( attribute, indices );

					morphArray.push( newAttribute );

				}

				geometry2.morphAttributes[ name ] = morphArray;

			}

			geometry2.morphTargetsRelative = this.morphTargetsRelative;

			// groups

			var groups = this.groups;

			for ( var i = 0, l = groups.length; i < l; i ++ ) {

				var group = groups[ i ];
				geometry2.addGroup( group.start, group.count, group.materialIndex );

			}

			return geometry2;

		},

		toJSON: function () {

			var data = {
				metadata: {
					version: 4.5,
					type: 'BufferGeometry',
					generator: 'BufferGeometry.toJSON'
				}
			};

			// standard BufferGeometry serialization

			data.uuid = this.uuid;
			data.type = this.type;
			if ( this.name !== '' ) { data.name = this.name; }
			if ( Object.keys( this.userData ).length > 0 ) { data.userData = this.userData; }

			if ( this.parameters !== undefined ) {

				var parameters = this.parameters;

				for ( var key in parameters ) {

					if ( parameters[ key ] !== undefined ) { data[ key ] = parameters[ key ]; }

				}

				return data;

			}

			data.data = { attributes: {} };

			var index = this.index;

			if ( index !== null ) {

				data.data.index = {
					type: index.array.constructor.name,
					array: Array.prototype.slice.call( index.array )
				};

			}

			var attributes = this.attributes;

			for ( var key in attributes ) {

				var attribute = attributes[ key ];

				var attributeData = attribute.toJSON();

				if ( attribute.name !== '' ) { attributeData.name = attribute.name; }

				data.data.attributes[ key ] = attributeData;

			}

			var morphAttributes = {};
			var hasMorphAttributes = false;

			for ( var key in this.morphAttributes ) {

				var attributeArray = this.morphAttributes[ key ];

				var array = [];

				for ( var i = 0, il = attributeArray.length; i < il; i ++ ) {

					var attribute = attributeArray[ i ];

					var attributeData = attribute.toJSON();

					if ( attribute.name !== '' ) { attributeData.name = attribute.name; }

					array.push( attributeData );

				}

				if ( array.length > 0 ) {

					morphAttributes[ key ] = array;

					hasMorphAttributes = true;

				}

			}

			if ( hasMorphAttributes ) {

				data.data.morphAttributes = morphAttributes;
				data.data.morphTargetsRelative = this.morphTargetsRelative;

			}

			var groups = this.groups;

			if ( groups.length > 0 ) {

				data.data.groups = JSON.parse( JSON.stringify( groups ) );

			}

			var boundingSphere = this.boundingSphere;

			if ( boundingSphere !== null ) {

				data.data.boundingSphere = {
					center: boundingSphere.center.toArray(),
					radius: boundingSphere.radius
				};

			}

			return data;

		},

		clone: function () {

			/*
			 // Handle primitives

			 var parameters = this.parameters;

			 if ( parameters !== undefined ) {

			 var values = [];

			 for ( var key in parameters ) {

			 values.push( parameters[ key ] );

			 }

			 var geometry = Object.create( this.constructor.prototype );
			 this.constructor.apply( geometry, values );
			 return geometry;

			 }

			 return new this.constructor().copy( this );
			 */

			return new BufferGeometry().copy( this );

		},

		copy: function ( source ) {

			var name, i, l;

			// reset

			this.index = null;
			this.attributes = {};
			this.morphAttributes = {};
			this.groups = [];
			this.boundingBox = null;
			this.boundingSphere = null;

			// name

			this.name = source.name;

			// index

			var index = source.index;

			if ( index !== null ) {

				this.setIndex( index.clone() );

			}

			// attributes

			var attributes = source.attributes;

			for ( name in attributes ) {

				var attribute = attributes[ name ];
				this.setAttribute( name, attribute.clone() );

			}

			// morph attributes

			var morphAttributes = source.morphAttributes;

			for ( name in morphAttributes ) {

				var array = [];
				var morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes

				for ( i = 0, l = morphAttribute.length; i < l; i ++ ) {

					array.push( morphAttribute[ i ].clone() );

				}

				this.morphAttributes[ name ] = array;

			}

			this.morphTargetsRelative = source.morphTargetsRelative;

			// groups

			var groups = source.groups;

			for ( i = 0, l = groups.length; i < l; i ++ ) {

				var group = groups[ i ];
				this.addGroup( group.start, group.count, group.materialIndex );

			}

			// bounding box

			var boundingBox = source.boundingBox;

			if ( boundingBox !== null ) {

				this.boundingBox = boundingBox.clone();

			}

			// bounding sphere

			var boundingSphere = source.boundingSphere;

			if ( boundingSphere !== null ) {

				this.boundingSphere = boundingSphere.clone();

			}

			// draw range

			this.drawRange.start = source.drawRange.start;
			this.drawRange.count = source.drawRange.count;

			// user data

			this.userData = source.userData;

			return this;

		},

		dispose: function () {

			this.dispatchEvent( { type: 'dispose' } );

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 * @author mikael emtinger / http://gomo.se/
	 * @author jonobr1 / http://jonobr1.com/
	 */

	var _inverseMatrix = new Matrix4();
	var _ray = new Ray();
	var _sphere = new Sphere();

	var _vA = new Vector3();
	var _vB = new Vector3();
	var _vC = new Vector3();

	var _tempA = new Vector3();
	var _tempB = new Vector3();
	var _tempC = new Vector3();

	var _morphA = new Vector3();
	var _morphB = new Vector3();
	var _morphC = new Vector3();

	var _uvA = new Vector2();
	var _uvB = new Vector2();
	var _uvC = new Vector2();

	var _intersectionPoint = new Vector3();
	var _intersectionPointWorld = new Vector3();

	function Mesh( geometry, material ) {

		Object3D.call( this );

		this.type = 'Mesh';

		this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
		this.material = material !== undefined ? material : new MeshBasicMaterial();

		this.updateMorphTargets();

	}

	Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), {

		constructor: Mesh,

		isMesh: true,

		copy: function ( source ) {

			Object3D.prototype.copy.call( this, source );

			if ( source.morphTargetInfluences !== undefined ) {

				this.morphTargetInfluences = source.morphTargetInfluences.slice();

			}

			if ( source.morphTargetDictionary !== undefined ) {

				this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary );

			}

			return this;

		},

		updateMorphTargets: function () {

			var geometry = this.geometry;
			var m, ml, name;

			if ( geometry.isBufferGeometry ) {

				var morphAttributes = geometry.morphAttributes;
				var keys = Object.keys( morphAttributes );

				if ( keys.length > 0 ) {

					var morphAttribute = morphAttributes[ keys[ 0 ] ];

					if ( morphAttribute !== undefined ) {

						this.morphTargetInfluences = [];
						this.morphTargetDictionary = {};

						for ( m = 0, ml = morphAttribute.length; m < ml; m ++ ) {

							name = morphAttribute[ m ].name || String( m );

							this.morphTargetInfluences.push( 0 );
							this.morphTargetDictionary[ name ] = m;

						}

					}

				}

			} else {

				var morphTargets = geometry.morphTargets;

				if ( morphTargets !== undefined && morphTargets.length > 0 ) {

					console.error( 'THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' );

				}

			}

		},

		raycast: function ( raycaster, intersects ) {

			var geometry = this.geometry;
			var material = this.material;
			var matrixWorld = this.matrixWorld;

			if ( material === undefined ) { return; }

			// Checking boundingSphere distance to ray

			if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); }

			_sphere.copy( geometry.boundingSphere );
			_sphere.applyMatrix4( matrixWorld );

			if ( raycaster.ray.intersectsSphere( _sphere ) === false ) { return; }

			//

			_inverseMatrix.getInverse( matrixWorld );
			_ray.copy( raycaster.ray ).applyMatrix4( _inverseMatrix );

			// Check boundingBox before continuing

			if ( geometry.boundingBox !== null ) {

				if ( _ray.intersectsBox( geometry.boundingBox ) === false ) { return; }

			}

			var intersection;

			if ( geometry.isBufferGeometry ) {

				var a, b, c;
				var index = geometry.index;
				var position = geometry.attributes.position;
				var morphPosition = geometry.morphAttributes.position;
				var morphTargetsRelative = geometry.morphTargetsRelative;
				var uv = geometry.attributes.uv;
				var uv2 = geometry.attributes.uv2;
				var groups = geometry.groups;
				var drawRange = geometry.drawRange;
				var i, j, il, jl;
				var group, groupMaterial;
				var start, end;

				if ( index !== null ) {

					// indexed buffer geometry

					if ( Array.isArray( material ) ) {

						for ( i = 0, il = groups.length; i < il; i ++ ) {

							group = groups[ i ];
							groupMaterial = material[ group.materialIndex ];

							start = Math.max( group.start, drawRange.start );
							end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );

							for ( j = start, jl = end; j < jl; j += 3 ) {

								a = index.getX( j );
								b = index.getX( j + 1 );
								c = index.getX( j + 2 );

								intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );

								if ( intersection ) {

									intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics
									intersection.face.materialIndex = group.materialIndex;
									intersects.push( intersection );

								}

							}

						}

					} else {

						start = Math.max( 0, drawRange.start );
						end = Math.min( index.count, ( drawRange.start + drawRange.count ) );

						for ( i = start, il = end; i < il; i += 3 ) {

							a = index.getX( i );
							b = index.getX( i + 1 );
							c = index.getX( i + 2 );

							intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );

							if ( intersection ) {

								intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics
								intersects.push( intersection );

							}

						}

					}

				} else if ( position !== undefined ) {

					// non-indexed buffer geometry

					if ( Array.isArray( material ) ) {

						for ( i = 0, il = groups.length; i < il; i ++ ) {

							group = groups[ i ];
							groupMaterial = material[ group.materialIndex ];

							start = Math.max( group.start, drawRange.start );
							end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );

							for ( j = start, jl = end; j < jl; j += 3 ) {

								a = j;
								b = j + 1;
								c = j + 2;

								intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );

								if ( intersection ) {

									intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics
									intersection.face.materialIndex = group.materialIndex;
									intersects.push( intersection );

								}

							}

						}

					} else {

						start = Math.max( 0, drawRange.start );
						end = Math.min( position.count, ( drawRange.start + drawRange.count ) );

						for ( i = start, il = end; i < il; i += 3 ) {

							a = i;
							b = i + 1;
							c = i + 2;

							intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );

							if ( intersection ) {

								intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics
								intersects.push( intersection );

							}

						}

					}

				}

			} else if ( geometry.isGeometry ) {

				var fvA, fvB, fvC;
				var isMultiMaterial = Array.isArray( material );

				var vertices = geometry.vertices;
				var faces = geometry.faces;
				var uvs;

				var faceVertexUvs = geometry.faceVertexUvs[ 0 ];
				if ( faceVertexUvs.length > 0 ) { uvs = faceVertexUvs; }

				for ( var f = 0, fl = faces.length; f < fl; f ++ ) {

					var face = faces[ f ];
					var faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material;

					if ( faceMaterial === undefined ) { continue; }

					fvA = vertices[ face.a ];
					fvB = vertices[ face.b ];
					fvC = vertices[ face.c ];

					intersection = checkIntersection( this, faceMaterial, raycaster, _ray, fvA, fvB, fvC, _intersectionPoint );

					if ( intersection ) {

						if ( uvs && uvs[ f ] ) {

							var uvs_f = uvs[ f ];
							_uvA.copy( uvs_f[ 0 ] );
							_uvB.copy( uvs_f[ 1 ] );
							_uvC.copy( uvs_f[ 2 ] );

							intersection.uv = Triangle.getUV( _intersectionPoint, fvA, fvB, fvC, _uvA, _uvB, _uvC, new Vector2() );

						}

						intersection.face = face;
						intersection.faceIndex = f;
						intersects.push( intersection );

					}

				}

			}

		},

		clone: function () {

			return new this.constructor( this.geometry, this.material ).copy( this );

		}

	} );

	function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) {

		var intersect;

		if ( material.side === BackSide ) {

			intersect = ray.intersectTriangle( pC, pB, pA, true, point );

		} else {

			intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point );

		}

		if ( intersect === null ) { return null; }

		_intersectionPointWorld.copy( point );
		_intersectionPointWorld.applyMatrix4( object.matrixWorld );

		var distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld );

		if ( distance < raycaster.near || distance > raycaster.far ) { return null; }

		return {
			distance: distance,
			point: _intersectionPointWorld.clone(),
			object: object
		};

	}

	function checkBufferGeometryIntersection( object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ) {

		_vA.fromBufferAttribute( position, a );
		_vB.fromBufferAttribute( position, b );
		_vC.fromBufferAttribute( position, c );

		var morphInfluences = object.morphTargetInfluences;

		if ( material.morphTargets && morphPosition && morphInfluences ) {

			_morphA.set( 0, 0, 0 );
			_morphB.set( 0, 0, 0 );
			_morphC.set( 0, 0, 0 );

			for ( var i = 0, il = morphPosition.length; i < il; i ++ ) {

				var influence = morphInfluences[ i ];
				var morphAttribute = morphPosition[ i ];

				if ( influence === 0 ) { continue; }

				_tempA.fromBufferAttribute( morphAttribute, a );
				_tempB.fromBufferAttribute( morphAttribute, b );
				_tempC.fromBufferAttribute( morphAttribute, c );

				if ( morphTargetsRelative ) {

					_morphA.addScaledVector( _tempA, influence );
					_morphB.addScaledVector( _tempB, influence );
					_morphC.addScaledVector( _tempC, influence );

				} else {

					_morphA.addScaledVector( _tempA.sub( _vA ), influence );
					_morphB.addScaledVector( _tempB.sub( _vB ), influence );
					_morphC.addScaledVector( _tempC.sub( _vC ), influence );

				}

			}

			_vA.add( _morphA );
			_vB.add( _morphB );
			_vC.add( _morphC );

		}

		if ( object.isSkinnedMesh ) {

			object.boneTransform( a, _vA );
			object.boneTransform( b, _vB );
			object.boneTransform( c, _vC );

		}

		var intersection = checkIntersection( object, material, raycaster, ray, _vA, _vB, _vC, _intersectionPoint );

		if ( intersection ) {

			if ( uv ) {

				_uvA.fromBufferAttribute( uv, a );
				_uvB.fromBufferAttribute( uv, b );
				_uvC.fromBufferAttribute( uv, c );

				intersection.uv = Triangle.getUV( _intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() );

			}

			if ( uv2 ) {

				_uvA.fromBufferAttribute( uv2, a );
				_uvB.fromBufferAttribute( uv2, b );
				_uvC.fromBufferAttribute( uv2, c );

				intersection.uv2 = Triangle.getUV( _intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() );

			}

			var face = new Face3( a, b, c );
			Triangle.getNormal( _vA, _vB, _vC, face.normal );

			intersection.face = face;

		}

		return intersection;

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author kile / http://kile.stravaganza.org/
	 * @author alteredq / http://alteredqualia.com/
	 * @author mikael emtinger / http://gomo.se/
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 * @author bhouston / http://clara.io
	 */

	var _geometryId = 0; // Geometry uses even numbers as Id
	var _m1$3 = new Matrix4();
	var _obj$1 = new Object3D();
	var _offset$1 = new Vector3();

	function Geometry() {

		Object.defineProperty( this, 'id', { value: _geometryId += 2 } );

		this.uuid = MathUtils.generateUUID();

		this.name = '';
		this.type = 'Geometry';

		this.vertices = [];
		this.colors = [];
		this.faces = [];
		this.faceVertexUvs = [[]];

		this.morphTargets = [];
		this.morphNormals = [];

		this.skinWeights = [];
		this.skinIndices = [];

		this.lineDistances = [];

		this.boundingBox = null;
		this.boundingSphere = null;

		// update flags

		this.elementsNeedUpdate = false;
		this.verticesNeedUpdate = false;
		this.uvsNeedUpdate = false;
		this.normalsNeedUpdate = false;
		this.colorsNeedUpdate = false;
		this.lineDistancesNeedUpdate = false;
		this.groupsNeedUpdate = false;

	}

	Geometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

		constructor: Geometry,

		isGeometry: true,

		applyMatrix4: function ( matrix ) {

			var normalMatrix = new Matrix3().getNormalMatrix( matrix );

			for ( var i = 0, il = this.vertices.length; i < il; i ++ ) {

				var vertex = this.vertices[ i ];
				vertex.applyMatrix4( matrix );

			}

			for ( var i = 0, il = this.faces.length; i < il; i ++ ) {

				var face = this.faces[ i ];
				face.normal.applyMatrix3( normalMatrix ).normalize();

				for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {

					face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();

				}

			}

			if ( this.boundingBox !== null ) {

				this.computeBoundingBox();

			}

			if ( this.boundingSphere !== null ) {

				this.computeBoundingSphere();

			}

			this.verticesNeedUpdate = true;
			this.normalsNeedUpdate = true;

			return this;

		},

		rotateX: function ( angle ) {

			// rotate geometry around world x-axis

			_m1$3.makeRotationX( angle );

			this.applyMatrix4( _m1$3 );

			return this;

		},

		rotateY: function ( angle ) {

			// rotate geometry around world y-axis

			_m1$3.makeRotationY( angle );

			this.applyMatrix4( _m1$3 );

			return this;

		},

		rotateZ: function ( angle ) {

			// rotate geometry around world z-axis

			_m1$3.makeRotationZ( angle );

			this.applyMatrix4( _m1$3 );

			return this;

		},

		translate: function ( x, y, z ) {

			// translate geometry

			_m1$3.makeTranslation( x, y, z );

			this.applyMatrix4( _m1$3 );

			return this;

		},

		scale: function ( x, y, z ) {

			// scale geometry

			_m1$3.makeScale( x, y, z );

			this.applyMatrix4( _m1$3 );

			return this;

		},

		lookAt: function ( vector ) {

			_obj$1.lookAt( vector );

			_obj$1.updateMatrix();

			this.applyMatrix4( _obj$1.matrix );

			return this;

		},

		fromBufferGeometry: function ( geometry ) {

			var scope = this;

			var indices = geometry.index !== null ? geometry.index.array : undefined;
			var attributes = geometry.attributes;

			if ( attributes.position === undefined ) {

				console.error( 'THREE.Geometry.fromBufferGeometry(): Position attribute required for conversion.' );
				return this;

			}

			var positions = attributes.position.array;
			var normals = attributes.normal !== undefined ? attributes.normal.array : undefined;
			var colors = attributes.color !== undefined ? attributes.color.array : undefined;
			var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined;
			var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined;

			if ( uvs2 !== undefined ) { this.faceVertexUvs[ 1 ] = []; }

			for ( var i = 0; i < positions.length; i += 3 ) {

				scope.vertices.push( new Vector3().fromArray( positions, i ) );

				if ( colors !== undefined ) {

					scope.colors.push( new Color().fromArray( colors, i ) );

				}

			}

			function addFace( a, b, c, materialIndex ) {

				var vertexColors = ( colors === undefined ) ? [] : [
					scope.colors[ a ].clone(),
					scope.colors[ b ].clone(),
					scope.colors[ c ].clone() ];

				var vertexNormals = ( normals === undefined ) ? [] : [
					new Vector3().fromArray( normals, a * 3 ),
					new Vector3().fromArray( normals, b * 3 ),
					new Vector3().fromArray( normals, c * 3 )
				];

				var face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex );

				scope.faces.push( face );

				if ( uvs !== undefined ) {

					scope.faceVertexUvs[ 0 ].push( [
						new Vector2().fromArray( uvs, a * 2 ),
						new Vector2().fromArray( uvs, b * 2 ),
						new Vector2().fromArray( uvs, c * 2 )
					] );

				}

				if ( uvs2 !== undefined ) {

					scope.faceVertexUvs[ 1 ].push( [
						new Vector2().fromArray( uvs2, a * 2 ),
						new Vector2().fromArray( uvs2, b * 2 ),
						new Vector2().fromArray( uvs2, c * 2 )
					] );

				}

			}

			var groups = geometry.groups;

			if ( groups.length > 0 ) {

				for ( var i = 0; i < groups.length; i ++ ) {

					var group = groups[ i ];

					var start = group.start;
					var count = group.count;

					for ( var j = start, jl = start + count; j < jl; j += 3 ) {

						if ( indices !== undefined ) {

							addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex );

						} else {

							addFace( j, j + 1, j + 2, group.materialIndex );

						}

					}

				}

			} else {

				if ( indices !== undefined ) {

					for ( var i = 0; i < indices.length; i += 3 ) {

						addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] );

					}

				} else {

					for ( var i = 0; i < positions.length / 3; i += 3 ) {

						addFace( i, i + 1, i + 2 );

					}

				}

			}

			this.computeFaceNormals();

			if ( geometry.boundingBox !== null ) {

				this.boundingBox = geometry.boundingBox.clone();

			}

			if ( geometry.boundingSphere !== null ) {

				this.boundingSphere = geometry.boundingSphere.clone();

			}

			return this;

		},

		center: function () {

			this.computeBoundingBox();

			this.boundingBox.getCenter( _offset$1 ).negate();

			this.translate( _offset$1.x, _offset$1.y, _offset$1.z );

			return this;

		},

		normalize: function () {

			this.computeBoundingSphere();

			var center = this.boundingSphere.center;
			var radius = this.boundingSphere.radius;

			var s = radius === 0 ? 1 : 1.0 / radius;

			var matrix = new Matrix4();
			matrix.set(
				s, 0, 0, - s * center.x,
				0, s, 0, - s * center.y,
				0, 0, s, - s * center.z,
				0, 0, 0, 1
			);

			this.applyMatrix4( matrix );

			return this;

		},

		computeFaceNormals: function () {

			var cb = new Vector3(), ab = new Vector3();

			for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) {

				var face = this.faces[ f ];

				var vA = this.vertices[ face.a ];
				var vB = this.vertices[ face.b ];
				var vC = this.vertices[ face.c ];

				cb.subVectors( vC, vB );
				ab.subVectors( vA, vB );
				cb.cross( ab );

				cb.normalize();

				face.normal.copy( cb );

			}

		},

		computeVertexNormals: function ( areaWeighted ) {

			if ( areaWeighted === undefined ) { areaWeighted = true; }

			var v, vl, f, fl, face, vertices;

			vertices = new Array( this.vertices.length );

			for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {

				vertices[ v ] = new Vector3();

			}

			if ( areaWeighted ) {

				// vertex normals weighted by triangle areas
				// http://www.iquilezles.org/www/articles/normals/normals.htm

				var vA, vB, vC;
				var cb = new Vector3(), ab = new Vector3();

				for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

					face = this.faces[ f ];

					vA = this.vertices[ face.a ];
					vB = this.vertices[ face.b ];
					vC = this.vertices[ face.c ];

					cb.subVectors( vC, vB );
					ab.subVectors( vA, vB );
					cb.cross( ab );

					vertices[ face.a ].add( cb );
					vertices[ face.b ].add( cb );
					vertices[ face.c ].add( cb );

				}

			} else {

				this.computeFaceNormals();

				for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

					face = this.faces[ f ];

					vertices[ face.a ].add( face.normal );
					vertices[ face.b ].add( face.normal );
					vertices[ face.c ].add( face.normal );

				}

			}

			for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {

				vertices[ v ].normalize();

			}

			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

				face = this.faces[ f ];

				var vertexNormals = face.vertexNormals;

				if ( vertexNormals.length === 3 ) {

					vertexNormals[ 0 ].copy( vertices[ face.a ] );
					vertexNormals[ 1 ].copy( vertices[ face.b ] );
					vertexNormals[ 2 ].copy( vertices[ face.c ] );

				} else {

					vertexNormals[ 0 ] = vertices[ face.a ].clone();
					vertexNormals[ 1 ] = vertices[ face.b ].clone();
					vertexNormals[ 2 ] = vertices[ face.c ].clone();

				}

			}

			if ( this.faces.length > 0 ) {

				this.normalsNeedUpdate = true;

			}

		},

		computeFlatVertexNormals: function () {

			var f, fl, face;

			this.computeFaceNormals();

			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

				face = this.faces[ f ];

				var vertexNormals = face.vertexNormals;

				if ( vertexNormals.length === 3 ) {

					vertexNormals[ 0 ].copy( face.normal );
					vertexNormals[ 1 ].copy( face.normal );
					vertexNormals[ 2 ].copy( face.normal );

				} else {

					vertexNormals[ 0 ] = face.normal.clone();
					vertexNormals[ 1 ] = face.normal.clone();
					vertexNormals[ 2 ] = face.normal.clone();

				}

			}

			if ( this.faces.length > 0 ) {

				this.normalsNeedUpdate = true;

			}

		},

		computeMorphNormals: function () {

			var i, il, f, fl, face;

			// save original normals
			// - create temp variables on first access
			//   otherwise just copy (for faster repeated calls)

			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

				face = this.faces[ f ];

				if ( ! face.__originalFaceNormal ) {

					face.__originalFaceNormal = face.normal.clone();

				} else {

					face.__originalFaceNormal.copy( face.normal );

				}

				if ( ! face.__originalVertexNormals ) { face.__originalVertexNormals = []; }

				for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) {

					if ( ! face.__originalVertexNormals[ i ] ) {

						face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();

					} else {

						face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );

					}

				}

			}

			// use temp geometry to compute face and vertex normals for each morph

			var tmpGeo = new Geometry();
			tmpGeo.faces = this.faces;

			for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) {

				// create on first access

				if ( ! this.morphNormals[ i ] ) {

					this.morphNormals[ i ] = {};
					this.morphNormals[ i ].faceNormals = [];
					this.morphNormals[ i ].vertexNormals = [];

					var dstNormalsFace = this.morphNormals[ i ].faceNormals;
					var dstNormalsVertex = this.morphNormals[ i ].vertexNormals;

					var faceNormal, vertexNormals;

					for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

						faceNormal = new Vector3();
						vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() };

						dstNormalsFace.push( faceNormal );
						dstNormalsVertex.push( vertexNormals );

					}

				}

				var morphNormals = this.morphNormals[ i ];

				// set vertices to morph target

				tmpGeo.vertices = this.morphTargets[ i ].vertices;

				// compute morph normals

				tmpGeo.computeFaceNormals();
				tmpGeo.computeVertexNormals();

				// store morph normals

				var faceNormal, vertexNormals;

				for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

					face = this.faces[ f ];

					faceNormal = morphNormals.faceNormals[ f ];
					vertexNormals = morphNormals.vertexNormals[ f ];

					faceNormal.copy( face.normal );

					vertexNormals.a.copy( face.vertexNormals[ 0 ] );
					vertexNormals.b.copy( face.vertexNormals[ 1 ] );
					vertexNormals.c.copy( face.vertexNormals[ 2 ] );

				}

			}

			// restore original normals

			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

				face = this.faces[ f ];

				face.normal = face.__originalFaceNormal;
				face.vertexNormals = face.__originalVertexNormals;

			}

		},

		computeBoundingBox: function () {

			if ( this.boundingBox === null ) {

				this.boundingBox = new Box3();

			}

			this.boundingBox.setFromPoints( this.vertices );

		},

		computeBoundingSphere: function () {

			if ( this.boundingSphere === null ) {

				this.boundingSphere = new Sphere();

			}

			this.boundingSphere.setFromPoints( this.vertices );

		},

		merge: function ( geometry, matrix, materialIndexOffset ) {

			if ( ! ( geometry && geometry.isGeometry ) ) {

				console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry );
				return;

			}

			var normalMatrix,
				vertexOffset = this.vertices.length,
				vertices1 = this.vertices,
				vertices2 = geometry.vertices,
				faces1 = this.faces,
				faces2 = geometry.faces,
				colors1 = this.colors,
				colors2 = geometry.colors;

			if ( materialIndexOffset === undefined ) { materialIndexOffset = 0; }

			if ( matrix !== undefined ) {

				normalMatrix = new Matrix3().getNormalMatrix( matrix );

			}

			// vertices

			for ( var i = 0, il = vertices2.length; i < il; i ++ ) {

				var vertex = vertices2[ i ];

				var vertexCopy = vertex.clone();

				if ( matrix !== undefined ) { vertexCopy.applyMatrix4( matrix ); }

				vertices1.push( vertexCopy );

			}

			// colors

			for ( var i = 0, il = colors2.length; i < il; i ++ ) {

				colors1.push( colors2[ i ].clone() );

			}

			// faces

			for ( i = 0, il = faces2.length; i < il; i ++ ) {

				var face = faces2[ i ], faceCopy, normal, color,
					faceVertexNormals = face.vertexNormals,
					faceVertexColors = face.vertexColors;

				faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
				faceCopy.normal.copy( face.normal );

				if ( normalMatrix !== undefined ) {

					faceCopy.normal.applyMatrix3( normalMatrix ).normalize();

				}

				for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {

					normal = faceVertexNormals[ j ].clone();

					if ( normalMatrix !== undefined ) {

						normal.applyMatrix3( normalMatrix ).normalize();

					}

					faceCopy.vertexNormals.push( normal );

				}

				faceCopy.color.copy( face.color );

				for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {

					color = faceVertexColors[ j ];
					faceCopy.vertexColors.push( color.clone() );

				}

				faceCopy.materialIndex = face.materialIndex + materialIndexOffset;

				faces1.push( faceCopy );

			}

			// uvs

			for ( var i = 0, il = geometry.faceVertexUvs.length; i < il; i ++ ) {

				var faceVertexUvs2 = geometry.faceVertexUvs[ i ];

				if ( this.faceVertexUvs[ i ] === undefined ) { this.faceVertexUvs[ i ] = []; }

				for ( var j = 0, jl = faceVertexUvs2.length; j < jl; j ++ ) {

					var uvs2 = faceVertexUvs2[ j ], uvsCopy = [];

					for ( var k = 0, kl = uvs2.length; k < kl; k ++ ) {

						uvsCopy.push( uvs2[ k ].clone() );

					}

					this.faceVertexUvs[ i ].push( uvsCopy );

				}

			}

		},

		mergeMesh: function ( mesh ) {

			if ( ! ( mesh && mesh.isMesh ) ) {

				console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh );
				return;

			}

			if ( mesh.matrixAutoUpdate ) { mesh.updateMatrix(); }

			this.merge( mesh.geometry, mesh.matrix );

		},

		/*
		 * Checks for duplicate vertices with hashmap.
		 * Duplicated vertices are removed
		 * and faces' vertices are updated.
		 */

		mergeVertices: function () {

			var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique)
			var unique = [], changes = [];

			var v, key;
			var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001
			var precision = Math.pow( 10, precisionPoints );
			var i, il, face;
			var indices, j, jl;

			for ( i = 0, il = this.vertices.length; i < il; i ++ ) {

				v = this.vertices[ i ];
				key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );

				if ( verticesMap[ key ] === undefined ) {

					verticesMap[ key ] = i;
					unique.push( this.vertices[ i ] );
					changes[ i ] = unique.length - 1;

				} else {

					//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
					changes[ i ] = changes[ verticesMap[ key ] ];

				}

			}


			// if faces are completely degenerate after merging vertices, we
			// have to remove them from the geometry.
			var faceIndicesToRemove = [];

			for ( i = 0, il = this.faces.length; i < il; i ++ ) {

				face = this.faces[ i ];

				face.a = changes[ face.a ];
				face.b = changes[ face.b ];
				face.c = changes[ face.c ];

				indices = [ face.a, face.b, face.c ];

				// if any duplicate vertices are found in a Face3
				// we have to remove the face as nothing can be saved
				for ( var n = 0; n < 3; n ++ ) {

					if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {

						faceIndicesToRemove.push( i );
						break;

					}

				}

			}

			for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {

				var idx = faceIndicesToRemove[ i ];

				this.faces.splice( idx, 1 );

				for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {

					this.faceVertexUvs[ j ].splice( idx, 1 );

				}

			}

			// Use unique set of vertices

			var diff = this.vertices.length - unique.length;
			this.vertices = unique;
			return diff;

		},

		setFromPoints: function ( points ) {

			this.vertices = [];

			for ( var i = 0, l = points.length; i < l; i ++ ) {

				var point = points[ i ];
				this.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );

			}

			return this;

		},

		sortFacesByMaterialIndex: function () {

			var faces = this.faces;
			var length = faces.length;

			// tag faces

			for ( var i = 0; i < length; i ++ ) {

				faces[ i ]._id = i;

			}

			// sort faces

			function materialIndexSort( a, b ) {

				return a.materialIndex - b.materialIndex;

			}

			faces.sort( materialIndexSort );

			// sort uvs

			var uvs1 = this.faceVertexUvs[ 0 ];
			var uvs2 = this.faceVertexUvs[ 1 ];

			var newUvs1, newUvs2;

			if ( uvs1 && uvs1.length === length ) { newUvs1 = []; }
			if ( uvs2 && uvs2.length === length ) { newUvs2 = []; }

			for ( var i = 0; i < length; i ++ ) {

				var id = faces[ i ]._id;

				if ( newUvs1 ) { newUvs1.push( uvs1[ id ] ); }
				if ( newUvs2 ) { newUvs2.push( uvs2[ id ] ); }

			}

			if ( newUvs1 ) { this.faceVertexUvs[ 0 ] = newUvs1; }
			if ( newUvs2 ) { this.faceVertexUvs[ 1 ] = newUvs2; }

		},

		toJSON: function () {

			var data = {
				metadata: {
					version: 4.5,
					type: 'Geometry',
					generator: 'Geometry.toJSON'
				}
			};

			// standard Geometry serialization

			data.uuid = this.uuid;
			data.type = this.type;
			if ( this.name !== '' ) { data.name = this.name; }

			if ( this.parameters !== undefined ) {

				var parameters = this.parameters;

				for ( var key in parameters ) {

					if ( parameters[ key ] !== undefined ) { data[ key ] = parameters[ key ]; }

				}

				return data;

			}

			var vertices = [];

			for ( var i = 0; i < this.vertices.length; i ++ ) {

				var vertex = this.vertices[ i ];
				vertices.push( vertex.x, vertex.y, vertex.z );

			}

			var faces = [];
			var normals = [];
			var normalsHash = {};
			var colors = [];
			var colorsHash = {};
			var uvs = [];
			var uvsHash = {};

			for ( var i = 0; i < this.faces.length; i ++ ) {

				var face = this.faces[ i ];

				var hasMaterial = true;
				var hasFaceUv = false; // deprecated
				var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined;
				var hasFaceNormal = face.normal.length() > 0;
				var hasFaceVertexNormal = face.vertexNormals.length > 0;
				var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1;
				var hasFaceVertexColor = face.vertexColors.length > 0;

				var faceType = 0;

				faceType = setBit( faceType, 0, 0 ); // isQuad
				faceType = setBit( faceType, 1, hasMaterial );
				faceType = setBit( faceType, 2, hasFaceUv );
				faceType = setBit( faceType, 3, hasFaceVertexUv );
				faceType = setBit( faceType, 4, hasFaceNormal );
				faceType = setBit( faceType, 5, hasFaceVertexNormal );
				faceType = setBit( faceType, 6, hasFaceColor );
				faceType = setBit( faceType, 7, hasFaceVertexColor );

				faces.push( faceType );
				faces.push( face.a, face.b, face.c );
				faces.push( face.materialIndex );

				if ( hasFaceVertexUv ) {

					var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];

					faces.push(
						getUvIndex( faceVertexUvs[ 0 ] ),
						getUvIndex( faceVertexUvs[ 1 ] ),
						getUvIndex( faceVertexUvs[ 2 ] )
					);

				}

				if ( hasFaceNormal ) {

					faces.push( getNormalIndex( face.normal ) );

				}

				if ( hasFaceVertexNormal ) {

					var vertexNormals = face.vertexNormals;

					faces.push(
						getNormalIndex( vertexNormals[ 0 ] ),
						getNormalIndex( vertexNormals[ 1 ] ),
						getNormalIndex( vertexNormals[ 2 ] )
					);

				}

				if ( hasFaceColor ) {

					faces.push( getColorIndex( face.color ) );

				}

				if ( hasFaceVertexColor ) {

					var vertexColors = face.vertexColors;

					faces.push(
						getColorIndex( vertexColors[ 0 ] ),
						getColorIndex( vertexColors[ 1 ] ),
						getColorIndex( vertexColors[ 2 ] )
					);

				}

			}

			function setBit( value, position, enabled ) {

				return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) );

			}

			function getNormalIndex( normal ) {

				var hash = normal.x.toString() + normal.y.toString() + normal.z.toString();

				if ( normalsHash[ hash ] !== undefined ) {

					return normalsHash[ hash ];

				}

				normalsHash[ hash ] = normals.length / 3;
				normals.push( normal.x, normal.y, normal.z );

				return normalsHash[ hash ];

			}

			function getColorIndex( color ) {

				var hash = color.r.toString() + color.g.toString() + color.b.toString();

				if ( colorsHash[ hash ] !== undefined ) {

					return colorsHash[ hash ];

				}

				colorsHash[ hash ] = colors.length;
				colors.push( color.getHex() );

				return colorsHash[ hash ];

			}

			function getUvIndex( uv ) {

				var hash = uv.x.toString() + uv.y.toString();

				if ( uvsHash[ hash ] !== undefined ) {

					return uvsHash[ hash ];

				}

				uvsHash[ hash ] = uvs.length / 2;
				uvs.push( uv.x, uv.y );

				return uvsHash[ hash ];

			}

			data.data = {};

			data.data.vertices = vertices;
			data.data.normals = normals;
			if ( colors.length > 0 ) { data.data.colors = colors; }
			if ( uvs.length > 0 ) { data.data.uvs = [ uvs ]; } // temporal backward compatibility
			data.data.faces = faces;

			return data;

		},

		clone: function () {

			/*
			 // Handle primitives

			 var parameters = this.parameters;

			 if ( parameters !== undefined ) {

			 var values = [];

			 for ( var key in parameters ) {

			 values.push( parameters[ key ] );

			 }

			 var geometry = Object.create( this.constructor.prototype );
			 this.constructor.apply( geometry, values );
			 return geometry;

			 }

			 return new this.constructor().copy( this );
			 */

			return new Geometry().copy( this );

		},

		copy: function ( source ) {

			var i, il, j, jl, k, kl;

			// reset

			this.vertices = [];
			this.colors = [];
			this.faces = [];
			this.faceVertexUvs = [[]];
			this.morphTargets = [];
			this.morphNormals = [];
			this.skinWeights = [];
			this.skinIndices = [];
			this.lineDistances = [];
			this.boundingBox = null;
			this.boundingSphere = null;

			// name

			this.name = source.name;

			// vertices

			var vertices = source.vertices;

			for ( i = 0, il = vertices.length; i < il; i ++ ) {

				this.vertices.push( vertices[ i ].clone() );

			}

			// colors

			var colors = source.colors;

			for ( i = 0, il = colors.length; i < il; i ++ ) {

				this.colors.push( colors[ i ].clone() );

			}

			// faces

			var faces = source.faces;

			for ( i = 0, il = faces.length; i < il; i ++ ) {

				this.faces.push( faces[ i ].clone() );

			}

			// face vertex uvs

			for ( i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {

				var faceVertexUvs = source.faceVertexUvs[ i ];

				if ( this.faceVertexUvs[ i ] === undefined ) {

					this.faceVertexUvs[ i ] = [];

				}

				for ( j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {

					var uvs = faceVertexUvs[ j ], uvsCopy = [];

					for ( k = 0, kl = uvs.length; k < kl; k ++ ) {

						var uv = uvs[ k ];

						uvsCopy.push( uv.clone() );

					}

					this.faceVertexUvs[ i ].push( uvsCopy );

				}

			}

			// morph targets

			var morphTargets = source.morphTargets;

			for ( i = 0, il = morphTargets.length; i < il; i ++ ) {

				var morphTarget = {};
				morphTarget.name = morphTargets[ i ].name;

				// vertices

				if ( morphTargets[ i ].vertices !== undefined ) {

					morphTarget.vertices = [];

					for ( j = 0, jl = morphTargets[ i ].vertices.length; j < jl; j ++ ) {

						morphTarget.vertices.push( morphTargets[ i ].vertices[ j ].clone() );

					}

				}

				// normals

				if ( morphTargets[ i ].normals !== undefined ) {

					morphTarget.normals = [];

					for ( j = 0, jl = morphTargets[ i ].normals.length; j < jl; j ++ ) {

						morphTarget.normals.push( morphTargets[ i ].normals[ j ].clone() );

					}

				}

				this.morphTargets.push( morphTarget );

			}

			// morph normals

			var morphNormals = source.morphNormals;

			for ( i = 0, il = morphNormals.length; i < il; i ++ ) {

				var morphNormal = {};

				// vertex normals

				if ( morphNormals[ i ].vertexNormals !== undefined ) {

					morphNormal.vertexNormals = [];

					for ( j = 0, jl = morphNormals[ i ].vertexNormals.length; j < jl; j ++ ) {

						var srcVertexNormal = morphNormals[ i ].vertexNormals[ j ];
						var destVertexNormal = {};

						destVertexNormal.a = srcVertexNormal.a.clone();
						destVertexNormal.b = srcVertexNormal.b.clone();
						destVertexNormal.c = srcVertexNormal.c.clone();

						morphNormal.vertexNormals.push( destVertexNormal );

					}

				}

				// face normals

				if ( morphNormals[ i ].faceNormals !== undefined ) {

					morphNormal.faceNormals = [];

					for ( j = 0, jl = morphNormals[ i ].faceNormals.length; j < jl; j ++ ) {

						morphNormal.faceNormals.push( morphNormals[ i ].faceNormals[ j ].clone() );

					}

				}

				this.morphNormals.push( morphNormal );

			}

			// skin weights

			var skinWeights = source.skinWeights;

			for ( i = 0, il = skinWeights.length; i < il; i ++ ) {

				this.skinWeights.push( skinWeights[ i ].clone() );

			}

			// skin indices

			var skinIndices = source.skinIndices;

			for ( i = 0, il = skinIndices.length; i < il; i ++ ) {

				this.skinIndices.push( skinIndices[ i ].clone() );

			}

			// line distances

			var lineDistances = source.lineDistances;

			for ( i = 0, il = lineDistances.length; i < il; i ++ ) {

				this.lineDistances.push( lineDistances[ i ] );

			}

			// bounding box

			var boundingBox = source.boundingBox;

			if ( boundingBox !== null ) {

				this.boundingBox = boundingBox.clone();

			}

			// bounding sphere

			var boundingSphere = source.boundingSphere;

			if ( boundingSphere !== null ) {

				this.boundingSphere = boundingSphere.clone();

			}

			// update flags

			this.elementsNeedUpdate = source.elementsNeedUpdate;
			this.verticesNeedUpdate = source.verticesNeedUpdate;
			this.uvsNeedUpdate = source.uvsNeedUpdate;
			this.normalsNeedUpdate = source.normalsNeedUpdate;
			this.colorsNeedUpdate = source.colorsNeedUpdate;
			this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate;
			this.groupsNeedUpdate = source.groupsNeedUpdate;

			return this;

		},

		dispose: function () {

			this.dispatchEvent( { type: 'dispose' } );

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// BoxGeometry

	var BoxGeometry = /*@__PURE__*/(function (Geometry) {
		function BoxGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) {

			Geometry.call(this);

			this.type = 'BoxGeometry';

			this.parameters = {
				width: width,
				height: height,
				depth: depth,
				widthSegments: widthSegments,
				heightSegments: heightSegments,
				depthSegments: depthSegments
			};

			this.fromBufferGeometry( new BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) );
			this.mergeVertices();

		}

		if ( Geometry ) BoxGeometry.__proto__ = Geometry;
		BoxGeometry.prototype = Object.create( Geometry && Geometry.prototype );
		BoxGeometry.prototype.constructor = BoxGeometry;

		return BoxGeometry;
	}(Geometry));

	// BoxBufferGeometry

	var BoxBufferGeometry = /*@__PURE__*/(function (BufferGeometry) {
		function BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) {

			BufferGeometry.call(this);

			this.type = 'BoxBufferGeometry';

			this.parameters = {
				width: width,
				height: height,
				depth: depth,
				widthSegments: widthSegments,
				heightSegments: heightSegments,
				depthSegments: depthSegments
			};

			var scope = this;

			width = width || 1;
			height = height || 1;
			depth = depth || 1;

			// segments

			widthSegments = Math.floor( widthSegments ) || 1;
			heightSegments = Math.floor( heightSegments ) || 1;
			depthSegments = Math.floor( depthSegments ) || 1;

			// buffers

			var indices = [];
			var vertices = [];
			var normals = [];
			var uvs = [];

			// helper variables

			var numberOfVertices = 0;
			var groupStart = 0;

			// build each side of the box geometry

			buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px
			buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx
			buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py
			buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny
			buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz
			buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz

			// build geometry

			this.setIndex( indices );
			this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
			this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
			this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

			function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {

				var segmentWidth = width / gridX;
				var segmentHeight = height / gridY;

				var widthHalf = width / 2;
				var heightHalf = height / 2;
				var depthHalf = depth / 2;

				var gridX1 = gridX + 1;
				var gridY1 = gridY + 1;

				var vertexCounter = 0;
				var groupCount = 0;

				var ix, iy;

				var vector = new Vector3();

				// generate vertices, normals and uvs

				for ( iy = 0; iy < gridY1; iy ++ ) {

					var y = iy * segmentHeight - heightHalf;

					for ( ix = 0; ix < gridX1; ix ++ ) {

						var x = ix * segmentWidth - widthHalf;

						// set values to correct vector component

						vector[ u ] = x * udir;
						vector[ v ] = y * vdir;
						vector[ w ] = depthHalf;

						// now apply vector to vertex buffer

						vertices.push( vector.x, vector.y, vector.z );

						// set values to correct vector component

						vector[ u ] = 0;
						vector[ v ] = 0;
						vector[ w ] = depth > 0 ? 1 : - 1;

						// now apply vector to normal buffer

						normals.push( vector.x, vector.y, vector.z );

						// uvs

						uvs.push( ix / gridX );
						uvs.push( 1 - ( iy / gridY ) );

						// counters

						vertexCounter += 1;

					}

				}

				// indices

				// 1. you need three indices to draw a single face
				// 2. a single segment consists of two faces
				// 3. so we need to generate six (2*3) indices per segment

				for ( iy = 0; iy < gridY; iy ++ ) {

					for ( ix = 0; ix < gridX; ix ++ ) {

						var a = numberOfVertices + ix + gridX1 * iy;
						var b = numberOfVertices + ix + gridX1 * ( iy + 1 );
						var c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
						var d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;

						// faces

						indices.push( a, b, d );
						indices.push( b, c, d );

						// increase counter

						groupCount += 6;

					}

				}

				// add a group to the geometry. this will ensure multi material support

				scope.addGroup( groupStart, groupCount, materialIndex );

				// calculate new start value for groups

				groupStart += groupCount;

				// update total number of vertices

				numberOfVertices += vertexCounter;

			}

		}

		if ( BufferGeometry ) BoxBufferGeometry.__proto__ = BufferGeometry;
		BoxBufferGeometry.prototype = Object.create( BufferGeometry && BufferGeometry.prototype );
		BoxBufferGeometry.prototype.constructor = BoxBufferGeometry;

		return BoxBufferGeometry;
	}(BufferGeometry));

	/**
	 * Uniform Utilities
	 */

	function cloneUniforms( src ) {

		var dst = {};

		for ( var u in src ) {

			dst[ u ] = {};

			for ( var p in src[ u ] ) {

				var property = src[ u ][ p ];

				if ( property && ( property.isColor ||
					property.isMatrix3 || property.isMatrix4 ||
					property.isVector2 || property.isVector3 || property.isVector4 ||
					property.isTexture ) ) {

					dst[ u ][ p ] = property.clone();

				} else if ( Array.isArray( property ) ) {

					dst[ u ][ p ] = property.slice();

				} else {

					dst[ u ][ p ] = property;

				}

			}

		}

		return dst;

	}

	function mergeUniforms( uniforms ) {

		var merged = {};

		for ( var u = 0; u < uniforms.length; u ++ ) {

			var tmp = cloneUniforms( uniforms[ u ] );

			for ( var p in tmp ) {

				merged[ p ] = tmp[ p ];

			}

		}

		return merged;

	}

	// Legacy

	var UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms };

	var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";

	var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";

	/**
	 * @author alteredq / http://alteredqualia.com/
	 *
	 * parameters = {
	 *  defines: { "label" : "value" },
	 *  uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
	 *
	 *  fragmentShader: <string>,
	 *  vertexShader: <string>,
	 *
	 *  wireframe: <boolean>,
	 *  wireframeLinewidth: <float>,
	 *
	 *  lights: <bool>,
	 *
	 *  skinning: <bool>,
	 *  morphTargets: <bool>,
	 *  morphNormals: <bool>
	 * }
	 */

	function ShaderMaterial( parameters ) {

		Material.call( this );

		this.type = 'ShaderMaterial';

		this.defines = {};
		this.uniforms = {};

		this.vertexShader = default_vertex;
		this.fragmentShader = default_fragment;

		this.linewidth = 1;

		this.wireframe = false;
		this.wireframeLinewidth = 1;

		this.fog = false; // set to use scene fog
		this.lights = false; // set to use scene lights
		this.clipping = false; // set to use user-defined clipping planes

		this.skinning = false; // set to use skinning attribute streams
		this.morphTargets = false; // set to use morph targets
		this.morphNormals = false; // set to use morph normals

		this.extensions = {
			derivatives: false, // set to use derivatives
			fragDepth: false, // set to use fragment depth values
			drawBuffers: false, // set to use draw buffers
			shaderTextureLOD: false // set to use shader texture LOD
		};

		// When rendered geometry doesn't include these attributes but the material does,
		// use these default values in WebGL. This avoids errors when buffer data is missing.
		this.defaultAttributeValues = {
			'color': [ 1, 1, 1 ],
			'uv': [ 0, 0 ],
			'uv2': [ 0, 0 ]
		};

		this.index0AttributeName = undefined;
		this.uniformsNeedUpdate = false;

		if ( parameters !== undefined ) {

			if ( parameters.attributes !== undefined ) {

				console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );

			}

			this.setValues( parameters );

		}

	}

	ShaderMaterial.prototype = Object.create( Material.prototype );
	ShaderMaterial.prototype.constructor = ShaderMaterial;

	ShaderMaterial.prototype.isShaderMaterial = true;

	ShaderMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.fragmentShader = source.fragmentShader;
		this.vertexShader = source.vertexShader;

		this.uniforms = cloneUniforms( source.uniforms );

		this.defines = Object.assign( {}, source.defines );

		this.wireframe = source.wireframe;
		this.wireframeLinewidth = source.wireframeLinewidth;

		this.lights = source.lights;
		this.clipping = source.clipping;

		this.skinning = source.skinning;

		this.morphTargets = source.morphTargets;
		this.morphNormals = source.morphNormals;

		this.extensions = source.extensions;

		return this;

	};

	ShaderMaterial.prototype.toJSON = function ( meta ) {

		var data = Material.prototype.toJSON.call( this, meta );

		data.uniforms = {};

		for ( var name in this.uniforms ) {

			var uniform = this.uniforms[ name ];
			var value = uniform.value;

			if ( value && value.isTexture ) {

				data.uniforms[ name ] = {
					type: 't',
					value: value.toJSON( meta ).uuid
				};

			} else if ( value && value.isColor ) {

				data.uniforms[ name ] = {
					type: 'c',
					value: value.getHex()
				};

			} else if ( value && value.isVector2 ) {

				data.uniforms[ name ] = {
					type: 'v2',
					value: value.toArray()
				};

			} else if ( value && value.isVector3 ) {

				data.uniforms[ name ] = {
					type: 'v3',
					value: value.toArray()
				};

			} else if ( value && value.isVector4 ) {

				data.uniforms[ name ] = {
					type: 'v4',
					value: value.toArray()
				};

			} else if ( value && value.isMatrix3 ) {

				data.uniforms[ name ] = {
					type: 'm3',
					value: value.toArray()
				};

			} else if ( value && value.isMatrix4 ) {

				data.uniforms[ name ] = {
					type: 'm4',
					value: value.toArray()
				};

			} else {

				data.uniforms[ name ] = {
					value: value
				};

				// note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far

			}

		}

		if ( Object.keys( this.defines ).length > 0 ) { data.defines = this.defines; }

		data.vertexShader = this.vertexShader;
		data.fragmentShader = this.fragmentShader;

		var extensions = {};

		for ( var key in this.extensions ) {

			if ( this.extensions[ key ] === true ) { extensions[ key ] = true; }

		}

		if ( Object.keys( extensions ).length > 0 ) { data.extensions = extensions; }

		return data;

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author mikael emtinger / http://gomo.se/
	 * @author WestLangley / http://github.com/WestLangley
	*/

	function Camera() {

		Object3D.call( this );

		this.type = 'Camera';

		this.matrixWorldInverse = new Matrix4();

		this.projectionMatrix = new Matrix4();
		this.projectionMatrixInverse = new Matrix4();

	}

	Camera.prototype = Object.assign( Object.create( Object3D.prototype ), {

		constructor: Camera,

		isCamera: true,

		copy: function ( source, recursive ) {

			Object3D.prototype.copy.call( this, source, recursive );

			this.matrixWorldInverse.copy( source.matrixWorldInverse );

			this.projectionMatrix.copy( source.projectionMatrix );
			this.projectionMatrixInverse.copy( source.projectionMatrixInverse );

			return this;

		},

		getWorldDirection: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Camera: .getWorldDirection() target is now required' );
				target = new Vector3();

			}

			this.updateMatrixWorld( true );

			var e = this.matrixWorld.elements;

			return target.set( - e[ 8 ], - e[ 9 ], - e[ 10 ] ).normalize();

		},

		updateMatrixWorld: function ( force ) {

			Object3D.prototype.updateMatrixWorld.call( this, force );

			this.matrixWorldInverse.getInverse( this.matrixWorld );

		},

		updateWorldMatrix: function ( updateParents, updateChildren ) {

			Object3D.prototype.updateWorldMatrix.call( this, updateParents, updateChildren );

			this.matrixWorldInverse.getInverse( this.matrixWorld );

		},

		clone: function () {

			return new this.constructor().copy( this );

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author greggman / http://games.greggman.com/
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 * @author tschw
	 */

	function PerspectiveCamera( fov, aspect, near, far ) {

		Camera.call( this );

		this.type = 'PerspectiveCamera';

		this.fov = fov !== undefined ? fov : 50;
		this.zoom = 1;

		this.near = near !== undefined ? near : 0.1;
		this.far = far !== undefined ? far : 2000;
		this.focus = 10;

		this.aspect = aspect !== undefined ? aspect : 1;
		this.view = null;

		this.filmGauge = 35;	// width of the film (default in millimeters)
		this.filmOffset = 0;	// horizontal film offset (same unit as gauge)

		this.updateProjectionMatrix();

	}

	PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), {

		constructor: PerspectiveCamera,

		isPerspectiveCamera: true,

		copy: function ( source, recursive ) {

			Camera.prototype.copy.call( this, source, recursive );

			this.fov = source.fov;
			this.zoom = source.zoom;

			this.near = source.near;
			this.far = source.far;
			this.focus = source.focus;

			this.aspect = source.aspect;
			this.view = source.view === null ? null : Object.assign( {}, source.view );

			this.filmGauge = source.filmGauge;
			this.filmOffset = source.filmOffset;

			return this;

		},

		/**
		 * Sets the FOV by focal length in respect to the current .filmGauge.
		 *
		 * The default film gauge is 35, so that the focal length can be specified for
		 * a 35mm (full frame) camera.
		 *
		 * Values for focal length and film gauge must have the same unit.
		 */
		setFocalLength: function ( focalLength ) {

			// see http://www.bobatkins.com/photography/technical/field_of_view.html
			var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;

			this.fov = MathUtils.RAD2DEG * 2 * Math.atan( vExtentSlope );
			this.updateProjectionMatrix();

		},

		/**
		 * Calculates the focal length from the current .fov and .filmGauge.
		 */
		getFocalLength: function () {

			var vExtentSlope = Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov );

			return 0.5 * this.getFilmHeight() / vExtentSlope;

		},

		getEffectiveFOV: function () {

			return MathUtils.RAD2DEG * 2 * Math.atan(
				Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ) / this.zoom );

		},

		getFilmWidth: function () {

			// film not completely covered in portrait format (aspect < 1)
			return this.filmGauge * Math.min( this.aspect, 1 );

		},

		getFilmHeight: function () {

			// film not completely covered in landscape format (aspect > 1)
			return this.filmGauge / Math.max( this.aspect, 1 );

		},

		/**
		 * Sets an offset in a larger frustum. This is useful for multi-window or
		 * multi-monitor/multi-machine setups.
		 *
		 * For example, if you have 3x2 monitors and each monitor is 1920x1080 and
		 * the monitors are in grid like this
		 *
		 *   +---+---+---+
		 *   | A | B | C |
		 *   +---+---+---+
		 *   | D | E | F |
		 *   +---+---+---+
		 *
		 * then for each monitor you would call it like this
		 *
		 *   var w = 1920;
		 *   var h = 1080;
		 *   var fullWidth = w * 3;
		 *   var fullHeight = h * 2;
		 *
		 *   --A--
		 *   camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
		 *   --B--
		 *   camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
		 *   --C--
		 *   camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
		 *   --D--
		 *   camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
		 *   --E--
		 *   camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
		 *   --F--
		 *   camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
		 *
		 *   Note there is no reason monitors have to be the same size or in a grid.
		 */
		setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {

			this.aspect = fullWidth / fullHeight;

			if ( this.view === null ) {

				this.view = {
					enabled: true,
					fullWidth: 1,
					fullHeight: 1,
					offsetX: 0,
					offsetY: 0,
					width: 1,
					height: 1
				};

			}

			this.view.enabled = true;
			this.view.fullWidth = fullWidth;
			this.view.fullHeight = fullHeight;
			this.view.offsetX = x;
			this.view.offsetY = y;
			this.view.width = width;
			this.view.height = height;

			this.updateProjectionMatrix();

		},

		clearViewOffset: function () {

			if ( this.view !== null ) {

				this.view.enabled = false;

			}

			this.updateProjectionMatrix();

		},

		updateProjectionMatrix: function () {

			var near = this.near,
				top = near * Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ) / this.zoom,
				height = 2 * top,
				width = this.aspect * height,
				left = - 0.5 * width,
				view = this.view;

			if ( this.view !== null && this.view.enabled ) {

				var fullWidth = view.fullWidth,
					fullHeight = view.fullHeight;

				left += view.offsetX * width / fullWidth;
				top -= view.offsetY * height / fullHeight;
				width *= view.width / fullWidth;
				height *= view.height / fullHeight;

			}

			var skew = this.filmOffset;
			if ( skew !== 0 ) { left += near * skew / this.getFilmWidth(); }

			this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far );

			this.projectionMatrixInverse.getInverse( this.projectionMatrix );

		},

		toJSON: function ( meta ) {

			var data = Object3D.prototype.toJSON.call( this, meta );

			data.object.fov = this.fov;
			data.object.zoom = this.zoom;

			data.object.near = this.near;
			data.object.far = this.far;
			data.object.focus = this.focus;

			data.object.aspect = this.aspect;

			if ( this.view !== null ) { data.object.view = Object.assign( {}, this.view ); }

			data.object.filmGauge = this.filmGauge;
			data.object.filmOffset = this.filmOffset;

			return data;

		}

	} );

	/**
	 * Camera for rendering cube maps
	 *	- renders scene into axis-aligned cube
	 *
	 * @author alteredq / http://alteredqualia.com/
	 */

	var fov = 90, aspect = 1;

	function CubeCamera( near, far, cubeResolution, options ) {

		Object3D.call( this );

		this.type = 'CubeCamera';

		var cameraPX = new PerspectiveCamera( fov, aspect, near, far );
		cameraPX.up.set( 0, - 1, 0 );
		cameraPX.lookAt( new Vector3( 1, 0, 0 ) );
		this.add( cameraPX );

		var cameraNX = new PerspectiveCamera( fov, aspect, near, far );
		cameraNX.up.set( 0, - 1, 0 );
		cameraNX.lookAt( new Vector3( - 1, 0, 0 ) );
		this.add( cameraNX );

		var cameraPY = new PerspectiveCamera( fov, aspect, near, far );
		cameraPY.up.set( 0, 0, 1 );
		cameraPY.lookAt( new Vector3( 0, 1, 0 ) );
		this.add( cameraPY );

		var cameraNY = new PerspectiveCamera( fov, aspect, near, far );
		cameraNY.up.set( 0, 0, - 1 );
		cameraNY.lookAt( new Vector3( 0, - 1, 0 ) );
		this.add( cameraNY );

		var cameraPZ = new PerspectiveCamera( fov, aspect, near, far );
		cameraPZ.up.set( 0, - 1, 0 );
		cameraPZ.lookAt( new Vector3( 0, 0, 1 ) );
		this.add( cameraPZ );

		var cameraNZ = new PerspectiveCamera( fov, aspect, near, far );
		cameraNZ.up.set( 0, - 1, 0 );
		cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) );
		this.add( cameraNZ );

		options = options || { format: RGBFormat, magFilter: LinearFilter, minFilter: LinearFilter };

		this.renderTarget = new WebGLCubeRenderTarget( cubeResolution, options );
		this.renderTarget.texture.name = "CubeCamera";

		this.update = function ( renderer, scene ) {

			if ( this.parent === null ) { this.updateMatrixWorld(); }

			var currentRenderTarget = renderer.getRenderTarget();

			var renderTarget = this.renderTarget;
			var generateMipmaps = renderTarget.texture.generateMipmaps;

			renderTarget.texture.generateMipmaps = false;

			renderer.setRenderTarget( renderTarget, 0 );
			renderer.render( scene, cameraPX );

			renderer.setRenderTarget( renderTarget, 1 );
			renderer.render( scene, cameraNX );

			renderer.setRenderTarget( renderTarget, 2 );
			renderer.render( scene, cameraPY );

			renderer.setRenderTarget( renderTarget, 3 );
			renderer.render( scene, cameraNY );

			renderer.setRenderTarget( renderTarget, 4 );
			renderer.render( scene, cameraPZ );

			renderTarget.texture.generateMipmaps = generateMipmaps;

			renderer.setRenderTarget( renderTarget, 5 );
			renderer.render( scene, cameraNZ );

			renderer.setRenderTarget( currentRenderTarget );

		};

		this.clear = function ( renderer, color, depth, stencil ) {

			var currentRenderTarget = renderer.getRenderTarget();

			var renderTarget = this.renderTarget;

			for ( var i = 0; i < 6; i ++ ) {

				renderer.setRenderTarget( renderTarget, i );

				renderer.clear( color, depth, stencil );

			}

			renderer.setRenderTarget( currentRenderTarget );

		};

	}

	CubeCamera.prototype = Object.create( Object3D.prototype );
	CubeCamera.prototype.constructor = CubeCamera;

	/**
	 * @author alteredq / http://alteredqualia.com
	 * @author WestLangley / http://github.com/WestLangley
	 */

	function WebGLCubeRenderTarget( size, options, dummy ) {

		if ( Number.isInteger( options ) ) {

			console.warn( 'THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )' );

			options = dummy;

		}

		WebGLRenderTarget.call( this, size, size, options );

	}

	WebGLCubeRenderTarget.prototype = Object.create( WebGLRenderTarget.prototype );
	WebGLCubeRenderTarget.prototype.constructor = WebGLCubeRenderTarget;

	WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true;

	WebGLCubeRenderTarget.prototype.fromEquirectangularTexture = function ( renderer, texture ) {

		this.texture.type = texture.type;
		this.texture.format = texture.format;
		this.texture.encoding = texture.encoding;

		var scene = new Scene();

		var shader = {

			uniforms: {
				tEquirect: { value: null },
			},

			vertexShader: [

				"varying vec3 vWorldDirection;",

				"vec3 transformDirection( in vec3 dir, in mat4 matrix ) {",

				"	return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );",

				"}",

				"void main() {",

				"	vWorldDirection = transformDirection( position, modelMatrix );",

				"	#include <begin_vertex>",
				"	#include <project_vertex>",

				"}"

			].join( '\n' ),

			fragmentShader: [

				"uniform sampler2D tEquirect;",

				"varying vec3 vWorldDirection;",

				"#define RECIPROCAL_PI 0.31830988618",
				"#define RECIPROCAL_PI2 0.15915494",

				"void main() {",

				"	vec3 direction = normalize( vWorldDirection );",

				"	vec2 sampleUV;",

				"	sampleUV.y = asin( clamp( direction.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;",

				"	sampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;",

				"	gl_FragColor = texture2D( tEquirect, sampleUV );",

				"}"

			].join( '\n' ),
		};

		var material = new ShaderMaterial( {

			type: 'CubemapFromEquirect',

			uniforms: cloneUniforms( shader.uniforms ),
			vertexShader: shader.vertexShader,
			fragmentShader: shader.fragmentShader,
			side: BackSide,
			blending: NoBlending

		} );

		material.uniforms.tEquirect.value = texture;

		var mesh = new Mesh( new BoxBufferGeometry( 5, 5, 5 ), material );

		scene.add( mesh );

		var camera = new CubeCamera( 1, 10, 1 );

		camera.renderTarget = this;
		camera.renderTarget.texture.name = 'CubeCameraTexture';

		camera.update( renderer, scene );

		mesh.geometry.dispose();
		mesh.material.dispose();

		return this;

	};

	/**
	 * @author alteredq / http://alteredqualia.com/
	 */

	function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {

		Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

		this.image = { data: data || null, width: width || 1, height: height || 1 };

		this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
		this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;

		this.generateMipmaps = false;
		this.flipY = false;
		this.unpackAlignment = 1;

		this.needsUpdate = true;

	}

	DataTexture.prototype = Object.create( Texture.prototype );
	DataTexture.prototype.constructor = DataTexture;

	DataTexture.prototype.isDataTexture = true;

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 * @author bhouston / http://clara.io
	 */

	var _sphere$1 = new Sphere();
	var _vector$5 = new Vector3();

	function Frustum( p0, p1, p2, p3, p4, p5 ) {

		this.planes = [

			( p0 !== undefined ) ? p0 : new Plane(),
			( p1 !== undefined ) ? p1 : new Plane(),
			( p2 !== undefined ) ? p2 : new Plane(),
			( p3 !== undefined ) ? p3 : new Plane(),
			( p4 !== undefined ) ? p4 : new Plane(),
			( p5 !== undefined ) ? p5 : new Plane()

		];

	}

	Object.assign( Frustum.prototype, {

		set: function ( p0, p1, p2, p3, p4, p5 ) {

			var planes = this.planes;

			planes[ 0 ].copy( p0 );
			planes[ 1 ].copy( p1 );
			planes[ 2 ].copy( p2 );
			planes[ 3 ].copy( p3 );
			planes[ 4 ].copy( p4 );
			planes[ 5 ].copy( p5 );

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( frustum ) {

			var planes = this.planes;

			for ( var i = 0; i < 6; i ++ ) {

				planes[ i ].copy( frustum.planes[ i ] );

			}

			return this;

		},

		setFromProjectionMatrix: function ( m ) {

			var planes = this.planes;
			var me = m.elements;
			var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
			var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
			var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
			var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];

			planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
			planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
			planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
			planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
			planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
			planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();

			return this;

		},

		intersectsObject: function ( object ) {

			var geometry = object.geometry;

			if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); }

			_sphere$1.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld );

			return this.intersectsSphere( _sphere$1 );

		},

		intersectsSprite: function ( sprite ) {

			_sphere$1.center.set( 0, 0, 0 );
			_sphere$1.radius = 0.7071067811865476;
			_sphere$1.applyMatrix4( sprite.matrixWorld );

			return this.intersectsSphere( _sphere$1 );

		},

		intersectsSphere: function ( sphere ) {

			var planes = this.planes;
			var center = sphere.center;
			var negRadius = - sphere.radius;

			for ( var i = 0; i < 6; i ++ ) {

				var distance = planes[ i ].distanceToPoint( center );

				if ( distance < negRadius ) {

					return false;

				}

			}

			return true;

		},

		intersectsBox: function ( box ) {

			var planes = this.planes;

			for ( var i = 0; i < 6; i ++ ) {

				var plane = planes[ i ];

				// corner at max distance

				_vector$5.x = plane.normal.x > 0 ? box.max.x : box.min.x;
				_vector$5.y = plane.normal.y > 0 ? box.max.y : box.min.y;
				_vector$5.z = plane.normal.z > 0 ? box.max.z : box.min.z;

				if ( plane.distanceToPoint( _vector$5 ) < 0 ) {

					return false;

				}

			}

			return true;

		},

		containsPoint: function ( point ) {

			var planes = this.planes;

			for ( var i = 0; i < 6; i ++ ) {

				if ( planes[ i ].distanceToPoint( point ) < 0 ) {

					return false;

				}

			}

			return true;

		}

	} );

	/**
	 * Uniforms library for shared webgl shaders
	 */

	var UniformsLib = {

		common: {

			diffuse: { value: new Color( 0xeeeeee ) },
			opacity: { value: 1.0 },

			map: { value: null },
			uvTransform: { value: new Matrix3() },
			uv2Transform: { value: new Matrix3() },

			alphaMap: { value: null },

		},

		specularmap: {

			specularMap: { value: null },

		},

		envmap: {

			envMap: { value: null },
			flipEnvMap: { value: - 1 },
			reflectivity: { value: 1.0 },
			refractionRatio: { value: 0.98 },
			maxMipLevel: { value: 0 }

		},

		aomap: {

			aoMap: { value: null },
			aoMapIntensity: { value: 1 }

		},

		lightmap: {

			lightMap: { value: null },
			lightMapIntensity: { value: 1 }

		},

		emissivemap: {

			emissiveMap: { value: null }

		},

		bumpmap: {

			bumpMap: { value: null },
			bumpScale: { value: 1 }

		},

		normalmap: {

			normalMap: { value: null },
			normalScale: { value: new Vector2( 1, 1 ) }

		},

		displacementmap: {

			displacementMap: { value: null },
			displacementScale: { value: 1 },
			displacementBias: { value: 0 }

		},

		roughnessmap: {

			roughnessMap: { value: null }

		},

		metalnessmap: {

			metalnessMap: { value: null }

		},

		gradientmap: {

			gradientMap: { value: null }

		},

		fog: {

			fogDensity: { value: 0.00025 },
			fogNear: { value: 1 },
			fogFar: { value: 2000 },
			fogColor: { value: new Color( 0xffffff ) }

		},

		lights: {

			ambientLightColor: { value: [] },

			lightProbe: { value: [] },

			directionalLights: { value: [], properties: {
				direction: {},
				color: {}
			} },

			directionalLightShadows: { value: [], properties: {
				shadowBias: {},
				shadowRadius: {},
				shadowMapSize: {}
			} },

			directionalShadowMap: { value: [] },
			directionalShadowMatrix: { value: [] },

			spotLights: { value: [], properties: {
				color: {},
				position: {},
				direction: {},
				distance: {},
				coneCos: {},
				penumbraCos: {},
				decay: {}
			} },

			spotLightShadows: { value: [], properties: {
				shadowBias: {},
				shadowRadius: {},
				shadowMapSize: {}
			} },

			spotShadowMap: { value: [] },
			spotShadowMatrix: { value: [] },

			pointLights: { value: [], properties: {
				color: {},
				position: {},
				decay: {},
				distance: {}
			} },

			pointLightShadows: { value: [], properties: {
				shadowBias: {},
				shadowRadius: {},
				shadowMapSize: {},
				shadowCameraNear: {},
				shadowCameraFar: {}
			} },

			pointShadowMap: { value: [] },
			pointShadowMatrix: { value: [] },

			hemisphereLights: { value: [], properties: {
				direction: {},
				skyColor: {},
				groundColor: {}
			} },

			// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
			rectAreaLights: { value: [], properties: {
				color: {},
				position: {},
				width: {},
				height: {}
			} }

		},

		points: {

			diffuse: { value: new Color( 0xeeeeee ) },
			opacity: { value: 1.0 },
			size: { value: 1.0 },
			scale: { value: 1.0 },
			map: { value: null },
			alphaMap: { value: null },
			uvTransform: { value: new Matrix3() }

		},

		sprite: {

			diffuse: { value: new Color( 0xeeeeee ) },
			opacity: { value: 1.0 },
			center: { value: new Vector2( 0.5, 0.5 ) },
			rotation: { value: 0.0 },
			map: { value: null },
			alphaMap: { value: null },
			uvTransform: { value: new Matrix3() }

		}

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLAnimation() {

		var context = null;
		var isAnimating = false;
		var animationLoop = null;

		function onAnimationFrame( time, frame ) {

			if ( isAnimating === false ) { return; }

			animationLoop( time, frame );

			context.requestAnimationFrame( onAnimationFrame );

		}

		return {

			start: function () {

				if ( isAnimating === true ) { return; }
				if ( animationLoop === null ) { return; }

				context.requestAnimationFrame( onAnimationFrame );

				isAnimating = true;

			},

			stop: function () {

				isAnimating = false;

			},

			setAnimationLoop: function ( callback ) {

				animationLoop = callback;

			},

			setContext: function ( value ) {

				context = value;

			}

		};

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLAttributes( gl, capabilities ) {

		var isWebGL2 = capabilities.isWebGL2;

		var buffers = new WeakMap();

		function createBuffer( attribute, bufferType ) {

			var array = attribute.array;
			var usage = attribute.usage;

			var buffer = gl.createBuffer();

			gl.bindBuffer( bufferType, buffer );
			gl.bufferData( bufferType, array, usage );

			attribute.onUploadCallback();

			var type = 5126;

			if ( array instanceof Float32Array ) {

				type = 5126;

			} else if ( array instanceof Float64Array ) {

				console.warn( 'THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.' );

			} else if ( array instanceof Uint16Array ) {

				type = 5123;

			} else if ( array instanceof Int16Array ) {

				type = 5122;

			} else if ( array instanceof Uint32Array ) {

				type = 5125;

			} else if ( array instanceof Int32Array ) {

				type = 5124;

			} else if ( array instanceof Int8Array ) {

				type = 5120;

			} else if ( array instanceof Uint8Array ) {

				type = 5121;

			}

			return {
				buffer: buffer,
				type: type,
				bytesPerElement: array.BYTES_PER_ELEMENT,
				version: attribute.version
			};

		}

		function updateBuffer( buffer, attribute, bufferType ) {

			var array = attribute.array;
			var updateRange = attribute.updateRange;

			gl.bindBuffer( bufferType, buffer );

			if ( updateRange.count === - 1 ) {

				// Not using update ranges

				gl.bufferSubData( bufferType, 0, array );

			} else {

				if ( isWebGL2 ) {

					gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
						array, updateRange.offset, updateRange.count );

				} else {

					gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
						array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) );

				}

				updateRange.count = - 1; // reset range

			}

		}

		//

		function get( attribute ) {

			if ( attribute.isInterleavedBufferAttribute ) { attribute = attribute.data; }

			return buffers.get( attribute );

		}

		function remove( attribute ) {

			if ( attribute.isInterleavedBufferAttribute ) { attribute = attribute.data; }

			var data = buffers.get( attribute );

			if ( data ) {

				gl.deleteBuffer( data.buffer );

				buffers.delete( attribute );

			}

		}

		function update( attribute, bufferType ) {

			if ( attribute.isInterleavedBufferAttribute ) { attribute = attribute.data; }

			var data = buffers.get( attribute );

			if ( data === undefined ) {

				buffers.set( attribute, createBuffer( attribute, bufferType ) );

			} else if ( data.version < attribute.version ) {

				updateBuffer( data.buffer, attribute, bufferType );

				data.version = attribute.version;

			}

		}

		return {

			get: get,
			remove: remove,
			update: update

		};

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// PlaneGeometry

	function PlaneGeometry( width, height, widthSegments, heightSegments ) {

		Geometry.call( this );

		this.type = 'PlaneGeometry';

		this.parameters = {
			width: width,
			height: height,
			widthSegments: widthSegments,
			heightSegments: heightSegments
		};

		this.fromBufferGeometry( new PlaneBufferGeometry( width, height, widthSegments, heightSegments ) );
		this.mergeVertices();

	}

	PlaneGeometry.prototype = Object.create( Geometry.prototype );
	PlaneGeometry.prototype.constructor = PlaneGeometry;

	// PlaneBufferGeometry

	function PlaneBufferGeometry( width, height, widthSegments, heightSegments ) {

		BufferGeometry.call( this );

		this.type = 'PlaneBufferGeometry';

		this.parameters = {
			width: width,
			height: height,
			widthSegments: widthSegments,
			heightSegments: heightSegments
		};

		width = width || 1;
		height = height || 1;

		var width_half = width / 2;
		var height_half = height / 2;

		var gridX = Math.floor( widthSegments ) || 1;
		var gridY = Math.floor( heightSegments ) || 1;

		var gridX1 = gridX + 1;
		var gridY1 = gridY + 1;

		var segment_width = width / gridX;
		var segment_height = height / gridY;

		var ix, iy;

		// buffers

		var indices = [];
		var vertices = [];
		var normals = [];
		var uvs = [];

		// generate vertices, normals and uvs

		for ( iy = 0; iy < gridY1; iy ++ ) {

			var y = iy * segment_height - height_half;

			for ( ix = 0; ix < gridX1; ix ++ ) {

				var x = ix * segment_width - width_half;

				vertices.push( x, - y, 0 );

				normals.push( 0, 0, 1 );

				uvs.push( ix / gridX );
				uvs.push( 1 - ( iy / gridY ) );

			}

		}

		// indices

		for ( iy = 0; iy < gridY; iy ++ ) {

			for ( ix = 0; ix < gridX; ix ++ ) {

				var a = ix + gridX1 * iy;
				var b = ix + gridX1 * ( iy + 1 );
				var c = ( ix + 1 ) + gridX1 * ( iy + 1 );
				var d = ( ix + 1 ) + gridX1 * iy;

				// faces

				indices.push( a, b, d );
				indices.push( b, c, d );

			}

		}

		// build geometry

		this.setIndex( indices );
		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

	}

	PlaneBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry;

	var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";

	var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";

	var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif";

	var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif";

	var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";

	var begin_vertex = "vec3 transformed = vec3( position );";

	var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";

	var bsdfs = "vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) {\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\treturn vec2( -1.04, 1.04 ) * a004 + r.zw;\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n#else\n\tif( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t}\n\treturn 1.0;\n#endif\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nvec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );\n\tvec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;\n\treturn Fr * fresnel + F0;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE  = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS  = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\treturn specularColor * brdf.x + brdf.y;\n}\nvoid BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tvec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\tvec3 FssEss = F * brdf.x + brdf.y;\n\tfloat Ess = brdf.x + brdf.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie(float roughness, float NoH) {\n\tfloat invAlpha  = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max(1.0 - cos2h, 0.0078125);\treturn (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI);\n}\nfloat V_Neubelt(float NoV, float NoL) {\n\treturn saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV)));\n}\nvec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif";

	var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 );\n\t\tfDet *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";

	var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";

	var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";

	var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";

	var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";

	var color_fragment = "#ifdef USE_COLOR\n\tdiffuseColor.rgb *= vColor;\n#endif";

	var color_pars_fragment = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif";

	var color_pars_vertex = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif";

	var color_vertex = "#ifdef USE_COLOR\n\tvColor.xyz = color.xyz;\n#endif";

	var common = "#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI_HALF 1.5707963267949\n#define RECIPROCAL_PI 0.31830988618\n#define RECIPROCAL_PI2 0.15915494\n#define LOG2 1.442695\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat max3( vec3 v ) { return max( max( v.x, v.y ), v.z ); }\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n  return m[ 2 ][ 3 ] == - 1.0;\n}";

	var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n#define cubeUV_maxMipLevel 8.0\n#define cubeUV_minMipLevel 4.0\n#define cubeUV_maxTileSize 256.0\n#define cubeUV_minTileSize 16.0\nfloat getFace(vec3 direction) {\n    vec3 absDirection = abs(direction);\n    float face = -1.0;\n    if (absDirection.x > absDirection.z) {\n      if (absDirection.x > absDirection.y)\n        face = direction.x > 0.0 ? 0.0 : 3.0;\n      else\n        face = direction.y > 0.0 ? 1.0 : 4.0;\n    } else {\n      if (absDirection.z > absDirection.y)\n        face = direction.z > 0.0 ? 2.0 : 5.0;\n      else\n        face = direction.y > 0.0 ? 1.0 : 4.0;\n    }\n    return face;\n}\nvec2 getUV(vec3 direction, float face) {\n    vec2 uv;\n    if (face == 0.0) {\n      uv = vec2(-direction.z, direction.y) / abs(direction.x);\n    } else if (face == 1.0) {\n      uv = vec2(direction.x, -direction.z) / abs(direction.y);\n    } else if (face == 2.0) {\n      uv = direction.xy / abs(direction.z);\n    } else if (face == 3.0) {\n      uv = vec2(direction.z, direction.y) / abs(direction.x);\n    } else if (face == 4.0) {\n      uv = direction.xz / abs(direction.y);\n    } else {\n      uv = vec2(-direction.x, direction.y) / abs(direction.z);\n    }\n    return 0.5 * (uv + 1.0);\n}\nvec3 bilinearCubeUV(sampler2D envMap, vec3 direction, float mipInt) {\n  float face = getFace(direction);\n  float filterInt = max(cubeUV_minMipLevel - mipInt, 0.0);\n  mipInt = max(mipInt, cubeUV_minMipLevel);\n  float faceSize = exp2(mipInt);\n  float texelSize = 1.0 / (3.0 * cubeUV_maxTileSize);\n  vec2 uv = getUV(direction, face) * (faceSize - 1.0);\n  vec2 f = fract(uv);\n  uv += 0.5 - f;\n  if (face > 2.0) {\n    uv.y += faceSize;\n    face -= 3.0;\n  }\n  uv.x += face * faceSize;\n  if(mipInt < cubeUV_maxMipLevel){\n    uv.y += 2.0 * cubeUV_maxTileSize;\n  }\n  uv.y += filterInt * 2.0 * cubeUV_minTileSize;\n  uv.x += 3.0 * max(0.0, cubeUV_maxTileSize - 2.0 * faceSize);\n  uv *= texelSize;\n  vec3 tl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n  uv.x += texelSize;\n  vec3 tr = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n  uv.y += texelSize;\n  vec3 br = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n  uv.x -= texelSize;\n  vec3 bl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n  vec3 tm = mix(tl, tr, f.x);\n  vec3 bm = mix(bl, br, f.x);\n  return mix(tm, bm, f.y);\n}\n#define r0 1.0\n#define v0 0.339\n#define m0 -2.0\n#define r1 0.8\n#define v1 0.276\n#define m1 -1.0\n#define r4 0.4\n#define v4 0.046\n#define m4 2.0\n#define r5 0.305\n#define v5 0.016\n#define m5 3.0\n#define r6 0.21\n#define v6 0.0038\n#define m6 4.0\nfloat roughnessToMip(float roughness) {\n  float mip = 0.0;\n  if (roughness >= r1) {\n    mip = (r0 - roughness) * (m1 - m0) / (r0 - r1) + m0;\n  } else if (roughness >= r4) {\n    mip = (r1 - roughness) * (m4 - m1) / (r1 - r4) + m1;\n  } else if (roughness >= r5) {\n    mip = (r4 - roughness) * (m5 - m4) / (r4 - r5) + m4;\n  } else if (roughness >= r6) {\n    mip = (r5 - roughness) * (m6 - m5) / (r5 - r6) + m5;\n  } else {\n    mip = -2.0 * log2(1.16 * roughness);  }\n  return mip;\n}\nvec4 textureCubeUV(sampler2D envMap, vec3 sampleDir, float roughness) {\n  float mip = clamp(roughnessToMip(roughness), m0, cubeUV_maxMipLevel);\n  float mipF = fract(mip);\n  float mipInt = floor(mip);\n  vec3 color0 = bilinearCubeUV(envMap, sampleDir, mipInt);\n  if (mipF == 0.0) {\n    return vec4(color0, 1.0);\n  } else {\n    vec3 color1 = bilinearCubeUV(envMap, sampleDir, mipInt + 1.0);\n    return vec4(mix(color0, color1, mipF), 1.0);\n  }\n}\n#endif";

	var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";

	var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";

	var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";

	var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";

	var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";

	var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";

	var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value )  {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}";

	var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\t\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t}  else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\tvec2 sampleUV;\n\t\treflectVec = normalize( reflectVec );\n\t\tsampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\n\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\treflectVec = normalize( reflectVec );\n\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );\n\t\tvec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifndef ENVMAP_TYPE_CUBE_UV\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";

	var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";

	var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";

	var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";

	var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) { \n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";

	var fog_vertex = "#ifdef USE_FOG\n\tfogDepth = -mvPosition.z;\n#endif";

	var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float fogDepth;\n#endif";

	var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * fogDepth * fogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";

	var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";

	var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";

	var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\treflectedLight.indirectDiffuse += PI * lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n#endif";

	var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";

	var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";

	var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight  ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif";

	var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float roughness, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat sigma = PI * roughness * roughness / ( 1.0 + roughness );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + log2( sigma );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t  vec3 reflectVec = reflect( -viewDir, normal );\n\t\t  reflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t#else\n\t\t  vec3 reflectVec = refract( -viewDir, normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( roughness, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\t\tvec2 sampleUV;\n\t\t\tsampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\t\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0,0.0,1.0 ) );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif";

	var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";

	var lights_toon_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct ToonMaterial {\n\tvec3\tdiffuseColor;\n\tvec3\tspecularColor;\n\tfloat\tspecularShininess;\n\tfloat\tspecularStrength;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";

	var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";

	var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3\tdiffuseColor;\n\tvec3\tspecularColor;\n\tfloat\tspecularShininess;\n\tfloat\tspecularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";

	var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.specularRoughness = max( roughnessFactor, 0.0525 );material.specularRoughness += geometryRoughness;\nmaterial.specularRoughness = min( material.specularRoughness, 1.0 );\n#ifdef REFLECTIVITY\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#endif\n#ifdef CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheen;\n#endif";

	var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3\tdiffuseColor;\n\tfloat\tspecularRoughness;\n\tvec3\tspecularColor;\n#ifdef CLEARCOAT\n\tfloat clearcoat;\n\tfloat clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tvec3 sheenColor;\n#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearcoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3(    0, 1,    0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNL = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = ccDotNL * directLight.color;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tccIrradiance *= PI;\n\t\t#endif\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t\treflectedLight.directSpecular += ccIrradiance * material.clearcoat * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_Sheen(\n\t\t\tmaterial.specularRoughness,\n\t\t\tdirectLight.direction,\n\t\t\tgeometry,\n\t\t\tmaterial.sheenColor\n\t\t);\n\t#else\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularRoughness);\n\t#endif\n\treflectedLight.directDiffuse += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNV = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular += clearcoatRadiance * material.clearcoat * BRDF_Specular_GGX_Environment( geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t\tfloat ccDotNL = ccDotNV;\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\tfloat clearcoatInv = 1.0 - clearcoatDHR;\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tBRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += clearcoatInv * radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";

	var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";

	var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.normal, material.specularRoughness, maxMipLevel );\n\t#ifdef CLEARCOAT\n\t\tclearcoatRadiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness, maxMipLevel );\n\t#endif\n#endif";

	var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";

	var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";

	var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";

	var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";

	var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";

	var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";

	var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";

	var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";

	var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";

	var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";

	var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";

	var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif";

	var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif";

	var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif";

	var normal_fragment_begin = "#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t\tbitangent = bitangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";

	var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( -vViewPosition, normal, mapN );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif";

	var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tfloat scale = sign( st1.t * st0.s - st0.t * st1.s );\n\t\tvec3 S = normalize( ( q0 * st1.t - q1 * st0.t ) * scale );\n\t\tvec3 T = normalize( ( - q0 * st1.s + q1 * st0.s ) * scale );\n\t\tvec3 N = normalize( surf_norm );\n\t\tmat3 tsn = mat3( S, T, N );\n\t\tmapN.xy *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\treturn normalize( tsn * mapN );\n\t}\n#endif";

	var clearcoat_normal_fragment_begin = "#ifdef CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";

	var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN );\n\t#endif\n#endif";

	var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";

	var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256.,  256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";

	var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";

	var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";

	var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";

	var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";

	var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";

	var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";

	var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t  texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t  f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t  texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t  f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";

	var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";

	var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";

	var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";

	var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";

	var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";

	var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";

	var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix  = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";

	var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";

	var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";

	var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";

	var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nuniform float toneMappingWhitePoint;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\nvec3 Uncharted2ToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( ( color * ( 2.51 * color + 0.03 ) ) / ( color * ( 2.43 * color + 0.59 ) + 0.14 ) );\n}";

	var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";

	var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";

	var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";

	var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";

	var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";

	var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";

	var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";

	var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";

	var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";

	var cube_frag = "#include <envmap_common_pars_fragment>\nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include <cube_uv_reflection_fragment>\nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include <envmap_fragment>\n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";

	var cube_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\tgl_Position.z = gl_Position.w;\n}";

	var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";

	var depth_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}";

	var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";

	var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}";

	var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV;\n\tsampleUV.y = asin( clamp( direction.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\tsampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";

	var equirect_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}";

	var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";

	var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";

	var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";

	var meshbasic_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_ENVMAP\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}";

	var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";

	var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";

	var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";

	var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <color_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#ifndef FLAT_SHADED\n\t\tvNormal = normalize( transformedNormal );\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n\tvViewPosition = - mvPosition.xyz;\n}";

	var meshtoon_frag = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_toon_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_toon_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";

	var meshtoon_vert = "#define TOON\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";

	var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";

	var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";

	var meshphysical_frag = "#define STANDARD\n#ifdef PHYSICAL\n\t#define REFLECTIVITY\n\t#define CLEARCOAT\n\t#define TRANSPARENCY\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef TRANSPARENCY\n\tuniform float transparency;\n#endif\n#ifdef REFLECTIVITY\n\tuniform float reflectivity;\n#endif\n#ifdef CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheen;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <lights_physical_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#ifdef TRANSPARENCY\n\t\tdiffuseColor.a *= saturate( 1. - transparency + linearToRelativeLuminance( reflectedLight.directSpecular + reflectedLight.indirectSpecular ) );\n\t#endif\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";

	var meshphysical_vert = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";

	var normal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\t#include <logdepthbuf_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}";

	var normal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}";

	var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";

	var points_vert = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <fog_vertex>\n}";

	var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";

	var shadow_vert = "#include <fog_pars_vertex>\n#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";

	var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";

	var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include <common>\n#include <uv_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";

	var ShaderChunk = {
		alphamap_fragment: alphamap_fragment,
		alphamap_pars_fragment: alphamap_pars_fragment,
		alphatest_fragment: alphatest_fragment,
		aomap_fragment: aomap_fragment,
		aomap_pars_fragment: aomap_pars_fragment,
		begin_vertex: begin_vertex,
		beginnormal_vertex: beginnormal_vertex,
		bsdfs: bsdfs,
		bumpmap_pars_fragment: bumpmap_pars_fragment,
		clipping_planes_fragment: clipping_planes_fragment,
		clipping_planes_pars_fragment: clipping_planes_pars_fragment,
		clipping_planes_pars_vertex: clipping_planes_pars_vertex,
		clipping_planes_vertex: clipping_planes_vertex,
		color_fragment: color_fragment,
		color_pars_fragment: color_pars_fragment,
		color_pars_vertex: color_pars_vertex,
		color_vertex: color_vertex,
		common: common,
		cube_uv_reflection_fragment: cube_uv_reflection_fragment,
		defaultnormal_vertex: defaultnormal_vertex,
		displacementmap_pars_vertex: displacementmap_pars_vertex,
		displacementmap_vertex: displacementmap_vertex,
		emissivemap_fragment: emissivemap_fragment,
		emissivemap_pars_fragment: emissivemap_pars_fragment,
		encodings_fragment: encodings_fragment,
		encodings_pars_fragment: encodings_pars_fragment,
		envmap_fragment: envmap_fragment,
		envmap_common_pars_fragment: envmap_common_pars_fragment,
		envmap_pars_fragment: envmap_pars_fragment,
		envmap_pars_vertex: envmap_pars_vertex,
		envmap_physical_pars_fragment: envmap_physical_pars_fragment,
		envmap_vertex: envmap_vertex,
		fog_vertex: fog_vertex,
		fog_pars_vertex: fog_pars_vertex,
		fog_fragment: fog_fragment,
		fog_pars_fragment: fog_pars_fragment,
		gradientmap_pars_fragment: gradientmap_pars_fragment,
		lightmap_fragment: lightmap_fragment,
		lightmap_pars_fragment: lightmap_pars_fragment,
		lights_lambert_vertex: lights_lambert_vertex,
		lights_pars_begin: lights_pars_begin,
		lights_toon_fragment: lights_toon_fragment,
		lights_toon_pars_fragment: lights_toon_pars_fragment,
		lights_phong_fragment: lights_phong_fragment,
		lights_phong_pars_fragment: lights_phong_pars_fragment,
		lights_physical_fragment: lights_physical_fragment,
		lights_physical_pars_fragment: lights_physical_pars_fragment,
		lights_fragment_begin: lights_fragment_begin,
		lights_fragment_maps: lights_fragment_maps,
		lights_fragment_end: lights_fragment_end,
		logdepthbuf_fragment: logdepthbuf_fragment,
		logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
		logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
		logdepthbuf_vertex: logdepthbuf_vertex,
		map_fragment: map_fragment,
		map_pars_fragment: map_pars_fragment,
		map_particle_fragment: map_particle_fragment,
		map_particle_pars_fragment: map_particle_pars_fragment,
		metalnessmap_fragment: metalnessmap_fragment,
		metalnessmap_pars_fragment: metalnessmap_pars_fragment,
		morphnormal_vertex: morphnormal_vertex,
		morphtarget_pars_vertex: morphtarget_pars_vertex,
		morphtarget_vertex: morphtarget_vertex,
		normal_fragment_begin: normal_fragment_begin,
		normal_fragment_maps: normal_fragment_maps,
		normalmap_pars_fragment: normalmap_pars_fragment,
		clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin,
		clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps,
		clearcoat_pars_fragment: clearcoat_pars_fragment,
		packing: packing,
		premultiplied_alpha_fragment: premultiplied_alpha_fragment,
		project_vertex: project_vertex,
		dithering_fragment: dithering_fragment,
		dithering_pars_fragment: dithering_pars_fragment,
		roughnessmap_fragment: roughnessmap_fragment,
		roughnessmap_pars_fragment: roughnessmap_pars_fragment,
		shadowmap_pars_fragment: shadowmap_pars_fragment,
		shadowmap_pars_vertex: shadowmap_pars_vertex,
		shadowmap_vertex: shadowmap_vertex,
		shadowmask_pars_fragment: shadowmask_pars_fragment,
		skinbase_vertex: skinbase_vertex,
		skinning_pars_vertex: skinning_pars_vertex,
		skinning_vertex: skinning_vertex,
		skinnormal_vertex: skinnormal_vertex,
		specularmap_fragment: specularmap_fragment,
		specularmap_pars_fragment: specularmap_pars_fragment,
		tonemapping_fragment: tonemapping_fragment,
		tonemapping_pars_fragment: tonemapping_pars_fragment,
		uv_pars_fragment: uv_pars_fragment,
		uv_pars_vertex: uv_pars_vertex,
		uv_vertex: uv_vertex,
		uv2_pars_fragment: uv2_pars_fragment,
		uv2_pars_vertex: uv2_pars_vertex,
		uv2_vertex: uv2_vertex,
		worldpos_vertex: worldpos_vertex,

		background_frag: background_frag,
		background_vert: background_vert,
		cube_frag: cube_frag,
		cube_vert: cube_vert,
		depth_frag: depth_frag,
		depth_vert: depth_vert,
		distanceRGBA_frag: distanceRGBA_frag,
		distanceRGBA_vert: distanceRGBA_vert,
		equirect_frag: equirect_frag,
		equirect_vert: equirect_vert,
		linedashed_frag: linedashed_frag,
		linedashed_vert: linedashed_vert,
		meshbasic_frag: meshbasic_frag,
		meshbasic_vert: meshbasic_vert,
		meshlambert_frag: meshlambert_frag,
		meshlambert_vert: meshlambert_vert,
		meshmatcap_frag: meshmatcap_frag,
		meshmatcap_vert: meshmatcap_vert,
		meshtoon_frag: meshtoon_frag,
		meshtoon_vert: meshtoon_vert,
		meshphong_frag: meshphong_frag,
		meshphong_vert: meshphong_vert,
		meshphysical_frag: meshphysical_frag,
		meshphysical_vert: meshphysical_vert,
		normal_frag: normal_frag,
		normal_vert: normal_vert,
		points_frag: points_frag,
		points_vert: points_vert,
		shadow_frag: shadow_frag,
		shadow_vert: shadow_vert,
		sprite_frag: sprite_frag,
		sprite_vert: sprite_vert
	};

	/**
	 * @author alteredq / http://alteredqualia.com/
	 * @author mrdoob / http://mrdoob.com/
	 * @author mikael emtinger / http://gomo.se/
	 */

	var ShaderLib = {

		basic: {

			uniforms: mergeUniforms( [
				UniformsLib.common,
				UniformsLib.specularmap,
				UniformsLib.envmap,
				UniformsLib.aomap,
				UniformsLib.lightmap,
				UniformsLib.fog
			] ),

			vertexShader: ShaderChunk.meshbasic_vert,
			fragmentShader: ShaderChunk.meshbasic_frag

		},

		lambert: {

			uniforms: mergeUniforms( [
				UniformsLib.common,
				UniformsLib.specularmap,
				UniformsLib.envmap,
				UniformsLib.aomap,
				UniformsLib.lightmap,
				UniformsLib.emissivemap,
				UniformsLib.fog,
				UniformsLib.lights,
				{
					emissive: { value: new Color( 0x000000 ) }
				}
			] ),

			vertexShader: ShaderChunk.meshlambert_vert,
			fragmentShader: ShaderChunk.meshlambert_frag

		},

		phong: {

			uniforms: mergeUniforms( [
				UniformsLib.common,
				UniformsLib.specularmap,
				UniformsLib.envmap,
				UniformsLib.aomap,
				UniformsLib.lightmap,
				UniformsLib.emissivemap,
				UniformsLib.bumpmap,
				UniformsLib.normalmap,
				UniformsLib.displacementmap,
				UniformsLib.fog,
				UniformsLib.lights,
				{
					emissive: { value: new Color( 0x000000 ) },
					specular: { value: new Color( 0x111111 ) },
					shininess: { value: 30 }
				}
			] ),

			vertexShader: ShaderChunk.meshphong_vert,
			fragmentShader: ShaderChunk.meshphong_frag

		},

		standard: {

			uniforms: mergeUniforms( [
				UniformsLib.common,
				UniformsLib.envmap,
				UniformsLib.aomap,
				UniformsLib.lightmap,
				UniformsLib.emissivemap,
				UniformsLib.bumpmap,
				UniformsLib.normalmap,
				UniformsLib.displacementmap,
				UniformsLib.roughnessmap,
				UniformsLib.metalnessmap,
				UniformsLib.fog,
				UniformsLib.lights,
				{
					emissive: { value: new Color( 0x000000 ) },
					roughness: { value: 1.0 },
					metalness: { value: 0.0 },
					envMapIntensity: { value: 1 } // temporary
				}
			] ),

			vertexShader: ShaderChunk.meshphysical_vert,
			fragmentShader: ShaderChunk.meshphysical_frag

		},

		toon: {

			uniforms: mergeUniforms( [
				UniformsLib.common,
				UniformsLib.specularmap,
				UniformsLib.aomap,
				UniformsLib.lightmap,
				UniformsLib.emissivemap,
				UniformsLib.bumpmap,
				UniformsLib.normalmap,
				UniformsLib.displacementmap,
				UniformsLib.gradientmap,
				UniformsLib.fog,
				UniformsLib.lights,
				{
					emissive: { value: new Color( 0x000000 ) },
					specular: { value: new Color( 0x111111 ) },
					shininess: { value: 30 }
				}
			] ),

			vertexShader: ShaderChunk.meshtoon_vert,
			fragmentShader: ShaderChunk.meshtoon_frag

		},

		matcap: {

			uniforms: mergeUniforms( [
				UniformsLib.common,
				UniformsLib.bumpmap,
				UniformsLib.normalmap,
				UniformsLib.displacementmap,
				UniformsLib.fog,
				{
					matcap: { value: null }
				}
			] ),

			vertexShader: ShaderChunk.meshmatcap_vert,
			fragmentShader: ShaderChunk.meshmatcap_frag

		},

		points: {

			uniforms: mergeUniforms( [
				UniformsLib.points,
				UniformsLib.fog
			] ),

			vertexShader: ShaderChunk.points_vert,
			fragmentShader: ShaderChunk.points_frag

		},

		dashed: {

			uniforms: mergeUniforms( [
				UniformsLib.common,
				UniformsLib.fog,
				{
					scale: { value: 1 },
					dashSize: { value: 1 },
					totalSize: { value: 2 }
				}
			] ),

			vertexShader: ShaderChunk.linedashed_vert,
			fragmentShader: ShaderChunk.linedashed_frag

		},

		depth: {

			uniforms: mergeUniforms( [
				UniformsLib.common,
				UniformsLib.displacementmap
			] ),

			vertexShader: ShaderChunk.depth_vert,
			fragmentShader: ShaderChunk.depth_frag

		},

		normal: {

			uniforms: mergeUniforms( [
				UniformsLib.common,
				UniformsLib.bumpmap,
				UniformsLib.normalmap,
				UniformsLib.displacementmap,
				{
					opacity: { value: 1.0 }
				}
			] ),

			vertexShader: ShaderChunk.normal_vert,
			fragmentShader: ShaderChunk.normal_frag

		},

		sprite: {

			uniforms: mergeUniforms( [
				UniformsLib.sprite,
				UniformsLib.fog
			] ),

			vertexShader: ShaderChunk.sprite_vert,
			fragmentShader: ShaderChunk.sprite_frag

		},

		background: {

			uniforms: {
				uvTransform: { value: new Matrix3() },
				t2D: { value: null },
			},

			vertexShader: ShaderChunk.background_vert,
			fragmentShader: ShaderChunk.background_frag

		},
		/* -------------------------------------------------------------------------
		//	Cube map shader
		 ------------------------------------------------------------------------- */

		cube: {

			uniforms: mergeUniforms( [
				UniformsLib.envmap,
				{
					opacity: { value: 1.0 }
				}
			] ),

			vertexShader: ShaderChunk.cube_vert,
			fragmentShader: ShaderChunk.cube_frag

		},

		equirect: {

			uniforms: {
				tEquirect: { value: null },
			},

			vertexShader: ShaderChunk.equirect_vert,
			fragmentShader: ShaderChunk.equirect_frag

		},

		distanceRGBA: {

			uniforms: mergeUniforms( [
				UniformsLib.common,
				UniformsLib.displacementmap,
				{
					referencePosition: { value: new Vector3() },
					nearDistance: { value: 1 },
					farDistance: { value: 1000 }
				}
			] ),

			vertexShader: ShaderChunk.distanceRGBA_vert,
			fragmentShader: ShaderChunk.distanceRGBA_frag

		},

		shadow: {

			uniforms: mergeUniforms( [
				UniformsLib.lights,
				UniformsLib.fog,
				{
					color: { value: new Color( 0x00000 ) },
					opacity: { value: 1.0 }
				} ] ),

			vertexShader: ShaderChunk.shadow_vert,
			fragmentShader: ShaderChunk.shadow_frag

		}

	};

	ShaderLib.physical = {

		uniforms: mergeUniforms( [
			ShaderLib.standard.uniforms,
			{
				clearcoat: { value: 0 },
				clearcoatMap: { value: null },
				clearcoatRoughness: { value: 0 },
				clearcoatRoughnessMap: { value: null },
				clearcoatNormalScale: { value: new Vector2( 1, 1 ) },
				clearcoatNormalMap: { value: null },
				sheen: { value: new Color( 0x000000 ) },
				transparency: { value: 0 },
			}
		] ),

		vertexShader: ShaderChunk.meshphysical_vert,
		fragmentShader: ShaderChunk.meshphysical_frag

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLBackground( renderer, state, objects, premultipliedAlpha ) {

		var clearColor = new Color( 0x000000 );
		var clearAlpha = 0;

		var planeMesh;
		var boxMesh;

		var currentBackground = null;
		var currentBackgroundVersion = 0;
		var currentTonemapping = null;

		function render( renderList, scene, camera, forceClear ) {

			var background = scene.background;

			// Ignore background in AR
			// TODO: Reconsider this.

			var xr = renderer.xr;
			var session = xr.getSession && xr.getSession();

			if ( session && session.environmentBlendMode === 'additive' ) {

				background = null;

			}

			if ( background === null ) {

				setClear( clearColor, clearAlpha );

			} else if ( background && background.isColor ) {

				setClear( background, 1 );
				forceClear = true;

			}

			if ( renderer.autoClear || forceClear ) {

				renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil );

			}

			if ( background && ( background.isCubeTexture || background.isWebGLCubeRenderTarget || background.mapping === CubeUVReflectionMapping ) ) {

				if ( boxMesh === undefined ) {

					boxMesh = new Mesh(
						new BoxBufferGeometry( 1, 1, 1 ),
						new ShaderMaterial( {
							type: 'BackgroundCubeMaterial',
							uniforms: cloneUniforms( ShaderLib.cube.uniforms ),
							vertexShader: ShaderLib.cube.vertexShader,
							fragmentShader: ShaderLib.cube.fragmentShader,
							side: BackSide,
							depthTest: false,
							depthWrite: false,
							fog: false
						} )
					);

					boxMesh.geometry.deleteAttribute( 'normal' );
					boxMesh.geometry.deleteAttribute( 'uv' );

					boxMesh.onBeforeRender = function ( renderer, scene, camera ) {

						this.matrixWorld.copyPosition( camera.matrixWorld );

					};

					// enable code injection for non-built-in material
					Object.defineProperty( boxMesh.material, 'envMap', {

						get: function () {

							return this.uniforms.envMap.value;

						}

					} );

					objects.update( boxMesh );

				}

				var texture = background.isWebGLCubeRenderTarget ? background.texture : background;

				boxMesh.material.uniforms.envMap.value = texture;
				boxMesh.material.uniforms.flipEnvMap.value = texture.isCubeTexture ? - 1 : 1;

				if ( currentBackground !== background ||
					currentBackgroundVersion !== texture.version ||
					currentTonemapping !== renderer.toneMapping ) {

					boxMesh.material.needsUpdate = true;

					currentBackground = background;
					currentBackgroundVersion = texture.version;
					currentTonemapping = renderer.toneMapping;

				}

				// push to the pre-sorted opaque render list
				renderList.unshift( boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null );

			} else if ( background && background.isTexture ) {

				if ( planeMesh === undefined ) {

					planeMesh = new Mesh(
						new PlaneBufferGeometry( 2, 2 ),
						new ShaderMaterial( {
							type: 'BackgroundMaterial',
							uniforms: cloneUniforms( ShaderLib.background.uniforms ),
							vertexShader: ShaderLib.background.vertexShader,
							fragmentShader: ShaderLib.background.fragmentShader,
							side: FrontSide,
							depthTest: false,
							depthWrite: false,
							fog: false
						} )
					);

					planeMesh.geometry.deleteAttribute( 'normal' );

					// enable code injection for non-built-in material
					Object.defineProperty( planeMesh.material, 'map', {

						get: function () {

							return this.uniforms.t2D.value;

						}

					} );

					objects.update( planeMesh );

				}

				planeMesh.material.uniforms.t2D.value = background;

				if ( background.matrixAutoUpdate === true ) {

					background.updateMatrix();

				}

				planeMesh.material.uniforms.uvTransform.value.copy( background.matrix );

				if ( currentBackground !== background ||
					currentBackgroundVersion !== background.version ||
					currentTonemapping !== renderer.toneMapping ) {

					planeMesh.material.needsUpdate = true;

					currentBackground = background;
					currentBackgroundVersion = background.version;
					currentTonemapping = renderer.toneMapping;

				}


				// push to the pre-sorted opaque render list
				renderList.unshift( planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null );

			}

		}

		function setClear( color, alpha ) {

			state.buffers.color.setClear( color.r, color.g, color.b, alpha, premultipliedAlpha );

		}

		return {

			getClearColor: function () {

				return clearColor;

			},
			setClearColor: function ( color, alpha ) {

				clearColor.set( color );
				clearAlpha = alpha !== undefined ? alpha : 1;
				setClear( clearColor, clearAlpha );

			},
			getClearAlpha: function () {

				return clearAlpha;

			},
			setClearAlpha: function ( alpha ) {

				clearAlpha = alpha;
				setClear( clearColor, clearAlpha );

			},
			render: render

		};

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLBufferRenderer( gl, extensions, info, capabilities ) {

		var isWebGL2 = capabilities.isWebGL2;

		var mode;

		function setMode( value ) {

			mode = value;

		}

		function render( start, count ) {

			gl.drawArrays( mode, start, count );

			info.update( count, mode );

		}

		function renderInstances( geometry, start, count, primcount ) {

			if ( primcount === 0 ) { return; }

			var extension, methodName;

			if ( isWebGL2 ) {

				extension = gl;
				methodName = 'drawArraysInstanced';

			} else {

				extension = extensions.get( 'ANGLE_instanced_arrays' );
				methodName = 'drawArraysInstancedANGLE';

				if ( extension === null ) {

					console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
					return;

				}

			}

			extension[ methodName ]( mode, start, count, primcount );

			info.update( count, mode, primcount );

		}

		//

		this.setMode = setMode;
		this.render = render;
		this.renderInstances = renderInstances;

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLCapabilities( gl, extensions, parameters ) {

		var maxAnisotropy;

		function getMaxAnisotropy() {

			if ( maxAnisotropy !== undefined ) { return maxAnisotropy; }

			var extension = extensions.get( 'EXT_texture_filter_anisotropic' );

			if ( extension !== null ) {

				maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );

			} else {

				maxAnisotropy = 0;

			}

			return maxAnisotropy;

		}

		function getMaxPrecision( precision ) {

			if ( precision === 'highp' ) {

				if ( gl.getShaderPrecisionFormat( 35633, 36338 ).precision > 0 &&
					gl.getShaderPrecisionFormat( 35632, 36338 ).precision > 0 ) {

					return 'highp';

				}

				precision = 'mediump';

			}

			if ( precision === 'mediump' ) {

				if ( gl.getShaderPrecisionFormat( 35633, 36337 ).precision > 0 &&
					gl.getShaderPrecisionFormat( 35632, 36337 ).precision > 0 ) {

					return 'mediump';

				}

			}

			return 'lowp';

		}

		/* eslint-disable no-undef */
		var isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext ) ||
			( typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext );
		/* eslint-enable no-undef */

		var precision = parameters.precision !== undefined ? parameters.precision : 'highp';
		var maxPrecision = getMaxPrecision( precision );

		if ( maxPrecision !== precision ) {

			console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' );
			precision = maxPrecision;

		}

		var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;

		var maxTextures = gl.getParameter( 34930 );
		var maxVertexTextures = gl.getParameter( 35660 );
		var maxTextureSize = gl.getParameter( 3379 );
		var maxCubemapSize = gl.getParameter( 34076 );

		var maxAttributes = gl.getParameter( 34921 );
		var maxVertexUniforms = gl.getParameter( 36347 );
		var maxVaryings = gl.getParameter( 36348 );
		var maxFragmentUniforms = gl.getParameter( 36349 );

		var vertexTextures = maxVertexTextures > 0;
		var floatFragmentTextures = isWebGL2 || !! extensions.get( 'OES_texture_float' );
		var floatVertexTextures = vertexTextures && floatFragmentTextures;

		var maxSamples = isWebGL2 ? gl.getParameter( 36183 ) : 0;

		return {

			isWebGL2: isWebGL2,

			getMaxAnisotropy: getMaxAnisotropy,
			getMaxPrecision: getMaxPrecision,

			precision: precision,
			logarithmicDepthBuffer: logarithmicDepthBuffer,

			maxTextures: maxTextures,
			maxVertexTextures: maxVertexTextures,
			maxTextureSize: maxTextureSize,
			maxCubemapSize: maxCubemapSize,

			maxAttributes: maxAttributes,
			maxVertexUniforms: maxVertexUniforms,
			maxVaryings: maxVaryings,
			maxFragmentUniforms: maxFragmentUniforms,

			vertexTextures: vertexTextures,
			floatFragmentTextures: floatFragmentTextures,
			floatVertexTextures: floatVertexTextures,

			maxSamples: maxSamples

		};

	}

	/**
	 * @author tschw
	 */

	function WebGLClipping() {

		var scope = this,

			globalState = null,
			numGlobalPlanes = 0,
			localClippingEnabled = false,
			renderingShadows = false,

			plane = new Plane(),
			viewNormalMatrix = new Matrix3(),

			uniform = { value: null, needsUpdate: false };

		this.uniform = uniform;
		this.numPlanes = 0;
		this.numIntersection = 0;

		this.init = function ( planes, enableLocalClipping, camera ) {

			var enabled =
				planes.length !== 0 ||
				enableLocalClipping ||
				// enable state of previous frame - the clipping code has to
				// run another frame in order to reset the state:
				numGlobalPlanes !== 0 ||
				localClippingEnabled;

			localClippingEnabled = enableLocalClipping;

			globalState = projectPlanes( planes, camera, 0 );
			numGlobalPlanes = planes.length;

			return enabled;

		};

		this.beginShadows = function () {

			renderingShadows = true;
			projectPlanes( null );

		};

		this.endShadows = function () {

			renderingShadows = false;
			resetGlobalState();

		};

		this.setState = function ( planes, clipIntersection, clipShadows, camera, cache, fromCache ) {

			if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) {

				// there's no local clipping

				if ( renderingShadows ) {

					// there's no global clipping

					projectPlanes( null );

				} else {

					resetGlobalState();

				}

			} else {

				var nGlobal = renderingShadows ? 0 : numGlobalPlanes,
					lGlobal = nGlobal * 4,

					dstArray = cache.clippingState || null;

				uniform.value = dstArray; // ensure unique state

				dstArray = projectPlanes( planes, camera, lGlobal, fromCache );

				for ( var i = 0; i !== lGlobal; ++ i ) {

					dstArray[ i ] = globalState[ i ];

				}

				cache.clippingState = dstArray;
				this.numIntersection = clipIntersection ? this.numPlanes : 0;
				this.numPlanes += nGlobal;

			}


		};

		function resetGlobalState() {

			if ( uniform.value !== globalState ) {

				uniform.value = globalState;
				uniform.needsUpdate = numGlobalPlanes > 0;

			}

			scope.numPlanes = numGlobalPlanes;
			scope.numIntersection = 0;

		}

		function projectPlanes( planes, camera, dstOffset, skipTransform ) {

			var nPlanes = planes !== null ? planes.length : 0,
				dstArray = null;

			if ( nPlanes !== 0 ) {

				dstArray = uniform.value;

				if ( skipTransform !== true || dstArray === null ) {

					var flatSize = dstOffset + nPlanes * 4,
						viewMatrix = camera.matrixWorldInverse;

					viewNormalMatrix.getNormalMatrix( viewMatrix );

					if ( dstArray === null || dstArray.length < flatSize ) {

						dstArray = new Float32Array( flatSize );

					}

					for ( var i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) {

						plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix );

						plane.normal.toArray( dstArray, i4 );
						dstArray[ i4 + 3 ] = plane.constant;

					}

				}

				uniform.value = dstArray;
				uniform.needsUpdate = true;

			}

			scope.numPlanes = nPlanes;
			scope.numIntersection = 0;

			return dstArray;

		}

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLExtensions( gl ) {

		var extensions = {};

		return {

			get: function ( name ) {

				if ( extensions[ name ] !== undefined ) {

					return extensions[ name ];

				}

				var extension;

				switch ( name ) {

					case 'WEBGL_depth_texture':
						extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' );
						break;

					case 'EXT_texture_filter_anisotropic':
						extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' );
						break;

					case 'WEBGL_compressed_texture_s3tc':
						extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' );
						break;

					case 'WEBGL_compressed_texture_pvrtc':
						extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' );
						break;

					default:
						extension = gl.getExtension( name );

				}

				if ( extension === null ) {

					console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' );

				}

				extensions[ name ] = extension;

				return extension;

			}

		};

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLGeometries( gl, attributes, info ) {

		var geometries = new WeakMap();
		var wireframeAttributes = new WeakMap();

		function onGeometryDispose( event ) {

			var geometry = event.target;
			var buffergeometry = geometries.get( geometry );

			if ( buffergeometry.index !== null ) {

				attributes.remove( buffergeometry.index );

			}

			for ( var name in buffergeometry.attributes ) {

				attributes.remove( buffergeometry.attributes[ name ] );

			}

			geometry.removeEventListener( 'dispose', onGeometryDispose );

			geometries.delete( geometry );

			var attribute = wireframeAttributes.get( buffergeometry );

			if ( attribute ) {

				attributes.remove( attribute );
				wireframeAttributes.delete( buffergeometry );

			}

			//

			info.memory.geometries --;

		}

		function get( object, geometry ) {

			var buffergeometry = geometries.get( geometry );

			if ( buffergeometry ) { return buffergeometry; }

			geometry.addEventListener( 'dispose', onGeometryDispose );

			if ( geometry.isBufferGeometry ) {

				buffergeometry = geometry;

			} else if ( geometry.isGeometry ) {

				if ( geometry._bufferGeometry === undefined ) {

					geometry._bufferGeometry = new BufferGeometry().setFromObject( object );

				}

				buffergeometry = geometry._bufferGeometry;

			}

			geometries.set( geometry, buffergeometry );

			info.memory.geometries ++;

			return buffergeometry;

		}

		function update( geometry ) {

			var index = geometry.index;
			var geometryAttributes = geometry.attributes;

			if ( index !== null ) {

				attributes.update( index, 34963 );

			}

			for ( var name in geometryAttributes ) {

				attributes.update( geometryAttributes[ name ], 34962 );

			}

			// morph targets

			var morphAttributes = geometry.morphAttributes;

			for ( var name in morphAttributes ) {

				var array = morphAttributes[ name ];

				for ( var i = 0, l = array.length; i < l; i ++ ) {

					attributes.update( array[ i ], 34962 );

				}

			}

		}

		function updateWireframeAttribute( geometry ) {

			var indices = [];

			var geometryIndex = geometry.index;
			var geometryPosition = geometry.attributes.position;
			var version = 0;

			if ( geometryIndex !== null ) {

				var array = geometryIndex.array;
				version = geometryIndex.version;

				for ( var i = 0, l = array.length; i < l; i += 3 ) {

					var a = array[ i + 0 ];
					var b = array[ i + 1 ];
					var c = array[ i + 2 ];

					indices.push( a, b, b, c, c, a );

				}

			} else {

				var array = geometryPosition.array;
				version = geometryPosition.version;

				for ( var i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) {

					var a = i + 0;
					var b = i + 1;
					var c = i + 2;

					indices.push( a, b, b, c, c, a );

				}

			}

			var attribute = new ( arrayMax( indices ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 );
			attribute.version = version;

			attributes.update( attribute, 34963 );

			//

			var previousAttribute = wireframeAttributes.get( geometry );

			if ( previousAttribute ) { attributes.remove( previousAttribute ); }

			//

			wireframeAttributes.set( geometry, attribute );

		}

		function getWireframeAttribute( geometry ) {

			var currentAttribute = wireframeAttributes.get( geometry );

			if ( currentAttribute ) {

				var geometryIndex = geometry.index;

				if ( geometryIndex !== null ) {

					// if the attribute is obsolete, create a new one

					if ( currentAttribute.version < geometryIndex.version ) {

						updateWireframeAttribute( geometry );

					}

				}

			} else {

				updateWireframeAttribute( geometry );

			}

			return wireframeAttributes.get( geometry );

		}

		return {

			get: get,
			update: update,

			getWireframeAttribute: getWireframeAttribute

		};

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLIndexedBufferRenderer( gl, extensions, info, capabilities ) {

		var isWebGL2 = capabilities.isWebGL2;

		var mode;

		function setMode( value ) {

			mode = value;

		}

		var type, bytesPerElement;

		function setIndex( value ) {

			type = value.type;
			bytesPerElement = value.bytesPerElement;

		}

		function render( start, count ) {

			gl.drawElements( mode, count, type, start * bytesPerElement );

			info.update( count, mode );

		}

		function renderInstances( geometry, start, count, primcount ) {

			if ( primcount === 0 ) { return; }

			var extension, methodName;

			if ( isWebGL2 ) {

				extension = gl;
				methodName = 'drawElementsInstanced';

			} else {

				extension = extensions.get( 'ANGLE_instanced_arrays' );
				methodName = 'drawElementsInstancedANGLE';

				if ( extension === null ) {

					console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
					return;

				}

			}

			extension[ methodName ]( mode, count, type, start * bytesPerElement, primcount );

			info.update( count, mode, primcount );

		}

		//

		this.setMode = setMode;
		this.setIndex = setIndex;
		this.render = render;
		this.renderInstances = renderInstances;

	}

	/**
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	function WebGLInfo( gl ) {

		var memory = {
			geometries: 0,
			textures: 0
		};

		var render = {
			frame: 0,
			calls: 0,
			triangles: 0,
			points: 0,
			lines: 0
		};

		function update( count, mode, instanceCount ) {

			instanceCount = instanceCount || 1;

			render.calls ++;

			switch ( mode ) {

				case 4:
					render.triangles += instanceCount * ( count / 3 );
					break;

				case 1:
					render.lines += instanceCount * ( count / 2 );
					break;

				case 3:
					render.lines += instanceCount * ( count - 1 );
					break;

				case 2:
					render.lines += instanceCount * count;
					break;

				case 0:
					render.points += instanceCount * count;
					break;

				default:
					console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode );
					break;

			}

		}

		function reset() {

			render.frame ++;
			render.calls = 0;
			render.triangles = 0;
			render.points = 0;
			render.lines = 0;

		}

		return {
			memory: memory,
			render: render,
			programs: null,
			autoReset: true,
			reset: reset,
			update: update
		};

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function absNumericalSort( a, b ) {

		return Math.abs( b[ 1 ] ) - Math.abs( a[ 1 ] );

	}

	function WebGLMorphtargets( gl ) {

		var influencesList = {};
		var morphInfluences = new Float32Array( 8 );

		function update( object, geometry, material, program ) {

			var objectInfluences = object.morphTargetInfluences;

			// When object doesn't have morph target influences defined, we treat it as a 0-length array
			// This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences

			var length = objectInfluences === undefined ? 0 : objectInfluences.length;

			var influences = influencesList[ geometry.id ];

			if ( influences === undefined ) {

				// initialise list

				influences = [];

				for ( var i = 0; i < length; i ++ ) {

					influences[ i ] = [ i, 0 ];

				}

				influencesList[ geometry.id ] = influences;

			}

			var morphTargets = material.morphTargets && geometry.morphAttributes.position;
			var morphNormals = material.morphNormals && geometry.morphAttributes.normal;

			// Remove current morphAttributes

			for ( var i = 0; i < length; i ++ ) {

				var influence = influences[ i ];

				if ( influence[ 1 ] !== 0 ) {

					if ( morphTargets ) { geometry.deleteAttribute( 'morphTarget' + i ); }
					if ( morphNormals ) { geometry.deleteAttribute( 'morphNormal' + i ); }

				}

			}

			// Collect influences

			for ( var i = 0; i < length; i ++ ) {

				var influence = influences[ i ];

				influence[ 0 ] = i;
				influence[ 1 ] = objectInfluences[ i ];

			}

			influences.sort( absNumericalSort );

			// Add morphAttributes

			var morphInfluencesSum = 0;

			for ( var i = 0; i < 8; i ++ ) {

				var influence = influences[ i ];

				if ( influence ) {

					var index = influence[ 0 ];
					var value = influence[ 1 ];

					if ( value ) {

						if ( morphTargets ) { geometry.setAttribute( 'morphTarget' + i, morphTargets[ index ] ); }
						if ( morphNormals ) { geometry.setAttribute( 'morphNormal' + i, morphNormals[ index ] ); }

						morphInfluences[ i ] = value;
						morphInfluencesSum += value;
						continue;

					}

				}

				morphInfluences[ i ] = 0;

			}

			// GLSL shader uses formula baseinfluence * base + sum(target * influence)
			// This allows us to switch between absolute morphs and relative morphs without changing shader code
			// When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence)
			var morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;

			program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence );
			program.getUniforms().setValue( gl, 'morphTargetInfluences', morphInfluences );

		}

		return {

			update: update

		};

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLObjects( gl, geometries, attributes, info ) {

		var updateMap = new WeakMap();

		function update( object ) {

			var frame = info.render.frame;

			var geometry = object.geometry;
			var buffergeometry = geometries.get( object, geometry );

			// Update once per frame

			if ( updateMap.get( buffergeometry ) !== frame ) {

				if ( geometry.isGeometry ) {

					buffergeometry.updateFromObject( object );

				}

				geometries.update( buffergeometry );

				updateMap.set( buffergeometry, frame );

			}

			if ( object.isInstancedMesh ) {

				attributes.update( object.instanceMatrix, 34962 );

			}

			return buffergeometry;

		}

		function dispose() {

			updateMap = new WeakMap();

		}

		return {

			update: update,
			dispose: dispose

		};

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {

		images = images !== undefined ? images : [];
		mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
		format = format !== undefined ? format : RGBFormat;

		Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

		this.flipY = false;

	}

	CubeTexture.prototype = Object.create( Texture.prototype );
	CubeTexture.prototype.constructor = CubeTexture;

	CubeTexture.prototype.isCubeTexture = true;

	Object.defineProperty( CubeTexture.prototype, 'images', {

		get: function () {

			return this.image;

		},

		set: function ( value ) {

			this.image = value;

		}

	} );

	/**
	 * @author Takahiro https://github.com/takahirox
	 */

	function DataTexture2DArray( data, width, height, depth ) {

		Texture.call( this, null );

		this.image = { data: data || null, width: width || 1, height: height || 1, depth: depth || 1 };

		this.magFilter = NearestFilter;
		this.minFilter = NearestFilter;

		this.wrapR = ClampToEdgeWrapping;

		this.generateMipmaps = false;
		this.flipY = false;

		this.needsUpdate = true;

	}

	DataTexture2DArray.prototype = Object.create( Texture.prototype );
	DataTexture2DArray.prototype.constructor = DataTexture2DArray;
	DataTexture2DArray.prototype.isDataTexture2DArray = true;

	/**
	 * @author Artur Trzesiok
	 */

	function DataTexture3D( data, width, height, depth ) {

		// We're going to add .setXXX() methods for setting properties later.
		// Users can still set in DataTexture3D directly.
		//
		//	var texture = new THREE.DataTexture3D( data, width, height, depth );
		// 	texture.anisotropy = 16;
		//
		// See #14839

		Texture.call( this, null );

		this.image = { data: data || null, width: width || 1, height: height || 1, depth: depth || 1 };

		this.magFilter = NearestFilter;
		this.minFilter = NearestFilter;

		this.wrapR = ClampToEdgeWrapping;

		this.generateMipmaps = false;
		this.flipY = false;

		this.needsUpdate = true;


	}

	DataTexture3D.prototype = Object.create( Texture.prototype );
	DataTexture3D.prototype.constructor = DataTexture3D;
	DataTexture3D.prototype.isDataTexture3D = true;

	/**
	 * @author tschw
	 * @author Mugen87 / https://github.com/Mugen87
	 * @author mrdoob / http://mrdoob.com/
	 *
	 * Uniforms of a program.
	 * Those form a tree structure with a special top-level container for the root,
	 * which you get by calling 'new WebGLUniforms( gl, program )'.
	 *
	 *
	 * Properties of inner nodes including the top-level container:
	 *
	 * .seq - array of nested uniforms
	 * .map - nested uniforms by name
	 *
	 *
	 * Methods of all nodes except the top-level container:
	 *
	 * .setValue( gl, value, [textures] )
	 *
	 * 		uploads a uniform value(s)
	 *  	the 'textures' parameter is needed for sampler uniforms
	 *
	 *
	 * Static methods of the top-level container (textures factorizations):
	 *
	 * .upload( gl, seq, values, textures )
	 *
	 * 		sets uniforms in 'seq' to 'values[id].value'
	 *
	 * .seqWithValue( seq, values ) : filteredSeq
	 *
	 * 		filters 'seq' entries with corresponding entry in values
	 *
	 *
	 * Methods of the top-level container (textures factorizations):
	 *
	 * .setValue( gl, name, value, textures )
	 *
	 * 		sets uniform with  name 'name' to 'value'
	 *
	 * .setOptional( gl, obj, prop )
	 *
	 * 		like .set for an optional property of the object
	 *
	 */

	var emptyTexture = new Texture();
	var emptyTexture2dArray = new DataTexture2DArray();
	var emptyTexture3d = new DataTexture3D();
	var emptyCubeTexture = new CubeTexture();

	// --- Utilities ---

	// Array Caches (provide typed arrays for temporary by size)

	var arrayCacheF32 = [];
	var arrayCacheI32 = [];

	// Float32Array caches used for uploading Matrix uniforms

	var mat4array = new Float32Array( 16 );
	var mat3array = new Float32Array( 9 );
	var mat2array = new Float32Array( 4 );

	// Flattening for arrays of vectors and matrices

	function flatten( array, nBlocks, blockSize ) {

		var firstElem = array[ 0 ];

		if ( firstElem <= 0 || firstElem > 0 ) { return array; }
		// unoptimized: ! isNaN( firstElem )
		// see http://jacksondunstan.com/articles/983

		var n = nBlocks * blockSize,
			r = arrayCacheF32[ n ];

		if ( r === undefined ) {

			r = new Float32Array( n );
			arrayCacheF32[ n ] = r;

		}

		if ( nBlocks !== 0 ) {

			firstElem.toArray( r, 0 );

			for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) {

				offset += blockSize;
				array[ i ].toArray( r, offset );

			}

		}

		return r;

	}

	function arraysEqual( a, b ) {

		if ( a.length !== b.length ) { return false; }

		for ( var i = 0, l = a.length; i < l; i ++ ) {

			if ( a[ i ] !== b[ i ] ) { return false; }

		}

		return true;

	}

	function copyArray( a, b ) {

		for ( var i = 0, l = b.length; i < l; i ++ ) {

			a[ i ] = b[ i ];

		}

	}

	// Texture unit allocation

	function allocTexUnits( textures, n ) {

		var r = arrayCacheI32[ n ];

		if ( r === undefined ) {

			r = new Int32Array( n );
			arrayCacheI32[ n ] = r;

		}

		for ( var i = 0; i !== n; ++ i )
			{ r[ i ] = textures.allocateTextureUnit(); }

		return r;

	}

	// --- Setters ---

	// Note: Defining these methods externally, because they come in a bunch
	// and this way their names minify.

	// Single scalar

	function setValueV1f( gl, v ) {

		var cache = this.cache;

		if ( cache[ 0 ] === v ) { return; }

		gl.uniform1f( this.addr, v );

		cache[ 0 ] = v;

	}

	// Single float vector (from flat array or THREE.VectorN)

	function setValueV2f( gl, v ) {

		var cache = this.cache;

		if ( v.x !== undefined ) {

			if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) {

				gl.uniform2f( this.addr, v.x, v.y );

				cache[ 0 ] = v.x;
				cache[ 1 ] = v.y;

			}

		} else {

			if ( arraysEqual( cache, v ) ) { return; }

			gl.uniform2fv( this.addr, v );

			copyArray( cache, v );

		}

	}

	function setValueV3f( gl, v ) {

		var cache = this.cache;

		if ( v.x !== undefined ) {

			if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) {

				gl.uniform3f( this.addr, v.x, v.y, v.z );

				cache[ 0 ] = v.x;
				cache[ 1 ] = v.y;
				cache[ 2 ] = v.z;

			}

		} else if ( v.r !== undefined ) {

			if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) {

				gl.uniform3f( this.addr, v.r, v.g, v.b );

				cache[ 0 ] = v.r;
				cache[ 1 ] = v.g;
				cache[ 2 ] = v.b;

			}

		} else {

			if ( arraysEqual( cache, v ) ) { return; }

			gl.uniform3fv( this.addr, v );

			copyArray( cache, v );

		}

	}

	function setValueV4f( gl, v ) {

		var cache = this.cache;

		if ( v.x !== undefined ) {

			if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) {

				gl.uniform4f( this.addr, v.x, v.y, v.z, v.w );

				cache[ 0 ] = v.x;
				cache[ 1 ] = v.y;
				cache[ 2 ] = v.z;
				cache[ 3 ] = v.w;

			}

		} else {

			if ( arraysEqual( cache, v ) ) { return; }

			gl.uniform4fv( this.addr, v );

			copyArray( cache, v );

		}

	}

	// Single matrix (from flat array or MatrixN)

	function setValueM2( gl, v ) {

		var cache = this.cache;
		var elements = v.elements;

		if ( elements === undefined ) {

			if ( arraysEqual( cache, v ) ) { return; }

			gl.uniformMatrix2fv( this.addr, false, v );

			copyArray( cache, v );

		} else {

			if ( arraysEqual( cache, elements ) ) { return; }

			mat2array.set( elements );

			gl.uniformMatrix2fv( this.addr, false, mat2array );

			copyArray( cache, elements );

		}

	}

	function setValueM3( gl, v ) {

		var cache = this.cache;
		var elements = v.elements;

		if ( elements === undefined ) {

			if ( arraysEqual( cache, v ) ) { return; }

			gl.uniformMatrix3fv( this.addr, false, v );

			copyArray( cache, v );

		} else {

			if ( arraysEqual( cache, elements ) ) { return; }

			mat3array.set( elements );

			gl.uniformMatrix3fv( this.addr, false, mat3array );

			copyArray( cache, elements );

		}

	}

	function setValueM4( gl, v ) {

		var cache = this.cache;
		var elements = v.elements;

		if ( elements === undefined ) {

			if ( arraysEqual( cache, v ) ) { return; }

			gl.uniformMatrix4fv( this.addr, false, v );

			copyArray( cache, v );

		} else {

			if ( arraysEqual( cache, elements ) ) { return; }

			mat4array.set( elements );

			gl.uniformMatrix4fv( this.addr, false, mat4array );

			copyArray( cache, elements );

		}

	}

	// Single texture (2D / Cube)

	function setValueT1( gl, v, textures ) {

		var cache = this.cache;
		var unit = textures.allocateTextureUnit();

		if ( cache[ 0 ] !== unit ) {

			gl.uniform1i( this.addr, unit );
			cache[ 0 ] = unit;

		}

		textures.safeSetTexture2D( v || emptyTexture, unit );

	}

	function setValueT2DArray1( gl, v, textures ) {

		var cache = this.cache;
		var unit = textures.allocateTextureUnit();

		if ( cache[ 0 ] !== unit ) {

			gl.uniform1i( this.addr, unit );
			cache[ 0 ] = unit;

		}

		textures.setTexture2DArray( v || emptyTexture2dArray, unit );

	}

	function setValueT3D1( gl, v, textures ) {

		var cache = this.cache;
		var unit = textures.allocateTextureUnit();

		if ( cache[ 0 ] !== unit ) {

			gl.uniform1i( this.addr, unit );
			cache[ 0 ] = unit;

		}

		textures.setTexture3D( v || emptyTexture3d, unit );

	}

	function setValueT6( gl, v, textures ) {

		var cache = this.cache;
		var unit = textures.allocateTextureUnit();

		if ( cache[ 0 ] !== unit ) {

			gl.uniform1i( this.addr, unit );
			cache[ 0 ] = unit;

		}

		textures.safeSetTextureCube( v || emptyCubeTexture, unit );

	}

	// Integer / Boolean vectors or arrays thereof (always flat arrays)

	function setValueV1i( gl, v ) {

		var cache = this.cache;

		if ( cache[ 0 ] === v ) { return; }

		gl.uniform1i( this.addr, v );

		cache[ 0 ] = v;

	}

	function setValueV2i( gl, v ) {

		var cache = this.cache;

		if ( arraysEqual( cache, v ) ) { return; }

		gl.uniform2iv( this.addr, v );

		copyArray( cache, v );

	}

	function setValueV3i( gl, v ) {

		var cache = this.cache;

		if ( arraysEqual( cache, v ) ) { return; }

		gl.uniform3iv( this.addr, v );

		copyArray( cache, v );

	}

	function setValueV4i( gl, v ) {

		var cache = this.cache;

		if ( arraysEqual( cache, v ) ) { return; }

		gl.uniform4iv( this.addr, v );

		copyArray( cache, v );

	}

	// uint

	function setValueV1ui( gl, v ) {

		var cache = this.cache;

		if ( cache[ 0 ] === v ) { return; }

		gl.uniform1ui( this.addr, v );

		cache[ 0 ] = v;

	}

	// Helper to pick the right setter for the singular case

	function getSingularSetter( type ) {

		switch ( type ) {

			case 0x1406: return setValueV1f; // FLOAT
			case 0x8b50: return setValueV2f; // _VEC2
			case 0x8b51: return setValueV3f; // _VEC3
			case 0x8b52: return setValueV4f; // _VEC4

			case 0x8b5a: return setValueM2; // _MAT2
			case 0x8b5b: return setValueM3; // _MAT3
			case 0x8b5c: return setValueM4; // _MAT4

			case 0x1404: case 0x8b56: return setValueV1i; // INT, BOOL
			case 0x8b53: case 0x8b57: return setValueV2i; // _VEC2
			case 0x8b54: case 0x8b58: return setValueV3i; // _VEC3
			case 0x8b55: case 0x8b59: return setValueV4i; // _VEC4

			case 0x1405: return setValueV1ui; // UINT

			case 0x8b5e: // SAMPLER_2D
			case 0x8d66: // SAMPLER_EXTERNAL_OES
			case 0x8dca: // INT_SAMPLER_2D
			case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
			case 0x8b62: // SAMPLER_2D_SHADOW
				return setValueT1;

			case 0x8b5f: // SAMPLER_3D
			case 0x8dcb: // INT_SAMPLER_3D
			case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D
				return setValueT3D1;

			case 0x8b60: // SAMPLER_CUBE
			case 0x8dcc: // INT_SAMPLER_CUBE
			case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
			case 0x8dc5: // SAMPLER_CUBE_SHADOW
				return setValueT6;

			case 0x8dc1: // SAMPLER_2D_ARRAY
			case 0x8dcf: // INT_SAMPLER_2D_ARRAY
			case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY
			case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW
				return setValueT2DArray1;

		}

	}

	// Array of scalars
	function setValueV1fArray( gl, v ) {

		gl.uniform1fv( this.addr, v );

	}

	// Integer / Boolean vectors or arrays thereof (always flat arrays)
	function setValueV1iArray( gl, v ) {

		gl.uniform1iv( this.addr, v );

	}

	function setValueV2iArray( gl, v ) {

		gl.uniform2iv( this.addr, v );

	}

	function setValueV3iArray( gl, v ) {

		gl.uniform3iv( this.addr, v );

	}

	function setValueV4iArray( gl, v ) {

		gl.uniform4iv( this.addr, v );

	}


	// Array of vectors (flat or from THREE classes)

	function setValueV2fArray( gl, v ) {

		var data = flatten( v, this.size, 2 );

		gl.uniform2fv( this.addr, data );

	}

	function setValueV3fArray( gl, v ) {

		var data = flatten( v, this.size, 3 );

		gl.uniform3fv( this.addr, data );

	}

	function setValueV4fArray( gl, v ) {

		var data = flatten( v, this.size, 4 );

		gl.uniform4fv( this.addr, data );

	}

	// Array of matrices (flat or from THREE clases)

	function setValueM2Array( gl, v ) {

		var data = flatten( v, this.size, 4 );

		gl.uniformMatrix2fv( this.addr, false, data );

	}

	function setValueM3Array( gl, v ) {

		var data = flatten( v, this.size, 9 );

		gl.uniformMatrix3fv( this.addr, false, data );

	}

	function setValueM4Array( gl, v ) {

		var data = flatten( v, this.size, 16 );

		gl.uniformMatrix4fv( this.addr, false, data );

	}

	// Array of textures (2D / Cube)

	function setValueT1Array( gl, v, textures ) {

		var n = v.length;

		var units = allocTexUnits( textures, n );

		gl.uniform1iv( this.addr, units );

		for ( var i = 0; i !== n; ++ i ) {

			textures.safeSetTexture2D( v[ i ] || emptyTexture, units[ i ] );

		}

	}

	function setValueT6Array( gl, v, textures ) {

		var n = v.length;

		var units = allocTexUnits( textures, n );

		gl.uniform1iv( this.addr, units );

		for ( var i = 0; i !== n; ++ i ) {

			textures.safeSetTextureCube( v[ i ] || emptyCubeTexture, units[ i ] );

		}

	}

	// Helper to pick the right setter for a pure (bottom-level) array

	function getPureArraySetter( type ) {

		switch ( type ) {

			case 0x1406: return setValueV1fArray; // FLOAT
			case 0x8b50: return setValueV2fArray; // _VEC2
			case 0x8b51: return setValueV3fArray; // _VEC3
			case 0x8b52: return setValueV4fArray; // _VEC4

			case 0x8b5a: return setValueM2Array; // _MAT2
			case 0x8b5b: return setValueM3Array; // _MAT3
			case 0x8b5c: return setValueM4Array; // _MAT4

			case 0x1404: case 0x8b56: return setValueV1iArray; // INT, BOOL
			case 0x8b53: case 0x8b57: return setValueV2iArray; // _VEC2
			case 0x8b54: case 0x8b58: return setValueV3iArray; // _VEC3
			case 0x8b55: case 0x8b59: return setValueV4iArray; // _VEC4

			case 0x8b5e: // SAMPLER_2D
			case 0x8d66: // SAMPLER_EXTERNAL_OES
			case 0x8dca: // INT_SAMPLER_2D
			case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
			case 0x8b62: // SAMPLER_2D_SHADOW
				return setValueT1Array;

			case 0x8b60: // SAMPLER_CUBE
			case 0x8dcc: // INT_SAMPLER_CUBE
			case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
			case 0x8dc5: // SAMPLER_CUBE_SHADOW
				return setValueT6Array;

		}

	}

	// --- Uniform Classes ---

	function SingleUniform( id, activeInfo, addr ) {

		this.id = id;
		this.addr = addr;
		this.cache = [];
		this.setValue = getSingularSetter( activeInfo.type );

		// this.path = activeInfo.name; // DEBUG

	}

	function PureArrayUniform( id, activeInfo, addr ) {

		this.id = id;
		this.addr = addr;
		this.cache = [];
		this.size = activeInfo.size;
		this.setValue = getPureArraySetter( activeInfo.type );

		// this.path = activeInfo.name; // DEBUG

	}

	PureArrayUniform.prototype.updateCache = function ( data ) {

		var cache = this.cache;

		if ( data instanceof Float32Array && cache.length !== data.length ) {

			this.cache = new Float32Array( data.length );

		}

		copyArray( cache, data );

	};

	function StructuredUniform( id ) {

		this.id = id;

		this.seq = [];
		this.map = {};

	}

	StructuredUniform.prototype.setValue = function ( gl, value, textures ) {

		var seq = this.seq;

		for ( var i = 0, n = seq.length; i !== n; ++ i ) {

			var u = seq[ i ];
			u.setValue( gl, value[ u.id ], textures );

		}

	};

	// --- Top-level ---

	// Parser - builds up the property tree from the path strings

	var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g;

	// extracts
	// 	- the identifier (member name or array index)
	//  - followed by an optional right bracket (found when array index)
	//  - followed by an optional left bracket or dot (type of subscript)
	//
	// Note: These portions can be read in a non-overlapping fashion and
	// allow straightforward parsing of the hierarchy that WebGL encodes
	// in the uniform names.

	function addUniform( container, uniformObject ) {

		container.seq.push( uniformObject );
		container.map[ uniformObject.id ] = uniformObject;

	}

	function parseUniform( activeInfo, addr, container ) {

		var path = activeInfo.name,
			pathLength = path.length;

		// reset RegExp object, because of the early exit of a previous run
		RePathPart.lastIndex = 0;

		while ( true ) {

			var match = RePathPart.exec( path ),
				matchEnd = RePathPart.lastIndex,

				id = match[ 1 ],
				idIsIndex = match[ 2 ] === ']',
				subscript = match[ 3 ];

			if ( idIsIndex ) { id = id | 0; } // convert to integer

			if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) {

				// bare name or "pure" bottom-level array "[0]" suffix

				addUniform( container, subscript === undefined ?
					new SingleUniform( id, activeInfo, addr ) :
					new PureArrayUniform( id, activeInfo, addr ) );

				break;

			} else {

				// step into inner node / create it in case it doesn't exist

				var map = container.map, next = map[ id ];

				if ( next === undefined ) {

					next = new StructuredUniform( id );
					addUniform( container, next );

				}

				container = next;

			}

		}

	}

	// Root Container

	function WebGLUniforms( gl, program ) {

		this.seq = [];
		this.map = {};

		var n = gl.getProgramParameter( program, 35718 );

		for ( var i = 0; i < n; ++ i ) {

			var info = gl.getActiveUniform( program, i ),
				addr = gl.getUniformLocation( program, info.name );

			parseUniform( info, addr, this );

		}

	}

	WebGLUniforms.prototype.setValue = function ( gl, name, value, textures ) {

		var u = this.map[ name ];

		if ( u !== undefined ) { u.setValue( gl, value, textures ); }

	};

	WebGLUniforms.prototype.setOptional = function ( gl, object, name ) {

		var v = object[ name ];

		if ( v !== undefined ) { this.setValue( gl, name, v ); }

	};


	// Static interface

	WebGLUniforms.upload = function ( gl, seq, values, textures ) {

		for ( var i = 0, n = seq.length; i !== n; ++ i ) {

			var u = seq[ i ],
				v = values[ u.id ];

			if ( v.needsUpdate !== false ) {

				// note: always updating when .needsUpdate is undefined
				u.setValue( gl, v.value, textures );

			}

		}

	};

	WebGLUniforms.seqWithValue = function ( seq, values ) {

		var r = [];

		for ( var i = 0, n = seq.length; i !== n; ++ i ) {

			var u = seq[ i ];
			if ( u.id in values ) { r.push( u ); }

		}

		return r;

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLShader( gl, type, string ) {

		var shader = gl.createShader( type );

		gl.shaderSource( shader, string );
		gl.compileShader( shader );

		return shader;

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	var programIdCount = 0;

	function addLineNumbers( string ) {

		var lines = string.split( '\n' );

		for ( var i = 0; i < lines.length; i ++ ) {

			lines[ i ] = ( i + 1 ) + ': ' + lines[ i ];

		}

		return lines.join( '\n' );

	}

	function getEncodingComponents( encoding ) {

		switch ( encoding ) {

			case LinearEncoding:
				return [ 'Linear', '( value )' ];
			case sRGBEncoding:
				return [ 'sRGB', '( value )' ];
			case RGBEEncoding:
				return [ 'RGBE', '( value )' ];
			case RGBM7Encoding:
				return [ 'RGBM', '( value, 7.0 )' ];
			case RGBM16Encoding:
				return [ 'RGBM', '( value, 16.0 )' ];
			case RGBDEncoding:
				return [ 'RGBD', '( value, 256.0 )' ];
			case GammaEncoding:
				return [ 'Gamma', '( value, float( GAMMA_FACTOR ) )' ];
			case LogLuvEncoding:
				return [ 'LogLuv', '( value )' ];
			default:
				throw new Error( 'unsupported encoding: ' + encoding );

		}

	}

	function getShaderErrors( gl, shader, type ) {

		var status = gl.getShaderParameter( shader, 35713 );
		var log = gl.getShaderInfoLog( shader ).trim();

		if ( status && log === '' ) { return ''; }

		// --enable-privileged-webgl-extension
		// console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );

		var source = gl.getShaderSource( shader );

		return 'THREE.WebGLShader: gl.getShaderInfoLog() ' + type + '\n' + log + addLineNumbers( source );

	}

	function getTexelDecodingFunction( functionName, encoding ) {

		var components = getEncodingComponents( encoding );
		return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[ 0 ] + 'ToLinear' + components[ 1 ] + '; }';

	}

	function getTexelEncodingFunction( functionName, encoding ) {

		var components = getEncodingComponents( encoding );
		return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[ 0 ] + components[ 1 ] + '; }';

	}

	function getToneMappingFunction( functionName, toneMapping ) {

		var toneMappingName;

		switch ( toneMapping ) {

			case LinearToneMapping:
				toneMappingName = 'Linear';
				break;

			case ReinhardToneMapping:
				toneMappingName = 'Reinhard';
				break;

			case Uncharted2ToneMapping:
				toneMappingName = 'Uncharted2';
				break;

			case CineonToneMapping:
				toneMappingName = 'OptimizedCineon';
				break;

			case ACESFilmicToneMapping:
				toneMappingName = 'ACESFilmic';
				break;

			default:
				throw new Error( 'unsupported toneMapping: ' + toneMapping );

		}

		return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';

	}

	function generateExtensions( parameters ) {

		var chunks = [
			( parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ) ? '#extension GL_OES_standard_derivatives : enable' : '',
			( parameters.extensionFragDepth || parameters.logarithmicDepthBuffer ) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '',
			( parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ) ? '#extension GL_EXT_draw_buffers : require' : '',
			( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : ''
		];

		return chunks.filter( filterEmptyLine ).join( '\n' );

	}

	function generateDefines( defines ) {

		var chunks = [];

		for ( var name in defines ) {

			var value = defines[ name ];

			if ( value === false ) { continue; }

			chunks.push( '#define ' + name + ' ' + value );

		}

		return chunks.join( '\n' );

	}

	function fetchAttributeLocations( gl, program ) {

		var attributes = {};

		var n = gl.getProgramParameter( program, 35721 );

		for ( var i = 0; i < n; i ++ ) {

			var info = gl.getActiveAttrib( program, i );
			var name = info.name;

			// console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );

			attributes[ name ] = gl.getAttribLocation( program, name );

		}

		return attributes;

	}

	function filterEmptyLine( string ) {

		return string !== '';

	}

	function replaceLightNums( string, parameters ) {

		return string
			.replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights )
			.replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights )
			.replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights )
			.replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights )
			.replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights )
			.replace( /NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows )
			.replace( /NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows )
			.replace( /NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows );

	}

	function replaceClippingPlaneNums( string, parameters ) {

		return string
			.replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes )
			.replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) );

	}

	// Resolve Includes

	var includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm;

	function resolveIncludes( string ) {

		return string.replace( includePattern, includeReplacer );

	}

	function includeReplacer( match, include ) {

		var string = ShaderChunk[ include ];

		if ( string === undefined ) {

			throw new Error( 'Can not resolve #include <' + include + '>' );

		}

		return resolveIncludes( string );

	}

	// Unroll Loops

	var deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
	var unrollLoopPattern = /#pragma unroll_loop_start[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}[\s]+?#pragma unroll_loop_end/g;

	function unrollLoops( string ) {

		return string
			.replace( unrollLoopPattern, loopReplacer )
			.replace( deprecatedUnrollLoopPattern, deprecatedLoopReplacer );

	}

	function deprecatedLoopReplacer( match, start, end, snippet ) {

		console.warn( 'WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.' );
		return loopReplacer( match, start, end, snippet );

	}

	function loopReplacer( match, start, end, snippet ) {

		var string = '';

		for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) {

			string += snippet
				.replace( /\[ i \]/g, '[ ' + i + ' ]' )
				.replace( /UNROLLED_LOOP_INDEX/g, i );

		}

		return string;

	}

	//

	function generatePrecision( parameters ) {

		var precisionstring = "precision " + parameters.precision + " float;\nprecision " + parameters.precision + " int;";

		if ( parameters.precision === "highp" ) {

			precisionstring += "\n#define HIGH_PRECISION";

		} else if ( parameters.precision === "mediump" ) {

			precisionstring += "\n#define MEDIUM_PRECISION";

		} else if ( parameters.precision === "lowp" ) {

			precisionstring += "\n#define LOW_PRECISION";

		}

		return precisionstring;

	}

	function generateShadowMapTypeDefine( parameters ) {

		var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';

		if ( parameters.shadowMapType === PCFShadowMap ) {

			shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';

		} else if ( parameters.shadowMapType === PCFSoftShadowMap ) {

			shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';

		} else if ( parameters.shadowMapType === VSMShadowMap ) {

			shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM';

		}

		return shadowMapTypeDefine;

	}

	function generateEnvMapTypeDefine( parameters ) {

		var envMapTypeDefine = 'ENVMAP_TYPE_CUBE';

		if ( parameters.envMap ) {

			switch ( parameters.envMapMode ) {

				case CubeReflectionMapping:
				case CubeRefractionMapping:
					envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
					break;

				case CubeUVReflectionMapping:
				case CubeUVRefractionMapping:
					envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
					break;

				case EquirectangularReflectionMapping:
				case EquirectangularRefractionMapping:
					envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC';
					break;

				case SphericalReflectionMapping:
					envMapTypeDefine = 'ENVMAP_TYPE_SPHERE';
					break;

			}

		}

		return envMapTypeDefine;

	}

	function generateEnvMapModeDefine( parameters ) {

		var envMapModeDefine = 'ENVMAP_MODE_REFLECTION';

		if ( parameters.envMap ) {

			switch ( parameters.envMapMode ) {

				case CubeRefractionMapping:
				case EquirectangularRefractionMapping:
					envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
					break;

			}

		}

		return envMapModeDefine;

	}

	function generateEnvMapBlendingDefine( parameters ) {

		var envMapBlendingDefine = 'ENVMAP_BLENDING_NONE';

		if ( parameters.envMap ) {

			switch ( parameters.combine ) {

				case MultiplyOperation:
					envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
					break;

				case MixOperation:
					envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
					break;

				case AddOperation:
					envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
					break;

			}

		}

		return envMapBlendingDefine;

	}

	function WebGLProgram( renderer, cacheKey, parameters ) {

		var gl = renderer.getContext();

		var defines = parameters.defines;

		var vertexShader = parameters.vertexShader;
		var fragmentShader = parameters.fragmentShader;
		var shadowMapTypeDefine = generateShadowMapTypeDefine( parameters );
		var envMapTypeDefine = generateEnvMapTypeDefine( parameters );
		var envMapModeDefine = generateEnvMapModeDefine( parameters );
		var envMapBlendingDefine = generateEnvMapBlendingDefine( parameters );


		var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0;

		var customExtensions = parameters.isWebGL2 ? '' : generateExtensions( parameters );

		var customDefines = generateDefines( defines );

		var program = gl.createProgram();

		var prefixVertex, prefixFragment;

		if ( parameters.isRawShaderMaterial ) {

			prefixVertex = [

				customDefines

			].filter( filterEmptyLine ).join( '\n' );

			if ( prefixVertex.length > 0 ) {

				prefixVertex += '\n';

			}

			prefixFragment = [

				customExtensions,
				customDefines

			].filter( filterEmptyLine ).join( '\n' );

			if ( prefixFragment.length > 0 ) {

				prefixFragment += '\n';

			}

		} else {

			prefixVertex = [

				generatePrecision( parameters ),

				'#define SHADER_NAME ' + parameters.shaderName,

				customDefines,

				parameters.instancing ? '#define USE_INSTANCING' : '',
				parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '',

				'#define GAMMA_FACTOR ' + gammaFactorDefine,

				'#define MAX_BONES ' + parameters.maxBones,
				( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
				( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '',

				parameters.map ? '#define USE_MAP' : '',
				parameters.envMap ? '#define USE_ENVMAP' : '',
				parameters.envMap ? '#define ' + envMapModeDefine : '',
				parameters.lightMap ? '#define USE_LIGHTMAP' : '',
				parameters.aoMap ? '#define USE_AOMAP' : '',
				parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
				parameters.bumpMap ? '#define USE_BUMPMAP' : '',
				parameters.normalMap ? '#define USE_NORMALMAP' : '',
				( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '',
				( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '',

				parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '',
				parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '',
				parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '',
				parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '',
				parameters.specularMap ? '#define USE_SPECULARMAP' : '',
				parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
				parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
				parameters.alphaMap ? '#define USE_ALPHAMAP' : '',

				parameters.vertexTangents ? '#define USE_TANGENT' : '',
				parameters.vertexColors ? '#define USE_COLOR' : '',
				parameters.vertexUvs ? '#define USE_UV' : '',
				parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '',

				parameters.flatShading ? '#define FLAT_SHADED' : '',

				parameters.skinning ? '#define USE_SKINNING' : '',
				parameters.useVertexTexture ? '#define BONE_TEXTURE' : '',

				parameters.morphTargets ? '#define USE_MORPHTARGETS' : '',
				parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '',
				parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
				parameters.flipSided ? '#define FLIP_SIDED' : '',

				parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
				parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',

				parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '',

				parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
				( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '',

				'uniform mat4 modelMatrix;',
				'uniform mat4 modelViewMatrix;',
				'uniform mat4 projectionMatrix;',
				'uniform mat4 viewMatrix;',
				'uniform mat3 normalMatrix;',
				'uniform vec3 cameraPosition;',
				'uniform bool isOrthographic;',

				'#ifdef USE_INSTANCING',

				' attribute mat4 instanceMatrix;',

				'#endif',

				'attribute vec3 position;',
				'attribute vec3 normal;',
				'attribute vec2 uv;',

				'#ifdef USE_TANGENT',

				'	attribute vec4 tangent;',

				'#endif',

				'#ifdef USE_COLOR',

				'	attribute vec3 color;',

				'#endif',

				'#ifdef USE_MORPHTARGETS',

				'	attribute vec3 morphTarget0;',
				'	attribute vec3 morphTarget1;',
				'	attribute vec3 morphTarget2;',
				'	attribute vec3 morphTarget3;',

				'	#ifdef USE_MORPHNORMALS',

				'		attribute vec3 morphNormal0;',
				'		attribute vec3 morphNormal1;',
				'		attribute vec3 morphNormal2;',
				'		attribute vec3 morphNormal3;',

				'	#else',

				'		attribute vec3 morphTarget4;',
				'		attribute vec3 morphTarget5;',
				'		attribute vec3 morphTarget6;',
				'		attribute vec3 morphTarget7;',

				'	#endif',

				'#endif',

				'#ifdef USE_SKINNING',

				'	attribute vec4 skinIndex;',
				'	attribute vec4 skinWeight;',

				'#endif',

				'\n'

			].filter( filterEmptyLine ).join( '\n' );

			prefixFragment = [

				customExtensions,

				generatePrecision( parameters ),

				'#define SHADER_NAME ' + parameters.shaderName,

				customDefines,

				parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest + ( parameters.alphaTest % 1 ? '' : '.0' ) : '', // add '.0' if integer

				'#define GAMMA_FACTOR ' + gammaFactorDefine,

				( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
				( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '',

				parameters.map ? '#define USE_MAP' : '',
				parameters.matcap ? '#define USE_MATCAP' : '',
				parameters.envMap ? '#define USE_ENVMAP' : '',
				parameters.envMap ? '#define ' + envMapTypeDefine : '',
				parameters.envMap ? '#define ' + envMapModeDefine : '',
				parameters.envMap ? '#define ' + envMapBlendingDefine : '',
				parameters.lightMap ? '#define USE_LIGHTMAP' : '',
				parameters.aoMap ? '#define USE_AOMAP' : '',
				parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
				parameters.bumpMap ? '#define USE_BUMPMAP' : '',
				parameters.normalMap ? '#define USE_NORMALMAP' : '',
				( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '',
				( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '',
				parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '',
				parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '',
				parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '',
				parameters.specularMap ? '#define USE_SPECULARMAP' : '',
				parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
				parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
				parameters.alphaMap ? '#define USE_ALPHAMAP' : '',

				parameters.sheen ? '#define USE_SHEEN' : '',

				parameters.vertexTangents ? '#define USE_TANGENT' : '',
				parameters.vertexColors ? '#define USE_COLOR' : '',
				parameters.vertexUvs ? '#define USE_UV' : '',
				parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '',

				parameters.gradientMap ? '#define USE_GRADIENTMAP' : '',

				parameters.flatShading ? '#define FLAT_SHADED' : '',

				parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
				parameters.flipSided ? '#define FLIP_SIDED' : '',

				parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
				parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',

				parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '',

				parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '',

				parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
				( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '',

				( ( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ) ? '#define TEXTURE_LOD_EXT' : '',

				'uniform mat4 viewMatrix;',
				'uniform vec3 cameraPosition;',
				'uniform bool isOrthographic;',

				( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : '',
				( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below
				( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : '',

				parameters.dithering ? '#define DITHERING' : '',

				( parameters.outputEncoding || parameters.mapEncoding || parameters.matcapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding || parameters.lightMapEncoding ) ?
					ShaderChunk[ 'encodings_pars_fragment' ] : '', // this code is required here because it is used by the various encoding/decoding function defined below
				parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '',
				parameters.matcapEncoding ? getTexelDecodingFunction( 'matcapTexelToLinear', parameters.matcapEncoding ) : '',
				parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '',
				parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '',
				parameters.lightMapEncoding ? getTexelDecodingFunction( 'lightMapTexelToLinear', parameters.lightMapEncoding ) : '',
				parameters.outputEncoding ? getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputEncoding ) : '',

				parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '',

				'\n'

			].filter( filterEmptyLine ).join( '\n' );

		}

		vertexShader = resolveIncludes( vertexShader );
		vertexShader = replaceLightNums( vertexShader, parameters );
		vertexShader = replaceClippingPlaneNums( vertexShader, parameters );

		fragmentShader = resolveIncludes( fragmentShader );
		fragmentShader = replaceLightNums( fragmentShader, parameters );
		fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters );

		vertexShader = unrollLoops( vertexShader );
		fragmentShader = unrollLoops( fragmentShader );

		if ( parameters.isWebGL2 && ! parameters.isRawShaderMaterial ) {

			var isGLSL3ShaderMaterial = false;

			var versionRegex = /^\s*#version\s+300\s+es\s*\n/;

			if ( parameters.isShaderMaterial &&
				vertexShader.match( versionRegex ) !== null &&
				fragmentShader.match( versionRegex ) !== null ) {

				isGLSL3ShaderMaterial = true;

				vertexShader = vertexShader.replace( versionRegex, '' );
				fragmentShader = fragmentShader.replace( versionRegex, '' );

			}

			// GLSL 3.0 conversion

			prefixVertex = [
				'#version 300 es\n',
				'#define attribute in',
				'#define varying out',
				'#define texture2D texture'
			].join( '\n' ) + '\n' + prefixVertex;

			prefixFragment = [
				'#version 300 es\n',
				'#define varying in',
				isGLSL3ShaderMaterial ? '' : 'out highp vec4 pc_fragColor;',
				isGLSL3ShaderMaterial ? '' : '#define gl_FragColor pc_fragColor',
				'#define gl_FragDepthEXT gl_FragDepth',
				'#define texture2D texture',
				'#define textureCube texture',
				'#define texture2DProj textureProj',
				'#define texture2DLodEXT textureLod',
				'#define texture2DProjLodEXT textureProjLod',
				'#define textureCubeLodEXT textureLod',
				'#define texture2DGradEXT textureGrad',
				'#define texture2DProjGradEXT textureProjGrad',
				'#define textureCubeGradEXT textureGrad'
			].join( '\n' ) + '\n' + prefixFragment;

		}

		var vertexGlsl = prefixVertex + vertexShader;
		var fragmentGlsl = prefixFragment + fragmentShader;

		// console.log( '*VERTEX*', vertexGlsl );
		// console.log( '*FRAGMENT*', fragmentGlsl );

		var glVertexShader = WebGLShader( gl, 35633, vertexGlsl );
		var glFragmentShader = WebGLShader( gl, 35632, fragmentGlsl );

		gl.attachShader( program, glVertexShader );
		gl.attachShader( program, glFragmentShader );

		// Force a particular attribute to index 0.

		if ( parameters.index0AttributeName !== undefined ) {

			gl.bindAttribLocation( program, 0, parameters.index0AttributeName );

		} else if ( parameters.morphTargets === true ) {

			// programs with morphTargets displace position out of attribute 0
			gl.bindAttribLocation( program, 0, 'position' );

		}

		gl.linkProgram( program );

		// check for link errors
		if ( renderer.debug.checkShaderErrors ) {

			var programLog = gl.getProgramInfoLog( program ).trim();
			var vertexLog = gl.getShaderInfoLog( glVertexShader ).trim();
			var fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim();

			var runnable = true;
			var haveDiagnostics = true;

			if ( gl.getProgramParameter( program, 35714 ) === false ) {

				runnable = false;

				var vertexErrors = getShaderErrors( gl, glVertexShader, 'vertex' );
				var fragmentErrors = getShaderErrors( gl, glFragmentShader, 'fragment' );

				console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), '35715', gl.getProgramParameter( program, 35715 ), 'gl.getProgramInfoLog', programLog, vertexErrors, fragmentErrors );

			} else if ( programLog !== '' ) {

				console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog );

			} else if ( vertexLog === '' || fragmentLog === '' ) {

				haveDiagnostics = false;

			}

			if ( haveDiagnostics ) {

				this.diagnostics = {

					runnable: runnable,

					programLog: programLog,

					vertexShader: {

						log: vertexLog,
						prefix: prefixVertex

					},

					fragmentShader: {

						log: fragmentLog,
						prefix: prefixFragment

					}

				};

			}

		}

		// Clean up

		// Crashes in iOS9 and iOS10. #18402
		// gl.detachShader( program, glVertexShader );
		// gl.detachShader( program, glFragmentShader );

		gl.deleteShader( glVertexShader );
		gl.deleteShader( glFragmentShader );

		// set up caching for uniform locations

		var cachedUniforms;

		this.getUniforms = function () {

			if ( cachedUniforms === undefined ) {

				cachedUniforms = new WebGLUniforms( gl, program );

			}

			return cachedUniforms;

		};

		// set up caching for attribute locations

		var cachedAttributes;

		this.getAttributes = function () {

			if ( cachedAttributes === undefined ) {

				cachedAttributes = fetchAttributeLocations( gl, program );

			}

			return cachedAttributes;

		};

		// free resource

		this.destroy = function () {

			gl.deleteProgram( program );
			this.program = undefined;

		};

		//

		this.name = parameters.shaderName;
		this.id = programIdCount ++;
		this.cacheKey = cacheKey;
		this.usedTimes = 1;
		this.program = program;
		this.vertexShader = glVertexShader;
		this.fragmentShader = glFragmentShader;

		return this;

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLPrograms( renderer, extensions, capabilities ) {

		var programs = [];

		var isWebGL2 = capabilities.isWebGL2;
		var logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer;
		var floatVertexTextures = capabilities.floatVertexTextures;
		var precision = capabilities.precision;
		var maxVertexUniforms = capabilities.maxVertexUniforms;
		var vertexTextures = capabilities.vertexTextures;

		var shaderIDs = {
			MeshDepthMaterial: 'depth',
			MeshDistanceMaterial: 'distanceRGBA',
			MeshNormalMaterial: 'normal',
			MeshBasicMaterial: 'basic',
			MeshLambertMaterial: 'lambert',
			MeshPhongMaterial: 'phong',
			MeshToonMaterial: 'toon',
			MeshStandardMaterial: 'physical',
			MeshPhysicalMaterial: 'physical',
			MeshMatcapMaterial: 'matcap',
			LineBasicMaterial: 'basic',
			LineDashedMaterial: 'dashed',
			PointsMaterial: 'points',
			ShadowMaterial: 'shadow',
			SpriteMaterial: 'sprite'
		};

		var parameterNames = [
			"precision", "isWebGL2", "supportsVertexTextures", "outputEncoding", "instancing",
			"map", "mapEncoding", "matcap", "matcapEncoding", "envMap", "envMapMode", "envMapEncoding", "envMapCubeUV",
			"lightMap", "lightMapEncoding", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "objectSpaceNormalMap", "tangentSpaceNormalMap", "clearcoatMap", "clearcoatRoughnessMap", "clearcoatNormalMap", "displacementMap", "specularMap",
			"roughnessMap", "metalnessMap", "gradientMap",
			"alphaMap", "combine", "vertexColors", "vertexTangents", "vertexUvs", "uvsVertexOnly", "fog", "useFog", "fogExp2",
			"flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning",
			"maxBones", "useVertexTexture", "morphTargets", "morphNormals",
			"maxMorphTargets", "maxMorphNormals", "premultipliedAlpha",
			"numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights",
			"numDirLightShadows", "numPointLightShadows", "numSpotLightShadows",
			"shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights',
			"alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering",
			"sheen"
		];

		function getShaderObject( material, shaderID ) {

			var shaderobject;

			if ( shaderID ) {

				var shader = ShaderLib[ shaderID ];

				shaderobject = {
					name: material.type,
					uniforms: UniformsUtils.clone( shader.uniforms ),
					vertexShader: shader.vertexShader,
					fragmentShader: shader.fragmentShader
				};

			} else {

				shaderobject = {
					name: material.type,
					uniforms: material.uniforms,
					vertexShader: material.vertexShader,
					fragmentShader: material.fragmentShader
				};

			}

			return shaderobject;

		}

		function allocateBones( object ) {

			var skeleton = object.skeleton;
			var bones = skeleton.bones;

			if ( floatVertexTextures ) {

				return 1024;

			} else {

				// default for when object is not specified
				// ( for example when prebuilding shader to be used with multiple objects )
				//
				//  - leave some extra space for other uniforms
				//  - limit here is ANGLE's 254 max uniform vectors
				//    (up to 54 should be safe)

				var nVertexUniforms = maxVertexUniforms;
				var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 );

				var maxBones = Math.min( nVertexMatrices, bones.length );

				if ( maxBones < bones.length ) {

					console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' );
					return 0;

				}

				return maxBones;

			}

		}

		function getTextureEncodingFromMap( map ) {

			var encoding;

			if ( ! map ) {

				encoding = LinearEncoding;

			} else if ( map.isTexture ) {

				encoding = map.encoding;

			} else if ( map.isWebGLRenderTarget ) {

				console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." );
				encoding = map.texture.encoding;

			}

			return encoding;

		}

		this.getParameters = function ( material, lights, shadows, scene, nClipPlanes, nClipIntersection, object ) {

			var fog = scene.fog;
			var environment = material.isMeshStandardMaterial ? scene.environment : null;

			var envMap = material.envMap || environment;

			var shaderID = shaderIDs[ material.type ];

			// heuristics to create shader parameters according to lights in the scene
			// (not to blow over maxLights budget)

			var maxBones = object.isSkinnedMesh ? allocateBones( object ) : 0;

			if ( material.precision !== null ) {

				precision = capabilities.getMaxPrecision( material.precision );

				if ( precision !== material.precision ) {

					console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' );

				}

			}

			var shaderobject = getShaderObject( material, shaderID );
			material.onBeforeCompile( shaderobject, renderer );

			var currentRenderTarget = renderer.getRenderTarget();

			var parameters = {

				isWebGL2: isWebGL2,

				shaderID: shaderID,
				shaderName: shaderobject.name,

				uniforms: shaderobject.uniforms,
				vertexShader: shaderobject.vertexShader,
				fragmentShader: shaderobject.fragmentShader,
				defines: material.defines,

				isRawShaderMaterial: material.isRawShaderMaterial,
				isShaderMaterial: material.isShaderMaterial,

				precision: precision,

				instancing: object.isInstancedMesh === true,

				supportsVertexTextures: vertexTextures,
				outputEncoding: ( currentRenderTarget !== null ) ? getTextureEncodingFromMap( currentRenderTarget.texture ) : renderer.outputEncoding,
				map: !! material.map,
				mapEncoding: getTextureEncodingFromMap( material.map ),
				matcap: !! material.matcap,
				matcapEncoding: getTextureEncodingFromMap( material.matcap ),
				envMap: !! envMap,
				envMapMode: envMap && envMap.mapping,
				envMapEncoding: getTextureEncodingFromMap( envMap ),
				envMapCubeUV: ( !! envMap ) && ( ( envMap.mapping === CubeUVReflectionMapping ) || ( envMap.mapping === CubeUVRefractionMapping ) ),
				lightMap: !! material.lightMap,
				lightMapEncoding: getTextureEncodingFromMap( material.lightMap ),
				aoMap: !! material.aoMap,
				emissiveMap: !! material.emissiveMap,
				emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap ),
				bumpMap: !! material.bumpMap,
				normalMap: !! material.normalMap,
				objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap,
				tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap,
				clearcoatMap: !! material.clearcoatMap,
				clearcoatRoughnessMap: !! material.clearcoatRoughnessMap,
				clearcoatNormalMap: !! material.clearcoatNormalMap,
				displacementMap: !! material.displacementMap,
				roughnessMap: !! material.roughnessMap,
				metalnessMap: !! material.metalnessMap,
				specularMap: !! material.specularMap,
				alphaMap: !! material.alphaMap,

				gradientMap: !! material.gradientMap,

				sheen: !! material.sheen,

				combine: material.combine,

				vertexTangents: ( material.normalMap && material.vertexTangents ),
				vertexColors: material.vertexColors,
				vertexUvs: !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatMap || !! material.clearcoatRoughnessMap || !! material.clearcoatNormalMap || !! material.displacementMap,
				uvsVertexOnly: ! ( !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatNormalMap ) && !! material.displacementMap,

				fog: !! fog,
				useFog: material.fog,
				fogExp2: ( fog && fog.isFogExp2 ),

				flatShading: material.flatShading,

				sizeAttenuation: material.sizeAttenuation,
				logarithmicDepthBuffer: logarithmicDepthBuffer,

				skinning: material.skinning && maxBones > 0,
				maxBones: maxBones,
				useVertexTexture: floatVertexTextures,

				morphTargets: material.morphTargets,
				morphNormals: material.morphNormals,
				maxMorphTargets: renderer.maxMorphTargets,
				maxMorphNormals: renderer.maxMorphNormals,

				numDirLights: lights.directional.length,
				numPointLights: lights.point.length,
				numSpotLights: lights.spot.length,
				numRectAreaLights: lights.rectArea.length,
				numHemiLights: lights.hemi.length,

				numDirLightShadows: lights.directionalShadowMap.length,
				numPointLightShadows: lights.pointShadowMap.length,
				numSpotLightShadows: lights.spotShadowMap.length,

				numClippingPlanes: nClipPlanes,
				numClipIntersection: nClipIntersection,

				dithering: material.dithering,

				shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0,
				shadowMapType: renderer.shadowMap.type,

				toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping,
				physicallyCorrectLights: renderer.physicallyCorrectLights,

				premultipliedAlpha: material.premultipliedAlpha,

				alphaTest: material.alphaTest,
				doubleSided: material.side === DoubleSide,
				flipSided: material.side === BackSide,

				depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false,

				index0AttributeName: material.index0AttributeName,

				extensionDerivatives: material.extensions && material.extensions.derivatives,
				extensionFragDepth: material.extensions && material.extensions.fragDepth,
				extensionDrawBuffers: material.extensions && material.extensions.drawBuffers,
				extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD,

				rendererExtensionFragDepth: isWebGL2 || extensions.get( 'EXT_frag_depth' ) !== null,
				rendererExtensionDrawBuffers: isWebGL2 || extensions.get( 'WEBGL_draw_buffers' ) !== null,
				rendererExtensionShaderTextureLod: isWebGL2 || extensions.get( 'EXT_shader_texture_lod' ) !== null,

				onBeforeCompile: material.onBeforeCompile

			};

			return parameters;

		};

		this.getProgramCacheKey = function ( parameters ) {

			var array = [];

			if ( parameters.shaderID ) {

				array.push( parameters.shaderID );

			} else {

				array.push( parameters.fragmentShader );
				array.push( parameters.vertexShader );

			}

			if ( parameters.defines !== undefined ) {

				for ( var name in parameters.defines ) {

					array.push( name );
					array.push( parameters.defines[ name ] );

				}

			}

			if ( parameters.isRawShaderMaterial === undefined ) {

				for ( var i = 0; i < parameterNames.length; i ++ ) {

					array.push( parameters[ parameterNames[ i ] ] );

				}

				array.push( renderer.outputEncoding );
				array.push( renderer.gammaFactor );

			}

			array.push( parameters.onBeforeCompile.toString() );

			return array.join();

		};

		this.acquireProgram = function ( parameters, cacheKey ) {

			var program;

			// Check if code has been already compiled
			for ( var p = 0, pl = programs.length; p < pl; p ++ ) {

				var preexistingProgram = programs[ p ];

				if ( preexistingProgram.cacheKey === cacheKey ) {

					program = preexistingProgram;
					++ program.usedTimes;

					break;

				}

			}

			if ( program === undefined ) {

				program = new WebGLProgram( renderer, cacheKey, parameters );
				programs.push( program );

			}

			return program;

		};

		this.releaseProgram = function ( program ) {

			if ( -- program.usedTimes === 0 ) {

				// Remove from unordered set
				var i = programs.indexOf( program );
				programs[ i ] = programs[ programs.length - 1 ];
				programs.pop();

				// Free WebGL resources
				program.destroy();

			}

		};

		// Exposed for resource monitoring & error feedback via renderer.info:
		this.programs = programs;

	}

	/**
	 * @author fordacious / fordacious.github.io
	 */

	function WebGLProperties() {

		var properties = new WeakMap();

		function get( object ) {

			var map = properties.get( object );

			if ( map === undefined ) {

				map = {};
				properties.set( object, map );

			}

			return map;

		}

		function remove( object ) {

			properties.delete( object );

		}

		function update( object, key, value ) {

			properties.get( object )[ key ] = value;

		}

		function dispose() {

			properties = new WeakMap();

		}

		return {
			get: get,
			remove: remove,
			update: update,
			dispose: dispose
		};

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function painterSortStable( a, b ) {

		if ( a.groupOrder !== b.groupOrder ) {

			return a.groupOrder - b.groupOrder;

		} else if ( a.renderOrder !== b.renderOrder ) {

			return a.renderOrder - b.renderOrder;

		} else if ( a.program !== b.program ) {

			return a.program.id - b.program.id;

		} else if ( a.material.id !== b.material.id ) {

			return a.material.id - b.material.id;

		} else if ( a.z !== b.z ) {

			return a.z - b.z;

		} else {

			return a.id - b.id;

		}

	}

	function reversePainterSortStable( a, b ) {

		if ( a.groupOrder !== b.groupOrder ) {

			return a.groupOrder - b.groupOrder;

		} else if ( a.renderOrder !== b.renderOrder ) {

			return a.renderOrder - b.renderOrder;

		} else if ( a.z !== b.z ) {

			return b.z - a.z;

		} else {

			return a.id - b.id;

		}

	}


	function WebGLRenderList() {

		var renderItems = [];
		var renderItemsIndex = 0;

		var opaque = [];
		var transparent = [];

		var defaultProgram = { id: - 1 };

		function init() {

			renderItemsIndex = 0;

			opaque.length = 0;
			transparent.length = 0;

		}

		function getNextRenderItem( object, geometry, material, groupOrder, z, group ) {

			var renderItem = renderItems[ renderItemsIndex ];

			if ( renderItem === undefined ) {

				renderItem = {
					id: object.id,
					object: object,
					geometry: geometry,
					material: material,
					program: material.program || defaultProgram,
					groupOrder: groupOrder,
					renderOrder: object.renderOrder,
					z: z,
					group: group
				};

				renderItems[ renderItemsIndex ] = renderItem;

			} else {

				renderItem.id = object.id;
				renderItem.object = object;
				renderItem.geometry = geometry;
				renderItem.material = material;
				renderItem.program = material.program || defaultProgram;
				renderItem.groupOrder = groupOrder;
				renderItem.renderOrder = object.renderOrder;
				renderItem.z = z;
				renderItem.group = group;

			}

			renderItemsIndex ++;

			return renderItem;

		}

		function push( object, geometry, material, groupOrder, z, group ) {

			var renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group );

			( material.transparent === true ? transparent : opaque ).push( renderItem );

		}

		function unshift( object, geometry, material, groupOrder, z, group ) {

			var renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group );

			( material.transparent === true ? transparent : opaque ).unshift( renderItem );

		}

		function sort( customOpaqueSort, customTransparentSort ) {

			if ( opaque.length > 1 ) { opaque.sort( customOpaqueSort || painterSortStable ); }
			if ( transparent.length > 1 ) { transparent.sort( customTransparentSort || reversePainterSortStable ); }

		}

		function finish() {

			// Clear references from inactive renderItems in the list

			for ( var i = renderItemsIndex, il = renderItems.length; i < il; i ++ ) {

				var renderItem = renderItems[ i ];

				if ( renderItem.id === null ) { break; }

				renderItem.id = null;
				renderItem.object = null;
				renderItem.geometry = null;
				renderItem.material = null;
				renderItem.program = null;
				renderItem.group = null;

			}

		}

		return {
			opaque: opaque,
			transparent: transparent,

			init: init,
			push: push,
			unshift: unshift,
			finish: finish,

			sort: sort
		};

	}

	function WebGLRenderLists() {

		var lists = new WeakMap();

		function onSceneDispose( event ) {

			var scene = event.target;

			scene.removeEventListener( 'dispose', onSceneDispose );

			lists.delete( scene );

		}

		function get( scene, camera ) {

			var cameras = lists.get( scene );
			var list;
			if ( cameras === undefined ) {

				list = new WebGLRenderList();
				lists.set( scene, new WeakMap() );
				lists.get( scene ).set( camera, list );

				scene.addEventListener( 'dispose', onSceneDispose );

			} else {

				list = cameras.get( camera );
				if ( list === undefined ) {

					list = new WebGLRenderList();
					cameras.set( camera, list );

				}

			}

			return list;

		}

		function dispose() {

			lists = new WeakMap();

		}

		return {
			get: get,
			dispose: dispose
		};

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function UniformsCache() {

		var lights = {};

		return {

			get: function ( light ) {

				if ( lights[ light.id ] !== undefined ) {

					return lights[ light.id ];

				}

				var uniforms;

				switch ( light.type ) {

					case 'DirectionalLight':
						uniforms = {
							direction: new Vector3(),
							color: new Color()
						};
						break;

					case 'SpotLight':
						uniforms = {
							position: new Vector3(),
							direction: new Vector3(),
							color: new Color(),
							distance: 0,
							coneCos: 0,
							penumbraCos: 0,
							decay: 0
						};
						break;

					case 'PointLight':
						uniforms = {
							position: new Vector3(),
							color: new Color(),
							distance: 0,
							decay: 0
						};
						break;

					case 'HemisphereLight':
						uniforms = {
							direction: new Vector3(),
							skyColor: new Color(),
							groundColor: new Color()
						};
						break;

					case 'RectAreaLight':
						uniforms = {
							color: new Color(),
							position: new Vector3(),
							halfWidth: new Vector3(),
							halfHeight: new Vector3()
						};
						break;

				}

				lights[ light.id ] = uniforms;

				return uniforms;

			}

		};

	}

	function ShadowUniformsCache() {

		var lights = {};

		return {

			get: function ( light ) {

				if ( lights[ light.id ] !== undefined ) {

					return lights[ light.id ];

				}

				var uniforms;

				switch ( light.type ) {

					case 'DirectionalLight':
						uniforms = {
							shadowBias: 0,
							shadowRadius: 1,
							shadowMapSize: new Vector2()
						};
						break;

					case 'SpotLight':
						uniforms = {
							shadowBias: 0,
							shadowRadius: 1,
							shadowMapSize: new Vector2()
						};
						break;

					case 'PointLight':
						uniforms = {
							shadowBias: 0,
							shadowRadius: 1,
							shadowMapSize: new Vector2(),
							shadowCameraNear: 1,
							shadowCameraFar: 1000
						};
						break;

					// TODO (abelnation): set RectAreaLight shadow uniforms

				}

				lights[ light.id ] = uniforms;

				return uniforms;

			}

		};

	}



	var nextVersion = 0;

	function shadowCastingLightsFirst( lightA, lightB ) {

		return ( lightB.castShadow ? 1 : 0 ) - ( lightA.castShadow ? 1 : 0 );

	}

	function WebGLLights() {

		var cache = new UniformsCache();

		var shadowCache = ShadowUniformsCache();

		var state = {

			version: 0,

			hash: {
				directionalLength: - 1,
				pointLength: - 1,
				spotLength: - 1,
				rectAreaLength: - 1,
				hemiLength: - 1,

				numDirectionalShadows: - 1,
				numPointShadows: - 1,
				numSpotShadows: - 1
			},

			ambient: [ 0, 0, 0 ],
			probe: [],
			directional: [],
			directionalShadow: [],
			directionalShadowMap: [],
			directionalShadowMatrix: [],
			spot: [],
			spotShadow: [],
			spotShadowMap: [],
			spotShadowMatrix: [],
			rectArea: [],
			point: [],
			pointShadow: [],
			pointShadowMap: [],
			pointShadowMatrix: [],
			hemi: []

		};

		for ( var i = 0; i < 9; i ++ ) { state.probe.push( new Vector3() ); }

		var vector3 = new Vector3();
		var matrix4 = new Matrix4();
		var matrix42 = new Matrix4();

		function setup( lights, shadows, camera ) {

			var r = 0, g = 0, b = 0;

			for ( var i = 0; i < 9; i ++ ) { state.probe[ i ].set( 0, 0, 0 ); }

			var directionalLength = 0;
			var pointLength = 0;
			var spotLength = 0;
			var rectAreaLength = 0;
			var hemiLength = 0;

			var numDirectionalShadows = 0;
			var numPointShadows = 0;
			var numSpotShadows = 0;

			var viewMatrix = camera.matrixWorldInverse;

			lights.sort( shadowCastingLightsFirst );

			for ( var i = 0, l = lights.length; i < l; i ++ ) {

				var light = lights[ i ];

				var color = light.color;
				var intensity = light.intensity;
				var distance = light.distance;

				var shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null;

				if ( light.isAmbientLight ) {

					r += color.r * intensity;
					g += color.g * intensity;
					b += color.b * intensity;

				} else if ( light.isLightProbe ) {

					for ( var j = 0; j < 9; j ++ ) {

						state.probe[ j ].addScaledVector( light.sh.coefficients[ j ], intensity );

					}

				} else if ( light.isDirectionalLight ) {

					var uniforms = cache.get( light );

					uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
					uniforms.direction.setFromMatrixPosition( light.matrixWorld );
					vector3.setFromMatrixPosition( light.target.matrixWorld );
					uniforms.direction.sub( vector3 );
					uniforms.direction.transformDirection( viewMatrix );

					if ( light.castShadow ) {

						var shadow = light.shadow;

						var shadowUniforms = shadowCache.get( light );

						shadowUniforms.shadowBias = shadow.bias;
						shadowUniforms.shadowRadius = shadow.radius;
						shadowUniforms.shadowMapSize = shadow.mapSize;

						state.directionalShadow[ directionalLength ] = shadowUniforms;
						state.directionalShadowMap[ directionalLength ] = shadowMap;
						state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix;

						numDirectionalShadows ++;

					}

					state.directional[ directionalLength ] = uniforms;

					directionalLength ++;

				} else if ( light.isSpotLight ) {

					var uniforms = cache.get( light );

					uniforms.position.setFromMatrixPosition( light.matrixWorld );
					uniforms.position.applyMatrix4( viewMatrix );

					uniforms.color.copy( color ).multiplyScalar( intensity );
					uniforms.distance = distance;

					uniforms.direction.setFromMatrixPosition( light.matrixWorld );
					vector3.setFromMatrixPosition( light.target.matrixWorld );
					uniforms.direction.sub( vector3 );
					uniforms.direction.transformDirection( viewMatrix );

					uniforms.coneCos = Math.cos( light.angle );
					uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) );
					uniforms.decay = light.decay;

					if ( light.castShadow ) {

						var shadow = light.shadow;

						var shadowUniforms = shadowCache.get( light );

						shadowUniforms.shadowBias = shadow.bias;
						shadowUniforms.shadowRadius = shadow.radius;
						shadowUniforms.shadowMapSize = shadow.mapSize;

						state.spotShadow[ spotLength ] = shadowUniforms;
						state.spotShadowMap[ spotLength ] = shadowMap;
						state.spotShadowMatrix[ spotLength ] = light.shadow.matrix;

						numSpotShadows ++;

					}

					state.spot[ spotLength ] = uniforms;

					spotLength ++;

				} else if ( light.isRectAreaLight ) {

					var uniforms = cache.get( light );

					// (a) intensity is the total visible light emitted
					//uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );

					// (b) intensity is the brightness of the light
					uniforms.color.copy( color ).multiplyScalar( intensity );

					uniforms.position.setFromMatrixPosition( light.matrixWorld );
					uniforms.position.applyMatrix4( viewMatrix );

					// extract local rotation of light to derive width/height half vectors
					matrix42.identity();
					matrix4.copy( light.matrixWorld );
					matrix4.premultiply( viewMatrix );
					matrix42.extractRotation( matrix4 );

					uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 );
					uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 );

					uniforms.halfWidth.applyMatrix4( matrix42 );
					uniforms.halfHeight.applyMatrix4( matrix42 );

					// TODO (abelnation): RectAreaLight distance?
					// uniforms.distance = distance;

					state.rectArea[ rectAreaLength ] = uniforms;

					rectAreaLength ++;

				} else if ( light.isPointLight ) {

					var uniforms = cache.get( light );

					uniforms.position.setFromMatrixPosition( light.matrixWorld );
					uniforms.position.applyMatrix4( viewMatrix );

					uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
					uniforms.distance = light.distance;
					uniforms.decay = light.decay;

					if ( light.castShadow ) {

						var shadow = light.shadow;

						var shadowUniforms = shadowCache.get( light );

						shadowUniforms.shadowBias = shadow.bias;
						shadowUniforms.shadowRadius = shadow.radius;
						shadowUniforms.shadowMapSize = shadow.mapSize;
						shadowUniforms.shadowCameraNear = shadow.camera.near;
						shadowUniforms.shadowCameraFar = shadow.camera.far;

						state.pointShadow[ pointLength ] = shadowUniforms;
						state.pointShadowMap[ pointLength ] = shadowMap;
						state.pointShadowMatrix[ pointLength ] = light.shadow.matrix;

						numPointShadows ++;

					}

					state.point[ pointLength ] = uniforms;

					pointLength ++;

				} else if ( light.isHemisphereLight ) {

					var uniforms = cache.get( light );

					uniforms.direction.setFromMatrixPosition( light.matrixWorld );
					uniforms.direction.transformDirection( viewMatrix );
					uniforms.direction.normalize();

					uniforms.skyColor.copy( light.color ).multiplyScalar( intensity );
					uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity );

					state.hemi[ hemiLength ] = uniforms;

					hemiLength ++;

				}

			}

			state.ambient[ 0 ] = r;
			state.ambient[ 1 ] = g;
			state.ambient[ 2 ] = b;

			var hash = state.hash;

			if ( hash.directionalLength !== directionalLength ||
				hash.pointLength !== pointLength ||
				hash.spotLength !== spotLength ||
				hash.rectAreaLength !== rectAreaLength ||
				hash.hemiLength !== hemiLength ||
				hash.numDirectionalShadows !== numDirectionalShadows ||
				hash.numPointShadows !== numPointShadows ||
				hash.numSpotShadows !== numSpotShadows ) {

				state.directional.length = directionalLength;
				state.spot.length = spotLength;
				state.rectArea.length = rectAreaLength;
				state.point.length = pointLength;
				state.hemi.length = hemiLength;

				state.directionalShadow.length = numDirectionalShadows;
				state.directionalShadowMap.length = numDirectionalShadows;
				state.pointShadow.length = numPointShadows;
				state.pointShadowMap.length = numPointShadows;
				state.spotShadow.length = numSpotShadows;
				state.spotShadowMap.length = numSpotShadows;
				state.directionalShadowMatrix.length = numDirectionalShadows;
				state.pointShadowMatrix.length = numPointShadows;
				state.spotShadowMatrix.length = numSpotShadows;

				hash.directionalLength = directionalLength;
				hash.pointLength = pointLength;
				hash.spotLength = spotLength;
				hash.rectAreaLength = rectAreaLength;
				hash.hemiLength = hemiLength;

				hash.numDirectionalShadows = numDirectionalShadows;
				hash.numPointShadows = numPointShadows;
				hash.numSpotShadows = numSpotShadows;

				state.version = nextVersion ++;

			}

		}

		return {
			setup: setup,
			state: state
		};

	}

	/**
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	function WebGLRenderState() {

		var lights = new WebGLLights();

		var lightsArray = [];
		var shadowsArray = [];

		function init() {

			lightsArray.length = 0;
			shadowsArray.length = 0;

		}

		function pushLight( light ) {

			lightsArray.push( light );

		}

		function pushShadow( shadowLight ) {

			shadowsArray.push( shadowLight );

		}

		function setupLights( camera ) {

			lights.setup( lightsArray, shadowsArray, camera );

		}

		var state = {
			lightsArray: lightsArray,
			shadowsArray: shadowsArray,

			lights: lights
		};

		return {
			init: init,
			state: state,
			setupLights: setupLights,

			pushLight: pushLight,
			pushShadow: pushShadow
		};

	}

	function WebGLRenderStates() {

		var renderStates = new WeakMap();

		function onSceneDispose( event ) {

			var scene = event.target;

			scene.removeEventListener( 'dispose', onSceneDispose );

			renderStates.delete( scene );

		}

		function get( scene, camera ) {

			var renderState;

			if ( renderStates.has( scene ) === false ) {

				renderState = new WebGLRenderState();
				renderStates.set( scene, new WeakMap() );
				renderStates.get( scene ).set( camera, renderState );

				scene.addEventListener( 'dispose', onSceneDispose );

			} else {

				if ( renderStates.get( scene ).has( camera ) === false ) {

					renderState = new WebGLRenderState();
					renderStates.get( scene ).set( camera, renderState );

				} else {

					renderState = renderStates.get( scene ).get( camera );

				}

			}

			return renderState;

		}

		function dispose() {

			renderStates = new WeakMap();

		}

		return {
			get: get,
			dispose: dispose
		};

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 * @author bhouston / https://clara.io
	 * @author WestLangley / http://github.com/WestLangley
	 *
	 * parameters = {
	 *
	 *  opacity: <float>,
	 *
	 *  map: new THREE.Texture( <Image> ),
	 *
	 *  alphaMap: new THREE.Texture( <Image> ),
	 *
	 *  displacementMap: new THREE.Texture( <Image> ),
	 *  displacementScale: <float>,
	 *  displacementBias: <float>,
	 *
	 *  wireframe: <boolean>,
	 *  wireframeLinewidth: <float>
	 * }
	 */

	function MeshDepthMaterial( parameters ) {

		Material.call( this );

		this.type = 'MeshDepthMaterial';

		this.depthPacking = BasicDepthPacking;

		this.skinning = false;
		this.morphTargets = false;

		this.map = null;

		this.alphaMap = null;

		this.displacementMap = null;
		this.displacementScale = 1;
		this.displacementBias = 0;

		this.wireframe = false;
		this.wireframeLinewidth = 1;

		this.fog = false;

		this.setValues( parameters );

	}

	MeshDepthMaterial.prototype = Object.create( Material.prototype );
	MeshDepthMaterial.prototype.constructor = MeshDepthMaterial;

	MeshDepthMaterial.prototype.isMeshDepthMaterial = true;

	MeshDepthMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.depthPacking = source.depthPacking;

		this.skinning = source.skinning;
		this.morphTargets = source.morphTargets;

		this.map = source.map;

		this.alphaMap = source.alphaMap;

		this.displacementMap = source.displacementMap;
		this.displacementScale = source.displacementScale;
		this.displacementBias = source.displacementBias;

		this.wireframe = source.wireframe;
		this.wireframeLinewidth = source.wireframeLinewidth;

		return this;

	};

	/**
	 * @author WestLangley / http://github.com/WestLangley
	 *
	 * parameters = {
	 *
	 *  referencePosition: <float>,
	 *  nearDistance: <float>,
	 *  farDistance: <float>,
	 *
	 *  skinning: <bool>,
	 *  morphTargets: <bool>,
	 *
	 *  map: new THREE.Texture( <Image> ),
	 *
	 *  alphaMap: new THREE.Texture( <Image> ),
	 *
	 *  displacementMap: new THREE.Texture( <Image> ),
	 *  displacementScale: <float>,
	 *  displacementBias: <float>
	 *
	 * }
	 */

	function MeshDistanceMaterial( parameters ) {

		Material.call( this );

		this.type = 'MeshDistanceMaterial';

		this.referencePosition = new Vector3();
		this.nearDistance = 1;
		this.farDistance = 1000;

		this.skinning = false;
		this.morphTargets = false;

		this.map = null;

		this.alphaMap = null;

		this.displacementMap = null;
		this.displacementScale = 1;
		this.displacementBias = 0;

		this.fog = false;

		this.setValues( parameters );

	}

	MeshDistanceMaterial.prototype = Object.create( Material.prototype );
	MeshDistanceMaterial.prototype.constructor = MeshDistanceMaterial;

	MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;

	MeshDistanceMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.referencePosition.copy( source.referencePosition );
		this.nearDistance = source.nearDistance;
		this.farDistance = source.farDistance;

		this.skinning = source.skinning;
		this.morphTargets = source.morphTargets;

		this.map = source.map;

		this.alphaMap = source.alphaMap;

		this.displacementMap = source.displacementMap;
		this.displacementScale = source.displacementScale;
		this.displacementBias = source.displacementBias;

		return this;

	};

	var vsm_frag = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include <packing>\nvoid main() {\n  float mean = 0.0;\n  float squared_mean = 0.0;\n\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy  ) / resolution ) );\n  for ( float i = -1.0; i < 1.0 ; i += SAMPLE_RATE) {\n    #ifdef HORIZONAL_PASS\n      vec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( i, 0.0 ) * radius ) / resolution ) );\n      mean += distribution.x;\n      squared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n    #else\n      float depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0,  i )  * radius ) / resolution ) );\n      mean += depth;\n      squared_mean += depth * depth;\n    #endif\n  }\n  mean = mean * HALF_SAMPLE_RATE;\n  squared_mean = squared_mean * HALF_SAMPLE_RATE;\n  float std_dev = sqrt( squared_mean - mean * mean );\n  gl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}";

	var vsm_vert = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}";

	/**
	 * @author alteredq / http://alteredqualia.com/
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLShadowMap( _renderer, _objects, maxTextureSize ) {

		var _frustum = new Frustum(),

			_shadowMapSize = new Vector2(),
			_viewportSize = new Vector2(),

			_viewport = new Vector4(),

			_depthMaterials = [],
			_distanceMaterials = [],

			_materialCache = {};

		var shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide };

		var shadowMaterialVertical = new ShaderMaterial( {

			defines: {
				SAMPLE_RATE: 2.0 / 8.0,
				HALF_SAMPLE_RATE: 1.0 / 8.0
			},

			uniforms: {
				shadow_pass: { value: null },
				resolution: { value: new Vector2() },
				radius: { value: 4.0 }
			},

			vertexShader: vsm_vert,

			fragmentShader: vsm_frag

		} );

		var shadowMaterialHorizonal = shadowMaterialVertical.clone();
		shadowMaterialHorizonal.defines.HORIZONAL_PASS = 1;

		var fullScreenTri = new BufferGeometry();
		fullScreenTri.setAttribute(
			"position",
			new BufferAttribute(
				new Float32Array( [ - 1, - 1, 0.5, 3, - 1, 0.5, - 1, 3, 0.5 ] ),
				3
			)
		);

		var fullScreenMesh = new Mesh( fullScreenTri, shadowMaterialVertical );

		var scope = this;

		this.enabled = false;

		this.autoUpdate = true;
		this.needsUpdate = false;

		this.type = PCFShadowMap;

		this.render = function ( lights, scene, camera ) {

			if ( scope.enabled === false ) { return; }
			if ( scope.autoUpdate === false && scope.needsUpdate === false ) { return; }

			if ( lights.length === 0 ) { return; }

			var currentRenderTarget = _renderer.getRenderTarget();
			var activeCubeFace = _renderer.getActiveCubeFace();
			var activeMipmapLevel = _renderer.getActiveMipmapLevel();

			var _state = _renderer.state;

			// Set GL state for depth map.
			_state.setBlending( NoBlending );
			_state.buffers.color.setClear( 1, 1, 1, 1 );
			_state.buffers.depth.setTest( true );
			_state.setScissorTest( false );

			// render depth map

			for ( var i = 0, il = lights.length; i < il; i ++ ) {

				var light = lights[ i ];
				var shadow = light.shadow;

				if ( shadow === undefined ) {

					console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' );
					continue;

				}

				_shadowMapSize.copy( shadow.mapSize );

				var shadowFrameExtents = shadow.getFrameExtents();

				_shadowMapSize.multiply( shadowFrameExtents );

				_viewportSize.copy( shadow.mapSize );

				if ( _shadowMapSize.x > maxTextureSize || _shadowMapSize.y > maxTextureSize ) {

					if ( _shadowMapSize.x > maxTextureSize ) {

						_viewportSize.x = Math.floor( maxTextureSize / shadowFrameExtents.x );
						_shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x;
						shadow.mapSize.x = _viewportSize.x;

					}

					if ( _shadowMapSize.y > maxTextureSize ) {

						_viewportSize.y = Math.floor( maxTextureSize / shadowFrameExtents.y );
						_shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y;
						shadow.mapSize.y = _viewportSize.y;

					}

				}

				if ( shadow.map === null && ! shadow.isPointLightShadow && this.type === VSMShadowMap ) {

					var pars = { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBAFormat };

					shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
					shadow.map.texture.name = light.name + ".shadowMap";

					shadow.mapPass = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );

					shadow.camera.updateProjectionMatrix();

				}

				if ( shadow.map === null ) {

					var pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat };

					shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
					shadow.map.texture.name = light.name + ".shadowMap";

					shadow.camera.updateProjectionMatrix();

				}

				_renderer.setRenderTarget( shadow.map );
				_renderer.clear();

				var viewportCount = shadow.getViewportCount();

				for ( var vp = 0; vp < viewportCount; vp ++ ) {

					var viewport = shadow.getViewport( vp );

					_viewport.set(
						_viewportSize.x * viewport.x,
						_viewportSize.y * viewport.y,
						_viewportSize.x * viewport.z,
						_viewportSize.y * viewport.w
					);

					_state.viewport( _viewport );

					shadow.updateMatrices( light, vp );

					_frustum = shadow.getFrustum();

					renderObject( scene, camera, shadow.camera, light, this.type );

				}

				// do blur pass for VSM

				if ( ! shadow.isPointLightShadow && this.type === VSMShadowMap ) {

					VSMPass( shadow, camera );

				}

			}

			scope.needsUpdate = false;

			_renderer.setRenderTarget( currentRenderTarget, activeCubeFace, activeMipmapLevel );

		};

		function VSMPass( shadow, camera ) {

			var geometry = _objects.update( fullScreenMesh );

			// vertical pass

			shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture;
			shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize;
			shadowMaterialVertical.uniforms.radius.value = shadow.radius;
			_renderer.setRenderTarget( shadow.mapPass );
			_renderer.clear();
			_renderer.renderBufferDirect( camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null );

			// horizonal pass

			shadowMaterialHorizonal.uniforms.shadow_pass.value = shadow.mapPass.texture;
			shadowMaterialHorizonal.uniforms.resolution.value = shadow.mapSize;
			shadowMaterialHorizonal.uniforms.radius.value = shadow.radius;
			_renderer.setRenderTarget( shadow.map );
			_renderer.clear();
			_renderer.renderBufferDirect( camera, null, geometry, shadowMaterialHorizonal, fullScreenMesh, null );

		}

		function getDepthMaterialVariant( useMorphing, useSkinning, useInstancing ) {

			var index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2;

			var material = _depthMaterials[ index ];

			if ( material === undefined ) {

				material = new MeshDepthMaterial( {

					depthPacking: RGBADepthPacking,

					morphTargets: useMorphing,
					skinning: useSkinning

				} );

				_depthMaterials[ index ] = material;

			}

			return material;

		}

		function getDistanceMaterialVariant( useMorphing, useSkinning, useInstancing ) {

			var index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2;

			var material = _distanceMaterials[ index ];

			if ( material === undefined ) {

				material = new MeshDistanceMaterial( {

					morphTargets: useMorphing,
					skinning: useSkinning

				} );

				_distanceMaterials[ index ] = material;

			}

			return material;

		}

		function getDepthMaterial( object, geometry, material, light, shadowCameraNear, shadowCameraFar, type ) {

			var result = null;

			var getMaterialVariant = getDepthMaterialVariant;
			var customMaterial = object.customDepthMaterial;

			if ( light.isPointLight === true ) {

				getMaterialVariant = getDistanceMaterialVariant;
				customMaterial = object.customDistanceMaterial;

			}

			if ( customMaterial === undefined ) {

				var useMorphing = false;

				if ( material.morphTargets === true ) {

					useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0;

				}

				var useSkinning = false;

				if ( object.isSkinnedMesh === true ) {

					if ( material.skinning === true ) {

						useSkinning = true;

					} else {

						console.warn( 'THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object );

					}

				}

				var useInstancing = object.isInstancedMesh === true;

				result = getMaterialVariant( useMorphing, useSkinning, useInstancing );

			} else {

				result = customMaterial;

			}

			if ( _renderer.localClippingEnabled &&
					material.clipShadows === true &&
					material.clippingPlanes.length !== 0 ) {

				// in this case we need a unique material instance reflecting the
				// appropriate state

				var keyA = result.uuid, keyB = material.uuid;

				var materialsForVariant = _materialCache[ keyA ];

				if ( materialsForVariant === undefined ) {

					materialsForVariant = {};
					_materialCache[ keyA ] = materialsForVariant;

				}

				var cachedMaterial = materialsForVariant[ keyB ];

				if ( cachedMaterial === undefined ) {

					cachedMaterial = result.clone();
					materialsForVariant[ keyB ] = cachedMaterial;

				}

				result = cachedMaterial;

			}

			result.visible = material.visible;
			result.wireframe = material.wireframe;

			if ( type === VSMShadowMap ) {

				result.side = ( material.shadowSide !== null ) ? material.shadowSide : material.side;

			} else {

				result.side = ( material.shadowSide !== null ) ? material.shadowSide : shadowSide[ material.side ];

			}

			result.clipShadows = material.clipShadows;
			result.clippingPlanes = material.clippingPlanes;
			result.clipIntersection = material.clipIntersection;

			result.wireframeLinewidth = material.wireframeLinewidth;
			result.linewidth = material.linewidth;

			if ( light.isPointLight === true && result.isMeshDistanceMaterial === true ) {

				result.referencePosition.setFromMatrixPosition( light.matrixWorld );
				result.nearDistance = shadowCameraNear;
				result.farDistance = shadowCameraFar;

			}

			return result;

		}

		function renderObject( object, camera, shadowCamera, light, type ) {

			if ( object.visible === false ) { return; }

			var visible = object.layers.test( camera.layers );

			if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) {

				if ( ( object.castShadow || ( object.receiveShadow && type === VSMShadowMap ) ) && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) {

					object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld );

					var geometry = _objects.update( object );
					var material = object.material;

					if ( Array.isArray( material ) ) {

						var groups = geometry.groups;

						for ( var k = 0, kl = groups.length; k < kl; k ++ ) {

							var group = groups[ k ];
							var groupMaterial = material[ group.materialIndex ];

							if ( groupMaterial && groupMaterial.visible ) {

								var depthMaterial = getDepthMaterial( object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type );

								_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group );

							}

						}

					} else if ( material.visible ) {

						var depthMaterial = getDepthMaterial( object, geometry, material, light, shadowCamera.near, shadowCamera.far, type );

						_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null );

					}

				}

			}

			var children = object.children;

			for ( var i = 0, l = children.length; i < l; i ++ ) {

				renderObject( children[ i ], camera, shadowCamera, light, type );

			}

		}

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLState( gl, extensions, capabilities ) {

		var isWebGL2 = capabilities.isWebGL2;

		function ColorBuffer() {

			var locked = false;

			var color = new Vector4();
			var currentColorMask = null;
			var currentColorClear = new Vector4( 0, 0, 0, 0 );

			return {

				setMask: function ( colorMask ) {

					if ( currentColorMask !== colorMask && ! locked ) {

						gl.colorMask( colorMask, colorMask, colorMask, colorMask );
						currentColorMask = colorMask;

					}

				},

				setLocked: function ( lock ) {

					locked = lock;

				},

				setClear: function ( r, g, b, a, premultipliedAlpha ) {

					if ( premultipliedAlpha === true ) {

						r *= a; g *= a; b *= a;

					}

					color.set( r, g, b, a );

					if ( currentColorClear.equals( color ) === false ) {

						gl.clearColor( r, g, b, a );
						currentColorClear.copy( color );

					}

				},

				reset: function () {

					locked = false;

					currentColorMask = null;
					currentColorClear.set( - 1, 0, 0, 0 ); // set to invalid state

				}

			};

		}

		function DepthBuffer() {

			var locked = false;

			var currentDepthMask = null;
			var currentDepthFunc = null;
			var currentDepthClear = null;

			return {

				setTest: function ( depthTest ) {

					if ( depthTest ) {

						enable( 2929 );

					} else {

						disable( 2929 );

					}

				},

				setMask: function ( depthMask ) {

					if ( currentDepthMask !== depthMask && ! locked ) {

						gl.depthMask( depthMask );
						currentDepthMask = depthMask;

					}

				},

				setFunc: function ( depthFunc ) {

					if ( currentDepthFunc !== depthFunc ) {

						if ( depthFunc ) {

							switch ( depthFunc ) {

								case NeverDepth:

									gl.depthFunc( 512 );
									break;

								case AlwaysDepth:

									gl.depthFunc( 519 );
									break;

								case LessDepth:

									gl.depthFunc( 513 );
									break;

								case LessEqualDepth:

									gl.depthFunc( 515 );
									break;

								case EqualDepth:

									gl.depthFunc( 514 );
									break;

								case GreaterEqualDepth:

									gl.depthFunc( 518 );
									break;

								case GreaterDepth:

									gl.depthFunc( 516 );
									break;

								case NotEqualDepth:

									gl.depthFunc( 517 );
									break;

								default:

									gl.depthFunc( 515 );

							}

						} else {

							gl.depthFunc( 515 );

						}

						currentDepthFunc = depthFunc;

					}

				},

				setLocked: function ( lock ) {

					locked = lock;

				},

				setClear: function ( depth ) {

					if ( currentDepthClear !== depth ) {

						gl.clearDepth( depth );
						currentDepthClear = depth;

					}

				},

				reset: function () {

					locked = false;

					currentDepthMask = null;
					currentDepthFunc = null;
					currentDepthClear = null;

				}

			};

		}

		function StencilBuffer() {

			var locked = false;

			var currentStencilMask = null;
			var currentStencilFunc = null;
			var currentStencilRef = null;
			var currentStencilFuncMask = null;
			var currentStencilFail = null;
			var currentStencilZFail = null;
			var currentStencilZPass = null;
			var currentStencilClear = null;

			return {

				setTest: function ( stencilTest ) {

					if ( ! locked ) {

						if ( stencilTest ) {

							enable( 2960 );

						} else {

							disable( 2960 );

						}

					}

				},

				setMask: function ( stencilMask ) {

					if ( currentStencilMask !== stencilMask && ! locked ) {

						gl.stencilMask( stencilMask );
						currentStencilMask = stencilMask;

					}

				},

				setFunc: function ( stencilFunc, stencilRef, stencilMask ) {

					if ( currentStencilFunc !== stencilFunc ||
					     currentStencilRef 	!== stencilRef 	||
					     currentStencilFuncMask !== stencilMask ) {

						gl.stencilFunc( stencilFunc, stencilRef, stencilMask );

						currentStencilFunc = stencilFunc;
						currentStencilRef = stencilRef;
						currentStencilFuncMask = stencilMask;

					}

				},

				setOp: function ( stencilFail, stencilZFail, stencilZPass ) {

					if ( currentStencilFail	 !== stencilFail 	||
					     currentStencilZFail !== stencilZFail ||
					     currentStencilZPass !== stencilZPass ) {

						gl.stencilOp( stencilFail, stencilZFail, stencilZPass );

						currentStencilFail = stencilFail;
						currentStencilZFail = stencilZFail;
						currentStencilZPass = stencilZPass;

					}

				},

				setLocked: function ( lock ) {

					locked = lock;

				},

				setClear: function ( stencil ) {

					if ( currentStencilClear !== stencil ) {

						gl.clearStencil( stencil );
						currentStencilClear = stencil;

					}

				},

				reset: function () {

					locked = false;

					currentStencilMask = null;
					currentStencilFunc = null;
					currentStencilRef = null;
					currentStencilFuncMask = null;
					currentStencilFail = null;
					currentStencilZFail = null;
					currentStencilZPass = null;
					currentStencilClear = null;

				}

			};

		}

		//

		var colorBuffer = new ColorBuffer();
		var depthBuffer = new DepthBuffer();
		var stencilBuffer = new StencilBuffer();

		var maxVertexAttributes = gl.getParameter( 34921 );
		var newAttributes = new Uint8Array( maxVertexAttributes );
		var enabledAttributes = new Uint8Array( maxVertexAttributes );
		var attributeDivisors = new Uint8Array( maxVertexAttributes );

		var enabledCapabilities = {};

		var currentProgram = null;

		var currentBlendingEnabled = null;
		var currentBlending = null;
		var currentBlendEquation = null;
		var currentBlendSrc = null;
		var currentBlendDst = null;
		var currentBlendEquationAlpha = null;
		var currentBlendSrcAlpha = null;
		var currentBlendDstAlpha = null;
		var currentPremultipledAlpha = false;

		var currentFlipSided = null;
		var currentCullFace = null;

		var currentLineWidth = null;

		var currentPolygonOffsetFactor = null;
		var currentPolygonOffsetUnits = null;

		var maxTextures = gl.getParameter( 35661 );

		var lineWidthAvailable = false;
		var version = 0;
		var glVersion = gl.getParameter( 7938 );

		if ( glVersion.indexOf( 'WebGL' ) !== - 1 ) {

			version = parseFloat( /^WebGL\ ([0-9])/.exec( glVersion )[ 1 ] );
			lineWidthAvailable = ( version >= 1.0 );

		} else if ( glVersion.indexOf( 'OpenGL ES' ) !== - 1 ) {

			version = parseFloat( /^OpenGL\ ES\ ([0-9])/.exec( glVersion )[ 1 ] );
			lineWidthAvailable = ( version >= 2.0 );

		}

		var currentTextureSlot = null;
		var currentBoundTextures = {};

		var currentScissor = new Vector4();
		var currentViewport = new Vector4();

		function createTexture( type, target, count ) {

			var data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4.
			var texture = gl.createTexture();

			gl.bindTexture( type, texture );
			gl.texParameteri( type, 10241, 9728 );
			gl.texParameteri( type, 10240, 9728 );

			for ( var i = 0; i < count; i ++ ) {

				gl.texImage2D( target + i, 0, 6408, 1, 1, 0, 6408, 5121, data );

			}

			return texture;

		}

		var emptyTextures = {};
		emptyTextures[ 3553 ] = createTexture( 3553, 3553, 1 );
		emptyTextures[ 34067 ] = createTexture( 34067, 34069, 6 );

		// init

		colorBuffer.setClear( 0, 0, 0, 1 );
		depthBuffer.setClear( 1 );
		stencilBuffer.setClear( 0 );

		enable( 2929 );
		depthBuffer.setFunc( LessEqualDepth );

		setFlipSided( false );
		setCullFace( CullFaceBack );
		enable( 2884 );

		setBlending( NoBlending );

		//

		function initAttributes() {

			for ( var i = 0, l = newAttributes.length; i < l; i ++ ) {

				newAttributes[ i ] = 0;

			}

		}

		function enableAttribute( attribute ) {

			enableAttributeAndDivisor( attribute, 0 );

		}

		function enableAttributeAndDivisor( attribute, meshPerAttribute ) {

			newAttributes[ attribute ] = 1;

			if ( enabledAttributes[ attribute ] === 0 ) {

				gl.enableVertexAttribArray( attribute );
				enabledAttributes[ attribute ] = 1;

			}

			if ( attributeDivisors[ attribute ] !== meshPerAttribute ) {

				var extension = isWebGL2 ? gl : extensions.get( 'ANGLE_instanced_arrays' );

				extension[ isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE' ]( attribute, meshPerAttribute );
				attributeDivisors[ attribute ] = meshPerAttribute;

			}

		}

		function disableUnusedAttributes() {

			for ( var i = 0, l = enabledAttributes.length; i !== l; ++ i ) {

				if ( enabledAttributes[ i ] !== newAttributes[ i ] ) {

					gl.disableVertexAttribArray( i );
					enabledAttributes[ i ] = 0;

				}

			}

		}

		function vertexAttribPointer( index, size, type, normalized, stride, offset ) {

			if ( isWebGL2 === true && ( type === 5124 || type === 5125 ) ) {

				gl.vertexAttribIPointer( index, size, type, normalized, stride, offset );

			} else {

				gl.vertexAttribPointer( index, size, type, normalized, stride, offset );

			}

		}

		function enable( id ) {

			if ( enabledCapabilities[ id ] !== true ) {

				gl.enable( id );
				enabledCapabilities[ id ] = true;

			}

		}

		function disable( id ) {

			if ( enabledCapabilities[ id ] !== false ) {

				gl.disable( id );
				enabledCapabilities[ id ] = false;

			}

		}

		function useProgram( program ) {

			if ( currentProgram !== program ) {

				gl.useProgram( program );

				currentProgram = program;

				return true;

			}

			return false;

		}

		var equationToGL = {};
		equationToGL[ AddEquation ] = 32774;
		equationToGL[ SubtractEquation ] = 32778;
		equationToGL[ ReverseSubtractEquation ] = 32779;

		if ( isWebGL2 ) {

			equationToGL[ MinEquation ] = 32775;
			equationToGL[ MaxEquation ] = 32776;

		} else {

			var extension = extensions.get( 'EXT_blend_minmax' );

			if ( extension !== null ) {

				equationToGL[ MinEquation ] = extension.MIN_EXT;
				equationToGL[ MaxEquation ] = extension.MAX_EXT;

			}

		}

		var factorToGL = {};
		factorToGL[ ZeroFactor ] = 0;
		factorToGL[ OneFactor ] = 1;
		factorToGL[ SrcColorFactor ] = 768;
		factorToGL[ SrcAlphaFactor ] = 770;
		factorToGL[ SrcAlphaSaturateFactor ] = 776;
		factorToGL[ DstColorFactor ] = 774;
		factorToGL[ DstAlphaFactor ] = 772;
		factorToGL[ OneMinusSrcColorFactor ] = 769;
		factorToGL[ OneMinusSrcAlphaFactor ] = 771;
		factorToGL[ OneMinusDstColorFactor ] = 775;
		factorToGL[ OneMinusDstAlphaFactor ] = 773;

		function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) {

			if ( blending === NoBlending ) {

				if ( currentBlendingEnabled ) {

					disable( 3042 );
					currentBlendingEnabled = false;

				}

				return;

			}

			if ( ! currentBlendingEnabled ) {

				enable( 3042 );
				currentBlendingEnabled = true;

			}

			if ( blending !== CustomBlending ) {

				if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) {

					if ( currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation ) {

						gl.blendEquation( 32774 );

						currentBlendEquation = AddEquation;
						currentBlendEquationAlpha = AddEquation;

					}

					if ( premultipliedAlpha ) {

						switch ( blending ) {

							case NormalBlending:
								gl.blendFuncSeparate( 1, 771, 1, 771 );
								break;

							case AdditiveBlending:
								gl.blendFunc( 1, 1 );
								break;

							case SubtractiveBlending:
								gl.blendFuncSeparate( 0, 0, 769, 771 );
								break;

							case MultiplyBlending:
								gl.blendFuncSeparate( 0, 768, 0, 770 );
								break;

							default:
								console.error( 'THREE.WebGLState: Invalid blending: ', blending );
								break;

						}

					} else {

						switch ( blending ) {

							case NormalBlending:
								gl.blendFuncSeparate( 770, 771, 1, 771 );
								break;

							case AdditiveBlending:
								gl.blendFunc( 770, 1 );
								break;

							case SubtractiveBlending:
								gl.blendFunc( 0, 769 );
								break;

							case MultiplyBlending:
								gl.blendFunc( 0, 768 );
								break;

							default:
								console.error( 'THREE.WebGLState: Invalid blending: ', blending );
								break;

						}

					}

					currentBlendSrc = null;
					currentBlendDst = null;
					currentBlendSrcAlpha = null;
					currentBlendDstAlpha = null;

					currentBlending = blending;
					currentPremultipledAlpha = premultipliedAlpha;

				}

				return;

			}

			// custom blending

			blendEquationAlpha = blendEquationAlpha || blendEquation;
			blendSrcAlpha = blendSrcAlpha || blendSrc;
			blendDstAlpha = blendDstAlpha || blendDst;

			if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) {

				gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] );

				currentBlendEquation = blendEquation;
				currentBlendEquationAlpha = blendEquationAlpha;

			}

			if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) {

				gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] );

				currentBlendSrc = blendSrc;
				currentBlendDst = blendDst;
				currentBlendSrcAlpha = blendSrcAlpha;
				currentBlendDstAlpha = blendDstAlpha;

			}

			currentBlending = blending;
			currentPremultipledAlpha = null;

		}

		function setMaterial( material, frontFaceCW ) {

			material.side === DoubleSide
				? disable( 2884 )
				: enable( 2884 );

			var flipSided = ( material.side === BackSide );
			if ( frontFaceCW ) { flipSided = ! flipSided; }

			setFlipSided( flipSided );

			( material.blending === NormalBlending && material.transparent === false )
				? setBlending( NoBlending )
				: setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha );

			depthBuffer.setFunc( material.depthFunc );
			depthBuffer.setTest( material.depthTest );
			depthBuffer.setMask( material.depthWrite );
			colorBuffer.setMask( material.colorWrite );

			var stencilWrite = material.stencilWrite;
			stencilBuffer.setTest( stencilWrite );
			if ( stencilWrite ) {

				stencilBuffer.setMask( material.stencilWriteMask );
				stencilBuffer.setFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask );
				stencilBuffer.setOp( material.stencilFail, material.stencilZFail, material.stencilZPass );

			}

			setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );

		}

		//

		function setFlipSided( flipSided ) {

			if ( currentFlipSided !== flipSided ) {

				if ( flipSided ) {

					gl.frontFace( 2304 );

				} else {

					gl.frontFace( 2305 );

				}

				currentFlipSided = flipSided;

			}

		}

		function setCullFace( cullFace ) {

			if ( cullFace !== CullFaceNone ) {

				enable( 2884 );

				if ( cullFace !== currentCullFace ) {

					if ( cullFace === CullFaceBack ) {

						gl.cullFace( 1029 );

					} else if ( cullFace === CullFaceFront ) {

						gl.cullFace( 1028 );

					} else {

						gl.cullFace( 1032 );

					}

				}

			} else {

				disable( 2884 );

			}

			currentCullFace = cullFace;

		}

		function setLineWidth( width ) {

			if ( width !== currentLineWidth ) {

				if ( lineWidthAvailable ) { gl.lineWidth( width ); }

				currentLineWidth = width;

			}

		}

		function setPolygonOffset( polygonOffset, factor, units ) {

			if ( polygonOffset ) {

				enable( 32823 );

				if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) {

					gl.polygonOffset( factor, units );

					currentPolygonOffsetFactor = factor;
					currentPolygonOffsetUnits = units;

				}

			} else {

				disable( 32823 );

			}

		}

		function setScissorTest( scissorTest ) {

			if ( scissorTest ) {

				enable( 3089 );

			} else {

				disable( 3089 );

			}

		}

		// texture

		function activeTexture( webglSlot ) {

			if ( webglSlot === undefined ) { webglSlot = 33984 + maxTextures - 1; }

			if ( currentTextureSlot !== webglSlot ) {

				gl.activeTexture( webglSlot );
				currentTextureSlot = webglSlot;

			}

		}

		function bindTexture( webglType, webglTexture ) {

			if ( currentTextureSlot === null ) {

				activeTexture();

			}

			var boundTexture = currentBoundTextures[ currentTextureSlot ];

			if ( boundTexture === undefined ) {

				boundTexture = { type: undefined, texture: undefined };
				currentBoundTextures[ currentTextureSlot ] = boundTexture;

			}

			if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) {

				gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] );

				boundTexture.type = webglType;
				boundTexture.texture = webglTexture;

			}

		}

		function unbindTexture() {

			var boundTexture = currentBoundTextures[ currentTextureSlot ];

			if ( boundTexture !== undefined && boundTexture.type !== undefined ) {

				gl.bindTexture( boundTexture.type, null );

				boundTexture.type = undefined;
				boundTexture.texture = undefined;

			}

		}

		function compressedTexImage2D() {

			try {

				gl.compressedTexImage2D.apply( gl, arguments );

			} catch ( error ) {

				console.error( 'THREE.WebGLState:', error );

			}

		}

		function texImage2D() {

			try {

				gl.texImage2D.apply( gl, arguments );

			} catch ( error ) {

				console.error( 'THREE.WebGLState:', error );

			}

		}

		function texImage3D() {

			try {

				gl.texImage3D.apply( gl, arguments );

			} catch ( error ) {

				console.error( 'THREE.WebGLState:', error );

			}

		}

		//

		function scissor( scissor ) {

			if ( currentScissor.equals( scissor ) === false ) {

				gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w );
				currentScissor.copy( scissor );

			}

		}

		function viewport( viewport ) {

			if ( currentViewport.equals( viewport ) === false ) {

				gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w );
				currentViewport.copy( viewport );

			}

		}

		//

		function reset() {

			for ( var i = 0; i < enabledAttributes.length; i ++ ) {

				if ( enabledAttributes[ i ] === 1 ) {

					gl.disableVertexAttribArray( i );
					enabledAttributes[ i ] = 0;

				}

			}

			enabledCapabilities = {};

			currentTextureSlot = null;
			currentBoundTextures = {};

			currentProgram = null;

			currentBlending = null;

			currentFlipSided = null;
			currentCullFace = null;

			colorBuffer.reset();
			depthBuffer.reset();
			stencilBuffer.reset();

		}

		return {

			buffers: {
				color: colorBuffer,
				depth: depthBuffer,
				stencil: stencilBuffer
			},

			initAttributes: initAttributes,
			enableAttribute: enableAttribute,
			enableAttributeAndDivisor: enableAttributeAndDivisor,
			disableUnusedAttributes: disableUnusedAttributes,
			vertexAttribPointer: vertexAttribPointer,
			enable: enable,
			disable: disable,

			useProgram: useProgram,

			setBlending: setBlending,
			setMaterial: setMaterial,

			setFlipSided: setFlipSided,
			setCullFace: setCullFace,

			setLineWidth: setLineWidth,
			setPolygonOffset: setPolygonOffset,

			setScissorTest: setScissorTest,

			activeTexture: activeTexture,
			bindTexture: bindTexture,
			unbindTexture: unbindTexture,
			compressedTexImage2D: compressedTexImage2D,
			texImage2D: texImage2D,
			texImage3D: texImage3D,

			scissor: scissor,
			viewport: viewport,

			reset: reset

		};

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) {

		var isWebGL2 = capabilities.isWebGL2;
		var maxTextures = capabilities.maxTextures;
		var maxCubemapSize = capabilities.maxCubemapSize;
		var maxTextureSize = capabilities.maxTextureSize;
		var maxSamples = capabilities.maxSamples;

		var _videoTextures = new WeakMap();
		var _canvas;

		// cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas,
		// also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")!
		// Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d).

		var useOffscreenCanvas = false;

		try {

			useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined'
				&& ( new OffscreenCanvas( 1, 1 ).getContext( "2d" ) ) !== null;

		} catch ( err ) {

			// Ignore any errors

		}

		function createCanvas( width, height ) {

			// Use OffscreenCanvas when available. Specially needed in web workers

			return useOffscreenCanvas ?
				new OffscreenCanvas( width, height ) :
				document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );

		}

		function resizeImage( image, needsPowerOfTwo, needsNewCanvas, maxSize ) {

			var scale = 1;

			// handle case if texture exceeds max size

			if ( image.width > maxSize || image.height > maxSize ) {

				scale = maxSize / Math.max( image.width, image.height );

			}

			// only perform resize if necessary

			if ( scale < 1 || needsPowerOfTwo === true ) {

				// only perform resize for certain image types

				if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) ||
					( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) ||
					( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) {

					var floor = needsPowerOfTwo ? MathUtils.floorPowerOfTwo : Math.floor;

					var width = floor( scale * image.width );
					var height = floor( scale * image.height );

					if ( _canvas === undefined ) { _canvas = createCanvas( width, height ); }

					// cube textures can't reuse the same canvas

					var canvas = needsNewCanvas ? createCanvas( width, height ) : _canvas;

					canvas.width = width;
					canvas.height = height;

					var context = canvas.getContext( '2d' );
					context.drawImage( image, 0, 0, width, height );

					console.warn( 'THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').' );

					return canvas;

				} else {

					if ( 'data' in image ) {

						console.warn( 'THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').' );

					}

					return image;

				}

			}

			return image;

		}

		function isPowerOfTwo( image ) {

			return MathUtils.isPowerOfTwo( image.width ) && MathUtils.isPowerOfTwo( image.height );

		}

		function textureNeedsPowerOfTwo( texture ) {

			if ( isWebGL2 ) { return false; }

			return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) ||
				( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter );

		}

		function textureNeedsGenerateMipmaps( texture, supportsMips ) {

			return texture.generateMipmaps && supportsMips &&
				texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;

		}

		function generateMipmap( target, texture, width, height ) {

			_gl.generateMipmap( target );

			var textureProperties = properties.get( texture );

			// Note: Math.log( x ) * Math.LOG2E used instead of Math.log2( x ) which is not supported by IE11
			textureProperties.__maxMipLevel = Math.log( Math.max( width, height ) ) * Math.LOG2E;

		}

		function getInternalFormat( internalFormatName, glFormat, glType ) {

			if ( isWebGL2 === false ) { return glFormat; }

			if ( internalFormatName !== null ) {

				if ( _gl[ internalFormatName ] !== undefined ) { return _gl[ internalFormatName ]; }

				console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' );

			}

			var internalFormat = glFormat;

			if ( glFormat === 6403 ) {

				if ( glType === 5126 ) { internalFormat = 33326; }
				if ( glType === 5131 ) { internalFormat = 33325; }
				if ( glType === 5121 ) { internalFormat = 33321; }

			}

			if ( glFormat === 6407 ) {

				if ( glType === 5126 ) { internalFormat = 34837; }
				if ( glType === 5131 ) { internalFormat = 34843; }
				if ( glType === 5121 ) { internalFormat = 32849; }

			}

			if ( glFormat === 6408 ) {

				if ( glType === 5126 ) { internalFormat = 34836; }
				if ( glType === 5131 ) { internalFormat = 34842; }
				if ( glType === 5121 ) { internalFormat = 32856; }

			}

			if ( internalFormat === 33325 || internalFormat === 33326 ||
				internalFormat === 34842 || internalFormat === 34836 ) {

				extensions.get( 'EXT_color_buffer_float' );

			}

			return internalFormat;

		}

		// Fallback filters for non-power-of-2 textures

		function filterFallback( f ) {

			if ( f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter ) {

				return 9728;

			}

			return 9729;

		}

		//

		function onTextureDispose( event ) {

			var texture = event.target;

			texture.removeEventListener( 'dispose', onTextureDispose );

			deallocateTexture( texture );

			if ( texture.isVideoTexture ) {

				_videoTextures.delete( texture );

			}

			info.memory.textures --;

		}

		function onRenderTargetDispose( event ) {

			var renderTarget = event.target;

			renderTarget.removeEventListener( 'dispose', onRenderTargetDispose );

			deallocateRenderTarget( renderTarget );

			info.memory.textures --;

		}

		//

		function deallocateTexture( texture ) {

			var textureProperties = properties.get( texture );

			if ( textureProperties.__webglInit === undefined ) { return; }

			_gl.deleteTexture( textureProperties.__webglTexture );

			properties.remove( texture );

		}

		function deallocateRenderTarget( renderTarget ) {

			var renderTargetProperties = properties.get( renderTarget );
			var textureProperties = properties.get( renderTarget.texture );

			if ( ! renderTarget ) { return; }

			if ( textureProperties.__webglTexture !== undefined ) {

				_gl.deleteTexture( textureProperties.__webglTexture );

			}

			if ( renderTarget.depthTexture ) {

				renderTarget.depthTexture.dispose();

			}

			if ( renderTarget.isWebGLCubeRenderTarget ) {

				for ( var i = 0; i < 6; i ++ ) {

					_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] );
					if ( renderTargetProperties.__webglDepthbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); }

				}

			} else {

				_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer );
				if ( renderTargetProperties.__webglDepthbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); }
				if ( renderTargetProperties.__webglMultisampledFramebuffer ) { _gl.deleteFramebuffer( renderTargetProperties.__webglMultisampledFramebuffer ); }
				if ( renderTargetProperties.__webglColorRenderbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglColorRenderbuffer ); }
				if ( renderTargetProperties.__webglDepthRenderbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthRenderbuffer ); }

			}

			properties.remove( renderTarget.texture );
			properties.remove( renderTarget );

		}

		//

		var textureUnits = 0;

		function resetTextureUnits() {

			textureUnits = 0;

		}

		function allocateTextureUnit() {

			var textureUnit = textureUnits;

			if ( textureUnit >= maxTextures ) {

				console.warn( 'THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures );

			}

			textureUnits += 1;

			return textureUnit;

		}

		//

		function setTexture2D( texture, slot ) {

			var textureProperties = properties.get( texture );

			if ( texture.isVideoTexture ) { updateVideoTexture( texture ); }

			if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

				var image = texture.image;

				if ( image === undefined ) {

					console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined' );

				} else if ( image.complete === false ) {

					console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete' );

				} else {

					uploadTexture( textureProperties, texture, slot );
					return;

				}

			}

			state.activeTexture( 33984 + slot );
			state.bindTexture( 3553, textureProperties.__webglTexture );

		}

		function setTexture2DArray( texture, slot ) {

			var textureProperties = properties.get( texture );

			if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

				uploadTexture( textureProperties, texture, slot );
				return;

			}

			state.activeTexture( 33984 + slot );
			state.bindTexture( 35866, textureProperties.__webglTexture );

		}

		function setTexture3D( texture, slot ) {

			var textureProperties = properties.get( texture );

			if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

				uploadTexture( textureProperties, texture, slot );
				return;

			}

			state.activeTexture( 33984 + slot );
			state.bindTexture( 32879, textureProperties.__webglTexture );

		}

		function setTextureCube( texture, slot ) {

			if ( texture.image.length !== 6 ) { return; }

			var textureProperties = properties.get( texture );

			if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

				initTexture( textureProperties, texture );

				state.activeTexture( 33984 + slot );
				state.bindTexture( 34067, textureProperties.__webglTexture );

				_gl.pixelStorei( 37440, texture.flipY );

				var isCompressed = ( texture && ( texture.isCompressedTexture || texture.image[ 0 ].isCompressedTexture ) );
				var isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture );

				var cubeImage = [];

				for ( var i = 0; i < 6; i ++ ) {

					if ( ! isCompressed && ! isDataTexture ) {

						cubeImage[ i ] = resizeImage( texture.image[ i ], false, true, maxCubemapSize );

					} else {

						cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ];

					}

				}

				var image = cubeImage[ 0 ],
					supportsMips = isPowerOfTwo( image ) || isWebGL2,
					glFormat = utils.convert( texture.format ),
					glType = utils.convert( texture.type ),
					glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType );

				setTextureParameters( 34067, texture, supportsMips );

				var mipmaps;

				if ( isCompressed ) {

					for ( var i = 0; i < 6; i ++ ) {

						mipmaps = cubeImage[ i ].mipmaps;

						for ( var j = 0; j < mipmaps.length; j ++ ) {

							var mipmap = mipmaps[ j ];

							if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {

								if ( glFormat !== null ) {

									state.compressedTexImage2D( 34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data );

								} else {

									console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' );

								}

							} else {

								state.texImage2D( 34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

							}

						}

					}

					textureProperties.__maxMipLevel = mipmaps.length - 1;

				} else {

					mipmaps = texture.mipmaps;

					for ( var i = 0; i < 6; i ++ ) {

						if ( isDataTexture ) {

							state.texImage2D( 34069 + i, 0, glInternalFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data );

							for ( var j = 0; j < mipmaps.length; j ++ ) {

								var mipmap = mipmaps[ j ];
								var mipmapImage = mipmap.image[ i ].image;

								state.texImage2D( 34069 + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data );

							}

						} else {

							state.texImage2D( 34069 + i, 0, glInternalFormat, glFormat, glType, cubeImage[ i ] );

							for ( var j = 0; j < mipmaps.length; j ++ ) {

								var mipmap = mipmaps[ j ];

								state.texImage2D( 34069 + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[ i ] );

							}

						}

					}

					textureProperties.__maxMipLevel = mipmaps.length;

				}

				if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) {

					// We assume images for cube map have the same size.
					generateMipmap( 34067, texture, image.width, image.height );

				}

				textureProperties.__version = texture.version;

				if ( texture.onUpdate ) { texture.onUpdate( texture ); }

			} else {

				state.activeTexture( 33984 + slot );
				state.bindTexture( 34067, textureProperties.__webglTexture );

			}

		}

		function setTextureCubeDynamic( texture, slot ) {

			state.activeTexture( 33984 + slot );
			state.bindTexture( 34067, properties.get( texture ).__webglTexture );

		}

		var wrappingToGL = {};
		wrappingToGL[ RepeatWrapping ] = 10497;
		wrappingToGL[ ClampToEdgeWrapping ] = 33071;
		wrappingToGL[ MirroredRepeatWrapping ] = 33648;

		var filterToGL = {};
		filterToGL[ NearestFilter ] = 9728;
		filterToGL[ NearestMipmapNearestFilter ] = 9984;
		filterToGL[ NearestMipmapLinearFilter ] = 9986;
		filterToGL[ LinearFilter ] = 9729;
		filterToGL[ LinearMipmapNearestFilter ] = 9985;
		filterToGL[ LinearMipmapLinearFilter ] = 9987;

		function setTextureParameters( textureType, texture, supportsMips ) {

			if ( supportsMips ) {

				_gl.texParameteri( textureType, 10242, wrappingToGL[ texture.wrapS ] );
				_gl.texParameteri( textureType, 10243, wrappingToGL[ texture.wrapT ] );

				if ( textureType === 32879 || textureType === 35866 ) {

					_gl.texParameteri( textureType, 32882, wrappingToGL[ texture.wrapR ] );

				}

				_gl.texParameteri( textureType, 10240, filterToGL[ texture.magFilter ] );
				_gl.texParameteri( textureType, 10241, filterToGL[ texture.minFilter ] );

			} else {

				_gl.texParameteri( textureType, 10242, 33071 );
				_gl.texParameteri( textureType, 10243, 33071 );

				if ( textureType === 32879 || textureType === 35866 ) {

					_gl.texParameteri( textureType, 32882, 33071 );

				}

				if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) {

					console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.' );

				}

				_gl.texParameteri( textureType, 10240, filterFallback( texture.magFilter ) );
				_gl.texParameteri( textureType, 10241, filterFallback( texture.minFilter ) );

				if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) {

					console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.' );

				}

			}

			var extension = extensions.get( 'EXT_texture_filter_anisotropic' );

			if ( extension ) {

				if ( texture.type === FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) { return; }
				if ( texture.type === HalfFloatType && ( isWebGL2 || extensions.get( 'OES_texture_half_float_linear' ) ) === null ) { return; }

				if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) {

					_gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) );
					properties.get( texture ).__currentAnisotropy = texture.anisotropy;

				}

			}

		}

		function initTexture( textureProperties, texture ) {

			if ( textureProperties.__webglInit === undefined ) {

				textureProperties.__webglInit = true;

				texture.addEventListener( 'dispose', onTextureDispose );

				textureProperties.__webglTexture = _gl.createTexture();

				info.memory.textures ++;

			}

		}

		function uploadTexture( textureProperties, texture, slot ) {

			var textureType = 3553;

			if ( texture.isDataTexture2DArray ) { textureType = 35866; }
			if ( texture.isDataTexture3D ) { textureType = 32879; }

			initTexture( textureProperties, texture );

			state.activeTexture( 33984 + slot );
			state.bindTexture( textureType, textureProperties.__webglTexture );

			_gl.pixelStorei( 37440, texture.flipY );
			_gl.pixelStorei( 37441, texture.premultiplyAlpha );
			_gl.pixelStorei( 3317, texture.unpackAlignment );

			var needsPowerOfTwo = textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( texture.image ) === false;
			var image = resizeImage( texture.image, needsPowerOfTwo, false, maxTextureSize );

			var supportsMips = isPowerOfTwo( image ) || isWebGL2,
				glFormat = utils.convert( texture.format ),
				glType = utils.convert( texture.type ),
				glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType );

			setTextureParameters( textureType, texture, supportsMips );

			var mipmap, mipmaps = texture.mipmaps;

			if ( texture.isDepthTexture ) {

				// populate depth texture with dummy data

				glInternalFormat = 6402;

				if ( isWebGL2 ) {

					if ( texture.type === FloatType ) {

						glInternalFormat = 36012;

					} else if ( texture.type === UnsignedIntType ) {

						glInternalFormat = 33190;

					} else if ( texture.type === UnsignedInt248Type ) {

						glInternalFormat = 35056;

					} else {

						glInternalFormat = 33189; // WebGL2 requires sized internalformat for glTexImage2D

					}

				} else {

					if ( texture.type === FloatType ) {

						console.error( 'WebGLRenderer: Floating point depth texture requires WebGL2.' );

					}

				}

				// validation checks for WebGL 1

				if ( texture.format === DepthFormat && glInternalFormat === 6402 ) {

					// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
					// DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
					// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
					if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) {

						console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' );

						texture.type = UnsignedShortType;
						glType = utils.convert( texture.type );

					}

				}

				if ( texture.format === DepthStencilFormat && glInternalFormat === 6402 ) {

					// Depth stencil textures need the DEPTH_STENCIL internal format
					// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
					glInternalFormat = 34041;

					// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
					// DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
					// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
					if ( texture.type !== UnsignedInt248Type ) {

						console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' );

						texture.type = UnsignedInt248Type;
						glType = utils.convert( texture.type );

					}

				}

				//

				state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null );

			} else if ( texture.isDataTexture ) {

				// use manually created mipmaps if available
				// if there are no manual mipmaps
				// set 0 level mipmap and then use GL to generate other mipmap levels

				if ( mipmaps.length > 0 && supportsMips ) {

					for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {

						mipmap = mipmaps[ i ];
						state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

					}

					texture.generateMipmaps = false;
					textureProperties.__maxMipLevel = mipmaps.length - 1;

				} else {

					state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data );
					textureProperties.__maxMipLevel = 0;

				}

			} else if ( texture.isCompressedTexture ) {

				for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {

					mipmap = mipmaps[ i ];

					if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {

						if ( glFormat !== null ) {

							state.compressedTexImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data );

						} else {

							console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' );

						}

					} else {

						state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

					}

				}

				textureProperties.__maxMipLevel = mipmaps.length - 1;

			} else if ( texture.isDataTexture2DArray ) {

				state.texImage3D( 35866, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data );
				textureProperties.__maxMipLevel = 0;

			} else if ( texture.isDataTexture3D ) {

				state.texImage3D( 32879, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data );
				textureProperties.__maxMipLevel = 0;

			} else {

				// regular Texture (image, video, canvas)

				// use manually created mipmaps if available
				// if there are no manual mipmaps
				// set 0 level mipmap and then use GL to generate other mipmap levels

				if ( mipmaps.length > 0 && supportsMips ) {

					for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {

						mipmap = mipmaps[ i ];
						state.texImage2D( 3553, i, glInternalFormat, glFormat, glType, mipmap );

					}

					texture.generateMipmaps = false;
					textureProperties.__maxMipLevel = mipmaps.length - 1;

				} else {

					state.texImage2D( 3553, 0, glInternalFormat, glFormat, glType, image );
					textureProperties.__maxMipLevel = 0;

				}

			}

			if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) {

				generateMipmap( textureType, texture, image.width, image.height );

			}

			textureProperties.__version = texture.version;

			if ( texture.onUpdate ) { texture.onUpdate( texture ); }

		}

		// Render targets

		// Setup storage for target texture and bind it to correct framebuffer
		function setupFrameBufferTexture( framebuffer, renderTarget, attachment, textureTarget ) {

			var glFormat = utils.convert( renderTarget.texture.format );
			var glType = utils.convert( renderTarget.texture.type );
			var glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType );
			state.texImage2D( textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null );
			_gl.bindFramebuffer( 36160, framebuffer );
			_gl.framebufferTexture2D( 36160, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 );
			_gl.bindFramebuffer( 36160, null );

		}

		// Setup storage for internal depth/stencil buffers and bind to correct framebuffer
		function setupRenderBufferStorage( renderbuffer, renderTarget, isMultisample ) {

			_gl.bindRenderbuffer( 36161, renderbuffer );

			if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) {

				var glInternalFormat = 33189;

				if ( isMultisample ) {

					var depthTexture = renderTarget.depthTexture;

					if ( depthTexture && depthTexture.isDepthTexture ) {

						if ( depthTexture.type === FloatType ) {

							glInternalFormat = 36012;

						} else if ( depthTexture.type === UnsignedIntType ) {

							glInternalFormat = 33190;

						}

					}

					var samples = getRenderTargetSamples( renderTarget );

					_gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height );

				} else {

					_gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height );

				}

				_gl.framebufferRenderbuffer( 36160, 36096, 36161, renderbuffer );

			} else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) {

				if ( isMultisample ) {

					var samples = getRenderTargetSamples( renderTarget );

					_gl.renderbufferStorageMultisample( 36161, samples, 35056, renderTarget.width, renderTarget.height );

				} else {

					_gl.renderbufferStorage( 36161, 34041, renderTarget.width, renderTarget.height );

				}


				_gl.framebufferRenderbuffer( 36160, 33306, 36161, renderbuffer );

			} else {

				var glFormat = utils.convert( renderTarget.texture.format );
				var glType = utils.convert( renderTarget.texture.type );
				var glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType );

				if ( isMultisample ) {

					var samples = getRenderTargetSamples( renderTarget );

					_gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height );

				} else {

					_gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height );

				}

			}

			_gl.bindRenderbuffer( 36161, null );

		}

		// Setup resources for a Depth Texture for a FBO (needs an extension)
		function setupDepthTexture( framebuffer, renderTarget ) {

			var isCube = ( renderTarget && renderTarget.isWebGLCubeRenderTarget );
			if ( isCube ) { throw new Error( 'Depth Texture with cube render targets is not supported' ); }

			_gl.bindFramebuffer( 36160, framebuffer );

			if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) {

				throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' );

			}

			// upload an empty depth texture with framebuffer size
			if ( ! properties.get( renderTarget.depthTexture ).__webglTexture ||
					renderTarget.depthTexture.image.width !== renderTarget.width ||
					renderTarget.depthTexture.image.height !== renderTarget.height ) {

				renderTarget.depthTexture.image.width = renderTarget.width;
				renderTarget.depthTexture.image.height = renderTarget.height;
				renderTarget.depthTexture.needsUpdate = true;

			}

			setTexture2D( renderTarget.depthTexture, 0 );

			var webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture;

			if ( renderTarget.depthTexture.format === DepthFormat ) {

				_gl.framebufferTexture2D( 36160, 36096, 3553, webglDepthTexture, 0 );

			} else if ( renderTarget.depthTexture.format === DepthStencilFormat ) {

				_gl.framebufferTexture2D( 36160, 33306, 3553, webglDepthTexture, 0 );

			} else {

				throw new Error( 'Unknown depthTexture format' );

			}

		}

		// Setup GL resources for a non-texture depth buffer
		function setupDepthRenderbuffer( renderTarget ) {

			var renderTargetProperties = properties.get( renderTarget );

			var isCube = ( renderTarget.isWebGLCubeRenderTarget === true );

			if ( renderTarget.depthTexture ) {

				if ( isCube ) { throw new Error( 'target.depthTexture not supported in Cube render targets' ); }

				setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget );

			} else {

				if ( isCube ) {

					renderTargetProperties.__webglDepthbuffer = [];

					for ( var i = 0; i < 6; i ++ ) {

						_gl.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer[ i ] );
						renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer();
						setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget, false );

					}

				} else {

					_gl.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer );
					renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
					setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget, false );

				}

			}

			_gl.bindFramebuffer( 36160, null );

		}

		// Set up GL resources for the render target
		function setupRenderTarget( renderTarget ) {

			var renderTargetProperties = properties.get( renderTarget );
			var textureProperties = properties.get( renderTarget.texture );

			renderTarget.addEventListener( 'dispose', onRenderTargetDispose );

			textureProperties.__webglTexture = _gl.createTexture();

			info.memory.textures ++;

			var isCube = ( renderTarget.isWebGLCubeRenderTarget === true );
			var isMultisample = ( renderTarget.isWebGLMultisampleRenderTarget === true );
			var supportsMips = isPowerOfTwo( renderTarget ) || isWebGL2;

			// Handles WebGL2 RGBFormat fallback - #18858

			if ( isWebGL2 && renderTarget.texture.format === RGBFormat && ( renderTarget.texture.type === FloatType || renderTarget.texture.type === HalfFloatType ) ) {

				renderTarget.texture.format = RGBAFormat;

				console.warn( 'THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.' );

			}

			// Setup framebuffer

			if ( isCube ) {

				renderTargetProperties.__webglFramebuffer = [];

				for ( var i = 0; i < 6; i ++ ) {

					renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer();

				}

			} else {

				renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();

				if ( isMultisample ) {

					if ( isWebGL2 ) {

						renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer();
						renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer();

						_gl.bindRenderbuffer( 36161, renderTargetProperties.__webglColorRenderbuffer );

						var glFormat = utils.convert( renderTarget.texture.format );
						var glType = utils.convert( renderTarget.texture.type );
						var glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType );
						var samples = getRenderTargetSamples( renderTarget );
						_gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height );

						_gl.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer );
						_gl.framebufferRenderbuffer( 36160, 36064, 36161, renderTargetProperties.__webglColorRenderbuffer );
						_gl.bindRenderbuffer( 36161, null );

						if ( renderTarget.depthBuffer ) {

							renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer();
							setupRenderBufferStorage( renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true );

						}

						_gl.bindFramebuffer( 36160, null );


					} else {

						console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' );

					}

				}

			}

			// Setup color buffer

			if ( isCube ) {

				state.bindTexture( 34067, textureProperties.__webglTexture );
				setTextureParameters( 34067, renderTarget.texture, supportsMips );

				for ( var i = 0; i < 6; i ++ ) {

					setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, 36064, 34069 + i );

				}

				if ( textureNeedsGenerateMipmaps( renderTarget.texture, supportsMips ) ) {

					generateMipmap( 34067, renderTarget.texture, renderTarget.width, renderTarget.height );

				}

				state.bindTexture( 34067, null );

			} else {

				state.bindTexture( 3553, textureProperties.__webglTexture );
				setTextureParameters( 3553, renderTarget.texture, supportsMips );
				setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, 36064, 3553 );

				if ( textureNeedsGenerateMipmaps( renderTarget.texture, supportsMips ) ) {

					generateMipmap( 3553, renderTarget.texture, renderTarget.width, renderTarget.height );

				}

				state.bindTexture( 3553, null );

			}

			// Setup depth and stencil buffers

			if ( renderTarget.depthBuffer ) {

				setupDepthRenderbuffer( renderTarget );

			}

		}

		function updateRenderTargetMipmap( renderTarget ) {

			var texture = renderTarget.texture;
			var supportsMips = isPowerOfTwo( renderTarget ) || isWebGL2;

			if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) {

				var target = renderTarget.isWebGLCubeRenderTarget ? 34067 : 3553;
				var webglTexture = properties.get( texture ).__webglTexture;

				state.bindTexture( target, webglTexture );
				generateMipmap( target, texture, renderTarget.width, renderTarget.height );
				state.bindTexture( target, null );

			}

		}

		function updateMultisampleRenderTarget( renderTarget ) {

			if ( renderTarget.isWebGLMultisampleRenderTarget ) {

				if ( isWebGL2 ) {

					var renderTargetProperties = properties.get( renderTarget );

					_gl.bindFramebuffer( 36008, renderTargetProperties.__webglMultisampledFramebuffer );
					_gl.bindFramebuffer( 36009, renderTargetProperties.__webglFramebuffer );

					var width = renderTarget.width;
					var height = renderTarget.height;
					var mask = 16384;

					if ( renderTarget.depthBuffer ) { mask |= 256; }
					if ( renderTarget.stencilBuffer ) { mask |= 1024; }

					_gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, 9728 );

					_gl.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer ); // see #18905

				} else {

					console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' );

				}

			}

		}

		function getRenderTargetSamples( renderTarget ) {

			return ( isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ) ?
				Math.min( maxSamples, renderTarget.samples ) : 0;

		}

		function updateVideoTexture( texture ) {

			var frame = info.render.frame;

			// Check the last frame we updated the VideoTexture

			if ( _videoTextures.get( texture ) !== frame ) {

				_videoTextures.set( texture, frame );
				texture.update();

			}

		}

		// backwards compatibility

		var warnedTexture2D = false;
		var warnedTextureCube = false;

		function safeSetTexture2D( texture, slot ) {

			if ( texture && texture.isWebGLRenderTarget ) {

				if ( warnedTexture2D === false ) {

					console.warn( "THREE.WebGLTextures.safeSetTexture2D: don't use render targets as textures. Use their .texture property instead." );
					warnedTexture2D = true;

				}

				texture = texture.texture;

			}

			setTexture2D( texture, slot );

		}

		function safeSetTextureCube( texture, slot ) {

			if ( texture && texture.isWebGLCubeRenderTarget ) {

				if ( warnedTextureCube === false ) {

					console.warn( "THREE.WebGLTextures.safeSetTextureCube: don't use cube render targets as textures. Use their .texture property instead." );
					warnedTextureCube = true;

				}

				texture = texture.texture;

			}

			// currently relying on the fact that WebGLCubeRenderTarget.texture is a Texture and NOT a CubeTexture
			// TODO: unify these code paths
			if ( ( texture && texture.isCubeTexture ) ||
				( Array.isArray( texture.image ) && texture.image.length === 6 ) ) {

				// CompressedTexture can have Array in image :/

				// this function alone should take care of cube textures
				setTextureCube( texture, slot );

			} else {

				// assumed: texture property of THREE.WebGLCubeRenderTarget
				setTextureCubeDynamic( texture, slot );

			}

		}

		//

		this.allocateTextureUnit = allocateTextureUnit;
		this.resetTextureUnits = resetTextureUnits;

		this.setTexture2D = setTexture2D;
		this.setTexture2DArray = setTexture2DArray;
		this.setTexture3D = setTexture3D;
		this.setTextureCube = setTextureCube;
		this.setTextureCubeDynamic = setTextureCubeDynamic;
		this.setupRenderTarget = setupRenderTarget;
		this.updateRenderTargetMipmap = updateRenderTargetMipmap;
		this.updateMultisampleRenderTarget = updateMultisampleRenderTarget;

		this.safeSetTexture2D = safeSetTexture2D;
		this.safeSetTextureCube = safeSetTextureCube;

	}

	/**
	 * @author thespite / http://www.twitter.com/thespite
	 */

	function WebGLUtils( gl, extensions, capabilities ) {

		var isWebGL2 = capabilities.isWebGL2;

		function convert( p ) {

			var extension;

			if ( p === UnsignedByteType ) { return 5121; }
			if ( p === UnsignedShort4444Type ) { return 32819; }
			if ( p === UnsignedShort5551Type ) { return 32820; }
			if ( p === UnsignedShort565Type ) { return 33635; }

			if ( p === ByteType ) { return 5120; }
			if ( p === ShortType ) { return 5122; }
			if ( p === UnsignedShortType ) { return 5123; }
			if ( p === IntType ) { return 5124; }
			if ( p === UnsignedIntType ) { return 5125; }
			if ( p === FloatType ) { return 5126; }

			if ( p === HalfFloatType ) {

				if ( isWebGL2 ) { return 5131; }

				extension = extensions.get( 'OES_texture_half_float' );

				if ( extension !== null ) {

					return extension.HALF_FLOAT_OES;

				} else {

					return null;

				}

			}

			if ( p === AlphaFormat ) { return 6406; }
			if ( p === RGBFormat ) { return 6407; }
			if ( p === RGBAFormat ) { return 6408; }
			if ( p === LuminanceFormat ) { return 6409; }
			if ( p === LuminanceAlphaFormat ) { return 6410; }
			if ( p === DepthFormat ) { return 6402; }
			if ( p === DepthStencilFormat ) { return 34041; }
			if ( p === RedFormat ) { return 6403; }

			// WebGL2 formats.

			if ( p === RedIntegerFormat ) { return 36244; }
			if ( p === RGFormat ) { return 33319; }
			if ( p === RGIntegerFormat ) { return 33320; }
			if ( p === RGBIntegerFormat ) { return 36248; }
			if ( p === RGBAIntegerFormat ) { return 36249; }

			if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format ||
				p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) {

				extension = extensions.get( 'WEBGL_compressed_texture_s3tc' );

				if ( extension !== null ) {

					if ( p === RGB_S3TC_DXT1_Format ) { return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; }
					if ( p === RGBA_S3TC_DXT1_Format ) { return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; }
					if ( p === RGBA_S3TC_DXT3_Format ) { return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; }
					if ( p === RGBA_S3TC_DXT5_Format ) { return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; }

				} else {

					return null;

				}

			}

			if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format ||
				p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) {

				extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' );

				if ( extension !== null ) {

					if ( p === RGB_PVRTC_4BPPV1_Format ) { return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; }
					if ( p === RGB_PVRTC_2BPPV1_Format ) { return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; }
					if ( p === RGBA_PVRTC_4BPPV1_Format ) { return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; }
					if ( p === RGBA_PVRTC_2BPPV1_Format ) { return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; }

				} else {

					return null;

				}

			}

			if ( p === RGB_ETC1_Format ) {

				extension = extensions.get( 'WEBGL_compressed_texture_etc1' );

				if ( extension !== null ) {

					return extension.COMPRESSED_RGB_ETC1_WEBGL;

				} else {

					return null;

				}

			}

			if ( p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) {

				extension = extensions.get( 'WEBGL_compressed_texture_etc' );

				if ( extension !== null ) {

					if ( p === RGB_ETC2_Format ) { return extension.COMPRESSED_RGB8_ETC2; }
					if ( p === RGBA_ETC2_EAC_Format ) { return extension.COMPRESSED_RGBA8_ETC2_EAC; }

				}

			}

			if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format ||
				p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format ||
				p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format ||
				p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format ||
				p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ||
				p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format ||
				p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format ||
				p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format ||
				p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format ||
				p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format ) {

				extension = extensions.get( 'WEBGL_compressed_texture_astc' );

				if ( extension !== null ) {

					// TODO Complete?

					return p;

				} else {

					return null;

				}

			}

			if ( p === RGBA_BPTC_Format ) {

				extension = extensions.get( 'EXT_texture_compression_bptc' );

				if ( extension !== null ) {

					// TODO Complete?

					return p;

				} else {

					return null;

				}

			}

			if ( p === UnsignedInt248Type ) {

				if ( isWebGL2 ) { return 34042; }

				extension = extensions.get( 'WEBGL_depth_texture' );

				if ( extension !== null ) {

					return extension.UNSIGNED_INT_24_8_WEBGL;

				} else {

					return null;

				}

			}

		}

		return { convert: convert };

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function ArrayCamera( array ) {

		PerspectiveCamera.call( this );

		this.cameras = array || [];

	}

	ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), {

		constructor: ArrayCamera,

		isArrayCamera: true

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function Group() {

		Object3D.call( this );

		this.type = 'Group';

	}

	Group.prototype = Object.assign( Object.create( Object3D.prototype ), {

		constructor: Group,

		isGroup: true

	} );

	/**
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	function WebXRController() {

		this._targetRay = null;
		this._grip = null;

	}

	Object.assign( WebXRController.prototype, {

		constructor: WebXRController,

		getTargetRaySpace: function () {

			if ( this._targetRay === null ) {

				this._targetRay = new Group();
				this._targetRay.matrixAutoUpdate = false;
				this._targetRay.visible = false;

			}

			return this._targetRay;

		},

		getGripSpace: function () {

			if ( this._grip === null ) {

				this._grip = new Group();
				this._grip.matrixAutoUpdate = false;
				this._grip.visible = false;

			}

			return this._grip;

		},

		dispatchEvent: function ( event ) {

			if ( this._targetRay !== null ) {

				this._targetRay.dispatchEvent( event );

			}

			if ( this._grip !== null ) {

				this._grip.dispatchEvent( event );

			}

			return this;

		},

		disconnect: function ( inputSource ) {

			this.dispatchEvent( { type: 'disconnected', data: inputSource } );

			if ( this._targetRay !== null ) {

				this._targetRay.visible = false;

			}

			if ( this._grip !== null ) {

				this._grip.visible = false;

			}

			return this;

		},

		update: function ( inputSource, frame, referenceSpace ) {

			var inputPose = null;
			var gripPose = null;

			var targetRay = this._targetRay;
			var grip = this._grip;

			if ( inputSource ) {

				if ( targetRay !== null ) {

					inputPose = frame.getPose( inputSource.targetRaySpace, referenceSpace );

					if ( inputPose !== null ) {

						targetRay.matrix.fromArray( inputPose.transform.matrix );
						targetRay.matrix.decompose( targetRay.position, targetRay.rotation, targetRay.scale );

					}

				}

				if ( grip !== null && inputSource.gripSpace ) {

					gripPose = frame.getPose( inputSource.gripSpace, referenceSpace );

					if ( gripPose !== null ) {

						grip.matrix.fromArray( gripPose.transform.matrix );
						grip.matrix.decompose( grip.position, grip.rotation, grip.scale );

					}

				}

			}

			if ( targetRay !== null ) {

				targetRay.visible = ( inputPose !== null );

			}

			if ( grip !== null ) {

				grip.visible = ( gripPose !== null );

			}

			return this;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function WebXRManager( renderer, gl ) {

		var scope = this;

		var session = null;

		var framebufferScaleFactor = 1.0;

		var referenceSpace = null;
		var referenceSpaceType = 'local-floor';

		var pose = null;

		var controllers = [];
		var inputSourcesMap = new Map();

		//

		var cameraL = new PerspectiveCamera();
		cameraL.layers.enable( 1 );
		cameraL.viewport = new Vector4();

		var cameraR = new PerspectiveCamera();
		cameraR.layers.enable( 2 );
		cameraR.viewport = new Vector4();

		var cameras = [ cameraL, cameraR ];

		var cameraVR = new ArrayCamera();
		cameraVR.layers.enable( 1 );
		cameraVR.layers.enable( 2 );

		var _currentDepthNear = null;
		var _currentDepthFar = null;

		//

		this.enabled = false;

		this.isPresenting = false;

		this.getController = function ( index ) {

			var controller = controllers[ index ];

			if ( controller === undefined ) {

				controller = new WebXRController();
				controllers[ index ] = controller;

			}

			return controller.getTargetRaySpace();

		};

		this.getControllerGrip = function ( index ) {

			var controller = controllers[ index ];

			if ( controller === undefined ) {

				controller = new WebXRController();
				controllers[ index ] = controller;

			}

			return controller.getGripSpace();

		};

		//

		function onSessionEvent( event ) {

			var controller = inputSourcesMap.get( event.inputSource );

			if ( controller ) {

				controller.dispatchEvent( { type: event.type } );

			}

		}

		function onSessionEnd() {

			inputSourcesMap.forEach( function ( controller, inputSource ) {

				controller.disconnect( inputSource );

			} );

			inputSourcesMap.clear();

			//

			renderer.setFramebuffer( null );
			renderer.setRenderTarget( renderer.getRenderTarget() ); // Hack #15830
			animation.stop();

			scope.isPresenting = false;

			scope.dispatchEvent( { type: 'sessionend' } );

		}

		function onRequestReferenceSpace( value ) {

			referenceSpace = value;

			animation.setContext( session );
			animation.start();

			scope.isPresenting = true;

			scope.dispatchEvent( { type: 'sessionstart' } );

		}

		this.setFramebufferScaleFactor = function ( value ) {

			framebufferScaleFactor = value;

			if ( scope.isPresenting === true ) {

				console.warn( 'THREE.WebXRManager: Cannot change framebuffer scale while presenting.' );

			}

		};

		this.setReferenceSpaceType = function ( value ) {

			referenceSpaceType = value;

			if ( scope.isPresenting === true ) {

				console.warn( 'THREE.WebXRManager: Cannot change reference space type while presenting.' );

			}

		};

		this.getReferenceSpace = function () {

			return referenceSpace;

		};

		this.getSession = function () {

			return session;

		};

		this.setSession = function ( value ) {

			session = value;

			if ( session !== null ) {

				session.addEventListener( 'select', onSessionEvent );
				session.addEventListener( 'selectstart', onSessionEvent );
				session.addEventListener( 'selectend', onSessionEvent );
				session.addEventListener( 'squeeze', onSessionEvent );
				session.addEventListener( 'squeezestart', onSessionEvent );
				session.addEventListener( 'squeezeend', onSessionEvent );
				session.addEventListener( 'end', onSessionEnd );

				var attributes = gl.getContextAttributes();

				var layerInit = {
					antialias: attributes.antialias,
					alpha: attributes.alpha,
					depth: attributes.depth,
					stencil: attributes.stencil,
					framebufferScaleFactor: framebufferScaleFactor
				};

				// eslint-disable-next-line no-undef
				var baseLayer = new XRWebGLLayer( session, gl, layerInit );

				session.updateRenderState( { baseLayer: baseLayer } );

				session.requestReferenceSpace( referenceSpaceType ).then( onRequestReferenceSpace );

				//

				session.addEventListener( 'inputsourceschange', updateInputSources );

			}

		};

		function updateInputSources( event ) {

			var inputSources = session.inputSources;

			// Assign inputSources to available controllers

			for ( var i = 0; i < controllers.length; i ++ ) {

				inputSourcesMap.set( inputSources[ i ], controllers[ i ] );

			}

			// Notify disconnected

			for ( var i = 0; i < event.removed.length; i ++ ) {

				var inputSource = event.removed[ i ];
				var controller = inputSourcesMap.get( inputSource );

				if ( controller ) {

					controller.dispatchEvent( { type: 'disconnected', data: inputSource } );
					inputSourcesMap.delete( inputSource );

				}

			}

			// Notify connected

			for ( var i = 0; i < event.added.length; i ++ ) {

				var inputSource = event.added[ i ];
				var controller = inputSourcesMap.get( inputSource );

				if ( controller ) {

					controller.dispatchEvent( { type: 'connected', data: inputSource } );

				}

			}

		}

		//

		var cameraLPos = new Vector3();
		var cameraRPos = new Vector3();

		/**
		 * @author jsantell / https://www.jsantell.com/
		 *
		 * Assumes 2 cameras that are parallel and share an X-axis, and that
		 * the cameras' projection and world matrices have already been set.
		 * And that near and far planes are identical for both cameras.
		 * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765
		 */
		function setProjectionFromUnion( camera, cameraL, cameraR ) {

			cameraLPos.setFromMatrixPosition( cameraL.matrixWorld );
			cameraRPos.setFromMatrixPosition( cameraR.matrixWorld );

			var ipd = cameraLPos.distanceTo( cameraRPos );

			var projL = cameraL.projectionMatrix.elements;
			var projR = cameraR.projectionMatrix.elements;

			// VR systems will have identical far and near planes, and
			// most likely identical top and bottom frustum extents.
			// Use the left camera for these values.
			var near = projL[ 14 ] / ( projL[ 10 ] - 1 );
			var far = projL[ 14 ] / ( projL[ 10 ] + 1 );
			var topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ];
			var bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ];

			var leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ];
			var rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ];
			var left = near * leftFov;
			var right = near * rightFov;

			// Calculate the new camera's position offset from the
			// left camera. xOffset should be roughly half `ipd`.
			var zOffset = ipd / ( - leftFov + rightFov );
			var xOffset = zOffset * - leftFov;

			// TODO: Better way to apply this offset?
			cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale );
			camera.translateX( xOffset );
			camera.translateZ( zOffset );
			camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale );
			camera.matrixWorldInverse.getInverse( camera.matrixWorld );

			// Find the union of the frustum values of the cameras and scale
			// the values so that the near plane's position does not change in world space,
			// although must now be relative to the new union camera.
			var near2 = near + zOffset;
			var far2 = far + zOffset;
			var left2 = left - xOffset;
			var right2 = right + ( ipd - xOffset );
			var top2 = topFov * far / far2 * near2;
			var bottom2 = bottomFov * far / far2 * near2;

			camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 );

		}

		function updateCamera( camera, parent ) {

			if ( parent === null ) {

				camera.matrixWorld.copy( camera.matrix );

			} else {

				camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix );

			}

			camera.matrixWorldInverse.getInverse( camera.matrixWorld );

		}

		this.getCamera = function ( camera ) {

			cameraVR.near = cameraR.near = cameraL.near = camera.near;
			cameraVR.far = cameraR.far = cameraL.far = camera.far;

			if ( _currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far ) {

				// Note that the new renderState won't apply until the next frame. See #18320

				session.updateRenderState( {
					depthNear: cameraVR.near,
					depthFar: cameraVR.far
				} );

				_currentDepthNear = cameraVR.near;
				_currentDepthFar = cameraVR.far;

			}

			var parent = camera.parent;
			var cameras = cameraVR.cameras;

			updateCamera( cameraVR, parent );

			for ( var i = 0; i < cameras.length; i ++ ) {

				updateCamera( cameras[ i ], parent );

			}

			// update camera and its children

			camera.matrixWorld.copy( cameraVR.matrixWorld );

			var children = camera.children;

			for ( var i = 0, l = children.length; i < l; i ++ ) {

				children[ i ].updateMatrixWorld( true );

			}

			// update projection matrix for proper view frustum culling

			if ( cameras.length === 2 ) {

				setProjectionFromUnion( cameraVR, cameraL, cameraR );

			} else {

				// assume single camera setup (AR)

				cameraVR.projectionMatrix.copy( cameraL.projectionMatrix );

			}

			return cameraVR;

		};

		// Animation Loop

		var onAnimationFrameCallback = null;

		function onAnimationFrame( time, frame ) {

			pose = frame.getViewerPose( referenceSpace );

			if ( pose !== null ) {

				var views = pose.views;
				var baseLayer = session.renderState.baseLayer;

				renderer.setFramebuffer( baseLayer.framebuffer );

				var cameraVRNeedsUpdate = false;

				// check if it's necessary to rebuild cameraVR's camera list

				if ( views.length !== cameraVR.cameras.length ) {

					cameraVR.cameras.length = 0;
					cameraVRNeedsUpdate = true;

				}

				for ( var i = 0; i < views.length; i ++ ) {

					var view = views[ i ];
					var viewport = baseLayer.getViewport( view );

					var camera = cameras[ i ];
					camera.matrix.fromArray( view.transform.matrix );
					camera.projectionMatrix.fromArray( view.projectionMatrix );
					camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height );

					if ( i === 0 ) {

						cameraVR.matrix.copy( camera.matrix );

					}

					if ( cameraVRNeedsUpdate === true ) {

						cameraVR.cameras.push( camera );

					}

				}

			}

			//

			var inputSources = session.inputSources;

			for ( var i = 0; i < controllers.length; i ++ ) {

				var controller = controllers[ i ];
				var inputSource = inputSources[ i ];

				controller.update( inputSource, frame, referenceSpace );

			}

			if ( onAnimationFrameCallback ) { onAnimationFrameCallback( time, frame ); }

		}

		var animation = new WebGLAnimation();
		animation.setAnimationLoop( onAnimationFrame );

		this.setAnimationLoop = function ( callback ) {

			onAnimationFrameCallback = callback;

		};

		this.dispose = function () {};

	}

	Object.assign( WebXRManager.prototype, EventDispatcher.prototype );

	/**
	 * @author supereggbert / http://www.paulbrunt.co.uk/
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 * @author szimek / https://github.com/szimek/
	 * @author tschw
	 */

	function WebGLRenderer( parameters ) {

		parameters = parameters || {};

		var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ),
			_context = parameters.context !== undefined ? parameters.context : null,

			_alpha = parameters.alpha !== undefined ? parameters.alpha : false,
			_depth = parameters.depth !== undefined ? parameters.depth : true,
			_stencil = parameters.stencil !== undefined ? parameters.stencil : true,
			_antialias = parameters.antialias !== undefined ? parameters.antialias : false,
			_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
			_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,
			_powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default',
			_failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false;

		var currentRenderList = null;
		var currentRenderState = null;

		// public properties

		this.domElement = _canvas;

		// Debug configuration container
		this.debug = {

			/**
			 * Enables error checking and reporting when shader programs are being compiled
			 * @type {boolean}
			 */
			checkShaderErrors: true
		};

		// clearing

		this.autoClear = true;
		this.autoClearColor = true;
		this.autoClearDepth = true;
		this.autoClearStencil = true;

		// scene graph

		this.sortObjects = true;

		// user-defined clipping

		this.clippingPlanes = [];
		this.localClippingEnabled = false;

		// physically based shading

		this.gammaFactor = 2.0;	// for backwards compatibility
		this.outputEncoding = LinearEncoding;

		// physical lights

		this.physicallyCorrectLights = false;

		// tone mapping

		this.toneMapping = NoToneMapping;
		this.toneMappingExposure = 1.0;
		this.toneMappingWhitePoint = 1.0;

		// morphs

		this.maxMorphTargets = 8;
		this.maxMorphNormals = 4;

		// internal properties

		var _this = this,

			_isContextLost = false,

			// internal state cache

			_framebuffer = null,

			_currentActiveCubeFace = 0,
			_currentActiveMipmapLevel = 0,
			_currentRenderTarget = null,
			_currentFramebuffer = null,
			_currentMaterialId = - 1,

			// geometry and program caching

			_currentGeometryProgram = {
				geometry: null,
				program: null,
				wireframe: false
			},

			_currentCamera = null,
			_currentArrayCamera = null,

			_currentViewport = new Vector4(),
			_currentScissor = new Vector4(),
			_currentScissorTest = null,

			//

			_width = _canvas.width,
			_height = _canvas.height,

			_pixelRatio = 1,
			_opaqueSort = null,
			_transparentSort = null,

			_viewport = new Vector4( 0, 0, _width, _height ),
			_scissor = new Vector4( 0, 0, _width, _height ),
			_scissorTest = false,

			// frustum

			_frustum = new Frustum(),

			// clipping

			_clipping = new WebGLClipping(),
			_clippingEnabled = false,
			_localClippingEnabled = false,

			// camera matrices cache

			_projScreenMatrix = new Matrix4(),

			_vector3 = new Vector3();

		function getTargetPixelRatio() {

			return _currentRenderTarget === null ? _pixelRatio : 1;

		}

		// initialize

		var _gl;

		try {

			var contextAttributes = {
				alpha: _alpha,
				depth: _depth,
				stencil: _stencil,
				antialias: _antialias,
				premultipliedAlpha: _premultipliedAlpha,
				preserveDrawingBuffer: _preserveDrawingBuffer,
				powerPreference: _powerPreference,
				failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat,
				xrCompatible: true
			};

			// event listeners must be registered before WebGL context is created, see #12753

			_canvas.addEventListener( 'webglcontextlost', onContextLost, false );
			_canvas.addEventListener( 'webglcontextrestored', onContextRestore, false );

			_gl = _context || _canvas.getContext( 'webgl', contextAttributes ) || _canvas.getContext( 'experimental-webgl', contextAttributes );

			if ( _gl === null ) {

				if ( _canvas.getContext( 'webgl' ) !== null ) {

					throw new Error( 'Error creating WebGL context with your selected attributes.' );

				} else {

					throw new Error( 'Error creating WebGL context.' );

				}

			}

			// Some experimental-webgl implementations do not have getShaderPrecisionFormat

			if ( _gl.getShaderPrecisionFormat === undefined ) {

				_gl.getShaderPrecisionFormat = function () {

					return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 };

				};

			}

		} catch ( error ) {

			console.error( 'THREE.WebGLRenderer: ' + error.message );
			throw error;

		}

		var extensions, capabilities, state, info;
		var properties, textures, attributes, geometries, objects;
		var programCache, renderLists, renderStates;

		var background, morphtargets, bufferRenderer, indexedBufferRenderer;

		var utils;

		function initGLContext() {

			extensions = new WebGLExtensions( _gl );

			capabilities = new WebGLCapabilities( _gl, extensions, parameters );

			if ( capabilities.isWebGL2 === false ) {

				extensions.get( 'WEBGL_depth_texture' );
				extensions.get( 'OES_texture_float' );
				extensions.get( 'OES_texture_half_float' );
				extensions.get( 'OES_texture_half_float_linear' );
				extensions.get( 'OES_standard_derivatives' );
				extensions.get( 'OES_element_index_uint' );
				extensions.get( 'ANGLE_instanced_arrays' );

			}

			extensions.get( 'OES_texture_float_linear' );

			utils = new WebGLUtils( _gl, extensions, capabilities );

			state = new WebGLState( _gl, extensions, capabilities );
			state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() );
			state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() );

			info = new WebGLInfo( _gl );
			properties = new WebGLProperties();
			textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info );
			attributes = new WebGLAttributes( _gl, capabilities );
			geometries = new WebGLGeometries( _gl, attributes, info );
			objects = new WebGLObjects( _gl, geometries, attributes, info );
			morphtargets = new WebGLMorphtargets( _gl );
			programCache = new WebGLPrograms( _this, extensions, capabilities );
			renderLists = new WebGLRenderLists();
			renderStates = new WebGLRenderStates();

			background = new WebGLBackground( _this, state, objects, _premultipliedAlpha );

			bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info, capabilities );
			indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info, capabilities );

			info.programs = programCache.programs;

			_this.capabilities = capabilities;
			_this.extensions = extensions;
			_this.properties = properties;
			_this.renderLists = renderLists;
			_this.state = state;
			_this.info = info;

		}

		initGLContext();

		// xr

		var xr = new WebXRManager( _this, _gl );

		this.xr = xr;

		// shadow map

		var shadowMap = new WebGLShadowMap( _this, objects, capabilities.maxTextureSize );

		this.shadowMap = shadowMap;

		// API

		this.getContext = function () {

			return _gl;

		};

		this.getContextAttributes = function () {

			return _gl.getContextAttributes();

		};

		this.forceContextLoss = function () {

			var extension = extensions.get( 'WEBGL_lose_context' );
			if ( extension ) { extension.loseContext(); }

		};

		this.forceContextRestore = function () {

			var extension = extensions.get( 'WEBGL_lose_context' );
			if ( extension ) { extension.restoreContext(); }

		};

		this.getPixelRatio = function () {

			return _pixelRatio;

		};

		this.setPixelRatio = function ( value ) {

			if ( value === undefined ) { return; }

			_pixelRatio = value;

			this.setSize( _width, _height, false );

		};

		this.getSize = function ( target ) {

			if ( target === undefined ) {

				console.warn( 'WebGLRenderer: .getsize() now requires a Vector2 as an argument' );

				target = new Vector2();

			}

			return target.set( _width, _height );

		};

		this.setSize = function ( width, height, updateStyle ) {

			if ( xr.isPresenting ) {

				console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' );
				return;

			}

			_width = width;
			_height = height;

			_canvas.width = Math.floor( width * _pixelRatio );
			_canvas.height = Math.floor( height * _pixelRatio );

			if ( updateStyle !== false ) {

				_canvas.style.width = width + 'px';
				_canvas.style.height = height + 'px';

			}

			this.setViewport( 0, 0, width, height );

		};

		this.getDrawingBufferSize = function ( target ) {

			if ( target === undefined ) {

				console.warn( 'WebGLRenderer: .getdrawingBufferSize() now requires a Vector2 as an argument' );

				target = new Vector2();

			}

			return target.set( _width * _pixelRatio, _height * _pixelRatio ).floor();

		};

		this.setDrawingBufferSize = function ( width, height, pixelRatio ) {

			_width = width;
			_height = height;

			_pixelRatio = pixelRatio;

			_canvas.width = Math.floor( width * pixelRatio );
			_canvas.height = Math.floor( height * pixelRatio );

			this.setViewport( 0, 0, width, height );

		};

		this.getCurrentViewport = function ( target ) {

			if ( target === undefined ) {

				console.warn( 'WebGLRenderer: .getCurrentViewport() now requires a Vector4 as an argument' );

				target = new Vector4();

			}

			return target.copy( _currentViewport );

		};

		this.getViewport = function ( target ) {

			return target.copy( _viewport );

		};

		this.setViewport = function ( x, y, width, height ) {

			if ( x.isVector4 ) {

				_viewport.set( x.x, x.y, x.z, x.w );

			} else {

				_viewport.set( x, y, width, height );

			}

			state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() );

		};

		this.getScissor = function ( target ) {

			return target.copy( _scissor );

		};

		this.setScissor = function ( x, y, width, height ) {

			if ( x.isVector4 ) {

				_scissor.set( x.x, x.y, x.z, x.w );

			} else {

				_scissor.set( x, y, width, height );

			}

			state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() );

		};

		this.getScissorTest = function () {

			return _scissorTest;

		};

		this.setScissorTest = function ( boolean ) {

			state.setScissorTest( _scissorTest = boolean );

		};

		this.setOpaqueSort = function ( method ) {

			_opaqueSort = method;

		};

		this.setTransparentSort = function ( method ) {

			_transparentSort = method;

		};

		// Clearing

		this.getClearColor = function () {

			return background.getClearColor();

		};

		this.setClearColor = function () {

			background.setClearColor.apply( background, arguments );

		};

		this.getClearAlpha = function () {

			return background.getClearAlpha();

		};

		this.setClearAlpha = function () {

			background.setClearAlpha.apply( background, arguments );

		};

		this.clear = function ( color, depth, stencil ) {

			var bits = 0;

			if ( color === undefined || color ) { bits |= 16384; }
			if ( depth === undefined || depth ) { bits |= 256; }
			if ( stencil === undefined || stencil ) { bits |= 1024; }

			_gl.clear( bits );

		};

		this.clearColor = function () {

			this.clear( true, false, false );

		};

		this.clearDepth = function () {

			this.clear( false, true, false );

		};

		this.clearStencil = function () {

			this.clear( false, false, true );

		};

		//

		this.dispose = function () {

			_canvas.removeEventListener( 'webglcontextlost', onContextLost, false );
			_canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false );

			renderLists.dispose();
			renderStates.dispose();
			properties.dispose();
			objects.dispose();

			xr.dispose();

			animation.stop();

		};

		// Events

		function onContextLost( event ) {

			event.preventDefault();

			console.log( 'THREE.WebGLRenderer: Context Lost.' );

			_isContextLost = true;

		}

		function onContextRestore( /* event */ ) {

			console.log( 'THREE.WebGLRenderer: Context Restored.' );

			_isContextLost = false;

			initGLContext();

		}

		function onMaterialDispose( event ) {

			var material = event.target;

			material.removeEventListener( 'dispose', onMaterialDispose );

			deallocateMaterial( material );

		}

		// Buffer deallocation

		function deallocateMaterial( material ) {

			releaseMaterialProgramReference( material );

			properties.remove( material );

		}


		function releaseMaterialProgramReference( material ) {

			var programInfo = properties.get( material ).program;

			material.program = undefined;

			if ( programInfo !== undefined ) {

				programCache.releaseProgram( programInfo );

			}

		}

		// Buffer rendering

		function renderObjectImmediate( object, program ) {

			object.render( function ( object ) {

				_this.renderBufferImmediate( object, program );

			} );

		}

		this.renderBufferImmediate = function ( object, program ) {

			state.initAttributes();

			var buffers = properties.get( object );

			if ( object.hasPositions && ! buffers.position ) { buffers.position = _gl.createBuffer(); }
			if ( object.hasNormals && ! buffers.normal ) { buffers.normal = _gl.createBuffer(); }
			if ( object.hasUvs && ! buffers.uv ) { buffers.uv = _gl.createBuffer(); }
			if ( object.hasColors && ! buffers.color ) { buffers.color = _gl.createBuffer(); }

			var programAttributes = program.getAttributes();

			if ( object.hasPositions ) {

				_gl.bindBuffer( 34962, buffers.position );
				_gl.bufferData( 34962, object.positionArray, 35048 );

				state.enableAttribute( programAttributes.position );
				_gl.vertexAttribPointer( programAttributes.position, 3, 5126, false, 0, 0 );

			}

			if ( object.hasNormals ) {

				_gl.bindBuffer( 34962, buffers.normal );
				_gl.bufferData( 34962, object.normalArray, 35048 );

				state.enableAttribute( programAttributes.normal );
				_gl.vertexAttribPointer( programAttributes.normal, 3, 5126, false, 0, 0 );

			}

			if ( object.hasUvs ) {

				_gl.bindBuffer( 34962, buffers.uv );
				_gl.bufferData( 34962, object.uvArray, 35048 );

				state.enableAttribute( programAttributes.uv );
				_gl.vertexAttribPointer( programAttributes.uv, 2, 5126, false, 0, 0 );

			}

			if ( object.hasColors ) {

				_gl.bindBuffer( 34962, buffers.color );
				_gl.bufferData( 34962, object.colorArray, 35048 );

				state.enableAttribute( programAttributes.color );
				_gl.vertexAttribPointer( programAttributes.color, 3, 5126, false, 0, 0 );

			}

			state.disableUnusedAttributes();

			_gl.drawArrays( 4, 0, object.count );

			object.count = 0;

		};

		var tempScene = new Scene();

		this.renderBufferDirect = function ( camera, scene, geometry, material, object, group ) {

			if ( scene === null ) { scene = tempScene; } // renderBufferDirect second parameter used to be fog (could be null)

			var frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 );

			var program = setProgram( camera, scene, material, object );

			state.setMaterial( material, frontFaceCW );

			var updateBuffers = false;

			if ( _currentGeometryProgram.geometry !== geometry.id ||
				_currentGeometryProgram.program !== program.id ||
				_currentGeometryProgram.wireframe !== ( material.wireframe === true ) ) {

				_currentGeometryProgram.geometry = geometry.id;
				_currentGeometryProgram.program = program.id;
				_currentGeometryProgram.wireframe = material.wireframe === true;
				updateBuffers = true;

			}

			if ( material.morphTargets || material.morphNormals ) {

				morphtargets.update( object, geometry, material, program );

				updateBuffers = true;

			}

			if ( object.isInstancedMesh === true ) {

				updateBuffers = true;

			}

			//

			var index = geometry.index;
			var position = geometry.attributes.position;

			//

			if ( index === null ) {

				if ( position === undefined || position.count === 0 ) { return; }

			} else if ( index.count === 0 ) {

				return;

			}

			//

			var rangeFactor = 1;

			if ( material.wireframe === true ) {

				index = geometries.getWireframeAttribute( geometry );
				rangeFactor = 2;

			}

			var attribute;
			var renderer = bufferRenderer;

			if ( index !== null ) {

				attribute = attributes.get( index );

				renderer = indexedBufferRenderer;
				renderer.setIndex( attribute );

			}

			if ( updateBuffers ) {

				setupVertexAttributes( object, geometry, material, program );

				if ( index !== null ) {

					_gl.bindBuffer( 34963, attribute.buffer );

				}

			}

			//

			var dataCount = ( index !== null ) ? index.count : position.count;

			var rangeStart = geometry.drawRange.start * rangeFactor;
			var rangeCount = geometry.drawRange.count * rangeFactor;

			var groupStart = group !== null ? group.start * rangeFactor : 0;
			var groupCount = group !== null ? group.count * rangeFactor : Infinity;

			var drawStart = Math.max( rangeStart, groupStart );
			var drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1;

			var drawCount = Math.max( 0, drawEnd - drawStart + 1 );

			if ( drawCount === 0 ) { return; }

			//

			if ( object.isMesh ) {

				if ( material.wireframe === true ) {

					state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() );
					renderer.setMode( 1 );

				} else {

					renderer.setMode( 4 );

				}

			} else if ( object.isLine ) {

				var lineWidth = material.linewidth;

				if ( lineWidth === undefined ) { lineWidth = 1; } // Not using Line*Material

				state.setLineWidth( lineWidth * getTargetPixelRatio() );

				if ( object.isLineSegments ) {

					renderer.setMode( 1 );

				} else if ( object.isLineLoop ) {

					renderer.setMode( 2 );

				} else {

					renderer.setMode( 3 );

				}

			} else if ( object.isPoints ) {

				renderer.setMode( 0 );

			} else if ( object.isSprite ) {

				renderer.setMode( 4 );

			}

			if ( object.isInstancedMesh ) {

				renderer.renderInstances( geometry, drawStart, drawCount, object.count );

			} else if ( geometry.isInstancedBufferGeometry ) {

				renderer.renderInstances( geometry, drawStart, drawCount, geometry.maxInstancedCount );

			} else {

				renderer.render( drawStart, drawCount );

			}

		};

		function setupVertexAttributes( object, geometry, material, program ) {

			if ( capabilities.isWebGL2 === false && ( object.isInstancedMesh || geometry.isInstancedBufferGeometry ) ) {

				if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) { return; }

			}

			state.initAttributes();

			var geometryAttributes = geometry.attributes;

			var programAttributes = program.getAttributes();

			var materialDefaultAttributeValues = material.defaultAttributeValues;

			for ( var name in programAttributes ) {

				var programAttribute = programAttributes[ name ];

				if ( programAttribute >= 0 ) {

					var geometryAttribute = geometryAttributes[ name ];

					if ( geometryAttribute !== undefined ) {

						var normalized = geometryAttribute.normalized;
						var size = geometryAttribute.itemSize;

						var attribute = attributes.get( geometryAttribute );

						// TODO Attribute may not be available on context restore

						if ( attribute === undefined ) { continue; }

						var buffer = attribute.buffer;
						var type = attribute.type;
						var bytesPerElement = attribute.bytesPerElement;

						if ( geometryAttribute.isInterleavedBufferAttribute ) {

							var data = geometryAttribute.data;
							var stride = data.stride;
							var offset = geometryAttribute.offset;

							if ( data && data.isInstancedInterleavedBuffer ) {

								state.enableAttributeAndDivisor( programAttribute, data.meshPerAttribute );

								if ( geometry.maxInstancedCount === undefined ) {

									geometry.maxInstancedCount = data.meshPerAttribute * data.count;

								}

							} else {

								state.enableAttribute( programAttribute );

							}

							_gl.bindBuffer( 34962, buffer );
							state.vertexAttribPointer( programAttribute, size, type, normalized, stride * bytesPerElement, offset * bytesPerElement );

						} else {

							if ( geometryAttribute.isInstancedBufferAttribute ) {

								state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute );

								if ( geometry.maxInstancedCount === undefined ) {

									geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;

								}

							} else {

								state.enableAttribute( programAttribute );

							}

							_gl.bindBuffer( 34962, buffer );
							state.vertexAttribPointer( programAttribute, size, type, normalized, 0, 0 );

						}

					} else if ( name === 'instanceMatrix' ) {

						var attribute = attributes.get( object.instanceMatrix );

						// TODO Attribute may not be available on context restore

						if ( attribute === undefined ) { continue; }

						var buffer = attribute.buffer;
						var type = attribute.type;

						state.enableAttributeAndDivisor( programAttribute + 0, 1 );
						state.enableAttributeAndDivisor( programAttribute + 1, 1 );
						state.enableAttributeAndDivisor( programAttribute + 2, 1 );
						state.enableAttributeAndDivisor( programAttribute + 3, 1 );

						_gl.bindBuffer( 34962, buffer );

						_gl.vertexAttribPointer( programAttribute + 0, 4, type, false, 64, 0 );
						_gl.vertexAttribPointer( programAttribute + 1, 4, type, false, 64, 16 );
						_gl.vertexAttribPointer( programAttribute + 2, 4, type, false, 64, 32 );
						_gl.vertexAttribPointer( programAttribute + 3, 4, type, false, 64, 48 );

					} else if ( materialDefaultAttributeValues !== undefined ) {

						var value = materialDefaultAttributeValues[ name ];

						if ( value !== undefined ) {

							switch ( value.length ) {

								case 2:
									_gl.vertexAttrib2fv( programAttribute, value );
									break;

								case 3:
									_gl.vertexAttrib3fv( programAttribute, value );
									break;

								case 4:
									_gl.vertexAttrib4fv( programAttribute, value );
									break;

								default:
									_gl.vertexAttrib1fv( programAttribute, value );

							}

						}

					}

				}

			}

			state.disableUnusedAttributes();

		}

		// Compile

		this.compile = function ( scene, camera ) {

			currentRenderState = renderStates.get( scene, camera );
			currentRenderState.init();

			scene.traverse( function ( object ) {

				if ( object.isLight ) {

					currentRenderState.pushLight( object );

					if ( object.castShadow ) {

						currentRenderState.pushShadow( object );

					}

				}

			} );

			currentRenderState.setupLights( camera );

			var compiled = {};

			scene.traverse( function ( object ) {

				if ( object.material ) {

					if ( Array.isArray( object.material ) ) {

						for ( var i = 0; i < object.material.length; i ++ ) {

							if ( object.material[ i ].uuid in compiled === false ) {

								initMaterial( object.material[ i ], scene, object );
								compiled[ object.material[ i ].uuid ] = true;

							}

						}

					} else if ( object.material.uuid in compiled === false ) {

						initMaterial( object.material, scene, object );
						compiled[ object.material.uuid ] = true;

					}

				}

			} );

		};

		// Animation Loop

		var onAnimationFrameCallback = null;

		function onAnimationFrame( time ) {

			if ( xr.isPresenting ) { return; }
			if ( onAnimationFrameCallback ) { onAnimationFrameCallback( time ); }

		}

		var animation = new WebGLAnimation();
		animation.setAnimationLoop( onAnimationFrame );

		if ( typeof window !== 'undefined' ) { animation.setContext( window ); }

		this.setAnimationLoop = function ( callback ) {

			onAnimationFrameCallback = callback;
			xr.setAnimationLoop( callback );

			animation.start();

		};

		// Rendering

		this.render = function ( scene, camera ) {

			var renderTarget, forceClear;

			if ( arguments[ 2 ] !== undefined ) {

				console.warn( 'THREE.WebGLRenderer.render(): the renderTarget argument has been removed. Use .setRenderTarget() instead.' );
				renderTarget = arguments[ 2 ];

			}

			if ( arguments[ 3 ] !== undefined ) {

				console.warn( 'THREE.WebGLRenderer.render(): the forceClear argument has been removed. Use .clear() instead.' );
				forceClear = arguments[ 3 ];

			}

			if ( ! ( camera && camera.isCamera ) ) {

				console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' );
				return;

			}

			if ( _isContextLost ) { return; }

			// reset caching for this frame

			_currentGeometryProgram.geometry = null;
			_currentGeometryProgram.program = null;
			_currentGeometryProgram.wireframe = false;
			_currentMaterialId = - 1;
			_currentCamera = null;

			// update scene graph

			if ( scene.autoUpdate === true ) { scene.updateMatrixWorld(); }

			// update camera matrices and frustum

			if ( camera.parent === null ) { camera.updateMatrixWorld(); }

			if ( xr.enabled && xr.isPresenting ) {

				camera = xr.getCamera( camera );

			}

			//
			scene.onBeforeRender( _this, scene, camera, renderTarget || _currentRenderTarget );

			currentRenderState = renderStates.get( scene, camera );
			currentRenderState.init();

			_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
			_frustum.setFromProjectionMatrix( _projScreenMatrix );

			_localClippingEnabled = this.localClippingEnabled;
			_clippingEnabled = _clipping.init( this.clippingPlanes, _localClippingEnabled, camera );

			currentRenderList = renderLists.get( scene, camera );
			currentRenderList.init();

			projectObject( scene, camera, 0, _this.sortObjects );

			currentRenderList.finish();

			if ( _this.sortObjects === true ) {

				currentRenderList.sort( _opaqueSort, _transparentSort );

			}

			//

			if ( _clippingEnabled ) { _clipping.beginShadows(); }

			var shadowsArray = currentRenderState.state.shadowsArray;

			shadowMap.render( shadowsArray, scene, camera );

			currentRenderState.setupLights( camera );

			if ( _clippingEnabled ) { _clipping.endShadows(); }

			//

			if ( this.info.autoReset ) { this.info.reset(); }

			if ( renderTarget !== undefined ) {

				this.setRenderTarget( renderTarget );

			}

			//

			background.render( currentRenderList, scene, camera, forceClear );

			// render scene

			var opaqueObjects = currentRenderList.opaque;
			var transparentObjects = currentRenderList.transparent;

			if ( scene.overrideMaterial ) {

				var overrideMaterial = scene.overrideMaterial;

				if ( opaqueObjects.length ) { renderObjects( opaqueObjects, scene, camera, overrideMaterial ); }
				if ( transparentObjects.length ) { renderObjects( transparentObjects, scene, camera, overrideMaterial ); }

			} else {

				// opaque pass (front-to-back order)

				if ( opaqueObjects.length ) { renderObjects( opaqueObjects, scene, camera ); }

				// transparent pass (back-to-front order)

				if ( transparentObjects.length ) { renderObjects( transparentObjects, scene, camera ); }

			}

			//

			scene.onAfterRender( _this, scene, camera );

			//

			if ( _currentRenderTarget !== null ) {

				// Generate mipmap if we're using any kind of mipmap filtering

				textures.updateRenderTargetMipmap( _currentRenderTarget );

				// resolve multisample renderbuffers to a single-sample texture if necessary

				textures.updateMultisampleRenderTarget( _currentRenderTarget );

			}

			// Ensure depth buffer writing is enabled so it can be cleared on next render

			state.buffers.depth.setTest( true );
			state.buffers.depth.setMask( true );
			state.buffers.color.setMask( true );

			state.setPolygonOffset( false );

			// _gl.finish();

			currentRenderList = null;
			currentRenderState = null;

		};

		function projectObject( object, camera, groupOrder, sortObjects ) {

			if ( object.visible === false ) { return; }

			var visible = object.layers.test( camera.layers );

			if ( visible ) {

				if ( object.isGroup ) {

					groupOrder = object.renderOrder;

				} else if ( object.isLOD ) {

					if ( object.autoUpdate === true ) { object.update( camera ); }

				} else if ( object.isLight ) {

					currentRenderState.pushLight( object );

					if ( object.castShadow ) {

						currentRenderState.pushShadow( object );

					}

				} else if ( object.isSprite ) {

					if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) {

						if ( sortObjects ) {

							_vector3.setFromMatrixPosition( object.matrixWorld )
								.applyMatrix4( _projScreenMatrix );

						}

						var geometry = objects.update( object );
						var material = object.material;

						if ( material.visible ) {

							currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null );

						}

					}

				} else if ( object.isImmediateRenderObject ) {

					if ( sortObjects ) {

						_vector3.setFromMatrixPosition( object.matrixWorld )
							.applyMatrix4( _projScreenMatrix );

					}

					currentRenderList.push( object, null, object.material, groupOrder, _vector3.z, null );

				} else if ( object.isMesh || object.isLine || object.isPoints ) {

					if ( object.isSkinnedMesh ) {

						// update skeleton only once in a frame

						if ( object.skeleton.frame !== info.render.frame ) {

							object.skeleton.update();
							object.skeleton.frame = info.render.frame;

						}

					}

					if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) {

						if ( sortObjects ) {

							_vector3.setFromMatrixPosition( object.matrixWorld )
								.applyMatrix4( _projScreenMatrix );

						}

						var geometry = objects.update( object );
						var material = object.material;

						if ( Array.isArray( material ) ) {

							var groups = geometry.groups;

							for ( var i = 0, l = groups.length; i < l; i ++ ) {

								var group = groups[ i ];
								var groupMaterial = material[ group.materialIndex ];

								if ( groupMaterial && groupMaterial.visible ) {

									currentRenderList.push( object, geometry, groupMaterial, groupOrder, _vector3.z, group );

								}

							}

						} else if ( material.visible ) {

							currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null );

						}

					}

				}

			}

			var children = object.children;

			for ( var i = 0, l = children.length; i < l; i ++ ) {

				projectObject( children[ i ], camera, groupOrder, sortObjects );

			}

		}

		function renderObjects( renderList, scene, camera, overrideMaterial ) {

			for ( var i = 0, l = renderList.length; i < l; i ++ ) {

				var renderItem = renderList[ i ];

				var object = renderItem.object;
				var geometry = renderItem.geometry;
				var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial;
				var group = renderItem.group;

				if ( camera.isArrayCamera ) {

					_currentArrayCamera = camera;

					var cameras = camera.cameras;

					for ( var j = 0, jl = cameras.length; j < jl; j ++ ) {

						var camera2 = cameras[ j ];

						if ( object.layers.test( camera2.layers ) ) {

							state.viewport( _currentViewport.copy( camera2.viewport ) );

							currentRenderState.setupLights( camera2 );

							renderObject( object, scene, camera2, geometry, material, group );

						}

					}

				} else {

					_currentArrayCamera = null;

					renderObject( object, scene, camera, geometry, material, group );

				}

			}

		}

		function renderObject( object, scene, camera, geometry, material, group ) {

			object.onBeforeRender( _this, scene, camera, geometry, material, group );
			currentRenderState = renderStates.get( scene, _currentArrayCamera || camera );

			object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld );
			object.normalMatrix.getNormalMatrix( object.modelViewMatrix );

			if ( object.isImmediateRenderObject ) {

				var program = setProgram( camera, scene, material, object );

				state.setMaterial( material );

				_currentGeometryProgram.geometry = null;
				_currentGeometryProgram.program = null;
				_currentGeometryProgram.wireframe = false;

				renderObjectImmediate( object, program );

			} else {

				_this.renderBufferDirect( camera, scene, geometry, material, object, group );

			}

			object.onAfterRender( _this, scene, camera, geometry, material, group );
			currentRenderState = renderStates.get( scene, _currentArrayCamera || camera );

		}

		function initMaterial( material, scene, object ) {

			var materialProperties = properties.get( material );

			var lights = currentRenderState.state.lights;
			var shadowsArray = currentRenderState.state.shadowsArray;

			var lightsStateVersion = lights.state.version;

			var parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, _clipping.numPlanes, _clipping.numIntersection, object );
			var programCacheKey = programCache.getProgramCacheKey( parameters );

			var program = materialProperties.program;
			var programChange = true;

			if ( program === undefined ) {

				// new material
				material.addEventListener( 'dispose', onMaterialDispose );

			} else if ( program.cacheKey !== programCacheKey ) {

				// changed glsl or parameters
				releaseMaterialProgramReference( material );

			} else if ( materialProperties.lightsStateVersion !== lightsStateVersion ) {

				materialProperties.lightsStateVersion = lightsStateVersion;

				programChange = false;

			} else if ( parameters.shaderID !== undefined ) {

				// same glsl and uniform list
				return;

			} else {

				// only rebuild uniform list
				programChange = false;

			}

			if ( programChange ) {

				program = programCache.acquireProgram( parameters, programCacheKey );

				materialProperties.program = program;
				materialProperties.uniforms = parameters.uniforms;
				materialProperties.outputEncoding = parameters.outputEncoding;
				material.program = program;

			}

			var programAttributes = program.getAttributes();

			if ( material.morphTargets ) {

				material.numSupportedMorphTargets = 0;

				for ( var i = 0; i < _this.maxMorphTargets; i ++ ) {

					if ( programAttributes[ 'morphTarget' + i ] >= 0 ) {

						material.numSupportedMorphTargets ++;

					}

				}

			}

			if ( material.morphNormals ) {

				material.numSupportedMorphNormals = 0;

				for ( var i = 0; i < _this.maxMorphNormals; i ++ ) {

					if ( programAttributes[ 'morphNormal' + i ] >= 0 ) {

						material.numSupportedMorphNormals ++;

					}

				}

			}

			var uniforms = materialProperties.uniforms;

			if ( ! material.isShaderMaterial &&
				! material.isRawShaderMaterial ||
				material.clipping === true ) {

				materialProperties.numClippingPlanes = _clipping.numPlanes;
				materialProperties.numIntersection = _clipping.numIntersection;
				uniforms.clippingPlanes = _clipping.uniform;

			}

			materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;
			materialProperties.fog = scene.fog;

			// store the light setup it was created for

			materialProperties.needsLights = materialNeedsLights( material );
			materialProperties.lightsStateVersion = lightsStateVersion;

			if ( materialProperties.needsLights ) {

				// wire up the material to this renderer's lighting state

				uniforms.ambientLightColor.value = lights.state.ambient;
				uniforms.lightProbe.value = lights.state.probe;
				uniforms.directionalLights.value = lights.state.directional;
				uniforms.directionalLightShadows.value = lights.state.directionalShadow;
				uniforms.spotLights.value = lights.state.spot;
				uniforms.spotLightShadows.value = lights.state.spotShadow;
				uniforms.rectAreaLights.value = lights.state.rectArea;
				uniforms.pointLights.value = lights.state.point;
				uniforms.pointLightShadows.value = lights.state.pointShadow;
				uniforms.hemisphereLights.value = lights.state.hemi;

				uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
				uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
				uniforms.spotShadowMap.value = lights.state.spotShadowMap;
				uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix;
				uniforms.pointShadowMap.value = lights.state.pointShadowMap;
				uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix;
				// TODO (abelnation): add area lights shadow info to uniforms

			}

			var progUniforms = materialProperties.program.getUniforms(),
				uniformsList =
					WebGLUniforms.seqWithValue( progUniforms.seq, uniforms );

			materialProperties.uniformsList = uniformsList;

		}

		function setProgram( camera, scene, material, object ) {

			textures.resetTextureUnits();

			var fog = scene.fog;
			var environment = material.isMeshStandardMaterial ? scene.environment : null;
			var encoding = ( _currentRenderTarget === null ) ? _this.outputEncoding : _currentRenderTarget.texture.encoding;

			var materialProperties = properties.get( material );
			var lights = currentRenderState.state.lights;

			if ( _clippingEnabled ) {

				if ( _localClippingEnabled || camera !== _currentCamera ) {

					var useCache =
						camera === _currentCamera &&
						material.id === _currentMaterialId;

					// we might want to call this function with some ClippingGroup
					// object instead of the material, once it becomes feasible
					// (#8465, #8379)
					_clipping.setState(
						material.clippingPlanes, material.clipIntersection, material.clipShadows,
						camera, materialProperties, useCache );

				}

			}

			if ( material.version === materialProperties.__version ) {

				if ( materialProperties.program === undefined ) {

					initMaterial( material, scene, object );

				} else if ( material.fog && materialProperties.fog !== fog ) {

					initMaterial( material, scene, object );

				} else if ( materialProperties.environment !== environment ) {

					initMaterial( material, scene, object );

				} else if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) {

					initMaterial( material, scene, object );

				} else if ( materialProperties.numClippingPlanes !== undefined &&
					( materialProperties.numClippingPlanes !== _clipping.numPlanes ||
					materialProperties.numIntersection !== _clipping.numIntersection ) ) {

					initMaterial( material, scene, object );

				} else if ( materialProperties.outputEncoding !== encoding ) {

					initMaterial( material, scene, object );

				}

			} else {

				initMaterial( material, scene, object );
				materialProperties.__version = material.version;

			}

			var refreshProgram = false;
			var refreshMaterial = false;
			var refreshLights = false;

			var program = materialProperties.program,
				p_uniforms = program.getUniforms(),
				m_uniforms = materialProperties.uniforms;

			if ( state.useProgram( program.program ) ) {

				refreshProgram = true;
				refreshMaterial = true;
				refreshLights = true;

			}

			if ( material.id !== _currentMaterialId ) {

				_currentMaterialId = material.id;

				refreshMaterial = true;

			}

			if ( refreshProgram || _currentCamera !== camera ) {

				p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix );

				if ( capabilities.logarithmicDepthBuffer ) {

					p_uniforms.setValue( _gl, 'logDepthBufFC',
						2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );

				}

				if ( _currentCamera !== camera ) {

					_currentCamera = camera;

					// lighting uniforms depend on the camera so enforce an update
					// now, in case this material supports lights - or later, when
					// the next material that does gets activated:

					refreshMaterial = true;		// set to true on material change
					refreshLights = true;		// remains set until update done

				}

				// load material specific uniforms
				// (shader material also gets them for the sake of genericity)

				if ( material.isShaderMaterial ||
					material.isMeshPhongMaterial ||
					material.isMeshToonMaterial ||
					material.isMeshStandardMaterial ||
					material.envMap ) {

					var uCamPos = p_uniforms.map.cameraPosition;

					if ( uCamPos !== undefined ) {

						uCamPos.setValue( _gl,
							_vector3.setFromMatrixPosition( camera.matrixWorld ) );

					}

				}

				if ( material.isMeshPhongMaterial ||
					material.isMeshToonMaterial ||
					material.isMeshLambertMaterial ||
					material.isMeshBasicMaterial ||
					material.isMeshStandardMaterial ||
					material.isShaderMaterial ) {

					p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true );

				}

				if ( material.isMeshPhongMaterial ||
					material.isMeshToonMaterial ||
					material.isMeshLambertMaterial ||
					material.isMeshBasicMaterial ||
					material.isMeshStandardMaterial ||
					material.isShaderMaterial ||
					material.skinning ) {

					p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse );

				}

			}

			// skinning uniforms must be set even if material didn't change
			// auto-setting of texture unit for bone texture must go before other textures
			// otherwise textures used for skinning can take over texture units reserved for other material textures

			if ( material.skinning ) {

				p_uniforms.setOptional( _gl, object, 'bindMatrix' );
				p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' );

				var skeleton = object.skeleton;

				if ( skeleton ) {

					var bones = skeleton.bones;

					if ( capabilities.floatVertexTextures ) {

						if ( skeleton.boneTexture === undefined ) {

							// layout (1 matrix = 4 pixels)
							//      RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
							//  with  8x8  pixel texture max   16 bones * 4 pixels =  (8 * 8)
							//       16x16 pixel texture max   64 bones * 4 pixels = (16 * 16)
							//       32x32 pixel texture max  256 bones * 4 pixels = (32 * 32)
							//       64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)


							var size = Math.sqrt( bones.length * 4 ); // 4 pixels needed for 1 matrix
							size = MathUtils.ceilPowerOfTwo( size );
							size = Math.max( size, 4 );

							var boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel
							boneMatrices.set( skeleton.boneMatrices ); // copy current values

							var boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType );

							skeleton.boneMatrices = boneMatrices;
							skeleton.boneTexture = boneTexture;
							skeleton.boneTextureSize = size;

						}

						p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures );
						p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize );

					} else {

						p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' );

					}

				}

			}

			if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) {

				materialProperties.receiveShadow = object.receiveShadow;
				p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow );

			}

			if ( refreshMaterial ) {

				p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure );
				p_uniforms.setValue( _gl, 'toneMappingWhitePoint', _this.toneMappingWhitePoint );

				if ( materialProperties.needsLights ) {

					// the current material requires lighting info

					// note: all lighting uniforms are always set correctly
					// they simply reference the renderer's state for their
					// values
					//
					// use the current material's .needsUpdate flags to set
					// the GL state when required

					markUniformsLightsNeedsUpdate( m_uniforms, refreshLights );

				}

				// refresh uniforms common to several materials

				if ( fog && material.fog ) {

					refreshUniformsFog( m_uniforms, fog );

				}

				if ( material.isMeshBasicMaterial ) {

					refreshUniformsCommon( m_uniforms, material );

				} else if ( material.isMeshLambertMaterial ) {

					refreshUniformsCommon( m_uniforms, material );
					refreshUniformsLambert( m_uniforms, material );

				} else if ( material.isMeshToonMaterial ) {

					refreshUniformsCommon( m_uniforms, material );
					refreshUniformsToon( m_uniforms, material );

				} else if ( material.isMeshPhongMaterial ) {

					refreshUniformsCommon( m_uniforms, material );
					refreshUniformsPhong( m_uniforms, material );

				} else if ( material.isMeshStandardMaterial ) {

					refreshUniformsCommon( m_uniforms, material, environment );

					if ( material.isMeshPhysicalMaterial ) {

						refreshUniformsPhysical( m_uniforms, material, environment );

					} else {

						refreshUniformsStandard( m_uniforms, material, environment );

					}

				} else if ( material.isMeshMatcapMaterial ) {

					refreshUniformsCommon( m_uniforms, material );
					refreshUniformsMatcap( m_uniforms, material );

				} else if ( material.isMeshDepthMaterial ) {

					refreshUniformsCommon( m_uniforms, material );
					refreshUniformsDepth( m_uniforms, material );

				} else if ( material.isMeshDistanceMaterial ) {

					refreshUniformsCommon( m_uniforms, material );
					refreshUniformsDistance( m_uniforms, material );

				} else if ( material.isMeshNormalMaterial ) {

					refreshUniformsCommon( m_uniforms, material );
					refreshUniformsNormal( m_uniforms, material );

				} else if ( material.isLineBasicMaterial ) {

					refreshUniformsLine( m_uniforms, material );

					if ( material.isLineDashedMaterial ) {

						refreshUniformsDash( m_uniforms, material );

					}

				} else if ( material.isPointsMaterial ) {

					refreshUniformsPoints( m_uniforms, material );

				} else if ( material.isSpriteMaterial ) {

					refreshUniformsSprites( m_uniforms, material );

				} else if ( material.isShadowMaterial ) {

					m_uniforms.color.value.copy( material.color );
					m_uniforms.opacity.value = material.opacity;

				}

				// RectAreaLight Texture
				// TODO (mrdoob): Find a nicer implementation

				if ( m_uniforms.ltc_1 !== undefined ) { m_uniforms.ltc_1.value = UniformsLib.LTC_1; }
				if ( m_uniforms.ltc_2 !== undefined ) { m_uniforms.ltc_2.value = UniformsLib.LTC_2; }

				WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures );

				if ( material.isShaderMaterial ) {

					material.uniformsNeedUpdate = false; // #15581

				}

			}

			if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) {

				WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures );
				material.uniformsNeedUpdate = false;

			}

			if ( material.isSpriteMaterial ) {

				p_uniforms.setValue( _gl, 'center', object.center );

			}

			// common matrices

			p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix );
			p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix );
			p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld );

			return program;

		}

		// Uniforms (refresh uniforms objects)

		function refreshUniformsCommon( uniforms, material, environment ) {

			uniforms.opacity.value = material.opacity;

			if ( material.color ) {

				uniforms.diffuse.value.copy( material.color );

			}

			if ( material.emissive ) {

				uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity );

			}

			if ( material.map ) {

				uniforms.map.value = material.map;

			}

			if ( material.alphaMap ) {

				uniforms.alphaMap.value = material.alphaMap;

			}

			if ( material.specularMap ) {

				uniforms.specularMap.value = material.specularMap;

			}

			var envMap = material.envMap || environment;

			if ( envMap ) {

				uniforms.envMap.value = envMap;

				uniforms.flipEnvMap.value = envMap.isCubeTexture ? - 1 : 1;

				uniforms.reflectivity.value = material.reflectivity;
				uniforms.refractionRatio.value = material.refractionRatio;

				uniforms.maxMipLevel.value = properties.get( envMap ).__maxMipLevel;

			}

			if ( material.lightMap ) {

				uniforms.lightMap.value = material.lightMap;
				uniforms.lightMapIntensity.value = material.lightMapIntensity;

			}

			if ( material.aoMap ) {

				uniforms.aoMap.value = material.aoMap;
				uniforms.aoMapIntensity.value = material.aoMapIntensity;

			}

			// uv repeat and offset setting priorities
			// 1. color map
			// 2. specular map
			// 3. normal map
			// 4. bump map
			// 5. alpha map
			// 6. emissive map

			var uvScaleMap;

			if ( material.map ) {

				uvScaleMap = material.map;

			} else if ( material.specularMap ) {

				uvScaleMap = material.specularMap;

			} else if ( material.displacementMap ) {

				uvScaleMap = material.displacementMap;

			} else if ( material.normalMap ) {

				uvScaleMap = material.normalMap;

			} else if ( material.bumpMap ) {

				uvScaleMap = material.bumpMap;

			} else if ( material.roughnessMap ) {

				uvScaleMap = material.roughnessMap;

			} else if ( material.metalnessMap ) {

				uvScaleMap = material.metalnessMap;

			} else if ( material.alphaMap ) {

				uvScaleMap = material.alphaMap;

			} else if ( material.emissiveMap ) {

				uvScaleMap = material.emissiveMap;

			}

			if ( uvScaleMap !== undefined ) {

				// backwards compatibility
				if ( uvScaleMap.isWebGLRenderTarget ) {

					uvScaleMap = uvScaleMap.texture;

				}

				if ( uvScaleMap.matrixAutoUpdate === true ) {

					uvScaleMap.updateMatrix();

				}

				uniforms.uvTransform.value.copy( uvScaleMap.matrix );

			}

			// uv repeat and offset setting priorities for uv2
			// 1. ao map
			// 2. light map

			var uv2ScaleMap;

			if ( material.aoMap ) {

				uv2ScaleMap = material.aoMap;

			} else if ( material.lightMap ) {

				uv2ScaleMap = material.lightMap;

			}

			if ( uv2ScaleMap !== undefined ) {

				// backwards compatibility
				if ( uv2ScaleMap.isWebGLRenderTarget ) {

					uv2ScaleMap = uv2ScaleMap.texture;

				}

				if ( uv2ScaleMap.matrixAutoUpdate === true ) {

					uv2ScaleMap.updateMatrix();

				}

				uniforms.uv2Transform.value.copy( uv2ScaleMap.matrix );

			}

		}

		function refreshUniformsLine( uniforms, material ) {

			uniforms.diffuse.value.copy( material.color );
			uniforms.opacity.value = material.opacity;

		}

		function refreshUniformsDash( uniforms, material ) {

			uniforms.dashSize.value = material.dashSize;
			uniforms.totalSize.value = material.dashSize + material.gapSize;
			uniforms.scale.value = material.scale;

		}

		function refreshUniformsPoints( uniforms, material ) {

			uniforms.diffuse.value.copy( material.color );
			uniforms.opacity.value = material.opacity;
			uniforms.size.value = material.size * _pixelRatio;
			uniforms.scale.value = _height * 0.5;

			if ( material.map ) {

				uniforms.map.value = material.map;

			}

			if ( material.alphaMap ) {

				uniforms.alphaMap.value = material.alphaMap;

			}

			// uv repeat and offset setting priorities
			// 1. color map
			// 2. alpha map

			var uvScaleMap;

			if ( material.map ) {

				uvScaleMap = material.map;

			} else if ( material.alphaMap ) {

				uvScaleMap = material.alphaMap;

			}

			if ( uvScaleMap !== undefined ) {

				if ( uvScaleMap.matrixAutoUpdate === true ) {

					uvScaleMap.updateMatrix();

				}

				uniforms.uvTransform.value.copy( uvScaleMap.matrix );

			}

		}

		function refreshUniformsSprites( uniforms, material ) {

			uniforms.diffuse.value.copy( material.color );
			uniforms.opacity.value = material.opacity;
			uniforms.rotation.value = material.rotation;

			if ( material.map ) {

				uniforms.map.value = material.map;

			}

			if ( material.alphaMap ) {

				uniforms.alphaMap.value = material.alphaMap;

			}

			// uv repeat and offset setting priorities
			// 1. color map
			// 2. alpha map

			var uvScaleMap;

			if ( material.map ) {

				uvScaleMap = material.map;

			} else if ( material.alphaMap ) {

				uvScaleMap = material.alphaMap;

			}

			if ( uvScaleMap !== undefined ) {

				if ( uvScaleMap.matrixAutoUpdate === true ) {

					uvScaleMap.updateMatrix();

				}

				uniforms.uvTransform.value.copy( uvScaleMap.matrix );

			}

		}

		function refreshUniformsFog( uniforms, fog ) {

			uniforms.fogColor.value.copy( fog.color );

			if ( fog.isFog ) {

				uniforms.fogNear.value = fog.near;
				uniforms.fogFar.value = fog.far;

			} else if ( fog.isFogExp2 ) {

				uniforms.fogDensity.value = fog.density;

			}

		}

		function refreshUniformsLambert( uniforms, material ) {

			if ( material.emissiveMap ) {

				uniforms.emissiveMap.value = material.emissiveMap;

			}

		}

		function refreshUniformsPhong( uniforms, material ) {

			uniforms.specular.value.copy( material.specular );
			uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 )

			if ( material.emissiveMap ) {

				uniforms.emissiveMap.value = material.emissiveMap;

			}

			if ( material.bumpMap ) {

				uniforms.bumpMap.value = material.bumpMap;
				uniforms.bumpScale.value = material.bumpScale;
				if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; }

			}

			if ( material.normalMap ) {

				uniforms.normalMap.value = material.normalMap;
				uniforms.normalScale.value.copy( material.normalScale );
				if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); }

			}

			if ( material.displacementMap ) {

				uniforms.displacementMap.value = material.displacementMap;
				uniforms.displacementScale.value = material.displacementScale;
				uniforms.displacementBias.value = material.displacementBias;

			}

		}

		function refreshUniformsToon( uniforms, material ) {

			uniforms.specular.value.copy( material.specular );
			uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 )

			if ( material.gradientMap ) {

				uniforms.gradientMap.value = material.gradientMap;

			}

			if ( material.emissiveMap ) {

				uniforms.emissiveMap.value = material.emissiveMap;

			}

			if ( material.bumpMap ) {

				uniforms.bumpMap.value = material.bumpMap;
				uniforms.bumpScale.value = material.bumpScale;
				if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; }

			}

			if ( material.normalMap ) {

				uniforms.normalMap.value = material.normalMap;
				uniforms.normalScale.value.copy( material.normalScale );
				if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); }

			}

			if ( material.displacementMap ) {

				uniforms.displacementMap.value = material.displacementMap;
				uniforms.displacementScale.value = material.displacementScale;
				uniforms.displacementBias.value = material.displacementBias;

			}

		}

		function refreshUniformsStandard( uniforms, material, environment ) {

			uniforms.roughness.value = material.roughness;
			uniforms.metalness.value = material.metalness;

			if ( material.roughnessMap ) {

				uniforms.roughnessMap.value = material.roughnessMap;

			}

			if ( material.metalnessMap ) {

				uniforms.metalnessMap.value = material.metalnessMap;

			}

			if ( material.emissiveMap ) {

				uniforms.emissiveMap.value = material.emissiveMap;

			}

			if ( material.bumpMap ) {

				uniforms.bumpMap.value = material.bumpMap;
				uniforms.bumpScale.value = material.bumpScale;
				if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; }

			}

			if ( material.normalMap ) {

				uniforms.normalMap.value = material.normalMap;
				uniforms.normalScale.value.copy( material.normalScale );
				if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); }

			}

			if ( material.displacementMap ) {

				uniforms.displacementMap.value = material.displacementMap;
				uniforms.displacementScale.value = material.displacementScale;
				uniforms.displacementBias.value = material.displacementBias;

			}

			if ( material.envMap || environment ) {

				//uniforms.envMap.value = material.envMap; // part of uniforms common
				uniforms.envMapIntensity.value = material.envMapIntensity;

			}

		}

		function refreshUniformsPhysical( uniforms, material, environment ) {

			refreshUniformsStandard( uniforms, material, environment );

			uniforms.reflectivity.value = material.reflectivity; // also part of uniforms common

			uniforms.clearcoat.value = material.clearcoat;
			uniforms.clearcoatRoughness.value = material.clearcoatRoughness;
			if ( material.sheen ) { uniforms.sheen.value.copy( material.sheen ); }

			if ( material.clearcoatMap ) {

				uniforms.clearcoatMap.value = material.clearcoatMap;

			}

			if ( material.clearcoatRoughnessMap ) {

				uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap;

			}

			if ( material.clearcoatNormalMap ) {

				uniforms.clearcoatNormalScale.value.copy( material.clearcoatNormalScale );
				uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap;

				if ( material.side === BackSide ) {

					uniforms.clearcoatNormalScale.value.negate();

				}

			}

			uniforms.transparency.value = material.transparency;

		}

		function refreshUniformsMatcap( uniforms, material ) {

			if ( material.matcap ) {

				uniforms.matcap.value = material.matcap;

			}

			if ( material.bumpMap ) {

				uniforms.bumpMap.value = material.bumpMap;
				uniforms.bumpScale.value = material.bumpScale;
				if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; }

			}

			if ( material.normalMap ) {

				uniforms.normalMap.value = material.normalMap;
				uniforms.normalScale.value.copy( material.normalScale );
				if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); }

			}

			if ( material.displacementMap ) {

				uniforms.displacementMap.value = material.displacementMap;
				uniforms.displacementScale.value = material.displacementScale;
				uniforms.displacementBias.value = material.displacementBias;

			}

		}

		function refreshUniformsDepth( uniforms, material ) {

			if ( material.displacementMap ) {

				uniforms.displacementMap.value = material.displacementMap;
				uniforms.displacementScale.value = material.displacementScale;
				uniforms.displacementBias.value = material.displacementBias;

			}

		}

		function refreshUniformsDistance( uniforms, material ) {

			if ( material.displacementMap ) {

				uniforms.displacementMap.value = material.displacementMap;
				uniforms.displacementScale.value = material.displacementScale;
				uniforms.displacementBias.value = material.displacementBias;

			}

			uniforms.referencePosition.value.copy( material.referencePosition );
			uniforms.nearDistance.value = material.nearDistance;
			uniforms.farDistance.value = material.farDistance;

		}

		function refreshUniformsNormal( uniforms, material ) {

			if ( material.bumpMap ) {

				uniforms.bumpMap.value = material.bumpMap;
				uniforms.bumpScale.value = material.bumpScale;
				if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; }

			}

			if ( material.normalMap ) {

				uniforms.normalMap.value = material.normalMap;
				uniforms.normalScale.value.copy( material.normalScale );
				if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); }

			}

			if ( material.displacementMap ) {

				uniforms.displacementMap.value = material.displacementMap;
				uniforms.displacementScale.value = material.displacementScale;
				uniforms.displacementBias.value = material.displacementBias;

			}

		}

		// If uniforms are marked as clean, they don't need to be loaded to the GPU.

		function markUniformsLightsNeedsUpdate( uniforms, value ) {

			uniforms.ambientLightColor.needsUpdate = value;
			uniforms.lightProbe.needsUpdate = value;

			uniforms.directionalLights.needsUpdate = value;
			uniforms.directionalLightShadows.needsUpdate = value;
			uniforms.pointLights.needsUpdate = value;
			uniforms.pointLightShadows.needsUpdate = value;
			uniforms.spotLights.needsUpdate = value;
			uniforms.spotLightShadows.needsUpdate = value;
			uniforms.rectAreaLights.needsUpdate = value;
			uniforms.hemisphereLights.needsUpdate = value;

		}

		function materialNeedsLights( material ) {

			return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial ||
				material.isMeshStandardMaterial || material.isShadowMaterial ||
				( material.isShaderMaterial && material.lights === true );

		}

		//
		this.setFramebuffer = function ( value ) {

			if ( _framebuffer !== value && _currentRenderTarget === null ) { _gl.bindFramebuffer( 36160, value ); }

			_framebuffer = value;

		};

		this.getActiveCubeFace = function () {

			return _currentActiveCubeFace;

		};

		this.getActiveMipmapLevel = function () {

			return _currentActiveMipmapLevel;

		};

		this.getRenderTarget = function () {

			return _currentRenderTarget;

		};

		this.setRenderTarget = function ( renderTarget, activeCubeFace, activeMipmapLevel ) {

			_currentRenderTarget = renderTarget;
			_currentActiveCubeFace = activeCubeFace;
			_currentActiveMipmapLevel = activeMipmapLevel;

			if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) {

				textures.setupRenderTarget( renderTarget );

			}

			var framebuffer = _framebuffer;
			var isCube = false;

			if ( renderTarget ) {

				var __webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer;

				if ( renderTarget.isWebGLCubeRenderTarget ) {

					framebuffer = __webglFramebuffer[ activeCubeFace || 0 ];
					isCube = true;

				} else if ( renderTarget.isWebGLMultisampleRenderTarget ) {

					framebuffer = properties.get( renderTarget ).__webglMultisampledFramebuffer;

				} else {

					framebuffer = __webglFramebuffer;

				}

				_currentViewport.copy( renderTarget.viewport );
				_currentScissor.copy( renderTarget.scissor );
				_currentScissorTest = renderTarget.scissorTest;

			} else {

				_currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor();
				_currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor();
				_currentScissorTest = _scissorTest;

			}

			if ( _currentFramebuffer !== framebuffer ) {

				_gl.bindFramebuffer( 36160, framebuffer );
				_currentFramebuffer = framebuffer;

			}

			state.viewport( _currentViewport );
			state.scissor( _currentScissor );
			state.setScissorTest( _currentScissorTest );

			if ( isCube ) {

				var textureProperties = properties.get( renderTarget.texture );
				_gl.framebufferTexture2D( 36160, 36064, 34069 + ( activeCubeFace || 0 ), textureProperties.__webglTexture, activeMipmapLevel || 0 );

			}

		};

		this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) {

			if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) {

				console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' );
				return;

			}

			var framebuffer = properties.get( renderTarget ).__webglFramebuffer;

			if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) {

				framebuffer = framebuffer[ activeCubeFaceIndex ];

			}

			if ( framebuffer ) {

				var restore = false;

				if ( framebuffer !== _currentFramebuffer ) {

					_gl.bindFramebuffer( 36160, framebuffer );

					restore = true;

				}

				try {

					var texture = renderTarget.texture;
					var textureFormat = texture.format;
					var textureType = texture.type;

					if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== _gl.getParameter( 35739 ) ) {

						console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' );
						return;

					}

					if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== _gl.getParameter( 35738 ) && // IE11, Edge and Chrome Mac < 52 (#9513)
						! ( textureType === FloatType && ( capabilities.isWebGL2 || extensions.get( 'OES_texture_float' ) || extensions.get( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox
						! ( textureType === HalfFloatType && ( capabilities.isWebGL2 ? extensions.get( 'EXT_color_buffer_float' ) : extensions.get( 'EXT_color_buffer_half_float' ) ) ) ) {

						console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' );
						return;

					}

					if ( _gl.checkFramebufferStatus( 36160 ) === 36053 ) {

						// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)

						if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) {

							_gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer );

						}

					} else {

						console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' );

					}

				} finally {

					if ( restore ) {

						_gl.bindFramebuffer( 36160, _currentFramebuffer );

					}

				}

			}

		};

		this.copyFramebufferToTexture = function ( position, texture, level ) {

			if ( level === undefined ) { level = 0; }

			var levelScale = Math.pow( 2, - level );
			var width = Math.floor( texture.image.width * levelScale );
			var height = Math.floor( texture.image.height * levelScale );
			var glFormat = utils.convert( texture.format );

			textures.setTexture2D( texture, 0 );

			_gl.copyTexImage2D( 3553, level, glFormat, position.x, position.y, width, height, 0 );

			state.unbindTexture();

		};

		this.copyTextureToTexture = function ( position, srcTexture, dstTexture, level ) {

			if ( level === undefined ) { level = 0; }

			var width = srcTexture.image.width;
			var height = srcTexture.image.height;
			var glFormat = utils.convert( dstTexture.format );
			var glType = utils.convert( dstTexture.type );

			textures.setTexture2D( dstTexture, 0 );

			if ( srcTexture.isDataTexture ) {

				_gl.texSubImage2D( 3553, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data );

			} else {

				if ( srcTexture.isCompressedTexture ) {

					_gl.compressedTexSubImage2D( 3553, level, position.x, position.y, srcTexture.mipmaps[ 0 ].width, srcTexture.mipmaps[ 0 ].height, glFormat, srcTexture.mipmaps[ 0 ].data );

				} else {

					_gl.texSubImage2D( 3553, level, position.x, position.y, glFormat, glType, srcTexture.image );

				}

			}

			// Generate mipmaps only when copying level 0
			if ( level === 0 && dstTexture.generateMipmaps ) { _gl.generateMipmap( 3553 ); }

			state.unbindTexture();

		};

		this.initTexture = function ( texture ) {

			textures.setTexture2D( texture, 0 );

			state.unbindTexture();

		};

		if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {

			__THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef

		}

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 */

	function FogExp2( color, density ) {

		this.name = '';

		this.color = new Color( color );
		this.density = ( density !== undefined ) ? density : 0.00025;

	}

	Object.assign( FogExp2.prototype, {

		isFogExp2: true,

		clone: function () {

			return new FogExp2( this.color, this.density );

		},

		toJSON: function ( /* meta */ ) {

			return {
				type: 'FogExp2',
				color: this.color.getHex(),
				density: this.density
			};

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 */

	function Fog( color, near, far ) {

		this.name = '';

		this.color = new Color( color );

		this.near = ( near !== undefined ) ? near : 1;
		this.far = ( far !== undefined ) ? far : 1000;

	}

	Object.assign( Fog.prototype, {

		isFog: true,

		clone: function () {

			return new Fog( this.color, this.near, this.far );

		},

		toJSON: function ( /* meta */ ) {

			return {
				type: 'Fog',
				color: this.color.getHex(),
				near: this.near,
				far: this.far
			};

		}

	} );

	/**
	 * @author benaadams / https://twitter.com/ben_a_adams
	 */

	function InterleavedBuffer( array, stride ) {

		this.array = array;
		this.stride = stride;
		this.count = array !== undefined ? array.length / stride : 0;

		this.usage = StaticDrawUsage;
		this.updateRange = { offset: 0, count: - 1 };

		this.version = 0;

	}

	Object.defineProperty( InterleavedBuffer.prototype, 'needsUpdate', {

		set: function ( value ) {

			if ( value === true ) { this.version ++; }

		}

	} );

	Object.assign( InterleavedBuffer.prototype, {

		isInterleavedBuffer: true,

		onUploadCallback: function () {},

		setUsage: function ( value ) {

			this.usage = value;

			return this;

		},

		copy: function ( source ) {

			this.array = new source.array.constructor( source.array );
			this.count = source.count;
			this.stride = source.stride;
			this.usage = source.usage;

			return this;

		},

		copyAt: function ( index1, attribute, index2 ) {

			index1 *= this.stride;
			index2 *= attribute.stride;

			for ( var i = 0, l = this.stride; i < l; i ++ ) {

				this.array[ index1 + i ] = attribute.array[ index2 + i ];

			}

			return this;

		},

		set: function ( value, offset ) {

			if ( offset === undefined ) { offset = 0; }

			this.array.set( value, offset );

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		onUpload: function ( callback ) {

			this.onUploadCallback = callback;

			return this;

		}

	} );

	/**
	 * @author benaadams / https://twitter.com/ben_a_adams
	 */

	var _vector$6 = new Vector3();

	function InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, normalized ) {

		this.data = interleavedBuffer;
		this.itemSize = itemSize;
		this.offset = offset;

		this.normalized = normalized === true;

	}

	Object.defineProperties( InterleavedBufferAttribute.prototype, {

		count: {

			get: function () {

				return this.data.count;

			}

		},

		array: {

			get: function () {

				return this.data.array;

			}

		}

	} );

	Object.assign( InterleavedBufferAttribute.prototype, {

		isInterleavedBufferAttribute: true,

		applyMatrix4: function ( m ) {

			for ( var i = 0, l = this.data.count; i < l; i ++ ) {

				_vector$6.x = this.getX( i );
				_vector$6.y = this.getY( i );
				_vector$6.z = this.getZ( i );

				_vector$6.applyMatrix4( m );

				this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z );

			}

			return this;

		},

		setX: function ( index, x ) {

			this.data.array[ index * this.data.stride + this.offset ] = x;

			return this;

		},

		setY: function ( index, y ) {

			this.data.array[ index * this.data.stride + this.offset + 1 ] = y;

			return this;

		},

		setZ: function ( index, z ) {

			this.data.array[ index * this.data.stride + this.offset + 2 ] = z;

			return this;

		},

		setW: function ( index, w ) {

			this.data.array[ index * this.data.stride + this.offset + 3 ] = w;

			return this;

		},

		getX: function ( index ) {

			return this.data.array[ index * this.data.stride + this.offset ];

		},

		getY: function ( index ) {

			return this.data.array[ index * this.data.stride + this.offset + 1 ];

		},

		getZ: function ( index ) {

			return this.data.array[ index * this.data.stride + this.offset + 2 ];

		},

		getW: function ( index ) {

			return this.data.array[ index * this.data.stride + this.offset + 3 ];

		},

		setXY: function ( index, x, y ) {

			index = index * this.data.stride + this.offset;

			this.data.array[ index + 0 ] = x;
			this.data.array[ index + 1 ] = y;

			return this;

		},

		setXYZ: function ( index, x, y, z ) {

			index = index * this.data.stride + this.offset;

			this.data.array[ index + 0 ] = x;
			this.data.array[ index + 1 ] = y;
			this.data.array[ index + 2 ] = z;

			return this;

		},

		setXYZW: function ( index, x, y, z, w ) {

			index = index * this.data.stride + this.offset;

			this.data.array[ index + 0 ] = x;
			this.data.array[ index + 1 ] = y;
			this.data.array[ index + 2 ] = z;
			this.data.array[ index + 3 ] = w;

			return this;

		}

	} );

	/**
	 * @author alteredq / http://alteredqualia.com/
	 *
	 * parameters = {
	 *  color: <hex>,
	 *  map: new THREE.Texture( <Image> ),
	 *  alphaMap: new THREE.Texture( <Image> ),
	 *  rotation: <float>,
	 *  sizeAttenuation: <bool>
	 * }
	 */

	function SpriteMaterial( parameters ) {

		Material.call( this );

		this.type = 'SpriteMaterial';

		this.color = new Color( 0xffffff );

		this.map = null;

		this.alphaMap = null;

		this.rotation = 0;

		this.sizeAttenuation = true;

		this.transparent = true;

		this.setValues( parameters );

	}

	SpriteMaterial.prototype = Object.create( Material.prototype );
	SpriteMaterial.prototype.constructor = SpriteMaterial;
	SpriteMaterial.prototype.isSpriteMaterial = true;

	SpriteMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.color.copy( source.color );

		this.map = source.map;

		this.alphaMap = source.alphaMap;

		this.rotation = source.rotation;

		this.sizeAttenuation = source.sizeAttenuation;

		return this;

	};

	/**
	 * @author mikael emtinger / http://gomo.se/
	 * @author alteredq / http://alteredqualia.com/
	 */

	var _geometry;

	var _intersectPoint = new Vector3();
	var _worldScale = new Vector3();
	var _mvPosition = new Vector3();

	var _alignedPosition = new Vector2();
	var _rotatedPosition = new Vector2();
	var _viewWorldMatrix = new Matrix4();

	var _vA$1 = new Vector3();
	var _vB$1 = new Vector3();
	var _vC$1 = new Vector3();

	var _uvA$1 = new Vector2();
	var _uvB$1 = new Vector2();
	var _uvC$1 = new Vector2();

	function Sprite( material ) {

		Object3D.call( this );

		this.type = 'Sprite';

		if ( _geometry === undefined ) {

			_geometry = new BufferGeometry();

			var float32Array = new Float32Array( [
				- 0.5, - 0.5, 0, 0, 0,
				0.5, - 0.5, 0, 1, 0,
				0.5, 0.5, 0, 1, 1,
				- 0.5, 0.5, 0, 0, 1
			] );

			var interleavedBuffer = new InterleavedBuffer( float32Array, 5 );

			_geometry.setIndex( [ 0, 1, 2,	0, 2, 3 ] );
			_geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) );
			_geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) );

		}

		this.geometry = _geometry;
		this.material = ( material !== undefined ) ? material : new SpriteMaterial();

		this.center = new Vector2( 0.5, 0.5 );

	}

	Sprite.prototype = Object.assign( Object.create( Object3D.prototype ), {

		constructor: Sprite,

		isSprite: true,

		raycast: function ( raycaster, intersects ) {

			if ( raycaster.camera === null ) {

				console.error( 'THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.' );

			}

			_worldScale.setFromMatrixScale( this.matrixWorld );

			_viewWorldMatrix.copy( raycaster.camera.matrixWorld );
			this.modelViewMatrix.multiplyMatrices( raycaster.camera.matrixWorldInverse, this.matrixWorld );

			_mvPosition.setFromMatrixPosition( this.modelViewMatrix );

			if ( raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false ) {

				_worldScale.multiplyScalar( - _mvPosition.z );

			}

			var rotation = this.material.rotation;
			var sin, cos;
			if ( rotation !== 0 ) {

				cos = Math.cos( rotation );
				sin = Math.sin( rotation );

			}

			var center = this.center;

			transformVertex( _vA$1.set( - 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
			transformVertex( _vB$1.set( 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
			transformVertex( _vC$1.set( 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );

			_uvA$1.set( 0, 0 );
			_uvB$1.set( 1, 0 );
			_uvC$1.set( 1, 1 );

			// check first triangle
			var intersect = raycaster.ray.intersectTriangle( _vA$1, _vB$1, _vC$1, false, _intersectPoint );

			if ( intersect === null ) {

				// check second triangle
				transformVertex( _vB$1.set( - 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
				_uvB$1.set( 0, 1 );

				intersect = raycaster.ray.intersectTriangle( _vA$1, _vC$1, _vB$1, false, _intersectPoint );
				if ( intersect === null ) {

					return;

				}

			}

			var distance = raycaster.ray.origin.distanceTo( _intersectPoint );

			if ( distance < raycaster.near || distance > raycaster.far ) { return; }

			intersects.push( {

				distance: distance,
				point: _intersectPoint.clone(),
				uv: Triangle.getUV( _intersectPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() ),
				face: null,
				object: this

			} );

		},

		clone: function () {

			return new this.constructor( this.material ).copy( this );

		},

		copy: function ( source ) {

			Object3D.prototype.copy.call( this, source );

			if ( source.center !== undefined ) { this.center.copy( source.center ); }

			return this;

		}


	} );

	function transformVertex( vertexPosition, mvPosition, center, scale, sin, cos ) {

		// compute position in camera space
		_alignedPosition.subVectors( vertexPosition, center ).addScalar( 0.5 ).multiply( scale );

		// to check if rotation is not zero
		if ( sin !== undefined ) {

			_rotatedPosition.x = ( cos * _alignedPosition.x ) - ( sin * _alignedPosition.y );
			_rotatedPosition.y = ( sin * _alignedPosition.x ) + ( cos * _alignedPosition.y );

		} else {

			_rotatedPosition.copy( _alignedPosition );

		}


		vertexPosition.copy( mvPosition );
		vertexPosition.x += _rotatedPosition.x;
		vertexPosition.y += _rotatedPosition.y;

		// transform to world space
		vertexPosition.applyMatrix4( _viewWorldMatrix );

	}

	/**
	 * @author mikael emtinger / http://gomo.se/
	 * @author alteredq / http://alteredqualia.com/
	 * @author mrdoob / http://mrdoob.com/
	 */

	var _v1$4 = new Vector3();
	var _v2$2 = new Vector3();

	function LOD() {

		Object3D.call( this );

		this._currentLevel = 0;

		this.type = 'LOD';

		Object.defineProperties( this, {
			levels: {
				enumerable: true,
				value: []
			}
		} );

		this.autoUpdate = true;

	}

	LOD.prototype = Object.assign( Object.create( Object3D.prototype ), {

		constructor: LOD,

		isLOD: true,

		copy: function ( source ) {

			Object3D.prototype.copy.call( this, source, false );

			var levels = source.levels;

			for ( var i = 0, l = levels.length; i < l; i ++ ) {

				var level = levels[ i ];

				this.addLevel( level.object.clone(), level.distance );

			}

			this.autoUpdate = source.autoUpdate;

			return this;

		},

		addLevel: function ( object, distance ) {

			if ( distance === undefined ) { distance = 0; }

			distance = Math.abs( distance );

			var levels = this.levels;

			for ( var l = 0; l < levels.length; l ++ ) {

				if ( distance < levels[ l ].distance ) {

					break;

				}

			}

			levels.splice( l, 0, { distance: distance, object: object } );

			this.add( object );

			return this;

		},

		getCurrentLevel: function () {

			return this._currentLevel;

		},

		getObjectForDistance: function ( distance ) {

			var levels = this.levels;

			if ( levels.length > 0 ) {

				for ( var i = 1, l = levels.length; i < l; i ++ ) {

					if ( distance < levels[ i ].distance ) {

						break;

					}

				}

				return levels[ i - 1 ].object;

			}

			return null;

		},

		raycast: function ( raycaster, intersects ) {

			var levels = this.levels;

			if ( levels.length > 0 ) {

				_v1$4.setFromMatrixPosition( this.matrixWorld );

				var distance = raycaster.ray.origin.distanceTo( _v1$4 );

				this.getObjectForDistance( distance ).raycast( raycaster, intersects );

			}

		},

		update: function ( camera ) {

			var levels = this.levels;

			if ( levels.length > 1 ) {

				_v1$4.setFromMatrixPosition( camera.matrixWorld );
				_v2$2.setFromMatrixPosition( this.matrixWorld );

				var distance = _v1$4.distanceTo( _v2$2 ) / camera.zoom;

				levels[ 0 ].object.visible = true;

				for ( var i = 1, l = levels.length; i < l; i ++ ) {

					if ( distance >= levels[ i ].distance ) {

						levels[ i - 1 ].object.visible = false;
						levels[ i ].object.visible = true;

					} else {

						break;

					}

				}

				this._currentLevel = i - 1;

				for ( ; i < l; i ++ ) {

					levels[ i ].object.visible = false;

				}

			}

		},

		toJSON: function ( meta ) {

			var data = Object3D.prototype.toJSON.call( this, meta );

			if ( this.autoUpdate === false ) { data.object.autoUpdate = false; }

			data.object.levels = [];

			var levels = this.levels;

			for ( var i = 0, l = levels.length; i < l; i ++ ) {

				var level = levels[ i ];

				data.object.levels.push( {
					object: level.object.uuid,
					distance: level.distance
				} );

			}

			return data;

		}

	} );

	/**
	 * @author mikael emtinger / http://gomo.se/
	 * @author alteredq / http://alteredqualia.com/
	 * @author ikerr / http://verold.com
	 */

	function SkinnedMesh( geometry, material ) {

		if ( geometry && geometry.isGeometry ) {

			console.error( 'THREE.SkinnedMesh no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' );

		}

		Mesh.call( this, geometry, material );

		this.type = 'SkinnedMesh';

		this.bindMode = 'attached';
		this.bindMatrix = new Matrix4();
		this.bindMatrixInverse = new Matrix4();

	}

	SkinnedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), {

		constructor: SkinnedMesh,

		isSkinnedMesh: true,

		bind: function ( skeleton, bindMatrix ) {

			this.skeleton = skeleton;

			if ( bindMatrix === undefined ) {

				this.updateMatrixWorld( true );

				this.skeleton.calculateInverses();

				bindMatrix = this.matrixWorld;

			}

			this.bindMatrix.copy( bindMatrix );
			this.bindMatrixInverse.getInverse( bindMatrix );

		},

		pose: function () {

			this.skeleton.pose();

		},

		normalizeSkinWeights: function () {

			var vector = new Vector4();

			var skinWeight = this.geometry.attributes.skinWeight;

			for ( var i = 0, l = skinWeight.count; i < l; i ++ ) {

				vector.x = skinWeight.getX( i );
				vector.y = skinWeight.getY( i );
				vector.z = skinWeight.getZ( i );
				vector.w = skinWeight.getW( i );

				var scale = 1.0 / vector.manhattanLength();

				if ( scale !== Infinity ) {

					vector.multiplyScalar( scale );

				} else {

					vector.set( 1, 0, 0, 0 ); // do something reasonable

				}

				skinWeight.setXYZW( i, vector.x, vector.y, vector.z, vector.w );

			}

		},

		updateMatrixWorld: function ( force ) {

			Mesh.prototype.updateMatrixWorld.call( this, force );

			if ( this.bindMode === 'attached' ) {

				this.bindMatrixInverse.getInverse( this.matrixWorld );

			} else if ( this.bindMode === 'detached' ) {

				this.bindMatrixInverse.getInverse( this.bindMatrix );

			} else {

				console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode );

			}

		},

		clone: function () {

			return new this.constructor( this.geometry, this.material ).copy( this );

		},

		boneTransform: ( function () {

			var basePosition = new Vector3();

			var skinIndex = new Vector4();
			var skinWeight = new Vector4();

			var vector = new Vector3();
			var matrix = new Matrix4();

			return function ( index, target ) {

				var skeleton = this.skeleton;
				var geometry = this.geometry;

				skinIndex.fromBufferAttribute( geometry.attributes.skinIndex, index );
				skinWeight.fromBufferAttribute( geometry.attributes.skinWeight, index );

				basePosition.fromBufferAttribute( geometry.attributes.position, index ).applyMatrix4( this.bindMatrix );

				target.set( 0, 0, 0 );

				for ( var i = 0; i < 4; i ++ ) {

					var weight = skinWeight.getComponent( i );

					if ( weight !== 0 ) {

						var boneIndex = skinIndex.getComponent( i );

						matrix.multiplyMatrices( skeleton.bones[ boneIndex ].matrixWorld, skeleton.boneInverses[ boneIndex ] );

						target.addScaledVector( vector.copy( basePosition ).applyMatrix4( matrix ), weight );

					}

				}

				return target.applyMatrix4( this.bindMatrixInverse );

			};

		}() )

	} );

	/**
	 * @author mikael emtinger / http://gomo.se/
	 * @author alteredq / http://alteredqualia.com/
	 * @author michael guerrero / http://realitymeltdown.com
	 * @author ikerr / http://verold.com
	 */

	var _offsetMatrix = new Matrix4();
	var _identityMatrix = new Matrix4();

	function Skeleton( bones, boneInverses ) {

		// copy the bone array

		bones = bones || [];

		this.bones = bones.slice( 0 );
		this.boneMatrices = new Float32Array( this.bones.length * 16 );

		this.frame = - 1;

		// use the supplied bone inverses or calculate the inverses

		if ( boneInverses === undefined ) {

			this.calculateInverses();

		} else {

			if ( this.bones.length === boneInverses.length ) {

				this.boneInverses = boneInverses.slice( 0 );

			} else {

				console.warn( 'THREE.Skeleton boneInverses is the wrong length.' );

				this.boneInverses = [];

				for ( var i = 0, il = this.bones.length; i < il; i ++ ) {

					this.boneInverses.push( new Matrix4() );

				}

			}

		}

	}

	Object.assign( Skeleton.prototype, {

		calculateInverses: function () {

			this.boneInverses = [];

			for ( var i = 0, il = this.bones.length; i < il; i ++ ) {

				var inverse = new Matrix4();

				if ( this.bones[ i ] ) {

					inverse.getInverse( this.bones[ i ].matrixWorld );

				}

				this.boneInverses.push( inverse );

			}

		},

		pose: function () {

			var bone, i, il;

			// recover the bind-time world matrices

			for ( i = 0, il = this.bones.length; i < il; i ++ ) {

				bone = this.bones[ i ];

				if ( bone ) {

					bone.matrixWorld.getInverse( this.boneInverses[ i ] );

				}

			}

			// compute the local matrices, positions, rotations and scales

			for ( i = 0, il = this.bones.length; i < il; i ++ ) {

				bone = this.bones[ i ];

				if ( bone ) {

					if ( bone.parent && bone.parent.isBone ) {

						bone.matrix.getInverse( bone.parent.matrixWorld );
						bone.matrix.multiply( bone.matrixWorld );

					} else {

						bone.matrix.copy( bone.matrixWorld );

					}

					bone.matrix.decompose( bone.position, bone.quaternion, bone.scale );

				}

			}

		},

		update: function () {

			var bones = this.bones;
			var boneInverses = this.boneInverses;
			var boneMatrices = this.boneMatrices;
			var boneTexture = this.boneTexture;

			// flatten bone matrices to array

			for ( var i = 0, il = bones.length; i < il; i ++ ) {

				// compute the offset between the current and the original transform

				var matrix = bones[ i ] ? bones[ i ].matrixWorld : _identityMatrix;

				_offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] );
				_offsetMatrix.toArray( boneMatrices, i * 16 );

			}

			if ( boneTexture !== undefined ) {

				boneTexture.needsUpdate = true;

			}

		},

		clone: function () {

			return new Skeleton( this.bones, this.boneInverses );

		},

		getBoneByName: function ( name ) {

			for ( var i = 0, il = this.bones.length; i < il; i ++ ) {

				var bone = this.bones[ i ];

				if ( bone.name === name ) {

					return bone;

				}

			}

			return undefined;

		},

		dispose: function ( ) {

			if ( this.boneTexture ) {

				this.boneTexture.dispose();

				this.boneTexture = undefined;

			}

		}

	} );

	/**
	 * @author mikael emtinger / http://gomo.se/
	 * @author alteredq / http://alteredqualia.com/
	 * @author ikerr / http://verold.com
	 */

	function Bone() {

		Object3D.call( this );

		this.type = 'Bone';

	}

	Bone.prototype = Object.assign( Object.create( Object3D.prototype ), {

		constructor: Bone,

		isBone: true

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	var _instanceLocalMatrix = new Matrix4();
	var _instanceWorldMatrix = new Matrix4();

	var _instanceIntersects = [];

	var _mesh = new Mesh();

	function InstancedMesh( geometry, material, count ) {

		Mesh.call( this, geometry, material );

		this.instanceMatrix = new BufferAttribute( new Float32Array( count * 16 ), 16 );

		this.count = count;

		this.frustumCulled = false;

	}

	InstancedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), {

		constructor: InstancedMesh,

		isInstancedMesh: true,

		getMatrixAt: function ( index, matrix ) {

			matrix.fromArray( this.instanceMatrix.array, index * 16 );

		},

		raycast: function ( raycaster, intersects ) {

			var matrixWorld = this.matrixWorld;
			var raycastTimes = this.count;

			_mesh.geometry = this.geometry;
			_mesh.material = this.material;

			if ( _mesh.material === undefined ) { return; }

			for ( var instanceId = 0; instanceId < raycastTimes; instanceId ++ ) {

				// calculate the world matrix for each instance

				this.getMatrixAt( instanceId, _instanceLocalMatrix );

				_instanceWorldMatrix.multiplyMatrices( matrixWorld, _instanceLocalMatrix );

				// the mesh represents this single instance

				_mesh.matrixWorld = _instanceWorldMatrix;

				_mesh.raycast( raycaster, _instanceIntersects );

				// process the result of raycast

				for ( var i = 0, l = _instanceIntersects.length; i < l; i ++ ) {

					var intersect = _instanceIntersects[ i ];
					intersect.instanceId = instanceId;
					intersect.object = this;
					intersects.push( intersect );

				}

				_instanceIntersects.length = 0;

			}

		},

		setMatrixAt: function ( index, matrix ) {

			matrix.toArray( this.instanceMatrix.array, index * 16 );

		},

		updateMorphTargets: function () {

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 *
	 * parameters = {
	 *  color: <hex>,
	 *  opacity: <float>,
	 *
	 *  linewidth: <float>,
	 *  linecap: "round",
	 *  linejoin: "round"
	 * }
	 */

	function LineBasicMaterial( parameters ) {

		Material.call( this );

		this.type = 'LineBasicMaterial';

		this.color = new Color( 0xffffff );

		this.linewidth = 1;
		this.linecap = 'round';
		this.linejoin = 'round';

		this.setValues( parameters );

	}

	LineBasicMaterial.prototype = Object.create( Material.prototype );
	LineBasicMaterial.prototype.constructor = LineBasicMaterial;

	LineBasicMaterial.prototype.isLineBasicMaterial = true;

	LineBasicMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.color.copy( source.color );

		this.linewidth = source.linewidth;
		this.linecap = source.linecap;
		this.linejoin = source.linejoin;

		return this;

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	var _start = new Vector3();
	var _end = new Vector3();
	var _inverseMatrix$1 = new Matrix4();
	var _ray$1 = new Ray();
	var _sphere$2 = new Sphere();

	function Line( geometry, material, mode ) {

		if ( mode === 1 ) {

			console.error( 'THREE.Line: parameter THREE.LinePieces no longer supported. Use THREE.LineSegments instead.' );

		}

		Object3D.call( this );

		this.type = 'Line';

		this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
		this.material = material !== undefined ? material : new LineBasicMaterial();

	}

	Line.prototype = Object.assign( Object.create( Object3D.prototype ), {

		constructor: Line,

		isLine: true,

		computeLineDistances: function () {

			var geometry = this.geometry;

			if ( geometry.isBufferGeometry ) {

				// we assume non-indexed geometry

				if ( geometry.index === null ) {

					var positionAttribute = geometry.attributes.position;
					var lineDistances = [ 0 ];

					for ( var i = 1, l = positionAttribute.count; i < l; i ++ ) {

						_start.fromBufferAttribute( positionAttribute, i - 1 );
						_end.fromBufferAttribute( positionAttribute, i );

						lineDistances[ i ] = lineDistances[ i - 1 ];
						lineDistances[ i ] += _start.distanceTo( _end );

					}

					geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );

				} else {

					console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );

				}

			} else if ( geometry.isGeometry ) {

				var vertices = geometry.vertices;
				var lineDistances = geometry.lineDistances;

				lineDistances[ 0 ] = 0;

				for ( var i = 1, l = vertices.length; i < l; i ++ ) {

					lineDistances[ i ] = lineDistances[ i - 1 ];
					lineDistances[ i ] += vertices[ i - 1 ].distanceTo( vertices[ i ] );

				}

			}

			return this;

		},

		raycast: function ( raycaster, intersects ) {

			var geometry = this.geometry;
			var matrixWorld = this.matrixWorld;
			var threshold = raycaster.params.Line.threshold;

			// Checking boundingSphere distance to ray

			if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); }

			_sphere$2.copy( geometry.boundingSphere );
			_sphere$2.applyMatrix4( matrixWorld );
			_sphere$2.radius += threshold;

			if ( raycaster.ray.intersectsSphere( _sphere$2 ) === false ) { return; }

			//

			_inverseMatrix$1.getInverse( matrixWorld );
			_ray$1.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$1 );

			var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
			var localThresholdSq = localThreshold * localThreshold;

			var vStart = new Vector3();
			var vEnd = new Vector3();
			var interSegment = new Vector3();
			var interRay = new Vector3();
			var step = ( this && this.isLineSegments ) ? 2 : 1;

			if ( geometry.isBufferGeometry ) {

				var index = geometry.index;
				var attributes = geometry.attributes;
				var positions = attributes.position.array;

				if ( index !== null ) {

					var indices = index.array;

					for ( var i = 0, l = indices.length - 1; i < l; i += step ) {

						var a = indices[ i ];
						var b = indices[ i + 1 ];

						vStart.fromArray( positions, a * 3 );
						vEnd.fromArray( positions, b * 3 );

						var distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment );

						if ( distSq > localThresholdSq ) { continue; }

						interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

						var distance = raycaster.ray.origin.distanceTo( interRay );

						if ( distance < raycaster.near || distance > raycaster.far ) { continue; }

						intersects.push( {

							distance: distance,
							// What do we want? intersection point on the ray or on the segment??
							// point: raycaster.ray.at( distance ),
							point: interSegment.clone().applyMatrix4( this.matrixWorld ),
							index: i,
							face: null,
							faceIndex: null,
							object: this

						} );

					}

				} else {

					for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) {

						vStart.fromArray( positions, 3 * i );
						vEnd.fromArray( positions, 3 * i + 3 );

						var distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment );

						if ( distSq > localThresholdSq ) { continue; }

						interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

						var distance = raycaster.ray.origin.distanceTo( interRay );

						if ( distance < raycaster.near || distance > raycaster.far ) { continue; }

						intersects.push( {

							distance: distance,
							// What do we want? intersection point on the ray or on the segment??
							// point: raycaster.ray.at( distance ),
							point: interSegment.clone().applyMatrix4( this.matrixWorld ),
							index: i,
							face: null,
							faceIndex: null,
							object: this

						} );

					}

				}

			} else if ( geometry.isGeometry ) {

				var vertices = geometry.vertices;
				var nbVertices = vertices.length;

				for ( var i = 0; i < nbVertices - 1; i += step ) {

					var distSq = _ray$1.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment );

					if ( distSq > localThresholdSq ) { continue; }

					interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

					var distance = raycaster.ray.origin.distanceTo( interRay );

					if ( distance < raycaster.near || distance > raycaster.far ) { continue; }

					intersects.push( {

						distance: distance,
						// What do we want? intersection point on the ray or on the segment??
						// point: raycaster.ray.at( distance ),
						point: interSegment.clone().applyMatrix4( this.matrixWorld ),
						index: i,
						face: null,
						faceIndex: null,
						object: this

					} );

				}

			}

		},

		clone: function () {

			return new this.constructor( this.geometry, this.material ).copy( this );

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	var _start$1 = new Vector3();
	var _end$1 = new Vector3();

	function LineSegments( geometry, material ) {

		Line.call( this, geometry, material );

		this.type = 'LineSegments';

	}

	LineSegments.prototype = Object.assign( Object.create( Line.prototype ), {

		constructor: LineSegments,

		isLineSegments: true,

		computeLineDistances: function () {

			var geometry = this.geometry;

			if ( geometry.isBufferGeometry ) {

				// we assume non-indexed geometry

				if ( geometry.index === null ) {

					var positionAttribute = geometry.attributes.position;
					var lineDistances = [];

					for ( var i = 0, l = positionAttribute.count; i < l; i += 2 ) {

						_start$1.fromBufferAttribute( positionAttribute, i );
						_end$1.fromBufferAttribute( positionAttribute, i + 1 );

						lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ];
						lineDistances[ i + 1 ] = lineDistances[ i ] + _start$1.distanceTo( _end$1 );

					}

					geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );

				} else {

					console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );

				}

			} else if ( geometry.isGeometry ) {

				var vertices = geometry.vertices;
				var lineDistances = geometry.lineDistances;

				for ( var i = 0, l = vertices.length; i < l; i += 2 ) {

					_start$1.copy( vertices[ i ] );
					_end$1.copy( vertices[ i + 1 ] );

					lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ];
					lineDistances[ i + 1 ] = lineDistances[ i ] + _start$1.distanceTo( _end$1 );

				}

			}

			return this;

		}

	} );

	/**
	 * @author mgreter / http://github.com/mgreter
	 */

	function LineLoop( geometry, material ) {

		Line.call( this, geometry, material );

		this.type = 'LineLoop';

	}

	LineLoop.prototype = Object.assign( Object.create( Line.prototype ), {

		constructor: LineLoop,

		isLineLoop: true,

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 *
	 * parameters = {
	 *  color: <hex>,
	 *  opacity: <float>,
	 *  map: new THREE.Texture( <Image> ),
	 *  alphaMap: new THREE.Texture( <Image> ),
	 *
	 *  size: <float>,
	 *  sizeAttenuation: <bool>
	 *
	 *  morphTargets: <bool>
	 * }
	 */

	function PointsMaterial( parameters ) {

		Material.call( this );

		this.type = 'PointsMaterial';

		this.color = new Color( 0xffffff );

		this.map = null;

		this.alphaMap = null;

		this.size = 1;
		this.sizeAttenuation = true;

		this.morphTargets = false;

		this.setValues( parameters );

	}

	PointsMaterial.prototype = Object.create( Material.prototype );
	PointsMaterial.prototype.constructor = PointsMaterial;

	PointsMaterial.prototype.isPointsMaterial = true;

	PointsMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.color.copy( source.color );

		this.map = source.map;

		this.alphaMap = source.alphaMap;

		this.size = source.size;
		this.sizeAttenuation = source.sizeAttenuation;

		this.morphTargets = source.morphTargets;

		return this;

	};

	/**
	 * @author alteredq / http://alteredqualia.com/
	 */

	var _inverseMatrix$2 = new Matrix4();
	var _ray$2 = new Ray();
	var _sphere$3 = new Sphere();
	var _position$1 = new Vector3();

	function Points( geometry, material ) {

		Object3D.call( this );

		this.type = 'Points';

		this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
		this.material = material !== undefined ? material : new PointsMaterial();

		this.updateMorphTargets();

	}

	Points.prototype = Object.assign( Object.create( Object3D.prototype ), {

		constructor: Points,

		isPoints: true,

		raycast: function ( raycaster, intersects ) {

			var geometry = this.geometry;
			var matrixWorld = this.matrixWorld;
			var threshold = raycaster.params.Points.threshold;

			// Checking boundingSphere distance to ray

			if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); }

			_sphere$3.copy( geometry.boundingSphere );
			_sphere$3.applyMatrix4( matrixWorld );
			_sphere$3.radius += threshold;

			if ( raycaster.ray.intersectsSphere( _sphere$3 ) === false ) { return; }

			//

			_inverseMatrix$2.getInverse( matrixWorld );
			_ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 );

			var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
			var localThresholdSq = localThreshold * localThreshold;

			if ( geometry.isBufferGeometry ) {

				var index = geometry.index;
				var attributes = geometry.attributes;
				var positions = attributes.position.array;

				if ( index !== null ) {

					var indices = index.array;

					for ( var i = 0, il = indices.length; i < il; i ++ ) {

						var a = indices[ i ];

						_position$1.fromArray( positions, a * 3 );

						testPoint( _position$1, a, localThresholdSq, matrixWorld, raycaster, intersects, this );

					}

				} else {

					for ( var i = 0, l = positions.length / 3; i < l; i ++ ) {

						_position$1.fromArray( positions, i * 3 );

						testPoint( _position$1, i, localThresholdSq, matrixWorld, raycaster, intersects, this );

					}

				}

			} else {

				var vertices = geometry.vertices;

				for ( var i = 0, l = vertices.length; i < l; i ++ ) {

					testPoint( vertices[ i ], i, localThresholdSq, matrixWorld, raycaster, intersects, this );

				}

			}

		},

		updateMorphTargets: function () {

			var geometry = this.geometry;
			var m, ml, name;

			if ( geometry.isBufferGeometry ) {

				var morphAttributes = geometry.morphAttributes;
				var keys = Object.keys( morphAttributes );

				if ( keys.length > 0 ) {

					var morphAttribute = morphAttributes[ keys[ 0 ] ];

					if ( morphAttribute !== undefined ) {

						this.morphTargetInfluences = [];
						this.morphTargetDictionary = {};

						for ( m = 0, ml = morphAttribute.length; m < ml; m ++ ) {

							name = morphAttribute[ m ].name || String( m );

							this.morphTargetInfluences.push( 0 );
							this.morphTargetDictionary[ name ] = m;

						}

					}

				}

			} else {

				var morphTargets = geometry.morphTargets;

				if ( morphTargets !== undefined && morphTargets.length > 0 ) {

					console.error( 'THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.' );

				}

			}

		},

		clone: function () {

			return new this.constructor( this.geometry, this.material ).copy( this );

		}

	} );

	function testPoint( point, index, localThresholdSq, matrixWorld, raycaster, intersects, object ) {

		var rayPointDistanceSq = _ray$2.distanceSqToPoint( point );

		if ( rayPointDistanceSq < localThresholdSq ) {

			var intersectPoint = new Vector3();

			_ray$2.closestPointToPoint( point, intersectPoint );
			intersectPoint.applyMatrix4( matrixWorld );

			var distance = raycaster.ray.origin.distanceTo( intersectPoint );

			if ( distance < raycaster.near || distance > raycaster.far ) { return; }

			intersects.push( {

				distance: distance,
				distanceToRay: Math.sqrt( rayPointDistanceSq ),
				point: intersectPoint,
				index: index,
				face: null,
				object: object

			} );

		}

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function VideoTexture( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {

		Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

		this.format = format !== undefined ? format : RGBFormat;

		this.minFilter = minFilter !== undefined ? minFilter : LinearFilter;
		this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;

		this.generateMipmaps = false;

	}

	VideoTexture.prototype = Object.assign( Object.create( Texture.prototype ), {

		constructor: VideoTexture,

		isVideoTexture: true,

		update: function () {

			var video = this.image;

			if ( video.readyState >= video.HAVE_CURRENT_DATA ) {

				this.needsUpdate = true;

			}

		}

	} );

	/**
	 * @author alteredq / http://alteredqualia.com/
	 */

	function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {

		Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

		this.image = { width: width, height: height };
		this.mipmaps = mipmaps;

		// no flipping for cube textures
		// (also flipping doesn't work for compressed textures )

		this.flipY = false;

		// can't generate mipmaps for compressed textures
		// mips must be embedded in DDS files

		this.generateMipmaps = false;

	}

	CompressedTexture.prototype = Object.create( Texture.prototype );
	CompressedTexture.prototype.constructor = CompressedTexture;

	CompressedTexture.prototype.isCompressedTexture = true;

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {

		Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

		this.needsUpdate = true;

	}

	CanvasTexture.prototype = Object.create( Texture.prototype );
	CanvasTexture.prototype.constructor = CanvasTexture;
	CanvasTexture.prototype.isCanvasTexture = true;

	/**
	 * @author Matt DesLauriers / @mattdesl
	 * @author atix / arthursilber.de
	 */

	function DepthTexture( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) {

		format = format !== undefined ? format : DepthFormat;

		if ( format !== DepthFormat && format !== DepthStencilFormat ) {

			throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' );

		}

		if ( type === undefined && format === DepthFormat ) { type = UnsignedShortType; }
		if ( type === undefined && format === DepthStencilFormat ) { type = UnsignedInt248Type; }

		Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

		this.image = { width: width, height: height };

		this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
		this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;

		this.flipY = false;
		this.generateMipmaps	= false;

	}

	DepthTexture.prototype = Object.create( Texture.prototype );
	DepthTexture.prototype.constructor = DepthTexture;
	DepthTexture.prototype.isDepthTexture = true;

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	function WireframeGeometry( geometry ) {

		BufferGeometry.call( this );

		this.type = 'WireframeGeometry';

		// buffer

		var vertices = [];

		// helper variables

		var i, j, l, o, ol;
		var edge = [ 0, 0 ], edges = {}, e, edge1, edge2;
		var key, keys = [ 'a', 'b', 'c' ];
		var vertex;

		// different logic for Geometry and BufferGeometry

		if ( geometry && geometry.isGeometry ) {

			// create a data structure that contains all edges without duplicates

			var faces = geometry.faces;

			for ( i = 0, l = faces.length; i < l; i ++ ) {

				var face = faces[ i ];

				for ( j = 0; j < 3; j ++ ) {

					edge1 = face[ keys[ j ] ];
					edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
					edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
					edge[ 1 ] = Math.max( edge1, edge2 );

					key = edge[ 0 ] + ',' + edge[ 1 ];

					if ( edges[ key ] === undefined ) {

						edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };

					}

				}

			}

			// generate vertices

			for ( key in edges ) {

				e = edges[ key ];

				vertex = geometry.vertices[ e.index1 ];
				vertices.push( vertex.x, vertex.y, vertex.z );

				vertex = geometry.vertices[ e.index2 ];
				vertices.push( vertex.x, vertex.y, vertex.z );

			}

		} else if ( geometry && geometry.isBufferGeometry ) {

			var position, indices, groups;
			var group, start, count;
			var index1, index2;

			vertex = new Vector3();

			if ( geometry.index !== null ) {

				// indexed BufferGeometry

				position = geometry.attributes.position;
				indices = geometry.index;
				groups = geometry.groups;

				if ( groups.length === 0 ) {

					groups = [ { start: 0, count: indices.count, materialIndex: 0 } ];

				}

				// create a data structure that contains all eges without duplicates

				for ( o = 0, ol = groups.length; o < ol; ++ o ) {

					group = groups[ o ];

					start = group.start;
					count = group.count;

					for ( i = start, l = ( start + count ); i < l; i += 3 ) {

						for ( j = 0; j < 3; j ++ ) {

							edge1 = indices.getX( i + j );
							edge2 = indices.getX( i + ( j + 1 ) % 3 );
							edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
							edge[ 1 ] = Math.max( edge1, edge2 );

							key = edge[ 0 ] + ',' + edge[ 1 ];

							if ( edges[ key ] === undefined ) {

								edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };

							}

						}

					}

				}

				// generate vertices

				for ( key in edges ) {

					e = edges[ key ];

					vertex.fromBufferAttribute( position, e.index1 );
					vertices.push( vertex.x, vertex.y, vertex.z );

					vertex.fromBufferAttribute( position, e.index2 );
					vertices.push( vertex.x, vertex.y, vertex.z );

				}

			} else {

				// non-indexed BufferGeometry

				position = geometry.attributes.position;

				for ( i = 0, l = ( position.count / 3 ); i < l; i ++ ) {

					for ( j = 0; j < 3; j ++ ) {

						// three edges per triangle, an edge is represented as (index1, index2)
						// e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)

						index1 = 3 * i + j;
						vertex.fromBufferAttribute( position, index1 );
						vertices.push( vertex.x, vertex.y, vertex.z );

						index2 = 3 * i + ( ( j + 1 ) % 3 );
						vertex.fromBufferAttribute( position, index2 );
						vertices.push( vertex.x, vertex.y, vertex.z );

					}

				}

			}

		}

		// build geometry

		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );

	}

	WireframeGeometry.prototype = Object.create( BufferGeometry.prototype );
	WireframeGeometry.prototype.constructor = WireframeGeometry;

	/**
	 * @author zz85 / https://github.com/zz85
	 * @author Mugen87 / https://github.com/Mugen87
	 *
	 * Parametric Surfaces Geometry
	 * based on the brilliant article by @prideout https://prideout.net/blog/old/blog/index.html@p=44.html
	 */

	// ParametricGeometry

	function ParametricGeometry( func, slices, stacks ) {

		Geometry.call( this );

		this.type = 'ParametricGeometry';

		this.parameters = {
			func: func,
			slices: slices,
			stacks: stacks
		};

		this.fromBufferGeometry( new ParametricBufferGeometry( func, slices, stacks ) );
		this.mergeVertices();

	}

	ParametricGeometry.prototype = Object.create( Geometry.prototype );
	ParametricGeometry.prototype.constructor = ParametricGeometry;

	// ParametricBufferGeometry

	function ParametricBufferGeometry( func, slices, stacks ) {

		BufferGeometry.call( this );

		this.type = 'ParametricBufferGeometry';

		this.parameters = {
			func: func,
			slices: slices,
			stacks: stacks
		};

		// buffers

		var indices = [];
		var vertices = [];
		var normals = [];
		var uvs = [];

		var EPS = 0.00001;

		var normal = new Vector3();

		var p0 = new Vector3(), p1 = new Vector3();
		var pu = new Vector3(), pv = new Vector3();

		var i, j;

		if ( func.length < 3 ) {

			console.error( 'THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.' );

		}

		// generate vertices, normals and uvs

		var sliceCount = slices + 1;

		for ( i = 0; i <= stacks; i ++ ) {

			var v = i / stacks;

			for ( j = 0; j <= slices; j ++ ) {

				var u = j / slices;

				// vertex

				func( u, v, p0 );
				vertices.push( p0.x, p0.y, p0.z );

				// normal

				// approximate tangent vectors via finite differences

				if ( u - EPS >= 0 ) {

					func( u - EPS, v, p1 );
					pu.subVectors( p0, p1 );

				} else {

					func( u + EPS, v, p1 );
					pu.subVectors( p1, p0 );

				}

				if ( v - EPS >= 0 ) {

					func( u, v - EPS, p1 );
					pv.subVectors( p0, p1 );

				} else {

					func( u, v + EPS, p1 );
					pv.subVectors( p1, p0 );

				}

				// cross product of tangent vectors returns surface normal

				normal.crossVectors( pu, pv ).normalize();
				normals.push( normal.x, normal.y, normal.z );

				// uv

				uvs.push( u, v );

			}

		}

		// generate indices

		for ( i = 0; i < stacks; i ++ ) {

			for ( j = 0; j < slices; j ++ ) {

				var a = i * sliceCount + j;
				var b = i * sliceCount + j + 1;
				var c = ( i + 1 ) * sliceCount + j + 1;
				var d = ( i + 1 ) * sliceCount + j;

				// faces one and two

				indices.push( a, b, d );
				indices.push( b, c, d );

			}

		}

		// build geometry

		this.setIndex( indices );
		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

	}

	ParametricBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry;

	/**
	 * @author clockworkgeek / https://github.com/clockworkgeek
	 * @author timothypratley / https://github.com/timothypratley
	 * @author WestLangley / http://github.com/WestLangley
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// PolyhedronGeometry

	function PolyhedronGeometry( vertices, indices, radius, detail ) {

		Geometry.call( this );

		this.type = 'PolyhedronGeometry';

		this.parameters = {
			vertices: vertices,
			indices: indices,
			radius: radius,
			detail: detail
		};

		this.fromBufferGeometry( new PolyhedronBufferGeometry( vertices, indices, radius, detail ) );
		this.mergeVertices();

	}

	PolyhedronGeometry.prototype = Object.create( Geometry.prototype );
	PolyhedronGeometry.prototype.constructor = PolyhedronGeometry;

	// PolyhedronBufferGeometry

	function PolyhedronBufferGeometry( vertices, indices, radius, detail ) {

		BufferGeometry.call( this );

		this.type = 'PolyhedronBufferGeometry';

		this.parameters = {
			vertices: vertices,
			indices: indices,
			radius: radius,
			detail: detail
		};

		radius = radius || 1;
		detail = detail || 0;

		// default buffer data

		var vertexBuffer = [];
		var uvBuffer = [];

		// the subdivision creates the vertex buffer data

		subdivide( detail );

		// all vertices should lie on a conceptual sphere with a given radius

		applyRadius( radius );

		// finally, create the uv data

		generateUVs();

		// build non-indexed geometry

		this.setAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) );
		this.setAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) );

		if ( detail === 0 ) {

			this.computeVertexNormals(); // flat normals

		} else {

			this.normalizeNormals(); // smooth normals

		}

		// helper functions

		function subdivide( detail ) {

			var a = new Vector3();
			var b = new Vector3();
			var c = new Vector3();

			// iterate over all faces and apply a subdivison with the given detail value

			for ( var i = 0; i < indices.length; i += 3 ) {

				// get the vertices of the face

				getVertexByIndex( indices[ i + 0 ], a );
				getVertexByIndex( indices[ i + 1 ], b );
				getVertexByIndex( indices[ i + 2 ], c );

				// perform subdivision

				subdivideFace( a, b, c, detail );

			}

		}

		function subdivideFace( a, b, c, detail ) {

			var cols = Math.pow( 2, detail );

			// we use this multidimensional array as a data structure for creating the subdivision

			var v = [];

			var i, j;

			// construct all of the vertices for this subdivision

			for ( i = 0; i <= cols; i ++ ) {

				v[ i ] = [];

				var aj = a.clone().lerp( c, i / cols );
				var bj = b.clone().lerp( c, i / cols );

				var rows = cols - i;

				for ( j = 0; j <= rows; j ++ ) {

					if ( j === 0 && i === cols ) {

						v[ i ][ j ] = aj;

					} else {

						v[ i ][ j ] = aj.clone().lerp( bj, j / rows );

					}

				}

			}

			// construct all of the faces

			for ( i = 0; i < cols; i ++ ) {

				for ( j = 0; j < 2 * ( cols - i ) - 1; j ++ ) {

					var k = Math.floor( j / 2 );

					if ( j % 2 === 0 ) {

						pushVertex( v[ i ][ k + 1 ] );
						pushVertex( v[ i + 1 ][ k ] );
						pushVertex( v[ i ][ k ] );

					} else {

						pushVertex( v[ i ][ k + 1 ] );
						pushVertex( v[ i + 1 ][ k + 1 ] );
						pushVertex( v[ i + 1 ][ k ] );

					}

				}

			}

		}

		function applyRadius( radius ) {

			var vertex = new Vector3();

			// iterate over the entire buffer and apply the radius to each vertex

			for ( var i = 0; i < vertexBuffer.length; i += 3 ) {

				vertex.x = vertexBuffer[ i + 0 ];
				vertex.y = vertexBuffer[ i + 1 ];
				vertex.z = vertexBuffer[ i + 2 ];

				vertex.normalize().multiplyScalar( radius );

				vertexBuffer[ i + 0 ] = vertex.x;
				vertexBuffer[ i + 1 ] = vertex.y;
				vertexBuffer[ i + 2 ] = vertex.z;

			}

		}

		function generateUVs() {

			var vertex = new Vector3();

			for ( var i = 0; i < vertexBuffer.length; i += 3 ) {

				vertex.x = vertexBuffer[ i + 0 ];
				vertex.y = vertexBuffer[ i + 1 ];
				vertex.z = vertexBuffer[ i + 2 ];

				var u = azimuth( vertex ) / 2 / Math.PI + 0.5;
				var v = inclination( vertex ) / Math.PI + 0.5;
				uvBuffer.push( u, 1 - v );

			}

			correctUVs();

			correctSeam();

		}

		function correctSeam() {

			// handle case when face straddles the seam, see #3269

			for ( var i = 0; i < uvBuffer.length; i += 6 ) {

				// uv data of a single face

				var x0 = uvBuffer[ i + 0 ];
				var x1 = uvBuffer[ i + 2 ];
				var x2 = uvBuffer[ i + 4 ];

				var max = Math.max( x0, x1, x2 );
				var min = Math.min( x0, x1, x2 );

				// 0.9 is somewhat arbitrary

				if ( max > 0.9 && min < 0.1 ) {

					if ( x0 < 0.2 ) { uvBuffer[ i + 0 ] += 1; }
					if ( x1 < 0.2 ) { uvBuffer[ i + 2 ] += 1; }
					if ( x2 < 0.2 ) { uvBuffer[ i + 4 ] += 1; }

				}

			}

		}

		function pushVertex( vertex ) {

			vertexBuffer.push( vertex.x, vertex.y, vertex.z );

		}

		function getVertexByIndex( index, vertex ) {

			var stride = index * 3;

			vertex.x = vertices[ stride + 0 ];
			vertex.y = vertices[ stride + 1 ];
			vertex.z = vertices[ stride + 2 ];

		}

		function correctUVs() {

			var a = new Vector3();
			var b = new Vector3();
			var c = new Vector3();

			var centroid = new Vector3();

			var uvA = new Vector2();
			var uvB = new Vector2();
			var uvC = new Vector2();

			for ( var i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) {

				a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] );
				b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] );
				c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] );

				uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] );
				uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] );
				uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] );

				centroid.copy( a ).add( b ).add( c ).divideScalar( 3 );

				var azi = azimuth( centroid );

				correctUV( uvA, j + 0, a, azi );
				correctUV( uvB, j + 2, b, azi );
				correctUV( uvC, j + 4, c, azi );

			}

		}

		function correctUV( uv, stride, vector, azimuth ) {

			if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) {

				uvBuffer[ stride ] = uv.x - 1;

			}

			if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) {

				uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5;

			}

		}

		// Angle around the Y axis, counter-clockwise when looking from above.

		function azimuth( vector ) {

			return Math.atan2( vector.z, - vector.x );

		}


		// Angle above the XZ plane.

		function inclination( vector ) {

			return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );

		}

	}

	PolyhedronBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry;

	/**
	 * @author timothypratley / https://github.com/timothypratley
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// TetrahedronGeometry

	function TetrahedronGeometry( radius, detail ) {

		Geometry.call( this );

		this.type = 'TetrahedronGeometry';

		this.parameters = {
			radius: radius,
			detail: detail
		};

		this.fromBufferGeometry( new TetrahedronBufferGeometry( radius, detail ) );
		this.mergeVertices();

	}

	TetrahedronGeometry.prototype = Object.create( Geometry.prototype );
	TetrahedronGeometry.prototype.constructor = TetrahedronGeometry;

	// TetrahedronBufferGeometry

	function TetrahedronBufferGeometry( radius, detail ) {

		var vertices = [
			1, 1, 1, 	- 1, - 1, 1, 	- 1, 1, - 1, 	1, - 1, - 1
		];

		var indices = [
			2, 1, 0, 	0, 3, 2,	1, 3, 0,	2, 3, 1
		];

		PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

		this.type = 'TetrahedronBufferGeometry';

		this.parameters = {
			radius: radius,
			detail: detail
		};

	}

	TetrahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
	TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry;

	/**
	 * @author timothypratley / https://github.com/timothypratley
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// OctahedronGeometry

	function OctahedronGeometry( radius, detail ) {

		Geometry.call( this );

		this.type = 'OctahedronGeometry';

		this.parameters = {
			radius: radius,
			detail: detail
		};

		this.fromBufferGeometry( new OctahedronBufferGeometry( radius, detail ) );
		this.mergeVertices();

	}

	OctahedronGeometry.prototype = Object.create( Geometry.prototype );
	OctahedronGeometry.prototype.constructor = OctahedronGeometry;

	// OctahedronBufferGeometry

	function OctahedronBufferGeometry( radius, detail ) {

		var vertices = [
			1, 0, 0, 	- 1, 0, 0,	0, 1, 0,
			0, - 1, 0, 	0, 0, 1,	0, 0, - 1
		];

		var indices = [
			0, 2, 4,	0, 4, 3,	0, 3, 5,
			0, 5, 2,	1, 2, 5,	1, 5, 3,
			1, 3, 4,	1, 4, 2
		];

		PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

		this.type = 'OctahedronBufferGeometry';

		this.parameters = {
			radius: radius,
			detail: detail
		};

	}

	OctahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
	OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry;

	/**
	 * @author timothypratley / https://github.com/timothypratley
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// IcosahedronGeometry

	function IcosahedronGeometry( radius, detail ) {

		Geometry.call( this );

		this.type = 'IcosahedronGeometry';

		this.parameters = {
			radius: radius,
			detail: detail
		};

		this.fromBufferGeometry( new IcosahedronBufferGeometry( radius, detail ) );
		this.mergeVertices();

	}

	IcosahedronGeometry.prototype = Object.create( Geometry.prototype );
	IcosahedronGeometry.prototype.constructor = IcosahedronGeometry;

	// IcosahedronBufferGeometry

	function IcosahedronBufferGeometry( radius, detail ) {

		var t = ( 1 + Math.sqrt( 5 ) ) / 2;

		var vertices = [
			- 1, t, 0, 	1, t, 0, 	- 1, - t, 0, 	1, - t, 0,
			 0, - 1, t, 	0, 1, t,	0, - 1, - t, 	0, 1, - t,
			 t, 0, - 1, 	t, 0, 1, 	- t, 0, - 1, 	- t, 0, 1
		];

		var indices = [
			 0, 11, 5, 	0, 5, 1, 	0, 1, 7, 	0, 7, 10, 	0, 10, 11,
			 1, 5, 9, 	5, 11, 4,	11, 10, 2,	10, 7, 6,	7, 1, 8,
			 3, 9, 4, 	3, 4, 2,	3, 2, 6,	3, 6, 8,	3, 8, 9,
			 4, 9, 5, 	2, 4, 11,	6, 2, 10,	8, 6, 7,	9, 8, 1
		];

		PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

		this.type = 'IcosahedronBufferGeometry';

		this.parameters = {
			radius: radius,
			detail: detail
		};

	}

	IcosahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
	IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry;

	/**
	 * @author Abe Pazos / https://hamoid.com
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// DodecahedronGeometry

	function DodecahedronGeometry( radius, detail ) {

		Geometry.call( this );

		this.type = 'DodecahedronGeometry';

		this.parameters = {
			radius: radius,
			detail: detail
		};

		this.fromBufferGeometry( new DodecahedronBufferGeometry( radius, detail ) );
		this.mergeVertices();

	}

	DodecahedronGeometry.prototype = Object.create( Geometry.prototype );
	DodecahedronGeometry.prototype.constructor = DodecahedronGeometry;

	// DodecahedronBufferGeometry

	function DodecahedronBufferGeometry( radius, detail ) {

		var t = ( 1 + Math.sqrt( 5 ) ) / 2;
		var r = 1 / t;

		var vertices = [

			// (±1, ±1, ±1)
			- 1, - 1, - 1,	- 1, - 1, 1,
			- 1, 1, - 1, - 1, 1, 1,
			1, - 1, - 1, 1, - 1, 1,
			1, 1, - 1, 1, 1, 1,

			// (0, ±1/φ, ±φ)
			 0, - r, - t, 0, - r, t,
			 0, r, - t, 0, r, t,

			// (±1/φ, ±φ, 0)
			- r, - t, 0, - r, t, 0,
			 r, - t, 0, r, t, 0,

			// (±φ, 0, ±1/φ)
			- t, 0, - r, t, 0, - r,
			- t, 0, r, t, 0, r
		];

		var indices = [
			3, 11, 7, 	3, 7, 15, 	3, 15, 13,
			7, 19, 17, 	7, 17, 6, 	7, 6, 15,
			17, 4, 8, 	17, 8, 10, 	17, 10, 6,
			8, 0, 16, 	8, 16, 2, 	8, 2, 10,
			0, 12, 1, 	0, 1, 18, 	0, 18, 16,
			6, 10, 2, 	6, 2, 13, 	6, 13, 15,
			2, 16, 18, 	2, 18, 3, 	2, 3, 13,
			18, 1, 9, 	18, 9, 11, 	18, 11, 3,
			4, 14, 12, 	4, 12, 0, 	4, 0, 8,
			11, 9, 5, 	11, 5, 19, 	11, 19, 7,
			19, 5, 14, 	19, 14, 4, 	19, 4, 17,
			1, 12, 14, 	1, 14, 5, 	1, 5, 9
		];

		PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

		this.type = 'DodecahedronBufferGeometry';

		this.parameters = {
			radius: radius,
			detail: detail
		};

	}

	DodecahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
	DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry;

	/**
	 * @author oosmoxiecode / https://github.com/oosmoxiecode
	 * @author WestLangley / https://github.com/WestLangley
	 * @author zz85 / https://github.com/zz85
	 * @author miningold / https://github.com/miningold
	 * @author jonobr1 / https://github.com/jonobr1
	 * @author Mugen87 / https://github.com/Mugen87
	 *
	 */

	// TubeGeometry

	function TubeGeometry( path, tubularSegments, radius, radialSegments, closed, taper ) {

		Geometry.call( this );

		this.type = 'TubeGeometry';

		this.parameters = {
			path: path,
			tubularSegments: tubularSegments,
			radius: radius,
			radialSegments: radialSegments,
			closed: closed
		};

		if ( taper !== undefined ) { console.warn( 'THREE.TubeGeometry: taper has been removed.' ); }

		var bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed );

		// expose internals

		this.tangents = bufferGeometry.tangents;
		this.normals = bufferGeometry.normals;
		this.binormals = bufferGeometry.binormals;

		// create geometry

		this.fromBufferGeometry( bufferGeometry );
		this.mergeVertices();

	}

	TubeGeometry.prototype = Object.create( Geometry.prototype );
	TubeGeometry.prototype.constructor = TubeGeometry;

	// TubeBufferGeometry

	function TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) {

		BufferGeometry.call( this );

		this.type = 'TubeBufferGeometry';

		this.parameters = {
			path: path,
			tubularSegments: tubularSegments,
			radius: radius,
			radialSegments: radialSegments,
			closed: closed
		};

		tubularSegments = tubularSegments || 64;
		radius = radius || 1;
		radialSegments = radialSegments || 8;
		closed = closed || false;

		var frames = path.computeFrenetFrames( tubularSegments, closed );

		// expose internals

		this.tangents = frames.tangents;
		this.normals = frames.normals;
		this.binormals = frames.binormals;

		// helper variables

		var vertex = new Vector3();
		var normal = new Vector3();
		var uv = new Vector2();
		var P = new Vector3();

		var i, j;

		// buffer

		var vertices = [];
		var normals = [];
		var uvs = [];
		var indices = [];

		// create buffer data

		generateBufferData();

		// build geometry

		this.setIndex( indices );
		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

		// functions

		function generateBufferData() {

			for ( i = 0; i < tubularSegments; i ++ ) {

				generateSegment( i );

			}

			// if the geometry is not closed, generate the last row of vertices and normals
			// at the regular position on the given path
			//
			// if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)

			generateSegment( ( closed === false ) ? tubularSegments : 0 );

			// uvs are generated in a separate function.
			// this makes it easy compute correct values for closed geometries

			generateUVs();

			// finally create faces

			generateIndices();

		}

		function generateSegment( i ) {

			// we use getPointAt to sample evenly distributed points from the given path

			P = path.getPointAt( i / tubularSegments, P );

			// retrieve corresponding normal and binormal

			var N = frames.normals[ i ];
			var B = frames.binormals[ i ];

			// generate normals and vertices for the current segment

			for ( j = 0; j <= radialSegments; j ++ ) {

				var v = j / radialSegments * Math.PI * 2;

				var sin = Math.sin( v );
				var cos = - Math.cos( v );

				// normal

				normal.x = ( cos * N.x + sin * B.x );
				normal.y = ( cos * N.y + sin * B.y );
				normal.z = ( cos * N.z + sin * B.z );
				normal.normalize();

				normals.push( normal.x, normal.y, normal.z );

				// vertex

				vertex.x = P.x + radius * normal.x;
				vertex.y = P.y + radius * normal.y;
				vertex.z = P.z + radius * normal.z;

				vertices.push( vertex.x, vertex.y, vertex.z );

			}

		}

		function generateIndices() {

			for ( j = 1; j <= tubularSegments; j ++ ) {

				for ( i = 1; i <= radialSegments; i ++ ) {

					var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
					var b = ( radialSegments + 1 ) * j + ( i - 1 );
					var c = ( radialSegments + 1 ) * j + i;
					var d = ( radialSegments + 1 ) * ( j - 1 ) + i;

					// faces

					indices.push( a, b, d );
					indices.push( b, c, d );

				}

			}

		}

		function generateUVs() {

			for ( i = 0; i <= tubularSegments; i ++ ) {

				for ( j = 0; j <= radialSegments; j ++ ) {

					uv.x = i / tubularSegments;
					uv.y = j / radialSegments;

					uvs.push( uv.x, uv.y );

				}

			}

		}

	}

	TubeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	TubeBufferGeometry.prototype.constructor = TubeBufferGeometry;

	TubeBufferGeometry.prototype.toJSON = function () {

		var data = BufferGeometry.prototype.toJSON.call( this );

		data.path = this.parameters.path.toJSON();

		return data;

	};

	/**
	 * @author oosmoxiecode
	 * @author Mugen87 / https://github.com/Mugen87
	 *
	 * based on http://www.blackpawn.com/texts/pqtorus/
	 */

	// TorusKnotGeometry

	function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) {

		Geometry.call( this );

		this.type = 'TorusKnotGeometry';

		this.parameters = {
			radius: radius,
			tube: tube,
			tubularSegments: tubularSegments,
			radialSegments: radialSegments,
			p: p,
			q: q
		};

		if ( heightScale !== undefined ) { console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' ); }

		this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) );
		this.mergeVertices();

	}

	TorusKnotGeometry.prototype = Object.create( Geometry.prototype );
	TorusKnotGeometry.prototype.constructor = TorusKnotGeometry;

	// TorusKnotBufferGeometry

	function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) {

		BufferGeometry.call( this );

		this.type = 'TorusKnotBufferGeometry';

		this.parameters = {
			radius: radius,
			tube: tube,
			tubularSegments: tubularSegments,
			radialSegments: radialSegments,
			p: p,
			q: q
		};

		radius = radius || 1;
		tube = tube || 0.4;
		tubularSegments = Math.floor( tubularSegments ) || 64;
		radialSegments = Math.floor( radialSegments ) || 8;
		p = p || 2;
		q = q || 3;

		// buffers

		var indices = [];
		var vertices = [];
		var normals = [];
		var uvs = [];

		// helper variables

		var i, j;

		var vertex = new Vector3();
		var normal = new Vector3();

		var P1 = new Vector3();
		var P2 = new Vector3();

		var B = new Vector3();
		var T = new Vector3();
		var N = new Vector3();

		// generate vertices, normals and uvs

		for ( i = 0; i <= tubularSegments; ++ i ) {

			// the radian "u" is used to calculate the position on the torus curve of the current tubular segement

			var u = i / tubularSegments * p * Math.PI * 2;

			// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
			// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions

			calculatePositionOnCurve( u, p, q, radius, P1 );
			calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );

			// calculate orthonormal basis

			T.subVectors( P2, P1 );
			N.addVectors( P2, P1 );
			B.crossVectors( T, N );
			N.crossVectors( B, T );

			// normalize B, N. T can be ignored, we don't use it

			B.normalize();
			N.normalize();

			for ( j = 0; j <= radialSegments; ++ j ) {

				// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
				// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.

				var v = j / radialSegments * Math.PI * 2;
				var cx = - tube * Math.cos( v );
				var cy = tube * Math.sin( v );

				// now calculate the final vertex position.
				// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve

				vertex.x = P1.x + ( cx * N.x + cy * B.x );
				vertex.y = P1.y + ( cx * N.y + cy * B.y );
				vertex.z = P1.z + ( cx * N.z + cy * B.z );

				vertices.push( vertex.x, vertex.y, vertex.z );

				// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)

				normal.subVectors( vertex, P1 ).normalize();

				normals.push( normal.x, normal.y, normal.z );

				// uv

				uvs.push( i / tubularSegments );
				uvs.push( j / radialSegments );

			}

		}

		// generate indices

		for ( j = 1; j <= tubularSegments; j ++ ) {

			for ( i = 1; i <= radialSegments; i ++ ) {

				// indices

				var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
				var b = ( radialSegments + 1 ) * j + ( i - 1 );
				var c = ( radialSegments + 1 ) * j + i;
				var d = ( radialSegments + 1 ) * ( j - 1 ) + i;

				// faces

				indices.push( a, b, d );
				indices.push( b, c, d );

			}

		}

		// build geometry

		this.setIndex( indices );
		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

		// this function calculates the current position on the torus curve

		function calculatePositionOnCurve( u, p, q, radius, position ) {

			var cu = Math.cos( u );
			var su = Math.sin( u );
			var quOverP = q / p * u;
			var cs = Math.cos( quOverP );

			position.x = radius * ( 2 + cs ) * 0.5 * cu;
			position.y = radius * ( 2 + cs ) * su * 0.5;
			position.z = radius * Math.sin( quOverP ) * 0.5;

		}

	}

	TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry;

	/**
	 * @author oosmoxiecode
	 * @author mrdoob / http://mrdoob.com/
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// TorusGeometry

	function TorusGeometry( radius, tube, radialSegments, tubularSegments, arc ) {

		Geometry.call( this );

		this.type = 'TorusGeometry';

		this.parameters = {
			radius: radius,
			tube: tube,
			radialSegments: radialSegments,
			tubularSegments: tubularSegments,
			arc: arc
		};

		this.fromBufferGeometry( new TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) );
		this.mergeVertices();

	}

	TorusGeometry.prototype = Object.create( Geometry.prototype );
	TorusGeometry.prototype.constructor = TorusGeometry;

	// TorusBufferGeometry

	function TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) {

		BufferGeometry.call( this );

		this.type = 'TorusBufferGeometry';

		this.parameters = {
			radius: radius,
			tube: tube,
			radialSegments: radialSegments,
			tubularSegments: tubularSegments,
			arc: arc
		};

		radius = radius || 1;
		tube = tube || 0.4;
		radialSegments = Math.floor( radialSegments ) || 8;
		tubularSegments = Math.floor( tubularSegments ) || 6;
		arc = arc || Math.PI * 2;

		// buffers

		var indices = [];
		var vertices = [];
		var normals = [];
		var uvs = [];

		// helper variables

		var center = new Vector3();
		var vertex = new Vector3();
		var normal = new Vector3();

		var j, i;

		// generate vertices, normals and uvs

		for ( j = 0; j <= radialSegments; j ++ ) {

			for ( i = 0; i <= tubularSegments; i ++ ) {

				var u = i / tubularSegments * arc;
				var v = j / radialSegments * Math.PI * 2;

				// vertex

				vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u );
				vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u );
				vertex.z = tube * Math.sin( v );

				vertices.push( vertex.x, vertex.y, vertex.z );

				// normal

				center.x = radius * Math.cos( u );
				center.y = radius * Math.sin( u );
				normal.subVectors( vertex, center ).normalize();

				normals.push( normal.x, normal.y, normal.z );

				// uv

				uvs.push( i / tubularSegments );
				uvs.push( j / radialSegments );

			}

		}

		// generate indices

		for ( j = 1; j <= radialSegments; j ++ ) {

			for ( i = 1; i <= tubularSegments; i ++ ) {

				// indices

				var a = ( tubularSegments + 1 ) * j + i - 1;
				var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1;
				var c = ( tubularSegments + 1 ) * ( j - 1 ) + i;
				var d = ( tubularSegments + 1 ) * j + i;

				// faces

				indices.push( a, b, d );
				indices.push( b, c, d );

			}

		}

		// build geometry

		this.setIndex( indices );
		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

	}

	TorusBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	TorusBufferGeometry.prototype.constructor = TorusBufferGeometry;

	/**
	 * @author Mugen87 / https://github.com/Mugen87
	 * Port from https://github.com/mapbox/earcut (v2.2.2)
	 */

	var Earcut = {

		triangulate: function ( data, holeIndices, dim ) {

			dim = dim || 2;

			var hasHoles = holeIndices && holeIndices.length,
				outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length,
				outerNode = linkedList( data, 0, outerLen, dim, true ),
				triangles = [];

			if ( ! outerNode || outerNode.next === outerNode.prev ) { return triangles; }

			var minX, minY, maxX, maxY, x, y, invSize;

			if ( hasHoles ) { outerNode = eliminateHoles( data, holeIndices, outerNode, dim ); }

			// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
			if ( data.length > 80 * dim ) {

				minX = maxX = data[ 0 ];
				minY = maxY = data[ 1 ];

				for ( var i = dim; i < outerLen; i += dim ) {

					x = data[ i ];
					y = data[ i + 1 ];
					if ( x < minX ) { minX = x; }
					if ( y < minY ) { minY = y; }
					if ( x > maxX ) { maxX = x; }
					if ( y > maxY ) { maxY = y; }

				}

				// minX, minY and invSize are later used to transform coords into integers for z-order calculation
				invSize = Math.max( maxX - minX, maxY - minY );
				invSize = invSize !== 0 ? 1 / invSize : 0;

			}

			earcutLinked( outerNode, triangles, dim, minX, minY, invSize );

			return triangles;

		}

	};

	// create a circular doubly linked list from polygon points in the specified winding order
	function linkedList( data, start, end, dim, clockwise ) {

		var i, last;

		if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) {

			for ( i = start; i < end; i += dim ) { last = insertNode( i, data[ i ], data[ i + 1 ], last ); }

		} else {

			for ( i = end - dim; i >= start; i -= dim ) { last = insertNode( i, data[ i ], data[ i + 1 ], last ); }

		}

		if ( last && equals( last, last.next ) ) {

			removeNode( last );
			last = last.next;

		}

		return last;

	}

	// eliminate colinear or duplicate points
	function filterPoints( start, end ) {

		if ( ! start ) { return start; }
		if ( ! end ) { end = start; }

		var p = start,
			again;
		do {

			again = false;

			if ( ! p.steiner && ( equals( p, p.next ) || area( p.prev, p, p.next ) === 0 ) ) {

				removeNode( p );
				p = end = p.prev;
				if ( p === p.next ) { break; }
				again = true;

			} else {

				p = p.next;

			}

		} while ( again || p !== end );

		return end;

	}

	// main ear slicing loop which triangulates a polygon (given as a linked list)
	function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) {

		if ( ! ear ) { return; }

		// interlink polygon nodes in z-order
		if ( ! pass && invSize ) { indexCurve( ear, minX, minY, invSize ); }

		var stop = ear,
			prev, next;

		// iterate through ears, slicing them one by one
		while ( ear.prev !== ear.next ) {

			prev = ear.prev;
			next = ear.next;

			if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) {

				// cut off the triangle
				triangles.push( prev.i / dim );
				triangles.push( ear.i / dim );
				triangles.push( next.i / dim );

				removeNode( ear );

				// skipping the next vertex leads to less sliver triangles
				ear = next.next;
				stop = next.next;

				continue;

			}

			ear = next;

			// if we looped through the whole remaining polygon and can't find any more ears
			if ( ear === stop ) {

				// try filtering points and slicing again
				if ( ! pass ) {

					earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 );

					// if this didn't work, try curing all small self-intersections locally

				} else if ( pass === 1 ) {

					ear = cureLocalIntersections( filterPoints( ear ), triangles, dim );
					earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 );

					// as a last resort, try splitting the remaining polygon into two

				} else if ( pass === 2 ) {

					splitEarcut( ear, triangles, dim, minX, minY, invSize );

				}

				break;

			}

		}

	}

	// check whether a polygon node forms a valid ear with adjacent nodes
	function isEar( ear ) {

		var a = ear.prev,
			b = ear,
			c = ear.next;

		if ( area( a, b, c ) >= 0 ) { return false; } // reflex, can't be an ear

		// now make sure we don't have other points inside the potential ear
		var p = ear.next.next;

		while ( p !== ear.prev ) {

			if ( pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
				area( p.prev, p, p.next ) >= 0 ) { return false; }
			p = p.next;

		}

		return true;

	}

	function isEarHashed( ear, minX, minY, invSize ) {

		var a = ear.prev,
			b = ear,
			c = ear.next;

		if ( area( a, b, c ) >= 0 ) { return false; } // reflex, can't be an ear

		// triangle bbox; min & max are calculated like this for speed
		var minTX = a.x < b.x ? ( a.x < c.x ? a.x : c.x ) : ( b.x < c.x ? b.x : c.x ),
			minTY = a.y < b.y ? ( a.y < c.y ? a.y : c.y ) : ( b.y < c.y ? b.y : c.y ),
			maxTX = a.x > b.x ? ( a.x > c.x ? a.x : c.x ) : ( b.x > c.x ? b.x : c.x ),
			maxTY = a.y > b.y ? ( a.y > c.y ? a.y : c.y ) : ( b.y > c.y ? b.y : c.y );

		// z-order range for the current triangle bbox;
		var minZ = zOrder( minTX, minTY, minX, minY, invSize ),
			maxZ = zOrder( maxTX, maxTY, minX, minY, invSize );

		var p = ear.prevZ,
			n = ear.nextZ;

		// look for points inside the triangle in both directions
		while ( p && p.z >= minZ && n && n.z <= maxZ ) {

			if ( p !== ear.prev && p !== ear.next &&
				pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
				area( p.prev, p, p.next ) >= 0 ) { return false; }
			p = p.prevZ;

			if ( n !== ear.prev && n !== ear.next &&
				pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) &&
				area( n.prev, n, n.next ) >= 0 ) { return false; }
			n = n.nextZ;

		}

		// look for remaining points in decreasing z-order
		while ( p && p.z >= minZ ) {

			if ( p !== ear.prev && p !== ear.next &&
				pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
				area( p.prev, p, p.next ) >= 0 ) { return false; }
			p = p.prevZ;

		}

		// look for remaining points in increasing z-order
		while ( n && n.z <= maxZ ) {

			if ( n !== ear.prev && n !== ear.next &&
				pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) &&
				area( n.prev, n, n.next ) >= 0 ) { return false; }
			n = n.nextZ;

		}

		return true;

	}

	// go through all polygon nodes and cure small local self-intersections
	function cureLocalIntersections( start, triangles, dim ) {

		var p = start;
		do {

			var a = p.prev,
				b = p.next.next;

			if ( ! equals( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) {

				triangles.push( a.i / dim );
				triangles.push( p.i / dim );
				triangles.push( b.i / dim );

				// remove two nodes involved
				removeNode( p );
				removeNode( p.next );

				p = start = b;

			}

			p = p.next;

		} while ( p !== start );

		return filterPoints( p );

	}

	// try splitting polygon into two and triangulate them independently
	function splitEarcut( start, triangles, dim, minX, minY, invSize ) {

		// look for a valid diagonal that divides the polygon into two
		var a = start;
		do {

			var b = a.next.next;
			while ( b !== a.prev ) {

				if ( a.i !== b.i && isValidDiagonal( a, b ) ) {

					// split the polygon in two by the diagonal
					var c = splitPolygon( a, b );

					// filter colinear points around the cuts
					a = filterPoints( a, a.next );
					c = filterPoints( c, c.next );

					// run earcut on each half
					earcutLinked( a, triangles, dim, minX, minY, invSize );
					earcutLinked( c, triangles, dim, minX, minY, invSize );
					return;

				}

				b = b.next;

			}

			a = a.next;

		} while ( a !== start );

	}

	// link every hole into the outer loop, producing a single-ring polygon without holes
	function eliminateHoles( data, holeIndices, outerNode, dim ) {

		var queue = [],
			i, len, start, end, list;

		for ( i = 0, len = holeIndices.length; i < len; i ++ ) {

			start = holeIndices[ i ] * dim;
			end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length;
			list = linkedList( data, start, end, dim, false );
			if ( list === list.next ) { list.steiner = true; }
			queue.push( getLeftmost( list ) );

		}

		queue.sort( compareX );

		// process holes from left to right
		for ( i = 0; i < queue.length; i ++ ) {

			eliminateHole( queue[ i ], outerNode );
			outerNode = filterPoints( outerNode, outerNode.next );

		}

		return outerNode;

	}

	function compareX( a, b ) {

		return a.x - b.x;

	}

	// find a bridge between vertices that connects hole with an outer ring and and link it
	function eliminateHole( hole, outerNode ) {

		outerNode = findHoleBridge( hole, outerNode );
		if ( outerNode ) {

			var b = splitPolygon( outerNode, hole );

			// filter collinear points around the cuts
			filterPoints( outerNode, outerNode.next );
			filterPoints( b, b.next );

		}

	}

	// David Eberly's algorithm for finding a bridge between hole and outer polygon
	function findHoleBridge( hole, outerNode ) {

		var p = outerNode,
			hx = hole.x,
			hy = hole.y,
			qx = - Infinity,
			m;

		// find a segment intersected by a ray from the hole's leftmost point to the left;
		// segment's endpoint with lesser x will be potential connection point
		do {

			if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) {

				var x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y );
				if ( x <= hx && x > qx ) {

					qx = x;
					if ( x === hx ) {

						if ( hy === p.y ) { return p; }
						if ( hy === p.next.y ) { return p.next; }

					}

					m = p.x < p.next.x ? p : p.next;

				}

			}

			p = p.next;

		} while ( p !== outerNode );

		if ( ! m ) { return null; }

		if ( hx === qx ) { return m; } // hole touches outer segment; pick leftmost endpoint

		// look for points inside the triangle of hole point, segment intersection and endpoint;
		// if there are no points found, we have a valid connection;
		// otherwise choose the point of the minimum angle with the ray as connection point

		var stop = m,
			mx = m.x,
			my = m.y,
			tanMin = Infinity,
			tan;

		p = m;

		do {

			if ( hx >= p.x && p.x >= mx && hx !== p.x &&
					pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) {

				tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential

				if ( locallyInside( p, hole ) && ( tan < tanMin || ( tan === tanMin && ( p.x > m.x || ( p.x === m.x && sectorContainsSector( m, p ) ) ) ) ) ) {

					m = p;
					tanMin = tan;

				}

			}

			p = p.next;

		} while ( p !== stop );

		return m;

	}

	// whether sector in vertex m contains sector in vertex p in the same coordinates
	function sectorContainsSector( m, p ) {

		return area( m.prev, m, p.prev ) < 0 && area( p.next, m, m.next ) < 0;

	}

	// interlink polygon nodes in z-order
	function indexCurve( start, minX, minY, invSize ) {

		var p = start;
		do {

			if ( p.z === null ) { p.z = zOrder( p.x, p.y, minX, minY, invSize ); }
			p.prevZ = p.prev;
			p.nextZ = p.next;
			p = p.next;

		} while ( p !== start );

		p.prevZ.nextZ = null;
		p.prevZ = null;

		sortLinked( p );

	}

	// Simon Tatham's linked list merge sort algorithm
	// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
	function sortLinked( list ) {

		var i, p, q, e, tail, numMerges, pSize, qSize,
			inSize = 1;

		do {

			p = list;
			list = null;
			tail = null;
			numMerges = 0;

			while ( p ) {

				numMerges ++;
				q = p;
				pSize = 0;
				for ( i = 0; i < inSize; i ++ ) {

					pSize ++;
					q = q.nextZ;
					if ( ! q ) { break; }

				}

				qSize = inSize;

				while ( pSize > 0 || ( qSize > 0 && q ) ) {

					if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) {

						e = p;
						p = p.nextZ;
						pSize --;

					} else {

						e = q;
						q = q.nextZ;
						qSize --;

					}

					if ( tail ) { tail.nextZ = e; }
					else { list = e; }

					e.prevZ = tail;
					tail = e;

				}

				p = q;

			}

			tail.nextZ = null;
			inSize *= 2;

		} while ( numMerges > 1 );

		return list;

	}

	// z-order of a point given coords and inverse of the longer side of data bbox
	function zOrder( x, y, minX, minY, invSize ) {

		// coords are transformed into non-negative 15-bit integer range
		x = 32767 * ( x - minX ) * invSize;
		y = 32767 * ( y - minY ) * invSize;

		x = ( x | ( x << 8 ) ) & 0x00FF00FF;
		x = ( x | ( x << 4 ) ) & 0x0F0F0F0F;
		x = ( x | ( x << 2 ) ) & 0x33333333;
		x = ( x | ( x << 1 ) ) & 0x55555555;

		y = ( y | ( y << 8 ) ) & 0x00FF00FF;
		y = ( y | ( y << 4 ) ) & 0x0F0F0F0F;
		y = ( y | ( y << 2 ) ) & 0x33333333;
		y = ( y | ( y << 1 ) ) & 0x55555555;

		return x | ( y << 1 );

	}

	// find the leftmost node of a polygon ring
	function getLeftmost( start ) {

		var p = start,
			leftmost = start;
		do {

			if ( p.x < leftmost.x || ( p.x === leftmost.x && p.y < leftmost.y ) ) { leftmost = p; }
			p = p.next;

		} while ( p !== start );

		return leftmost;

	}

	// check if a point lies within a convex triangle
	function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) {

		return ( cx - px ) * ( ay - py ) - ( ax - px ) * ( cy - py ) >= 0 &&
				( ax - px ) * ( by - py ) - ( bx - px ) * ( ay - py ) >= 0 &&
				( bx - px ) * ( cy - py ) - ( cx - px ) * ( by - py ) >= 0;

	}

	// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
	function isValidDiagonal( a, b ) {

		return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) && // dones't intersect other edges
			( locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b ) && // locally visible
			( area( a.prev, a, b.prev ) || area( a, b.prev, b ) ) || // does not create opposite-facing sectors
			equals( a, b ) && area( a.prev, a, a.next ) > 0 && area( b.prev, b, b.next ) > 0 ); // special zero-length case

	}

	// signed area of a triangle
	function area( p, q, r ) {

		return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y );

	}

	// check if two points are equal
	function equals( p1, p2 ) {

		return p1.x === p2.x && p1.y === p2.y;

	}

	// check if two segments intersect
	function intersects( p1, q1, p2, q2 ) {

		var o1 = sign( area( p1, q1, p2 ) );
		var o2 = sign( area( p1, q1, q2 ) );
		var o3 = sign( area( p2, q2, p1 ) );
		var o4 = sign( area( p2, q2, q1 ) );

		if ( o1 !== o2 && o3 !== o4 ) { return true; } // general case

		if ( o1 === 0 && onSegment( p1, p2, q1 ) ) { return true; } // p1, q1 and p2 are collinear and p2 lies on p1q1
		if ( o2 === 0 && onSegment( p1, q2, q1 ) ) { return true; } // p1, q1 and q2 are collinear and q2 lies on p1q1
		if ( o3 === 0 && onSegment( p2, p1, q2 ) ) { return true; } // p2, q2 and p1 are collinear and p1 lies on p2q2
		if ( o4 === 0 && onSegment( p2, q1, q2 ) ) { return true; } // p2, q2 and q1 are collinear and q1 lies on p2q2

		return false;

	}

	// for collinear points p, q, r, check if point q lies on segment pr
	function onSegment( p, q, r ) {

		return q.x <= Math.max( p.x, r.x ) && q.x >= Math.min( p.x, r.x ) && q.y <= Math.max( p.y, r.y ) && q.y >= Math.min( p.y, r.y );

	}

	function sign( num ) {

		return num > 0 ? 1 : num < 0 ? - 1 : 0;

	}

	// check if a polygon diagonal intersects any polygon segments
	function intersectsPolygon( a, b ) {

		var p = a;
		do {

			if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
					intersects( p, p.next, a, b ) ) { return true; }
			p = p.next;

		} while ( p !== a );

		return false;

	}

	// check if a polygon diagonal is locally inside the polygon
	function locallyInside( a, b ) {

		return area( a.prev, a, a.next ) < 0 ?
			area( a, b, a.next ) >= 0 && area( a, a.prev, b ) >= 0 :
			area( a, b, a.prev ) < 0 || area( a, a.next, b ) < 0;

	}

	// check if the middle point of a polygon diagonal is inside the polygon
	function middleInside( a, b ) {

		var p = a,
			inside = false,
			px = ( a.x + b.x ) / 2,
			py = ( a.y + b.y ) / 2;
		do {

			if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y &&
					( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) )
				{ inside = ! inside; }
			p = p.next;

		} while ( p !== a );

		return inside;

	}

	// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
	// if one belongs to the outer ring and another to a hole, it merges it into a single ring
	function splitPolygon( a, b ) {

		var a2 = new Node( a.i, a.x, a.y ),
			b2 = new Node( b.i, b.x, b.y ),
			an = a.next,
			bp = b.prev;

		a.next = b;
		b.prev = a;

		a2.next = an;
		an.prev = a2;

		b2.next = a2;
		a2.prev = b2;

		bp.next = b2;
		b2.prev = bp;

		return b2;

	}

	// create a node and optionally link it with previous one (in a circular doubly linked list)
	function insertNode( i, x, y, last ) {

		var p = new Node( i, x, y );

		if ( ! last ) {

			p.prev = p;
			p.next = p;

		} else {

			p.next = last.next;
			p.prev = last;
			last.next.prev = p;
			last.next = p;

		}

		return p;

	}

	function removeNode( p ) {

		p.next.prev = p.prev;
		p.prev.next = p.next;

		if ( p.prevZ ) { p.prevZ.nextZ = p.nextZ; }
		if ( p.nextZ ) { p.nextZ.prevZ = p.prevZ; }

	}

	function Node( i, x, y ) {

		// vertex index in coordinates array
		this.i = i;

		// vertex coordinates
		this.x = x;
		this.y = y;

		// previous and next vertex nodes in a polygon ring
		this.prev = null;
		this.next = null;

		// z-order curve value
		this.z = null;

		// previous and next nodes in z-order
		this.prevZ = null;
		this.nextZ = null;

		// indicates whether this is a steiner point
		this.steiner = false;

	}

	function signedArea( data, start, end, dim ) {

		var sum = 0;
		for ( var i = start, j = end - dim; i < end; i += dim ) {

			sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] );
			j = i;

		}

		return sum;

	}

	/**
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 */

	var ShapeUtils = {

		// calculate area of the contour polygon

		area: function ( contour ) {

			var n = contour.length;
			var a = 0.0;

			for ( var p = n - 1, q = 0; q < n; p = q ++ ) {

				a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;

			}

			return a * 0.5;

		},

		isClockWise: function ( pts ) {

			return ShapeUtils.area( pts ) < 0;

		},

		triangulateShape: function ( contour, holes ) {

			var vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
			var holeIndices = []; // array of hole indices
			var faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]

			removeDupEndPts( contour );
			addContour( vertices, contour );

			//

			var holeIndex = contour.length;

			holes.forEach( removeDupEndPts );

			for ( var i = 0; i < holes.length; i ++ ) {

				holeIndices.push( holeIndex );
				holeIndex += holes[ i ].length;
				addContour( vertices, holes[ i ] );

			}

			//

			var triangles = Earcut.triangulate( vertices, holeIndices );

			//

			for ( var i = 0; i < triangles.length; i += 3 ) {

				faces.push( triangles.slice( i, i + 3 ) );

			}

			return faces;

		}

	};

	function removeDupEndPts( points ) {

		var l = points.length;

		if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) {

			points.pop();

		}

	}

	function addContour( vertices, contour ) {

		for ( var i = 0; i < contour.length; i ++ ) {

			vertices.push( contour[ i ].x );
			vertices.push( contour[ i ].y );

		}

	}

	/**
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 *
	 * Creates extruded geometry from a path shape.
	 *
	 * parameters = {
	 *
	 *  curveSegments: <int>, // number of points on the curves
	 *  steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
	 *  depth: <float>, // Depth to extrude the shape
	 *
	 *  bevelEnabled: <bool>, // turn on bevel
	 *  bevelThickness: <float>, // how deep into the original shape bevel goes
	 *  bevelSize: <float>, // how far from shape outline (including bevelOffset) is bevel
	 *  bevelOffset: <float>, // how far from shape outline does bevel start
	 *  bevelSegments: <int>, // number of bevel layers
	 *
	 *  extrudePath: <THREE.Curve> // curve to extrude shape along
	 *
	 *  UVGenerator: <Object> // object that provides UV generator functions
	 *
	 * }
	 */

	// ExtrudeGeometry

	function ExtrudeGeometry( shapes, options ) {

		Geometry.call( this );

		this.type = 'ExtrudeGeometry';

		this.parameters = {
			shapes: shapes,
			options: options
		};

		this.fromBufferGeometry( new ExtrudeBufferGeometry( shapes, options ) );
		this.mergeVertices();

	}

	ExtrudeGeometry.prototype = Object.create( Geometry.prototype );
	ExtrudeGeometry.prototype.constructor = ExtrudeGeometry;

	ExtrudeGeometry.prototype.toJSON = function () {

		var data = Geometry.prototype.toJSON.call( this );

		var shapes = this.parameters.shapes;
		var options = this.parameters.options;

		return toJSON( shapes, options, data );

	};

	// ExtrudeBufferGeometry

	function ExtrudeBufferGeometry( shapes, options ) {

		BufferGeometry.call( this );

		this.type = 'ExtrudeBufferGeometry';

		this.parameters = {
			shapes: shapes,
			options: options
		};

		shapes = Array.isArray( shapes ) ? shapes : [ shapes ];

		var scope = this;

		var verticesArray = [];
		var uvArray = [];

		for ( var i = 0, l = shapes.length; i < l; i ++ ) {

			var shape = shapes[ i ];
			addShape( shape );

		}

		// build geometry

		this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) );

		this.computeVertexNormals();

		// functions

		function addShape( shape ) {

			var placeholder = [];

			// options

			var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
			var steps = options.steps !== undefined ? options.steps : 1;
			var depth = options.depth !== undefined ? options.depth : 100;

			var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
			var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6;
			var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2;
			var bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;
			var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;

			var extrudePath = options.extrudePath;

			var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator;

			// deprecated options

			if ( options.amount !== undefined ) {

				console.warn( 'THREE.ExtrudeBufferGeometry: amount has been renamed to depth.' );
				depth = options.amount;

			}

			//

			var extrudePts, extrudeByPath = false;
			var splineTube, binormal, normal, position2;

			if ( extrudePath ) {

				extrudePts = extrudePath.getSpacedPoints( steps );

				extrudeByPath = true;
				bevelEnabled = false; // bevels not supported for path extrusion

				// SETUP TNB variables

				// TODO1 - have a .isClosed in spline?

				splineTube = extrudePath.computeFrenetFrames( steps, false );

				// console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);

				binormal = new Vector3();
				normal = new Vector3();
				position2 = new Vector3();

			}

			// Safeguards if bevels are not enabled

			if ( ! bevelEnabled ) {

				bevelSegments = 0;
				bevelThickness = 0;
				bevelSize = 0;
				bevelOffset = 0;

			}

			// Variables initialization

			var ahole, h, hl; // looping of holes

			var shapePoints = shape.extractPoints( curveSegments );

			var vertices = shapePoints.shape;
			var holes = shapePoints.holes;

			var reverse = ! ShapeUtils.isClockWise( vertices );

			if ( reverse ) {

				vertices = vertices.reverse();

				// Maybe we should also check if holes are in the opposite direction, just to be safe ...

				for ( h = 0, hl = holes.length; h < hl; h ++ ) {

					ahole = holes[ h ];

					if ( ShapeUtils.isClockWise( ahole ) ) {

						holes[ h ] = ahole.reverse();

					}

				}

			}


			var faces = ShapeUtils.triangulateShape( vertices, holes );

			/* Vertices */

			var contour = vertices; // vertices has all points but contour has only points of circumference

			for ( h = 0, hl = holes.length; h < hl; h ++ ) {

				ahole = holes[ h ];

				vertices = vertices.concat( ahole );

			}


			function scalePt2( pt, vec, size ) {

				if ( ! vec ) { console.error( "THREE.ExtrudeGeometry: vec does not exist" ); }

				return vec.clone().multiplyScalar( size ).add( pt );

			}

			var b, bs, t, z,
				vert, vlen = vertices.length,
				face, flen = faces.length;


			// Find directions for point movement


			function getBevelVec( inPt, inPrev, inNext ) {

				// computes for inPt the corresponding point inPt' on a new contour
				//   shifted by 1 unit (length of normalized vector) to the left
				// if we walk along contour clockwise, this new contour is outside the old one
				//
				// inPt' is the intersection of the two lines parallel to the two
				//  adjacent edges of inPt at a distance of 1 unit on the left side.

				var v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt

				// good reading for geometry algorithms (here: line-line intersection)
				// http://geomalgorithms.com/a05-_intersect-1.html

				var v_prev_x = inPt.x - inPrev.x,
					v_prev_y = inPt.y - inPrev.y;
				var v_next_x = inNext.x - inPt.x,
					v_next_y = inNext.y - inPt.y;

				var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y );

				// check for collinear edges
				var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x );

				if ( Math.abs( collinear0 ) > Number.EPSILON ) {

					// not collinear

					// length of vectors for normalizing

					var v_prev_len = Math.sqrt( v_prev_lensq );
					var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y );

					// shift adjacent points by unit vectors to the left

					var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len );
					var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len );

					var ptNextShift_x = ( inNext.x - v_next_y / v_next_len );
					var ptNextShift_y = ( inNext.y + v_next_x / v_next_len );

					// scaling factor for v_prev to intersection point

					var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y -
							( ptNextShift_y - ptPrevShift_y ) * v_next_x ) /
						( v_prev_x * v_next_y - v_prev_y * v_next_x );

					// vector from inPt to intersection point

					v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x );
					v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y );

					// Don't normalize!, otherwise sharp corners become ugly
					//  but prevent crazy spikes
					var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y );
					if ( v_trans_lensq <= 2 ) {

						return new Vector2( v_trans_x, v_trans_y );

					} else {

						shrink_by = Math.sqrt( v_trans_lensq / 2 );

					}

				} else {

					// handle special case of collinear edges

					var direction_eq = false; // assumes: opposite
					if ( v_prev_x > Number.EPSILON ) {

						if ( v_next_x > Number.EPSILON ) {

							direction_eq = true;

						}

					} else {

						if ( v_prev_x < - Number.EPSILON ) {

							if ( v_next_x < - Number.EPSILON ) {

								direction_eq = true;

							}

						} else {

							if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) {

								direction_eq = true;

							}

						}

					}

					if ( direction_eq ) {

						// console.log("Warning: lines are a straight sequence");
						v_trans_x = - v_prev_y;
						v_trans_y = v_prev_x;
						shrink_by = Math.sqrt( v_prev_lensq );

					} else {

						// console.log("Warning: lines are a straight spike");
						v_trans_x = v_prev_x;
						v_trans_y = v_prev_y;
						shrink_by = Math.sqrt( v_prev_lensq / 2 );

					}

				}

				return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by );

			}


			var contourMovements = [];

			for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {

				if ( j === il ) { j = 0; }
				if ( k === il ) { k = 0; }

				//  (j)---(i)---(k)
				// console.log('i,j,k', i, j , k)

				contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] );

			}

			var holesMovements = [],
				oneHoleMovements, verticesMovements = contourMovements.concat();

			for ( h = 0, hl = holes.length; h < hl; h ++ ) {

				ahole = holes[ h ];

				oneHoleMovements = [];

				for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {

					if ( j === il ) { j = 0; }
					if ( k === il ) { k = 0; }

					//  (j)---(i)---(k)
					oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );

				}

				holesMovements.push( oneHoleMovements );
				verticesMovements = verticesMovements.concat( oneHoleMovements );

			}


			// Loop bevelSegments, 1 for the front, 1 for the back

			for ( b = 0; b < bevelSegments; b ++ ) {

				//for ( b = bevelSegments; b > 0; b -- ) {

				t = b / bevelSegments;
				z = bevelThickness * Math.cos( t * Math.PI / 2 );
				bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset;

				// contract shape

				for ( i = 0, il = contour.length; i < il; i ++ ) {

					vert = scalePt2( contour[ i ], contourMovements[ i ], bs );

					v( vert.x, vert.y, - z );

				}

				// expand holes

				for ( h = 0, hl = holes.length; h < hl; h ++ ) {

					ahole = holes[ h ];
					oneHoleMovements = holesMovements[ h ];

					for ( i = 0, il = ahole.length; i < il; i ++ ) {

						vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );

						v( vert.x, vert.y, - z );

					}

				}

			}

			bs = bevelSize + bevelOffset;

			// Back facing vertices

			for ( i = 0; i < vlen; i ++ ) {

				vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];

				if ( ! extrudeByPath ) {

					v( vert.x, vert.y, 0 );

				} else {

					// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );

					normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x );
					binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y );

					position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal );

					v( position2.x, position2.y, position2.z );

				}

			}

			// Add stepped vertices...
			// Including front facing vertices

			var s;

			for ( s = 1; s <= steps; s ++ ) {

				for ( i = 0; i < vlen; i ++ ) {

					vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];

					if ( ! extrudeByPath ) {

						v( vert.x, vert.y, depth / steps * s );

					} else {

						// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );

						normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x );
						binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y );

						position2.copy( extrudePts[ s ] ).add( normal ).add( binormal );

						v( position2.x, position2.y, position2.z );

					}

				}

			}


			// Add bevel segments planes

			//for ( b = 1; b <= bevelSegments; b ++ ) {
			for ( b = bevelSegments - 1; b >= 0; b -- ) {

				t = b / bevelSegments;
				z = bevelThickness * Math.cos( t * Math.PI / 2 );
				bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset;

				// contract shape

				for ( i = 0, il = contour.length; i < il; i ++ ) {

					vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
					v( vert.x, vert.y, depth + z );

				}

				// expand holes

				for ( h = 0, hl = holes.length; h < hl; h ++ ) {

					ahole = holes[ h ];
					oneHoleMovements = holesMovements[ h ];

					for ( i = 0, il = ahole.length; i < il; i ++ ) {

						vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );

						if ( ! extrudeByPath ) {

							v( vert.x, vert.y, depth + z );

						} else {

							v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );

						}

					}

				}

			}

			/* Faces */

			// Top and bottom faces

			buildLidFaces();

			// Sides faces

			buildSideFaces();


			/////  Internal functions

			function buildLidFaces() {

				var start = verticesArray.length / 3;

				if ( bevelEnabled ) {

					var layer = 0; // steps + 1
					var offset = vlen * layer;

					// Bottom faces

					for ( i = 0; i < flen; i ++ ) {

						face = faces[ i ];
						f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset );

					}

					layer = steps + bevelSegments * 2;
					offset = vlen * layer;

					// Top faces

					for ( i = 0; i < flen; i ++ ) {

						face = faces[ i ];
						f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset );

					}

				} else {

					// Bottom faces

					for ( i = 0; i < flen; i ++ ) {

						face = faces[ i ];
						f3( face[ 2 ], face[ 1 ], face[ 0 ] );

					}

					// Top faces

					for ( i = 0; i < flen; i ++ ) {

						face = faces[ i ];
						f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps );

					}

				}

				scope.addGroup( start, verticesArray.length / 3 - start, 0 );

			}

			// Create faces for the z-sides of the shape

			function buildSideFaces() {

				var start = verticesArray.length / 3;
				var layeroffset = 0;
				sidewalls( contour, layeroffset );
				layeroffset += contour.length;

				for ( h = 0, hl = holes.length; h < hl; h ++ ) {

					ahole = holes[ h ];
					sidewalls( ahole, layeroffset );

					//, true
					layeroffset += ahole.length;

				}


				scope.addGroup( start, verticesArray.length / 3 - start, 1 );


			}

			function sidewalls( contour, layeroffset ) {

				var j, k;
				i = contour.length;

				while ( -- i >= 0 ) {

					j = i;
					k = i - 1;
					if ( k < 0 ) { k = contour.length - 1; }

					//console.log('b', i,j, i-1, k,vertices.length);

					var s = 0,
						sl = steps + bevelSegments * 2;

					for ( s = 0; s < sl; s ++ ) {

						var slen1 = vlen * s;
						var slen2 = vlen * ( s + 1 );

						var a = layeroffset + j + slen1,
							b = layeroffset + k + slen1,
							c = layeroffset + k + slen2,
							d = layeroffset + j + slen2;

						f4( a, b, c, d );

					}

				}

			}

			function v( x, y, z ) {

				placeholder.push( x );
				placeholder.push( y );
				placeholder.push( z );

			}


			function f3( a, b, c ) {

				addVertex( a );
				addVertex( b );
				addVertex( c );

				var nextIndex = verticesArray.length / 3;
				var uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 );

				addUV( uvs[ 0 ] );
				addUV( uvs[ 1 ] );
				addUV( uvs[ 2 ] );

			}

			function f4( a, b, c, d ) {

				addVertex( a );
				addVertex( b );
				addVertex( d );

				addVertex( b );
				addVertex( c );
				addVertex( d );


				var nextIndex = verticesArray.length / 3;
				var uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 );

				addUV( uvs[ 0 ] );
				addUV( uvs[ 1 ] );
				addUV( uvs[ 3 ] );

				addUV( uvs[ 1 ] );
				addUV( uvs[ 2 ] );
				addUV( uvs[ 3 ] );

			}

			function addVertex( index ) {

				verticesArray.push( placeholder[ index * 3 + 0 ] );
				verticesArray.push( placeholder[ index * 3 + 1 ] );
				verticesArray.push( placeholder[ index * 3 + 2 ] );

			}


			function addUV( vector2 ) {

				uvArray.push( vector2.x );
				uvArray.push( vector2.y );

			}

		}

	}

	ExtrudeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	ExtrudeBufferGeometry.prototype.constructor = ExtrudeBufferGeometry;

	ExtrudeBufferGeometry.prototype.toJSON = function () {

		var data = BufferGeometry.prototype.toJSON.call( this );

		var shapes = this.parameters.shapes;
		var options = this.parameters.options;

		return toJSON( shapes, options, data );

	};

	//

	var WorldUVGenerator = {

		generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) {

			var a_x = vertices[ indexA * 3 ];
			var a_y = vertices[ indexA * 3 + 1 ];
			var b_x = vertices[ indexB * 3 ];
			var b_y = vertices[ indexB * 3 + 1 ];
			var c_x = vertices[ indexC * 3 ];
			var c_y = vertices[ indexC * 3 + 1 ];

			return [
				new Vector2( a_x, a_y ),
				new Vector2( b_x, b_y ),
				new Vector2( c_x, c_y )
			];

		},

		generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) {

			var a_x = vertices[ indexA * 3 ];
			var a_y = vertices[ indexA * 3 + 1 ];
			var a_z = vertices[ indexA * 3 + 2 ];
			var b_x = vertices[ indexB * 3 ];
			var b_y = vertices[ indexB * 3 + 1 ];
			var b_z = vertices[ indexB * 3 + 2 ];
			var c_x = vertices[ indexC * 3 ];
			var c_y = vertices[ indexC * 3 + 1 ];
			var c_z = vertices[ indexC * 3 + 2 ];
			var d_x = vertices[ indexD * 3 ];
			var d_y = vertices[ indexD * 3 + 1 ];
			var d_z = vertices[ indexD * 3 + 2 ];

			if ( Math.abs( a_y - b_y ) < 0.01 ) {

				return [
					new Vector2( a_x, 1 - a_z ),
					new Vector2( b_x, 1 - b_z ),
					new Vector2( c_x, 1 - c_z ),
					new Vector2( d_x, 1 - d_z )
				];

			} else {

				return [
					new Vector2( a_y, 1 - a_z ),
					new Vector2( b_y, 1 - b_z ),
					new Vector2( c_y, 1 - c_z ),
					new Vector2( d_y, 1 - d_z )
				];

			}

		}
	};

	function toJSON( shapes, options, data ) {

		//

		data.shapes = [];

		if ( Array.isArray( shapes ) ) {

			for ( var i = 0, l = shapes.length; i < l; i ++ ) {

				var shape = shapes[ i ];

				data.shapes.push( shape.uuid );

			}

		} else {

			data.shapes.push( shapes.uuid );

		}

		//

		if ( options.extrudePath !== undefined ) { data.options.extrudePath = options.extrudePath.toJSON(); }

		return data;

	}

	/**
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 * @author alteredq / http://alteredqualia.com/
	 *
	 * Text = 3D Text
	 *
	 * parameters = {
	 *  font: <THREE.Font>, // font
	 *
	 *  size: <float>, // size of the text
	 *  height: <float>, // thickness to extrude text
	 *  curveSegments: <int>, // number of points on the curves
	 *
	 *  bevelEnabled: <bool>, // turn on bevel
	 *  bevelThickness: <float>, // how deep into text bevel goes
	 *  bevelSize: <float>, // how far from text outline (including bevelOffset) is bevel
	 *  bevelOffset: <float> // how far from text outline does bevel start
	 * }
	 */

	// TextGeometry

	function TextGeometry( text, parameters ) {

		Geometry.call( this );

		this.type = 'TextGeometry';

		this.parameters = {
			text: text,
			parameters: parameters
		};

		this.fromBufferGeometry( new TextBufferGeometry( text, parameters ) );
		this.mergeVertices();

	}

	TextGeometry.prototype = Object.create( Geometry.prototype );
	TextGeometry.prototype.constructor = TextGeometry;

	// TextBufferGeometry

	function TextBufferGeometry( text, parameters ) {

		parameters = parameters || {};

		var font = parameters.font;

		if ( ! ( font && font.isFont ) ) {

			console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' );
			return new Geometry();

		}

		var shapes = font.generateShapes( text, parameters.size );

		// translate parameters to ExtrudeGeometry API

		parameters.depth = parameters.height !== undefined ? parameters.height : 50;

		// defaults

		if ( parameters.bevelThickness === undefined ) { parameters.bevelThickness = 10; }
		if ( parameters.bevelSize === undefined ) { parameters.bevelSize = 8; }
		if ( parameters.bevelEnabled === undefined ) { parameters.bevelEnabled = false; }

		ExtrudeBufferGeometry.call( this, shapes, parameters );

		this.type = 'TextBufferGeometry';

	}

	TextBufferGeometry.prototype = Object.create( ExtrudeBufferGeometry.prototype );
	TextBufferGeometry.prototype.constructor = TextBufferGeometry;

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author benaadams / https://twitter.com/ben_a_adams
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// SphereGeometry

	function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {

		Geometry.call( this );

		this.type = 'SphereGeometry';

		this.parameters = {
			radius: radius,
			widthSegments: widthSegments,
			heightSegments: heightSegments,
			phiStart: phiStart,
			phiLength: phiLength,
			thetaStart: thetaStart,
			thetaLength: thetaLength
		};

		this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) );
		this.mergeVertices();

	}

	SphereGeometry.prototype = Object.create( Geometry.prototype );
	SphereGeometry.prototype.constructor = SphereGeometry;

	// SphereBufferGeometry

	function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {

		BufferGeometry.call( this );

		this.type = 'SphereBufferGeometry';

		this.parameters = {
			radius: radius,
			widthSegments: widthSegments,
			heightSegments: heightSegments,
			phiStart: phiStart,
			phiLength: phiLength,
			thetaStart: thetaStart,
			thetaLength: thetaLength
		};

		radius = radius || 1;

		widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 );
		heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 );

		phiStart = phiStart !== undefined ? phiStart : 0;
		phiLength = phiLength !== undefined ? phiLength : Math.PI * 2;

		thetaStart = thetaStart !== undefined ? thetaStart : 0;
		thetaLength = thetaLength !== undefined ? thetaLength : Math.PI;

		var thetaEnd = Math.min( thetaStart + thetaLength, Math.PI );

		var ix, iy;

		var index = 0;
		var grid = [];

		var vertex = new Vector3();
		var normal = new Vector3();

		// buffers

		var indices = [];
		var vertices = [];
		var normals = [];
		var uvs = [];

		// generate vertices, normals and uvs

		for ( iy = 0; iy <= heightSegments; iy ++ ) {

			var verticesRow = [];

			var v = iy / heightSegments;

			// special case for the poles

			var uOffset = 0;

			if ( iy == 0 && thetaStart == 0 ) {

				uOffset = 0.5 / widthSegments;

			} else if ( iy == heightSegments && thetaEnd == Math.PI ) {

				uOffset = - 0.5 / widthSegments;

			}

			for ( ix = 0; ix <= widthSegments; ix ++ ) {

				var u = ix / widthSegments;

				// vertex

				vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
				vertex.y = radius * Math.cos( thetaStart + v * thetaLength );
				vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );

				vertices.push( vertex.x, vertex.y, vertex.z );

				// normal

				normal.copy( vertex ).normalize();
				normals.push( normal.x, normal.y, normal.z );

				// uv

				uvs.push( u + uOffset, 1 - v );

				verticesRow.push( index ++ );

			}

			grid.push( verticesRow );

		}

		// indices

		for ( iy = 0; iy < heightSegments; iy ++ ) {

			for ( ix = 0; ix < widthSegments; ix ++ ) {

				var a = grid[ iy ][ ix + 1 ];
				var b = grid[ iy ][ ix ];
				var c = grid[ iy + 1 ][ ix ];
				var d = grid[ iy + 1 ][ ix + 1 ];

				if ( iy !== 0 || thetaStart > 0 ) { indices.push( a, b, d ); }
				if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) { indices.push( b, c, d ); }

			}

		}

		// build geometry

		this.setIndex( indices );
		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

	}

	SphereBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	SphereBufferGeometry.prototype.constructor = SphereBufferGeometry;

	/**
	 * @author Kaleb Murphy
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// RingGeometry

	function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {

		Geometry.call( this );

		this.type = 'RingGeometry';

		this.parameters = {
			innerRadius: innerRadius,
			outerRadius: outerRadius,
			thetaSegments: thetaSegments,
			phiSegments: phiSegments,
			thetaStart: thetaStart,
			thetaLength: thetaLength
		};

		this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) );
		this.mergeVertices();

	}

	RingGeometry.prototype = Object.create( Geometry.prototype );
	RingGeometry.prototype.constructor = RingGeometry;

	// RingBufferGeometry

	function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {

		BufferGeometry.call( this );

		this.type = 'RingBufferGeometry';

		this.parameters = {
			innerRadius: innerRadius,
			outerRadius: outerRadius,
			thetaSegments: thetaSegments,
			phiSegments: phiSegments,
			thetaStart: thetaStart,
			thetaLength: thetaLength
		};

		innerRadius = innerRadius || 0.5;
		outerRadius = outerRadius || 1;

		thetaStart = thetaStart !== undefined ? thetaStart : 0;
		thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

		thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8;
		phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1;

		// buffers

		var indices = [];
		var vertices = [];
		var normals = [];
		var uvs = [];

		// some helper variables

		var segment;
		var radius = innerRadius;
		var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments );
		var vertex = new Vector3();
		var uv = new Vector2();
		var j, i;

		// generate vertices, normals and uvs

		for ( j = 0; j <= phiSegments; j ++ ) {

			for ( i = 0; i <= thetaSegments; i ++ ) {

				// values are generate from the inside of the ring to the outside

				segment = thetaStart + i / thetaSegments * thetaLength;

				// vertex

				vertex.x = radius * Math.cos( segment );
				vertex.y = radius * Math.sin( segment );

				vertices.push( vertex.x, vertex.y, vertex.z );

				// normal

				normals.push( 0, 0, 1 );

				// uv

				uv.x = ( vertex.x / outerRadius + 1 ) / 2;
				uv.y = ( vertex.y / outerRadius + 1 ) / 2;

				uvs.push( uv.x, uv.y );

			}

			// increase the radius for next row of vertices

			radius += radiusStep;

		}

		// indices

		for ( j = 0; j < phiSegments; j ++ ) {

			var thetaSegmentLevel = j * ( thetaSegments + 1 );

			for ( i = 0; i < thetaSegments; i ++ ) {

				segment = i + thetaSegmentLevel;

				var a = segment;
				var b = segment + thetaSegments + 1;
				var c = segment + thetaSegments + 2;
				var d = segment + 1;

				// faces

				indices.push( a, b, d );
				indices.push( b, c, d );

			}

		}

		// build geometry

		this.setIndex( indices );
		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

	}

	RingBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	RingBufferGeometry.prototype.constructor = RingBufferGeometry;

	/**
	 * @author zz85 / https://github.com/zz85
	 * @author bhouston / http://clara.io
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// LatheGeometry

	function LatheGeometry( points, segments, phiStart, phiLength ) {

		Geometry.call( this );

		this.type = 'LatheGeometry';

		this.parameters = {
			points: points,
			segments: segments,
			phiStart: phiStart,
			phiLength: phiLength
		};

		this.fromBufferGeometry( new LatheBufferGeometry( points, segments, phiStart, phiLength ) );
		this.mergeVertices();

	}

	LatheGeometry.prototype = Object.create( Geometry.prototype );
	LatheGeometry.prototype.constructor = LatheGeometry;

	// LatheBufferGeometry

	function LatheBufferGeometry( points, segments, phiStart, phiLength ) {

		BufferGeometry.call( this );

		this.type = 'LatheBufferGeometry';

		this.parameters = {
			points: points,
			segments: segments,
			phiStart: phiStart,
			phiLength: phiLength
		};

		segments = Math.floor( segments ) || 12;
		phiStart = phiStart || 0;
		phiLength = phiLength || Math.PI * 2;

		// clamp phiLength so it's in range of [ 0, 2PI ]

		phiLength = MathUtils.clamp( phiLength, 0, Math.PI * 2 );


		// buffers

		var indices = [];
		var vertices = [];
		var uvs = [];

		// helper variables

		var base;
		var inverseSegments = 1.0 / segments;
		var vertex = new Vector3();
		var uv = new Vector2();
		var i, j;

		// generate vertices and uvs

		for ( i = 0; i <= segments; i ++ ) {

			var phi = phiStart + i * inverseSegments * phiLength;

			var sin = Math.sin( phi );
			var cos = Math.cos( phi );

			for ( j = 0; j <= ( points.length - 1 ); j ++ ) {

				// vertex

				vertex.x = points[ j ].x * sin;
				vertex.y = points[ j ].y;
				vertex.z = points[ j ].x * cos;

				vertices.push( vertex.x, vertex.y, vertex.z );

				// uv

				uv.x = i / segments;
				uv.y = j / ( points.length - 1 );

				uvs.push( uv.x, uv.y );


			}

		}

		// indices

		for ( i = 0; i < segments; i ++ ) {

			for ( j = 0; j < ( points.length - 1 ); j ++ ) {

				base = j + i * points.length;

				var a = base;
				var b = base + points.length;
				var c = base + points.length + 1;
				var d = base + 1;

				// faces

				indices.push( a, b, d );
				indices.push( b, c, d );

			}

		}

		// build geometry

		this.setIndex( indices );
		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

		// generate normals

		this.computeVertexNormals();

		// if the geometry is closed, we need to average the normals along the seam.
		// because the corresponding vertices are identical (but still have different UVs).

		if ( phiLength === Math.PI * 2 ) {

			var normals = this.attributes.normal.array;
			var n1 = new Vector3();
			var n2 = new Vector3();
			var n = new Vector3();

			// this is the buffer offset for the last line of vertices

			base = segments * points.length * 3;

			for ( i = 0, j = 0; i < points.length; i ++, j += 3 ) {

				// select the normal of the vertex in the first line

				n1.x = normals[ j + 0 ];
				n1.y = normals[ j + 1 ];
				n1.z = normals[ j + 2 ];

				// select the normal of the vertex in the last line

				n2.x = normals[ base + j + 0 ];
				n2.y = normals[ base + j + 1 ];
				n2.z = normals[ base + j + 2 ];

				// average normals

				n.addVectors( n1, n2 ).normalize();

				// assign the new values to both normals

				normals[ j + 0 ] = normals[ base + j + 0 ] = n.x;
				normals[ j + 1 ] = normals[ base + j + 1 ] = n.y;
				normals[ j + 2 ] = normals[ base + j + 2 ] = n.z;

			}

		}

	}

	LatheBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	LatheBufferGeometry.prototype.constructor = LatheBufferGeometry;

	/**
	 * @author jonobr1 / http://jonobr1.com
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// ShapeGeometry

	function ShapeGeometry( shapes, curveSegments ) {

		Geometry.call( this );

		this.type = 'ShapeGeometry';

		if ( typeof curveSegments === 'object' ) {

			console.warn( 'THREE.ShapeGeometry: Options parameter has been removed.' );

			curveSegments = curveSegments.curveSegments;

		}

		this.parameters = {
			shapes: shapes,
			curveSegments: curveSegments
		};

		this.fromBufferGeometry( new ShapeBufferGeometry( shapes, curveSegments ) );
		this.mergeVertices();

	}

	ShapeGeometry.prototype = Object.create( Geometry.prototype );
	ShapeGeometry.prototype.constructor = ShapeGeometry;

	ShapeGeometry.prototype.toJSON = function () {

		var data = Geometry.prototype.toJSON.call( this );

		var shapes = this.parameters.shapes;

		return toJSON$1( shapes, data );

	};

	// ShapeBufferGeometry

	function ShapeBufferGeometry( shapes, curveSegments ) {

		BufferGeometry.call( this );

		this.type = 'ShapeBufferGeometry';

		this.parameters = {
			shapes: shapes,
			curveSegments: curveSegments
		};

		curveSegments = curveSegments || 12;

		// buffers

		var indices = [];
		var vertices = [];
		var normals = [];
		var uvs = [];

		// helper variables

		var groupStart = 0;
		var groupCount = 0;

		// allow single and array values for "shapes" parameter

		if ( Array.isArray( shapes ) === false ) {

			addShape( shapes );

		} else {

			for ( var i = 0; i < shapes.length; i ++ ) {

				addShape( shapes[ i ] );

				this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support

				groupStart += groupCount;
				groupCount = 0;

			}

		}

		// build geometry

		this.setIndex( indices );
		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );


		// helper functions

		function addShape( shape ) {

			var i, l, shapeHole;

			var indexOffset = vertices.length / 3;
			var points = shape.extractPoints( curveSegments );

			var shapeVertices = points.shape;
			var shapeHoles = points.holes;

			// check direction of vertices

			if ( ShapeUtils.isClockWise( shapeVertices ) === false ) {

				shapeVertices = shapeVertices.reverse();

			}

			for ( i = 0, l = shapeHoles.length; i < l; i ++ ) {

				shapeHole = shapeHoles[ i ];

				if ( ShapeUtils.isClockWise( shapeHole ) === true ) {

					shapeHoles[ i ] = shapeHole.reverse();

				}

			}

			var faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles );

			// join vertices of inner and outer paths to a single array

			for ( i = 0, l = shapeHoles.length; i < l; i ++ ) {

				shapeHole = shapeHoles[ i ];
				shapeVertices = shapeVertices.concat( shapeHole );

			}

			// vertices, normals, uvs

			for ( i = 0, l = shapeVertices.length; i < l; i ++ ) {

				var vertex = shapeVertices[ i ];

				vertices.push( vertex.x, vertex.y, 0 );
				normals.push( 0, 0, 1 );
				uvs.push( vertex.x, vertex.y ); // world uvs

			}

			// incides

			for ( i = 0, l = faces.length; i < l; i ++ ) {

				var face = faces[ i ];

				var a = face[ 0 ] + indexOffset;
				var b = face[ 1 ] + indexOffset;
				var c = face[ 2 ] + indexOffset;

				indices.push( a, b, c );
				groupCount += 3;

			}

		}

	}

	ShapeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	ShapeBufferGeometry.prototype.constructor = ShapeBufferGeometry;

	ShapeBufferGeometry.prototype.toJSON = function () {

		var data = BufferGeometry.prototype.toJSON.call( this );

		var shapes = this.parameters.shapes;

		return toJSON$1( shapes, data );

	};

	//

	function toJSON$1( shapes, data ) {

		data.shapes = [];

		if ( Array.isArray( shapes ) ) {

			for ( var i = 0, l = shapes.length; i < l; i ++ ) {

				var shape = shapes[ i ];

				data.shapes.push( shape.uuid );

			}

		} else {

			data.shapes.push( shapes.uuid );

		}

		return data;

	}

	/**
	 * @author WestLangley / http://github.com/WestLangley
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	function EdgesGeometry( geometry, thresholdAngle ) {

		BufferGeometry.call( this );

		this.type = 'EdgesGeometry';

		this.parameters = {
			thresholdAngle: thresholdAngle
		};

		thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1;

		// buffer

		var vertices = [];

		// helper variables

		var thresholdDot = Math.cos( MathUtils.DEG2RAD * thresholdAngle );
		var edge = [ 0, 0 ], edges = {}, edge1, edge2;
		var key, keys = [ 'a', 'b', 'c' ];

		// prepare source geometry

		var geometry2;

		if ( geometry.isBufferGeometry ) {

			geometry2 = new Geometry();
			geometry2.fromBufferGeometry( geometry );

		} else {

			geometry2 = geometry.clone();

		}

		geometry2.mergeVertices();
		geometry2.computeFaceNormals();

		var sourceVertices = geometry2.vertices;
		var faces = geometry2.faces;

		// now create a data structure where each entry represents an edge with its adjoining faces

		for ( var i = 0, l = faces.length; i < l; i ++ ) {

			var face = faces[ i ];

			for ( var j = 0; j < 3; j ++ ) {

				edge1 = face[ keys[ j ] ];
				edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
				edge[ 0 ] = Math.min( edge1, edge2 );
				edge[ 1 ] = Math.max( edge1, edge2 );

				key = edge[ 0 ] + ',' + edge[ 1 ];

				if ( edges[ key ] === undefined ) {

					edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ], face1: i, face2: undefined };

				} else {

					edges[ key ].face2 = i;

				}

			}

		}

		// generate vertices

		for ( key in edges ) {

			var e = edges[ key ];

			// an edge is only rendered if the angle (in degrees) between the face normals of the adjoining faces exceeds this value. default = 1 degree.

			if ( e.face2 === undefined || faces[ e.face1 ].normal.dot( faces[ e.face2 ].normal ) <= thresholdDot ) {

				var vertex = sourceVertices[ e.index1 ];
				vertices.push( vertex.x, vertex.y, vertex.z );

				vertex = sourceVertices[ e.index2 ];
				vertices.push( vertex.x, vertex.y, vertex.z );

			}

		}

		// build geometry

		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );

	}

	EdgesGeometry.prototype = Object.create( BufferGeometry.prototype );
	EdgesGeometry.prototype.constructor = EdgesGeometry;

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	// CylinderGeometry

	function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

		Geometry.call( this );

		this.type = 'CylinderGeometry';

		this.parameters = {
			radiusTop: radiusTop,
			radiusBottom: radiusBottom,
			height: height,
			radialSegments: radialSegments,
			heightSegments: heightSegments,
			openEnded: openEnded,
			thetaStart: thetaStart,
			thetaLength: thetaLength
		};

		this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) );
		this.mergeVertices();

	}

	CylinderGeometry.prototype = Object.create( Geometry.prototype );
	CylinderGeometry.prototype.constructor = CylinderGeometry;

	// CylinderBufferGeometry

	function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

		BufferGeometry.call( this );

		this.type = 'CylinderBufferGeometry';

		this.parameters = {
			radiusTop: radiusTop,
			radiusBottom: radiusBottom,
			height: height,
			radialSegments: radialSegments,
			heightSegments: heightSegments,
			openEnded: openEnded,
			thetaStart: thetaStart,
			thetaLength: thetaLength
		};

		var scope = this;

		radiusTop = radiusTop !== undefined ? radiusTop : 1;
		radiusBottom = radiusBottom !== undefined ? radiusBottom : 1;
		height = height || 1;

		radialSegments = Math.floor( radialSegments ) || 8;
		heightSegments = Math.floor( heightSegments ) || 1;

		openEnded = openEnded !== undefined ? openEnded : false;
		thetaStart = thetaStart !== undefined ? thetaStart : 0.0;
		thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

		// buffers

		var indices = [];
		var vertices = [];
		var normals = [];
		var uvs = [];

		// helper variables

		var index = 0;
		var indexArray = [];
		var halfHeight = height / 2;
		var groupStart = 0;

		// generate geometry

		generateTorso();

		if ( openEnded === false ) {

			if ( radiusTop > 0 ) { generateCap( true ); }
			if ( radiusBottom > 0 ) { generateCap( false ); }

		}

		// build geometry

		this.setIndex( indices );
		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

		function generateTorso() {

			var x, y;
			var normal = new Vector3();
			var vertex = new Vector3();

			var groupCount = 0;

			// this will be used to calculate the normal
			var slope = ( radiusBottom - radiusTop ) / height;

			// generate vertices, normals and uvs

			for ( y = 0; y <= heightSegments; y ++ ) {

				var indexRow = [];

				var v = y / heightSegments;

				// calculate the radius of the current row

				var radius = v * ( radiusBottom - radiusTop ) + radiusTop;

				for ( x = 0; x <= radialSegments; x ++ ) {

					var u = x / radialSegments;

					var theta = u * thetaLength + thetaStart;

					var sinTheta = Math.sin( theta );
					var cosTheta = Math.cos( theta );

					// vertex

					vertex.x = radius * sinTheta;
					vertex.y = - v * height + halfHeight;
					vertex.z = radius * cosTheta;
					vertices.push( vertex.x, vertex.y, vertex.z );

					// normal

					normal.set( sinTheta, slope, cosTheta ).normalize();
					normals.push( normal.x, normal.y, normal.z );

					// uv

					uvs.push( u, 1 - v );

					// save index of vertex in respective row

					indexRow.push( index ++ );

				}

				// now save vertices of the row in our index array

				indexArray.push( indexRow );

			}

			// generate indices

			for ( x = 0; x < radialSegments; x ++ ) {

				for ( y = 0; y < heightSegments; y ++ ) {

					// we use the index array to access the correct indices

					var a = indexArray[ y ][ x ];
					var b = indexArray[ y + 1 ][ x ];
					var c = indexArray[ y + 1 ][ x + 1 ];
					var d = indexArray[ y ][ x + 1 ];

					// faces

					indices.push( a, b, d );
					indices.push( b, c, d );

					// update group counter

					groupCount += 6;

				}

			}

			// add a group to the geometry. this will ensure multi material support

			scope.addGroup( groupStart, groupCount, 0 );

			// calculate new start value for groups

			groupStart += groupCount;

		}

		function generateCap( top ) {

			var x, centerIndexStart, centerIndexEnd;

			var uv = new Vector2();
			var vertex = new Vector3();

			var groupCount = 0;

			var radius = ( top === true ) ? radiusTop : radiusBottom;
			var sign = ( top === true ) ? 1 : - 1;

			// save the index of the first center vertex
			centerIndexStart = index;

			// first we generate the center vertex data of the cap.
			// because the geometry needs one set of uvs per face,
			// we must generate a center vertex per face/segment

			for ( x = 1; x <= radialSegments; x ++ ) {

				// vertex

				vertices.push( 0, halfHeight * sign, 0 );

				// normal

				normals.push( 0, sign, 0 );

				// uv

				uvs.push( 0.5, 0.5 );

				// increase index

				index ++;

			}

			// save the index of the last center vertex

			centerIndexEnd = index;

			// now we generate the surrounding vertices, normals and uvs

			for ( x = 0; x <= radialSegments; x ++ ) {

				var u = x / radialSegments;
				var theta = u * thetaLength + thetaStart;

				var cosTheta = Math.cos( theta );
				var sinTheta = Math.sin( theta );

				// vertex

				vertex.x = radius * sinTheta;
				vertex.y = halfHeight * sign;
				vertex.z = radius * cosTheta;
				vertices.push( vertex.x, vertex.y, vertex.z );

				// normal

				normals.push( 0, sign, 0 );

				// uv

				uv.x = ( cosTheta * 0.5 ) + 0.5;
				uv.y = ( sinTheta * 0.5 * sign ) + 0.5;
				uvs.push( uv.x, uv.y );

				// increase index

				index ++;

			}

			// generate indices

			for ( x = 0; x < radialSegments; x ++ ) {

				var c = centerIndexStart + x;
				var i = centerIndexEnd + x;

				if ( top === true ) {

					// face top

					indices.push( i, i + 1, c );

				} else {

					// face bottom

					indices.push( i + 1, i, c );

				}

				groupCount += 3;

			}

			// add a group to the geometry. this will ensure multi material support

			scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 );

			// calculate new start value for groups

			groupStart += groupCount;

		}

	}

	CylinderBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry;

	/**
	 * @author abelnation / http://github.com/abelnation
	 */

	// ConeGeometry

	function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

		CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );

		this.type = 'ConeGeometry';

		this.parameters = {
			radius: radius,
			height: height,
			radialSegments: radialSegments,
			heightSegments: heightSegments,
			openEnded: openEnded,
			thetaStart: thetaStart,
			thetaLength: thetaLength
		};

	}

	ConeGeometry.prototype = Object.create( CylinderGeometry.prototype );
	ConeGeometry.prototype.constructor = ConeGeometry;

	// ConeBufferGeometry

	function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

		CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );

		this.type = 'ConeBufferGeometry';

		this.parameters = {
			radius: radius,
			height: height,
			radialSegments: radialSegments,
			heightSegments: heightSegments,
			openEnded: openEnded,
			thetaStart: thetaStart,
			thetaLength: thetaLength
		};

	}

	ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype );
	ConeBufferGeometry.prototype.constructor = ConeBufferGeometry;

	/**
	 * @author benaadams / https://twitter.com/ben_a_adams
	 * @author Mugen87 / https://github.com/Mugen87
	 * @author hughes
	 */

	// CircleGeometry

	function CircleGeometry( radius, segments, thetaStart, thetaLength ) {

		Geometry.call( this );

		this.type = 'CircleGeometry';

		this.parameters = {
			radius: radius,
			segments: segments,
			thetaStart: thetaStart,
			thetaLength: thetaLength
		};

		this.fromBufferGeometry( new CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) );
		this.mergeVertices();

	}

	CircleGeometry.prototype = Object.create( Geometry.prototype );
	CircleGeometry.prototype.constructor = CircleGeometry;

	// CircleBufferGeometry

	function CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) {

		BufferGeometry.call( this );

		this.type = 'CircleBufferGeometry';

		this.parameters = {
			radius: radius,
			segments: segments,
			thetaStart: thetaStart,
			thetaLength: thetaLength
		};

		radius = radius || 1;
		segments = segments !== undefined ? Math.max( 3, segments ) : 8;

		thetaStart = thetaStart !== undefined ? thetaStart : 0;
		thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

		// buffers

		var indices = [];
		var vertices = [];
		var normals = [];
		var uvs = [];

		// helper variables

		var i, s;
		var vertex = new Vector3();
		var uv = new Vector2();

		// center point

		vertices.push( 0, 0, 0 );
		normals.push( 0, 0, 1 );
		uvs.push( 0.5, 0.5 );

		for ( s = 0, i = 3; s <= segments; s ++, i += 3 ) {

			var segment = thetaStart + s / segments * thetaLength;

			// vertex

			vertex.x = radius * Math.cos( segment );
			vertex.y = radius * Math.sin( segment );

			vertices.push( vertex.x, vertex.y, vertex.z );

			// normal

			normals.push( 0, 0, 1 );

			// uvs

			uv.x = ( vertices[ i ] / radius + 1 ) / 2;
			uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2;

			uvs.push( uv.x, uv.y );

		}

		// indices

		for ( i = 1; i <= segments; i ++ ) {

			indices.push( i, i + 1, 0 );

		}

		// build geometry

		this.setIndex( indices );
		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
		this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

	}

	CircleBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
	CircleBufferGeometry.prototype.constructor = CircleBufferGeometry;

	var Geometries = /*#__PURE__*/Object.freeze({
		__proto__: null,
		WireframeGeometry: WireframeGeometry,
		ParametricGeometry: ParametricGeometry,
		ParametricBufferGeometry: ParametricBufferGeometry,
		TetrahedronGeometry: TetrahedronGeometry,
		TetrahedronBufferGeometry: TetrahedronBufferGeometry,
		OctahedronGeometry: OctahedronGeometry,
		OctahedronBufferGeometry: OctahedronBufferGeometry,
		IcosahedronGeometry: IcosahedronGeometry,
		IcosahedronBufferGeometry: IcosahedronBufferGeometry,
		DodecahedronGeometry: DodecahedronGeometry,
		DodecahedronBufferGeometry: DodecahedronBufferGeometry,
		PolyhedronGeometry: PolyhedronGeometry,
		PolyhedronBufferGeometry: PolyhedronBufferGeometry,
		TubeGeometry: TubeGeometry,
		TubeBufferGeometry: TubeBufferGeometry,
		TorusKnotGeometry: TorusKnotGeometry,
		TorusKnotBufferGeometry: TorusKnotBufferGeometry,
		TorusGeometry: TorusGeometry,
		TorusBufferGeometry: TorusBufferGeometry,
		TextGeometry: TextGeometry,
		TextBufferGeometry: TextBufferGeometry,
		SphereGeometry: SphereGeometry,
		SphereBufferGeometry: SphereBufferGeometry,
		RingGeometry: RingGeometry,
		RingBufferGeometry: RingBufferGeometry,
		PlaneGeometry: PlaneGeometry,
		PlaneBufferGeometry: PlaneBufferGeometry,
		LatheGeometry: LatheGeometry,
		LatheBufferGeometry: LatheBufferGeometry,
		ShapeGeometry: ShapeGeometry,
		ShapeBufferGeometry: ShapeBufferGeometry,
		ExtrudeGeometry: ExtrudeGeometry,
		ExtrudeBufferGeometry: ExtrudeBufferGeometry,
		EdgesGeometry: EdgesGeometry,
		ConeGeometry: ConeGeometry,
		ConeBufferGeometry: ConeBufferGeometry,
		CylinderGeometry: CylinderGeometry,
		CylinderBufferGeometry: CylinderBufferGeometry,
		CircleGeometry: CircleGeometry,
		CircleBufferGeometry: CircleBufferGeometry,
		BoxGeometry: BoxGeometry,
		BoxBufferGeometry: BoxBufferGeometry
	});

	/**
	 * @author mrdoob / http://mrdoob.com/
	 *
	 * parameters = {
	 *  color: <THREE.Color>
	 * }
	 */

	function ShadowMaterial( parameters ) {

		Material.call( this );

		this.type = 'ShadowMaterial';

		this.color = new Color( 0x000000 );
		this.transparent = true;

		this.setValues( parameters );

	}

	ShadowMaterial.prototype = Object.create( Material.prototype );
	ShadowMaterial.prototype.constructor = ShadowMaterial;

	ShadowMaterial.prototype.isShadowMaterial = true;

	ShadowMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.color.copy( source.color );

		return this;

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function RawShaderMaterial( parameters ) {

		ShaderMaterial.call( this, parameters );

		this.type = 'RawShaderMaterial';

	}

	RawShaderMaterial.prototype = Object.create( ShaderMaterial.prototype );
	RawShaderMaterial.prototype.constructor = RawShaderMaterial;

	RawShaderMaterial.prototype.isRawShaderMaterial = true;

	/**
	 * @author WestLangley / http://github.com/WestLangley
	 *
	 * parameters = {
	 *  color: <hex>,
	 *  roughness: <float>,
	 *  metalness: <float>,
	 *  opacity: <float>,
	 *
	 *  map: new THREE.Texture( <Image> ),
	 *
	 *  lightMap: new THREE.Texture( <Image> ),
	 *  lightMapIntensity: <float>
	 *
	 *  aoMap: new THREE.Texture( <Image> ),
	 *  aoMapIntensity: <float>
	 *
	 *  emissive: <hex>,
	 *  emissiveIntensity: <float>
	 *  emissiveMap: new THREE.Texture( <Image> ),
	 *
	 *  bumpMap: new THREE.Texture( <Image> ),
	 *  bumpScale: <float>,
	 *
	 *  normalMap: new THREE.Texture( <Image> ),
	 *  normalMapType: THREE.TangentSpaceNormalMap,
	 *  normalScale: <Vector2>,
	 *
	 *  displacementMap: new THREE.Texture( <Image> ),
	 *  displacementScale: <float>,
	 *  displacementBias: <float>,
	 *
	 *  roughnessMap: new THREE.Texture( <Image> ),
	 *
	 *  metalnessMap: new THREE.Texture( <Image> ),
	 *
	 *  alphaMap: new THREE.Texture( <Image> ),
	 *
	 *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
	 *  envMapIntensity: <float>
	 *
	 *  refractionRatio: <float>,
	 *
	 *  wireframe: <boolean>,
	 *  wireframeLinewidth: <float>,
	 *
	 *  skinning: <bool>,
	 *  morphTargets: <bool>,
	 *  morphNormals: <bool>
	 * }
	 */

	function MeshStandardMaterial( parameters ) {

		Material.call( this );

		this.defines = { 'STANDARD': '' };

		this.type = 'MeshStandardMaterial';

		this.color = new Color( 0xffffff ); // diffuse
		this.roughness = 1.0;
		this.metalness = 0.0;

		this.map = null;

		this.lightMap = null;
		this.lightMapIntensity = 1.0;

		this.aoMap = null;
		this.aoMapIntensity = 1.0;

		this.emissive = new Color( 0x000000 );
		this.emissiveIntensity = 1.0;
		this.emissiveMap = null;

		this.bumpMap = null;
		this.bumpScale = 1;

		this.normalMap = null;
		this.normalMapType = TangentSpaceNormalMap;
		this.normalScale = new Vector2( 1, 1 );

		this.displacementMap = null;
		this.displacementScale = 1;
		this.displacementBias = 0;

		this.roughnessMap = null;

		this.metalnessMap = null;

		this.alphaMap = null;

		this.envMap = null;
		this.envMapIntensity = 1.0;

		this.refractionRatio = 0.98;

		this.wireframe = false;
		this.wireframeLinewidth = 1;
		this.wireframeLinecap = 'round';
		this.wireframeLinejoin = 'round';

		this.skinning = false;
		this.morphTargets = false;
		this.morphNormals = false;

		this.vertexTangents = false;

		this.setValues( parameters );

	}

	MeshStandardMaterial.prototype = Object.create( Material.prototype );
	MeshStandardMaterial.prototype.constructor = MeshStandardMaterial;

	MeshStandardMaterial.prototype.isMeshStandardMaterial = true;

	MeshStandardMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.defines = { 'STANDARD': '' };

		this.color.copy( source.color );
		this.roughness = source.roughness;
		this.metalness = source.metalness;

		this.map = source.map;

		this.lightMap = source.lightMap;
		this.lightMapIntensity = source.lightMapIntensity;

		this.aoMap = source.aoMap;
		this.aoMapIntensity = source.aoMapIntensity;

		this.emissive.copy( source.emissive );
		this.emissiveMap = source.emissiveMap;
		this.emissiveIntensity = source.emissiveIntensity;

		this.bumpMap = source.bumpMap;
		this.bumpScale = source.bumpScale;

		this.normalMap = source.normalMap;
		this.normalMapType = source.normalMapType;
		this.normalScale.copy( source.normalScale );

		this.displacementMap = source.displacementMap;
		this.displacementScale = source.displacementScale;
		this.displacementBias = source.displacementBias;

		this.roughnessMap = source.roughnessMap;

		this.metalnessMap = source.metalnessMap;

		this.alphaMap = source.alphaMap;

		this.envMap = source.envMap;
		this.envMapIntensity = source.envMapIntensity;

		this.refractionRatio = source.refractionRatio;

		this.wireframe = source.wireframe;
		this.wireframeLinewidth = source.wireframeLinewidth;
		this.wireframeLinecap = source.wireframeLinecap;
		this.wireframeLinejoin = source.wireframeLinejoin;

		this.skinning = source.skinning;
		this.morphTargets = source.morphTargets;
		this.morphNormals = source.morphNormals;

		this.vertexTangents = source.vertexTangents;

		return this;

	};

	/**
	 * @author WestLangley / http://github.com/WestLangley
	 *
	 * parameters = {
	 *  clearcoat: <float>,
	 *  clearcoatMap: new THREE.Texture( <Image> ),
	 *  clearcoatRoughness: <float>,
	 *  clearcoatRoughnessMap: new THREE.Texture( <Image> ),
	 *  clearcoatNormalScale: <Vector2>,
	 *  clearcoatNormalMap: new THREE.Texture( <Image> ),
	 *
	 *  reflectivity: <float>,
	 *
	 *  sheen: <Color>,
	 *
	 *  transparency: <float>
	 * }
	 */

	function MeshPhysicalMaterial( parameters ) {

		MeshStandardMaterial.call( this );

		this.defines = {

			'STANDARD': '',
			'PHYSICAL': ''

		};

		this.type = 'MeshPhysicalMaterial';

		this.clearcoat = 0.0;
		this.clearcoatMap = null;
		this.clearcoatRoughness = 0.0;
		this.clearcoatRoughnessMap = null;
		this.clearcoatNormalScale = new Vector2( 1, 1 );
		this.clearcoatNormalMap = null;

		this.reflectivity = 0.5; // maps to F0 = 0.04

		this.sheen = null; // null will disable sheen bsdf

		this.transparency = 0.0;

		this.setValues( parameters );

	}

	MeshPhysicalMaterial.prototype = Object.create( MeshStandardMaterial.prototype );
	MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial;

	MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;

	MeshPhysicalMaterial.prototype.copy = function ( source ) {

		MeshStandardMaterial.prototype.copy.call( this, source );

		this.defines = {

			'STANDARD': '',
			'PHYSICAL': ''

		};

		this.clearcoat = source.clearcoat;
		this.clearcoatMap = source.clearcoatMap;
		this.clearcoatRoughness = source.clearcoatRoughness;
		this.clearcoatRoughnessMap = source.clearcoatRoughnessMap;
		this.clearcoatNormalMap = source.clearcoatNormalMap;
		this.clearcoatNormalScale.copy( source.clearcoatNormalScale );

		this.reflectivity = source.reflectivity;

		if ( source.sheen ) {

			this.sheen = ( this.sheen || new Color() ).copy( source.sheen );

		} else {

			this.sheen = null;

		}

		this.transparency = source.transparency;

		return this;

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 *
	 * parameters = {
	 *  color: <hex>,
	 *  specular: <hex>,
	 *  shininess: <float>,
	 *  opacity: <float>,
	 *
	 *  map: new THREE.Texture( <Image> ),
	 *
	 *  lightMap: new THREE.Texture( <Image> ),
	 *  lightMapIntensity: <float>
	 *
	 *  aoMap: new THREE.Texture( <Image> ),
	 *  aoMapIntensity: <float>
	 *
	 *  emissive: <hex>,
	 *  emissiveIntensity: <float>
	 *  emissiveMap: new THREE.Texture( <Image> ),
	 *
	 *  bumpMap: new THREE.Texture( <Image> ),
	 *  bumpScale: <float>,
	 *
	 *  normalMap: new THREE.Texture( <Image> ),
	 *  normalMapType: THREE.TangentSpaceNormalMap,
	 *  normalScale: <Vector2>,
	 *
	 *  displacementMap: new THREE.Texture( <Image> ),
	 *  displacementScale: <float>,
	 *  displacementBias: <float>,
	 *
	 *  specularMap: new THREE.Texture( <Image> ),
	 *
	 *  alphaMap: new THREE.Texture( <Image> ),
	 *
	 *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
	 *  combine: THREE.MultiplyOperation,
	 *  reflectivity: <float>,
	 *  refractionRatio: <float>,
	 *
	 *  wireframe: <boolean>,
	 *  wireframeLinewidth: <float>,
	 *
	 *  skinning: <bool>,
	 *  morphTargets: <bool>,
	 *  morphNormals: <bool>
	 * }
	 */

	function MeshPhongMaterial( parameters ) {

		Material.call( this );

		this.type = 'MeshPhongMaterial';

		this.color = new Color( 0xffffff ); // diffuse
		this.specular = new Color( 0x111111 );
		this.shininess = 30;

		this.map = null;

		this.lightMap = null;
		this.lightMapIntensity = 1.0;

		this.aoMap = null;
		this.aoMapIntensity = 1.0;

		this.emissive = new Color( 0x000000 );
		this.emissiveIntensity = 1.0;
		this.emissiveMap = null;

		this.bumpMap = null;
		this.bumpScale = 1;

		this.normalMap = null;
		this.normalMapType = TangentSpaceNormalMap;
		this.normalScale = new Vector2( 1, 1 );

		this.displacementMap = null;
		this.displacementScale = 1;
		this.displacementBias = 0;

		this.specularMap = null;

		this.alphaMap = null;

		this.envMap = null;
		this.combine = MultiplyOperation;
		this.reflectivity = 1;
		this.refractionRatio = 0.98;

		this.wireframe = false;
		this.wireframeLinewidth = 1;
		this.wireframeLinecap = 'round';
		this.wireframeLinejoin = 'round';

		this.skinning = false;
		this.morphTargets = false;
		this.morphNormals = false;

		this.setValues( parameters );

	}

	MeshPhongMaterial.prototype = Object.create( Material.prototype );
	MeshPhongMaterial.prototype.constructor = MeshPhongMaterial;

	MeshPhongMaterial.prototype.isMeshPhongMaterial = true;

	MeshPhongMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.color.copy( source.color );
		this.specular.copy( source.specular );
		this.shininess = source.shininess;

		this.map = source.map;

		this.lightMap = source.lightMap;
		this.lightMapIntensity = source.lightMapIntensity;

		this.aoMap = source.aoMap;
		this.aoMapIntensity = source.aoMapIntensity;

		this.emissive.copy( source.emissive );
		this.emissiveMap = source.emissiveMap;
		this.emissiveIntensity = source.emissiveIntensity;

		this.bumpMap = source.bumpMap;
		this.bumpScale = source.bumpScale;

		this.normalMap = source.normalMap;
		this.normalMapType = source.normalMapType;
		this.normalScale.copy( source.normalScale );

		this.displacementMap = source.displacementMap;
		this.displacementScale = source.displacementScale;
		this.displacementBias = source.displacementBias;

		this.specularMap = source.specularMap;

		this.alphaMap = source.alphaMap;

		this.envMap = source.envMap;
		this.combine = source.combine;
		this.reflectivity = source.reflectivity;
		this.refractionRatio = source.refractionRatio;

		this.wireframe = source.wireframe;
		this.wireframeLinewidth = source.wireframeLinewidth;
		this.wireframeLinecap = source.wireframeLinecap;
		this.wireframeLinejoin = source.wireframeLinejoin;

		this.skinning = source.skinning;
		this.morphTargets = source.morphTargets;
		this.morphNormals = source.morphNormals;

		return this;

	};

	/**
	 * @author takahirox / http://github.com/takahirox
	 *
	 * parameters = {
	 *  color: <hex>,
	 *  specular: <hex>,
	 *  shininess: <float>,
	 *
	 *  map: new THREE.Texture( <Image> ),
	 *  gradientMap: new THREE.Texture( <Image> ),
	 *
	 *  lightMap: new THREE.Texture( <Image> ),
	 *  lightMapIntensity: <float>
	 *
	 *  aoMap: new THREE.Texture( <Image> ),
	 *  aoMapIntensity: <float>
	 *
	 *  emissive: <hex>,
	 *  emissiveIntensity: <float>
	 *  emissiveMap: new THREE.Texture( <Image> ),
	 *
	 *  bumpMap: new THREE.Texture( <Image> ),
	 *  bumpScale: <float>,
	 *
	 *  normalMap: new THREE.Texture( <Image> ),
	 *  normalMapType: THREE.TangentSpaceNormalMap,
	 *  normalScale: <Vector2>,
	 *
	 *  displacementMap: new THREE.Texture( <Image> ),
	 *  displacementScale: <float>,
	 *  displacementBias: <float>,
	 *
	 *  specularMap: new THREE.Texture( <Image> ),
	 *
	 *  alphaMap: new THREE.Texture( <Image> ),
	 *
	 *  wireframe: <boolean>,
	 *  wireframeLinewidth: <float>,
	 *
	 *  skinning: <bool>,
	 *  morphTargets: <bool>,
	 *  morphNormals: <bool>
	 * }
	 */

	function MeshToonMaterial( parameters ) {

		Material.call( this );

		this.defines = { 'TOON': '' };

		this.type = 'MeshToonMaterial';

		this.color = new Color( 0xffffff );
		this.specular = new Color( 0x111111 );
		this.shininess = 30;

		this.map = null;
		this.gradientMap = null;

		this.lightMap = null;
		this.lightMapIntensity = 1.0;

		this.aoMap = null;
		this.aoMapIntensity = 1.0;

		this.emissive = new Color( 0x000000 );
		this.emissiveIntensity = 1.0;
		this.emissiveMap = null;

		this.bumpMap = null;
		this.bumpScale = 1;

		this.normalMap = null;
		this.normalMapType = TangentSpaceNormalMap;
		this.normalScale = new Vector2( 1, 1 );

		this.displacementMap = null;
		this.displacementScale = 1;
		this.displacementBias = 0;

		this.specularMap = null;

		this.alphaMap = null;

		this.wireframe = false;
		this.wireframeLinewidth = 1;
		this.wireframeLinecap = 'round';
		this.wireframeLinejoin = 'round';

		this.skinning = false;
		this.morphTargets = false;
		this.morphNormals = false;

		this.setValues( parameters );

	}

	MeshToonMaterial.prototype = Object.create( Material.prototype );
	MeshToonMaterial.prototype.constructor = MeshToonMaterial;

	MeshToonMaterial.prototype.isMeshToonMaterial = true;

	MeshToonMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.color.copy( source.color );
		this.specular.copy( source.specular );
		this.shininess = source.shininess;

		this.map = source.map;
		this.gradientMap = source.gradientMap;

		this.lightMap = source.lightMap;
		this.lightMapIntensity = source.lightMapIntensity;

		this.aoMap = source.aoMap;
		this.aoMapIntensity = source.aoMapIntensity;

		this.emissive.copy( source.emissive );
		this.emissiveMap = source.emissiveMap;
		this.emissiveIntensity = source.emissiveIntensity;

		this.bumpMap = source.bumpMap;
		this.bumpScale = source.bumpScale;

		this.normalMap = source.normalMap;
		this.normalMapType = source.normalMapType;
		this.normalScale.copy( source.normalScale );

		this.displacementMap = source.displacementMap;
		this.displacementScale = source.displacementScale;
		this.displacementBias = source.displacementBias;

		this.specularMap = source.specularMap;

		this.alphaMap = source.alphaMap;

		this.wireframe = source.wireframe;
		this.wireframeLinewidth = source.wireframeLinewidth;
		this.wireframeLinecap = source.wireframeLinecap;
		this.wireframeLinejoin = source.wireframeLinejoin;

		this.skinning = source.skinning;
		this.morphTargets = source.morphTargets;
		this.morphNormals = source.morphNormals;

		return this;

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author WestLangley / http://github.com/WestLangley
	 *
	 * parameters = {
	 *  opacity: <float>,
	 *
	 *  bumpMap: new THREE.Texture( <Image> ),
	 *  bumpScale: <float>,
	 *
	 *  normalMap: new THREE.Texture( <Image> ),
	 *  normalMapType: THREE.TangentSpaceNormalMap,
	 *  normalScale: <Vector2>,
	 *
	 *  displacementMap: new THREE.Texture( <Image> ),
	 *  displacementScale: <float>,
	 *  displacementBias: <float>,
	 *
	 *  wireframe: <boolean>,
	 *  wireframeLinewidth: <float>
	 *
	 *  skinning: <bool>,
	 *  morphTargets: <bool>,
	 *  morphNormals: <bool>
	 * }
	 */

	function MeshNormalMaterial( parameters ) {

		Material.call( this );

		this.type = 'MeshNormalMaterial';

		this.bumpMap = null;
		this.bumpScale = 1;

		this.normalMap = null;
		this.normalMapType = TangentSpaceNormalMap;
		this.normalScale = new Vector2( 1, 1 );

		this.displacementMap = null;
		this.displacementScale = 1;
		this.displacementBias = 0;

		this.wireframe = false;
		this.wireframeLinewidth = 1;

		this.fog = false;

		this.skinning = false;
		this.morphTargets = false;
		this.morphNormals = false;

		this.setValues( parameters );

	}

	MeshNormalMaterial.prototype = Object.create( Material.prototype );
	MeshNormalMaterial.prototype.constructor = MeshNormalMaterial;

	MeshNormalMaterial.prototype.isMeshNormalMaterial = true;

	MeshNormalMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.bumpMap = source.bumpMap;
		this.bumpScale = source.bumpScale;

		this.normalMap = source.normalMap;
		this.normalMapType = source.normalMapType;
		this.normalScale.copy( source.normalScale );

		this.displacementMap = source.displacementMap;
		this.displacementScale = source.displacementScale;
		this.displacementBias = source.displacementBias;

		this.wireframe = source.wireframe;
		this.wireframeLinewidth = source.wireframeLinewidth;

		this.skinning = source.skinning;
		this.morphTargets = source.morphTargets;
		this.morphNormals = source.morphNormals;

		return this;

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 *
	 * parameters = {
	 *  color: <hex>,
	 *  opacity: <float>,
	 *
	 *  map: new THREE.Texture( <Image> ),
	 *
	 *  lightMap: new THREE.Texture( <Image> ),
	 *  lightMapIntensity: <float>
	 *
	 *  aoMap: new THREE.Texture( <Image> ),
	 *  aoMapIntensity: <float>
	 *
	 *  emissive: <hex>,
	 *  emissiveIntensity: <float>
	 *  emissiveMap: new THREE.Texture( <Image> ),
	 *
	 *  specularMap: new THREE.Texture( <Image> ),
	 *
	 *  alphaMap: new THREE.Texture( <Image> ),
	 *
	 *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
	 *  combine: THREE.Multiply,
	 *  reflectivity: <float>,
	 *  refractionRatio: <float>,
	 *
	 *  wireframe: <boolean>,
	 *  wireframeLinewidth: <float>,
	 *
	 *  skinning: <bool>,
	 *  morphTargets: <bool>,
	 *  morphNormals: <bool>
	 * }
	 */

	function MeshLambertMaterial( parameters ) {

		Material.call( this );

		this.type = 'MeshLambertMaterial';

		this.color = new Color( 0xffffff ); // diffuse

		this.map = null;

		this.lightMap = null;
		this.lightMapIntensity = 1.0;

		this.aoMap = null;
		this.aoMapIntensity = 1.0;

		this.emissive = new Color( 0x000000 );
		this.emissiveIntensity = 1.0;
		this.emissiveMap = null;

		this.specularMap = null;

		this.alphaMap = null;

		this.envMap = null;
		this.combine = MultiplyOperation;
		this.reflectivity = 1;
		this.refractionRatio = 0.98;

		this.wireframe = false;
		this.wireframeLinewidth = 1;
		this.wireframeLinecap = 'round';
		this.wireframeLinejoin = 'round';

		this.skinning = false;
		this.morphTargets = false;
		this.morphNormals = false;

		this.setValues( parameters );

	}

	MeshLambertMaterial.prototype = Object.create( Material.prototype );
	MeshLambertMaterial.prototype.constructor = MeshLambertMaterial;

	MeshLambertMaterial.prototype.isMeshLambertMaterial = true;

	MeshLambertMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.color.copy( source.color );

		this.map = source.map;

		this.lightMap = source.lightMap;
		this.lightMapIntensity = source.lightMapIntensity;

		this.aoMap = source.aoMap;
		this.aoMapIntensity = source.aoMapIntensity;

		this.emissive.copy( source.emissive );
		this.emissiveMap = source.emissiveMap;
		this.emissiveIntensity = source.emissiveIntensity;

		this.specularMap = source.specularMap;

		this.alphaMap = source.alphaMap;

		this.envMap = source.envMap;
		this.combine = source.combine;
		this.reflectivity = source.reflectivity;
		this.refractionRatio = source.refractionRatio;

		this.wireframe = source.wireframe;
		this.wireframeLinewidth = source.wireframeLinewidth;
		this.wireframeLinecap = source.wireframeLinecap;
		this.wireframeLinejoin = source.wireframeLinejoin;

		this.skinning = source.skinning;
		this.morphTargets = source.morphTargets;
		this.morphNormals = source.morphNormals;

		return this;

	};

	/**
	 * @author WestLangley / http://github.com/WestLangley
	 *
	 * parameters = {
	 *  color: <hex>,
	 *  opacity: <float>,
	 *
	 *  matcap: new THREE.Texture( <Image> ),
	 *
	 *  map: new THREE.Texture( <Image> ),
	 *
	 *  bumpMap: new THREE.Texture( <Image> ),
	 *  bumpScale: <float>,
	 *
	 *  normalMap: new THREE.Texture( <Image> ),
	 *  normalMapType: THREE.TangentSpaceNormalMap,
	 *  normalScale: <Vector2>,
	 *
	 *  displacementMap: new THREE.Texture( <Image> ),
	 *  displacementScale: <float>,
	 *  displacementBias: <float>,
	 *
	 *  alphaMap: new THREE.Texture( <Image> ),
	 *
	 *  skinning: <bool>,
	 *  morphTargets: <bool>,
	 *  morphNormals: <bool>
	 * }
	 */

	function MeshMatcapMaterial( parameters ) {

		Material.call( this );

		this.defines = { 'MATCAP': '' };

		this.type = 'MeshMatcapMaterial';

		this.color = new Color( 0xffffff ); // diffuse

		this.matcap = null;

		this.map = null;

		this.bumpMap = null;
		this.bumpScale = 1;

		this.normalMap = null;
		this.normalMapType = TangentSpaceNormalMap;
		this.normalScale = new Vector2( 1, 1 );

		this.displacementMap = null;
		this.displacementScale = 1;
		this.displacementBias = 0;

		this.alphaMap = null;

		this.skinning = false;
		this.morphTargets = false;
		this.morphNormals = false;

		this.setValues( parameters );

	}

	MeshMatcapMaterial.prototype = Object.create( Material.prototype );
	MeshMatcapMaterial.prototype.constructor = MeshMatcapMaterial;

	MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true;

	MeshMatcapMaterial.prototype.copy = function ( source ) {

		Material.prototype.copy.call( this, source );

		this.defines = { 'MATCAP': '' };

		this.color.copy( source.color );

		this.matcap = source.matcap;

		this.map = source.map;

		this.bumpMap = source.bumpMap;
		this.bumpScale = source.bumpScale;

		this.normalMap = source.normalMap;
		this.normalMapType = source.normalMapType;
		this.normalScale.copy( source.normalScale );

		this.displacementMap = source.displacementMap;
		this.displacementScale = source.displacementScale;
		this.displacementBias = source.displacementBias;

		this.alphaMap = source.alphaMap;

		this.skinning = source.skinning;
		this.morphTargets = source.morphTargets;
		this.morphNormals = source.morphNormals;

		return this;

	};

	/**
	 * @author alteredq / http://alteredqualia.com/
	 *
	 * parameters = {
	 *  color: <hex>,
	 *  opacity: <float>,
	 *
	 *  linewidth: <float>,
	 *
	 *  scale: <float>,
	 *  dashSize: <float>,
	 *  gapSize: <float>
	 * }
	 */

	function LineDashedMaterial( parameters ) {

		LineBasicMaterial.call( this );

		this.type = 'LineDashedMaterial';

		this.scale = 1;
		this.dashSize = 3;
		this.gapSize = 1;

		this.setValues( parameters );

	}

	LineDashedMaterial.prototype = Object.create( LineBasicMaterial.prototype );
	LineDashedMaterial.prototype.constructor = LineDashedMaterial;

	LineDashedMaterial.prototype.isLineDashedMaterial = true;

	LineDashedMaterial.prototype.copy = function ( source ) {

		LineBasicMaterial.prototype.copy.call( this, source );

		this.scale = source.scale;
		this.dashSize = source.dashSize;
		this.gapSize = source.gapSize;

		return this;

	};

	var Materials = /*#__PURE__*/Object.freeze({
		__proto__: null,
		ShadowMaterial: ShadowMaterial,
		SpriteMaterial: SpriteMaterial,
		RawShaderMaterial: RawShaderMaterial,
		ShaderMaterial: ShaderMaterial,
		PointsMaterial: PointsMaterial,
		MeshPhysicalMaterial: MeshPhysicalMaterial,
		MeshStandardMaterial: MeshStandardMaterial,
		MeshPhongMaterial: MeshPhongMaterial,
		MeshToonMaterial: MeshToonMaterial,
		MeshNormalMaterial: MeshNormalMaterial,
		MeshLambertMaterial: MeshLambertMaterial,
		MeshDepthMaterial: MeshDepthMaterial,
		MeshDistanceMaterial: MeshDistanceMaterial,
		MeshBasicMaterial: MeshBasicMaterial,
		MeshMatcapMaterial: MeshMatcapMaterial,
		LineDashedMaterial: LineDashedMaterial,
		LineBasicMaterial: LineBasicMaterial,
		Material: Material
	});

	/**
	 * @author tschw
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 */

	var AnimationUtils = {

		// same as Array.prototype.slice, but also works on typed arrays
		arraySlice: function ( array, from, to ) {

			if ( AnimationUtils.isTypedArray( array ) ) {

				// in ios9 array.subarray(from, undefined) will return empty array
				// but array.subarray(from) or array.subarray(from, len) is correct
				return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) );

			}

			return array.slice( from, to );

		},

		// converts an array to a specific type
		convertArray: function ( array, type, forceClone ) {

			if ( ! array || // let 'undefined' and 'null' pass
				! forceClone && array.constructor === type ) { return array; }

			if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {

				return new type( array ); // create typed array

			}

			return Array.prototype.slice.call( array ); // create Array

		},

		isTypedArray: function ( object ) {

			return ArrayBuffer.isView( object ) &&
				! ( object instanceof DataView );

		},

		// returns an array by which times and values can be sorted
		getKeyframeOrder: function ( times ) {

			function compareTime( i, j ) {

				return times[ i ] - times[ j ];

			}

			var n = times.length;
			var result = new Array( n );
			for ( var i = 0; i !== n; ++ i ) { result[ i ] = i; }

			result.sort( compareTime );

			return result;

		},

		// uses the array previously returned by 'getKeyframeOrder' to sort data
		sortedArray: function ( values, stride, order ) {

			var nValues = values.length;
			var result = new values.constructor( nValues );

			for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {

				var srcOffset = order[ i ] * stride;

				for ( var j = 0; j !== stride; ++ j ) {

					result[ dstOffset ++ ] = values[ srcOffset + j ];

				}

			}

			return result;

		},

		// function for parsing AOS keyframe formats
		flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) {

			var i = 1, key = jsonKeys[ 0 ];

			while ( key !== undefined && key[ valuePropertyName ] === undefined ) {

				key = jsonKeys[ i ++ ];

			}

			if ( key === undefined ) { return; } // no data

			var value = key[ valuePropertyName ];
			if ( value === undefined ) { return; } // no data

			if ( Array.isArray( value ) ) {

				do {

					value = key[ valuePropertyName ];

					if ( value !== undefined ) {

						times.push( key.time );
						values.push.apply( values, value ); // push all elements

					}

					key = jsonKeys[ i ++ ];

				} while ( key !== undefined );

			} else if ( value.toArray !== undefined ) {

				// ...assume THREE.Math-ish

				do {

					value = key[ valuePropertyName ];

					if ( value !== undefined ) {

						times.push( key.time );
						value.toArray( values, values.length );

					}

					key = jsonKeys[ i ++ ];

				} while ( key !== undefined );

			} else {

				// otherwise push as-is

				do {

					value = key[ valuePropertyName ];

					if ( value !== undefined ) {

						times.push( key.time );
						values.push( value );

					}

					key = jsonKeys[ i ++ ];

				} while ( key !== undefined );

			}

		},

		subclip: function ( sourceClip, name, startFrame, endFrame, fps ) {

			fps = fps || 30;

			var clip = sourceClip.clone();

			clip.name = name;

			var tracks = [];

			for ( var i = 0; i < clip.tracks.length; ++ i ) {

				var track = clip.tracks[ i ];
				var valueSize = track.getValueSize();

				var times = [];
				var values = [];

				for ( var j = 0; j < track.times.length; ++ j ) {

					var frame = track.times[ j ] * fps;

					if ( frame < startFrame || frame >= endFrame ) { continue; }

					times.push( track.times[ j ] );

					for ( var k = 0; k < valueSize; ++ k ) {

						values.push( track.values[ j * valueSize + k ] );

					}

				}

				if ( times.length === 0 ) { continue; }

				track.times = AnimationUtils.convertArray( times, track.times.constructor );
				track.values = AnimationUtils.convertArray( values, track.values.constructor );

				tracks.push( track );

			}

			clip.tracks = tracks;

			// find minimum .times value across all tracks in the trimmed clip

			var minStartTime = Infinity;

			for ( var i = 0; i < clip.tracks.length; ++ i ) {

				if ( minStartTime > clip.tracks[ i ].times[ 0 ] ) {

					minStartTime = clip.tracks[ i ].times[ 0 ];

				}

			}

			// shift all tracks such that clip begins at t=0

			for ( var i = 0; i < clip.tracks.length; ++ i ) {

				clip.tracks[ i ].shift( - 1 * minStartTime );

			}

			clip.resetDuration();

			return clip;

		},

		makeClipAdditive: function ( targetClip, referenceFrame, referenceClip, fps ) {

			if ( referenceFrame === undefined ) { referenceFrame = 0; }
			if ( referenceClip === undefined ) { referenceClip = targetClip; }
			if ( fps === undefined || fps <= 0 ) { fps = 30; }

			var numTracks = targetClip.tracks.length;
			var referenceTime = referenceFrame / fps;

			// Make each track's values relative to the values at the reference frame
			for ( var i = 0; i < numTracks; ++ i ) {

				var referenceTrack = referenceClip.tracks[ i ];
				var referenceTrackType = referenceTrack.ValueTypeName;

				// Skip this track if it's non-numeric
				if ( referenceTrackType === 'bool' || referenceTrackType === 'string' ) { continue; }

				// Find the track in the target clip whose name and type matches the reference track
				var targetTrack = targetClip.tracks.find( function ( track ) {

					return track.name === referenceTrack.name
					&& track.ValueTypeName === referenceTrackType;

				} );

				if ( targetTrack === undefined ) { continue; }

				var valueSize = referenceTrack.getValueSize();
				var lastIndex = referenceTrack.times.length - 1;
				var referenceValue;

				// Find the value to subtract out of the track
				if ( referenceTime <= referenceTrack.times[ 0 ] ) {

					// Reference frame is earlier than the first keyframe, so just use the first keyframe
					referenceValue = AnimationUtils.arraySlice( referenceTrack.values, 0, referenceTrack.valueSize );

				} else if ( referenceTime >= referenceTrack.times[ lastIndex ] ) {

					// Reference frame is after the last keyframe, so just use the last keyframe
					var startIndex = lastIndex * valueSize;
					referenceValue = AnimationUtils.arraySlice( referenceTrack.values, startIndex );

				} else {

					// Interpolate to the reference value
					var interpolant = referenceTrack.createInterpolant();
					interpolant.evaluate( referenceTime );
					referenceValue = interpolant.resultBuffer;

				}

				// Conjugate the quaternion
				if ( referenceTrackType === 'quaternion' ) {

					var referenceQuat = new Quaternion(
						referenceValue[ 0 ],
						referenceValue[ 1 ],
						referenceValue[ 2 ],
						referenceValue[ 3 ]
					).normalize().conjugate();
					referenceQuat.toArray( referenceValue );

				}

				// Subtract the reference value from all of the track values

				var numTimes = targetTrack.times.length;
				for ( var j = 0; j < numTimes; ++ j ) {

					var valueStart = j * valueSize;

					if ( referenceTrackType === 'quaternion' ) {

						// Multiply the conjugate for quaternion track types
						Quaternion.multiplyQuaternionsFlat(
							targetTrack.values,
							valueStart,
							referenceValue,
							0,
							targetTrack.values,
							valueStart
						);

					} else {

						// Subtract each value for all other numeric track types
						for ( var k = 0; k < valueSize; ++ k ) {

							targetTrack.values[ valueStart + k ] -= referenceValue[ k ];

						}

					}

				}

			}

			targetClip.blendMode = AdditiveAnimationBlendMode;

			return targetClip;

		}

	};

	/**
	 * Abstract base class of interpolants over parametric samples.
	 *
	 * The parameter domain is one dimensional, typically the time or a path
	 * along a curve defined by the data.
	 *
	 * The sample values can have any dimensionality and derived classes may
	 * apply special interpretations to the data.
	 *
	 * This class provides the interval seek in a Template Method, deferring
	 * the actual interpolation to derived classes.
	 *
	 * Time complexity is O(1) for linear access crossing at most two points
	 * and O(log N) for random access, where N is the number of positions.
	 *
	 * References:
	 *
	 * 		http://www.oodesign.com/template-method-pattern.html
	 *
	 * @author tschw
	 */

	function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

		this.parameterPositions = parameterPositions;
		this._cachedIndex = 0;

		this.resultBuffer = resultBuffer !== undefined ?
			resultBuffer : new sampleValues.constructor( sampleSize );
		this.sampleValues = sampleValues;
		this.valueSize = sampleSize;

	}

	Object.assign( Interpolant.prototype, {

		evaluate: function ( t ) {

			var pp = this.parameterPositions,
				i1 = this._cachedIndex,

				t1 = pp[ i1 ],
				t0 = pp[ i1 - 1 ];

			validate_interval: {

				seek: {

					var right;

					linear_scan: {

						//- See http://jsperf.com/comparison-to-undefined/3
						//- slower code:
						//-
						//- 				if ( t >= t1 || t1 === undefined ) {
						forward_scan: if ( ! ( t < t1 ) ) {

							for ( var giveUpAt = i1 + 2; ; ) {

								if ( t1 === undefined ) {

									if ( t < t0 ) { break forward_scan; }

									// after end

									i1 = pp.length;
									this._cachedIndex = i1;
									return this.afterEnd_( i1 - 1, t, t0 );

								}

								if ( i1 === giveUpAt ) { break; } // this loop

								t0 = t1;
								t1 = pp[ ++ i1 ];

								if ( t < t1 ) {

									// we have arrived at the sought interval
									break seek;

								}

							}

							// prepare binary search on the right side of the index
							right = pp.length;
							break linear_scan;

						}

						//- slower code:
						//-					if ( t < t0 || t0 === undefined ) {
						if ( ! ( t >= t0 ) ) {

							// looping?

							var t1global = pp[ 1 ];

							if ( t < t1global ) {

								i1 = 2; // + 1, using the scan for the details
								t0 = t1global;

							}

							// linear reverse scan

							for ( var giveUpAt = i1 - 2; ; ) {

								if ( t0 === undefined ) {

									// before start

									this._cachedIndex = 0;
									return this.beforeStart_( 0, t, t1 );

								}

								if ( i1 === giveUpAt ) { break; } // this loop

								t1 = t0;
								t0 = pp[ -- i1 - 1 ];

								if ( t >= t0 ) {

									// we have arrived at the sought interval
									break seek;

								}

							}

							// prepare binary search on the left side of the index
							right = i1;
							i1 = 0;
							break linear_scan;

						}

						// the interval is valid

						break validate_interval;

					} // linear scan

					// binary search

					while ( i1 < right ) {

						var mid = ( i1 + right ) >>> 1;

						if ( t < pp[ mid ] ) {

							right = mid;

						} else {

							i1 = mid + 1;

						}

					}

					t1 = pp[ i1 ];
					t0 = pp[ i1 - 1 ];

					// check boundary cases, again

					if ( t0 === undefined ) {

						this._cachedIndex = 0;
						return this.beforeStart_( 0, t, t1 );

					}

					if ( t1 === undefined ) {

						i1 = pp.length;
						this._cachedIndex = i1;
						return this.afterEnd_( i1 - 1, t0, t );

					}

				} // seek

				this._cachedIndex = i1;

				this.intervalChanged_( i1, t0, t1 );

			} // validate_interval

			return this.interpolate_( i1, t0, t, t1 );

		},

		settings: null, // optional, subclass-specific settings structure
		// Note: The indirection allows central control of many interpolants.

		// --- Protected interface

		DefaultSettings_: {},

		getSettings_: function () {

			return this.settings || this.DefaultSettings_;

		},

		copySampleValue_: function ( index ) {

			// copies a sample value to the result buffer

			var result = this.resultBuffer,
				values = this.sampleValues,
				stride = this.valueSize,
				offset = index * stride;

			for ( var i = 0; i !== stride; ++ i ) {

				result[ i ] = values[ offset + i ];

			}

			return result;

		},

		// Template methods for derived classes:

		interpolate_: function ( /* i1, t0, t, t1 */ ) {

			throw new Error( 'call to abstract method' );
			// implementations shall return this.resultBuffer

		},

		intervalChanged_: function ( /* i1, t0, t1 */ ) {

			// empty

		}

	} );

	// DECLARE ALIAS AFTER assign prototype
	Object.assign( Interpolant.prototype, {

		//( 0, t, t0 ), returns this.resultBuffer
		beforeStart_: Interpolant.prototype.copySampleValue_,

		//( N-1, tN-1, t ), returns this.resultBuffer
		afterEnd_: Interpolant.prototype.copySampleValue_,

	} );

	/**
	 * Fast and simple cubic spline interpolant.
	 *
	 * It was derived from a Hermitian construction setting the first derivative
	 * at each sample position to the linear slope between neighboring positions
	 * over their parameter interval.
	 *
	 * @author tschw
	 */

	function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

		Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

		this._weightPrev = - 0;
		this._offsetPrev = - 0;
		this._weightNext = - 0;
		this._offsetNext = - 0;

	}

	CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

		constructor: CubicInterpolant,

		DefaultSettings_: {

			endingStart: ZeroCurvatureEnding,
			endingEnd: ZeroCurvatureEnding

		},

		intervalChanged_: function ( i1, t0, t1 ) {

			var pp = this.parameterPositions,
				iPrev = i1 - 2,
				iNext = i1 + 1,

				tPrev = pp[ iPrev ],
				tNext = pp[ iNext ];

			if ( tPrev === undefined ) {

				switch ( this.getSettings_().endingStart ) {

					case ZeroSlopeEnding:

						// f'(t0) = 0
						iPrev = i1;
						tPrev = 2 * t0 - t1;

						break;

					case WrapAroundEnding:

						// use the other end of the curve
						iPrev = pp.length - 2;
						tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];

						break;

					default: // ZeroCurvatureEnding

						// f''(t0) = 0 a.k.a. Natural Spline
						iPrev = i1;
						tPrev = t1;

				}

			}

			if ( tNext === undefined ) {

				switch ( this.getSettings_().endingEnd ) {

					case ZeroSlopeEnding:

						// f'(tN) = 0
						iNext = i1;
						tNext = 2 * t1 - t0;

						break;

					case WrapAroundEnding:

						// use the other end of the curve
						iNext = 1;
						tNext = t1 + pp[ 1 ] - pp[ 0 ];

						break;

					default: // ZeroCurvatureEnding

						// f''(tN) = 0, a.k.a. Natural Spline
						iNext = i1 - 1;
						tNext = t0;

				}

			}

			var halfDt = ( t1 - t0 ) * 0.5,
				stride = this.valueSize;

			this._weightPrev = halfDt / ( t0 - tPrev );
			this._weightNext = halfDt / ( tNext - t1 );
			this._offsetPrev = iPrev * stride;
			this._offsetNext = iNext * stride;

		},

		interpolate_: function ( i1, t0, t, t1 ) {

			var result = this.resultBuffer,
				values = this.sampleValues,
				stride = this.valueSize,

				o1 = i1 * stride,		o0 = o1 - stride,
				oP = this._offsetPrev, 	oN = this._offsetNext,
				wP = this._weightPrev,	wN = this._weightNext,

				p = ( t - t0 ) / ( t1 - t0 ),
				pp = p * p,
				ppp = pp * p;

			// evaluate polynomials

			var sP = - wP * ppp + 2 * wP * pp - wP * p;
			var s0 = ( 1 + wP ) * ppp + ( - 1.5 - 2 * wP ) * pp + ( - 0.5 + wP ) * p + 1;
			var s1 = ( - 1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p;
			var sN = wN * ppp - wN * pp;

			// combine data linearly

			for ( var i = 0; i !== stride; ++ i ) {

				result[ i ] =
						sP * values[ oP + i ] +
						s0 * values[ o0 + i ] +
						s1 * values[ o1 + i ] +
						sN * values[ oN + i ];

			}

			return result;

		}

	} );

	/**
	 * @author tschw
	 */

	function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

		Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

	}

	LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

		constructor: LinearInterpolant,

		interpolate_: function ( i1, t0, t, t1 ) {

			var result = this.resultBuffer,
				values = this.sampleValues,
				stride = this.valueSize,

				offset1 = i1 * stride,
				offset0 = offset1 - stride,

				weight1 = ( t - t0 ) / ( t1 - t0 ),
				weight0 = 1 - weight1;

			for ( var i = 0; i !== stride; ++ i ) {

				result[ i ] =
						values[ offset0 + i ] * weight0 +
						values[ offset1 + i ] * weight1;

			}

			return result;

		}

	} );

	/**
	 *
	 * Interpolant that evaluates to the sample value at the position preceeding
	 * the parameter.
	 *
	 * @author tschw
	 */

	function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

		Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

	}

	DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

		constructor: DiscreteInterpolant,

		interpolate_: function ( i1 /*, t0, t, t1 */ ) {

			return this.copySampleValue_( i1 - 1 );

		}

	} );

	/**
	 *
	 * A timed sequence of keyframes for a specific property.
	 *
	 *
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 * @author tschw
	 */

	function KeyframeTrack( name, times, values, interpolation ) {

		if ( name === undefined ) { throw new Error( 'THREE.KeyframeTrack: track name is undefined' ); }
		if ( times === undefined || times.length === 0 ) { throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name ); }

		this.name = name;

		this.times = AnimationUtils.convertArray( times, this.TimeBufferType );
		this.values = AnimationUtils.convertArray( values, this.ValueBufferType );

		this.setInterpolation( interpolation || this.DefaultInterpolation );

	}

	// Static methods

	Object.assign( KeyframeTrack, {

		// Serialization (in static context, because of constructor invocation
		// and automatic invocation of .toJSON):

		toJSON: function ( track ) {

			var trackType = track.constructor;

			var json;

			// derived classes can define a static toJSON method
			if ( trackType.toJSON !== undefined ) {

				json = trackType.toJSON( track );

			} else {

				// by default, we assume the data can be serialized as-is
				json = {

					'name': track.name,
					'times': AnimationUtils.convertArray( track.times, Array ),
					'values': AnimationUtils.convertArray( track.values, Array )

				};

				var interpolation = track.getInterpolation();

				if ( interpolation !== track.DefaultInterpolation ) {

					json.interpolation = interpolation;

				}

			}

			json.type = track.ValueTypeName; // mandatory

			return json;

		}

	} );

	Object.assign( KeyframeTrack.prototype, {

		constructor: KeyframeTrack,

		TimeBufferType: Float32Array,

		ValueBufferType: Float32Array,

		DefaultInterpolation: InterpolateLinear,

		InterpolantFactoryMethodDiscrete: function ( result ) {

			return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result );

		},

		InterpolantFactoryMethodLinear: function ( result ) {

			return new LinearInterpolant( this.times, this.values, this.getValueSize(), result );

		},

		InterpolantFactoryMethodSmooth: function ( result ) {

			return new CubicInterpolant( this.times, this.values, this.getValueSize(), result );

		},

		setInterpolation: function ( interpolation ) {

			var factoryMethod;

			switch ( interpolation ) {

				case InterpolateDiscrete:

					factoryMethod = this.InterpolantFactoryMethodDiscrete;

					break;

				case InterpolateLinear:

					factoryMethod = this.InterpolantFactoryMethodLinear;

					break;

				case InterpolateSmooth:

					factoryMethod = this.InterpolantFactoryMethodSmooth;

					break;

			}

			if ( factoryMethod === undefined ) {

				var message = "unsupported interpolation for " +
					this.ValueTypeName + " keyframe track named " + this.name;

				if ( this.createInterpolant === undefined ) {

					// fall back to default, unless the default itself is messed up
					if ( interpolation !== this.DefaultInterpolation ) {

						this.setInterpolation( this.DefaultInterpolation );

					} else {

						throw new Error( message ); // fatal, in this case

					}

				}

				console.warn( 'THREE.KeyframeTrack:', message );
				return this;

			}

			this.createInterpolant = factoryMethod;

			return this;

		},

		getInterpolation: function () {

			switch ( this.createInterpolant ) {

				case this.InterpolantFactoryMethodDiscrete:

					return InterpolateDiscrete;

				case this.InterpolantFactoryMethodLinear:

					return InterpolateLinear;

				case this.InterpolantFactoryMethodSmooth:

					return InterpolateSmooth;

			}

		},

		getValueSize: function () {

			return this.values.length / this.times.length;

		},

		// move all keyframes either forwards or backwards in time
		shift: function ( timeOffset ) {

			if ( timeOffset !== 0.0 ) {

				var times = this.times;

				for ( var i = 0, n = times.length; i !== n; ++ i ) {

					times[ i ] += timeOffset;

				}

			}

			return this;

		},

		// scale all keyframe times by a factor (useful for frame <-> seconds conversions)
		scale: function ( timeScale ) {

			if ( timeScale !== 1.0 ) {

				var times = this.times;

				for ( var i = 0, n = times.length; i !== n; ++ i ) {

					times[ i ] *= timeScale;

				}

			}

			return this;

		},

		// removes keyframes before and after animation without changing any values within the range [startTime, endTime].
		// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
		trim: function ( startTime, endTime ) {

			var times = this.times,
				nKeys = times.length,
				from = 0,
				to = nKeys - 1;

			while ( from !== nKeys && times[ from ] < startTime ) {

				++ from;

			}

			while ( to !== - 1 && times[ to ] > endTime ) {

				-- to;

			}

			++ to; // inclusive -> exclusive bound

			if ( from !== 0 || to !== nKeys ) {

				// empty tracks are forbidden, so keep at least one keyframe
				if ( from >= to ) {

					to = Math.max( to, 1 );
					from = to - 1;

				}

				var stride = this.getValueSize();
				this.times = AnimationUtils.arraySlice( times, from, to );
				this.values = AnimationUtils.arraySlice( this.values, from * stride, to * stride );

			}

			return this;

		},

		// ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
		validate: function () {

			var valid = true;

			var valueSize = this.getValueSize();
			if ( valueSize - Math.floor( valueSize ) !== 0 ) {

				console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this );
				valid = false;

			}

			var times = this.times,
				values = this.values,

				nKeys = times.length;

			if ( nKeys === 0 ) {

				console.error( 'THREE.KeyframeTrack: Track is empty.', this );
				valid = false;

			}

			var prevTime = null;

			for ( var i = 0; i !== nKeys; i ++ ) {

				var currTime = times[ i ];

				if ( typeof currTime === 'number' && isNaN( currTime ) ) {

					console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime );
					valid = false;
					break;

				}

				if ( prevTime !== null && prevTime > currTime ) {

					console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime );
					valid = false;
					break;

				}

				prevTime = currTime;

			}

			if ( values !== undefined ) {

				if ( AnimationUtils.isTypedArray( values ) ) {

					for ( var i = 0, n = values.length; i !== n; ++ i ) {

						var value = values[ i ];

						if ( isNaN( value ) ) {

							console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i, value );
							valid = false;
							break;

						}

					}

				}

			}

			return valid;

		},

		// removes equivalent sequential keys as common in morph target sequences
		// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
		optimize: function () {

			// times or values may be shared with other tracks, so overwriting is unsafe
			var times = AnimationUtils.arraySlice( this.times ),
				values = AnimationUtils.arraySlice( this.values ),
				stride = this.getValueSize(),

				smoothInterpolation = this.getInterpolation() === InterpolateSmooth,

				writeIndex = 1,
				lastIndex = times.length - 1;

			for ( var i = 1; i < lastIndex; ++ i ) {

				var keep = false;

				var time = times[ i ];
				var timeNext = times[ i + 1 ];

				// remove adjacent keyframes scheduled at the same time

				if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) {

					if ( ! smoothInterpolation ) {

						// remove unnecessary keyframes same as their neighbors

						var offset = i * stride,
							offsetP = offset - stride,
							offsetN = offset + stride;

						for ( var j = 0; j !== stride; ++ j ) {

							var value = values[ offset + j ];

							if ( value !== values[ offsetP + j ] ||
								value !== values[ offsetN + j ] ) {

								keep = true;
								break;

							}

						}

					} else {

						keep = true;

					}

				}

				// in-place compaction

				if ( keep ) {

					if ( i !== writeIndex ) {

						times[ writeIndex ] = times[ i ];

						var readOffset = i * stride,
							writeOffset = writeIndex * stride;

						for ( var j = 0; j !== stride; ++ j ) {

							values[ writeOffset + j ] = values[ readOffset + j ];

						}

					}

					++ writeIndex;

				}

			}

			// flush last keyframe (compaction looks ahead)

			if ( lastIndex > 0 ) {

				times[ writeIndex ] = times[ lastIndex ];

				for ( var readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) {

					values[ writeOffset + j ] = values[ readOffset + j ];

				}

				++ writeIndex;

			}

			if ( writeIndex !== times.length ) {

				this.times = AnimationUtils.arraySlice( times, 0, writeIndex );
				this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride );

			} else {

				this.times = times;
				this.values = values;

			}

			return this;

		},

		clone: function () {

			var times = AnimationUtils.arraySlice( this.times, 0 );
			var values = AnimationUtils.arraySlice( this.values, 0 );

			var TypedKeyframeTrack = this.constructor;
			var track = new TypedKeyframeTrack( this.name, times, values );

			// Interpolant argument to constructor is not saved, so copy the factory method directly.
			track.createInterpolant = this.createInterpolant;

			return track;

		}

	} );

	/**
	 *
	 * A Track of Boolean keyframe values.
	 *
	 *
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 * @author tschw
	 */

	function BooleanKeyframeTrack( name, times, values ) {

		KeyframeTrack.call( this, name, times, values );

	}

	BooleanKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

		constructor: BooleanKeyframeTrack,

		ValueTypeName: 'bool',
		ValueBufferType: Array,

		DefaultInterpolation: InterpolateDiscrete,

		InterpolantFactoryMethodLinear: undefined,
		InterpolantFactoryMethodSmooth: undefined

		// Note: Actually this track could have a optimized / compressed
		// representation of a single value and a custom interpolant that
		// computes "firstValue ^ isOdd( index )".

	} );

	/**
	 *
	 * A Track of keyframe values that represent color.
	 *
	 *
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 * @author tschw
	 */

	function ColorKeyframeTrack( name, times, values, interpolation ) {

		KeyframeTrack.call( this, name, times, values, interpolation );

	}

	ColorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

		constructor: ColorKeyframeTrack,

		ValueTypeName: 'color'

		// ValueBufferType is inherited

		// DefaultInterpolation is inherited

		// Note: Very basic implementation and nothing special yet.
		// However, this is the place for color space parameterization.

	} );

	/**
	 *
	 * A Track of numeric keyframe values.
	 *
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 * @author tschw
	 */

	function NumberKeyframeTrack( name, times, values, interpolation ) {

		KeyframeTrack.call( this, name, times, values, interpolation );

	}

	NumberKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

		constructor: NumberKeyframeTrack,

		ValueTypeName: 'number'

		// ValueBufferType is inherited

		// DefaultInterpolation is inherited

	} );

	/**
	 * Spherical linear unit quaternion interpolant.
	 *
	 * @author tschw
	 */

	function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

		Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

	}

	QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

		constructor: QuaternionLinearInterpolant,

		interpolate_: function ( i1, t0, t, t1 ) {

			var result = this.resultBuffer,
				values = this.sampleValues,
				stride = this.valueSize,

				offset = i1 * stride,

				alpha = ( t - t0 ) / ( t1 - t0 );

			for ( var end = offset + stride; offset !== end; offset += 4 ) {

				Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha );

			}

			return result;

		}

	} );

	/**
	 *
	 * A Track of quaternion keyframe values.
	 *
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 * @author tschw
	 */

	function QuaternionKeyframeTrack( name, times, values, interpolation ) {

		KeyframeTrack.call( this, name, times, values, interpolation );

	}

	QuaternionKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

		constructor: QuaternionKeyframeTrack,

		ValueTypeName: 'quaternion',

		// ValueBufferType is inherited

		DefaultInterpolation: InterpolateLinear,

		InterpolantFactoryMethodLinear: function ( result ) {

			return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result );

		},

		InterpolantFactoryMethodSmooth: undefined // not yet implemented

	} );

	/**
	 *
	 * A Track that interpolates Strings
	 *
	 *
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 * @author tschw
	 */

	function StringKeyframeTrack( name, times, values, interpolation ) {

		KeyframeTrack.call( this, name, times, values, interpolation );

	}

	StringKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

		constructor: StringKeyframeTrack,

		ValueTypeName: 'string',
		ValueBufferType: Array,

		DefaultInterpolation: InterpolateDiscrete,

		InterpolantFactoryMethodLinear: undefined,

		InterpolantFactoryMethodSmooth: undefined

	} );

	/**
	 *
	 * A Track of vectored keyframe values.
	 *
	 *
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 * @author tschw
	 */

	function VectorKeyframeTrack( name, times, values, interpolation ) {

		KeyframeTrack.call( this, name, times, values, interpolation );

	}

	VectorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

		constructor: VectorKeyframeTrack,

		ValueTypeName: 'vector'

		// ValueBufferType is inherited

		// DefaultInterpolation is inherited

	} );

	/**
	 *
	 * Reusable set of Tracks that represent an animation.
	 *
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 */

	function AnimationClip( name, duration, tracks, blendMode ) {

		this.name = name;
		this.tracks = tracks;
		this.duration = ( duration !== undefined ) ? duration : - 1;
		this.blendMode = ( blendMode !== undefined ) ? blendMode : NormalAnimationBlendMode;

		this.uuid = MathUtils.generateUUID();

		// this means it should figure out its duration by scanning the tracks
		if ( this.duration < 0 ) {

			this.resetDuration();

		}

	}

	function getTrackTypeForValueTypeName( typeName ) {

		switch ( typeName.toLowerCase() ) {

			case 'scalar':
			case 'double':
			case 'float':
			case 'number':
			case 'integer':

				return NumberKeyframeTrack;

			case 'vector':
			case 'vector2':
			case 'vector3':
			case 'vector4':

				return VectorKeyframeTrack;

			case 'color':

				return ColorKeyframeTrack;

			case 'quaternion':

				return QuaternionKeyframeTrack;

			case 'bool':
			case 'boolean':

				return BooleanKeyframeTrack;

			case 'string':

				return StringKeyframeTrack;

		}

		throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName );

	}

	function parseKeyframeTrack( json ) {

		if ( json.type === undefined ) {

			throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' );

		}

		var trackType = getTrackTypeForValueTypeName( json.type );

		if ( json.times === undefined ) {

			var times = [], values = [];

			AnimationUtils.flattenJSON( json.keys, times, values, 'value' );

			json.times = times;
			json.values = values;

		}

		// derived classes can define a static parse method
		if ( trackType.parse !== undefined ) {

			return trackType.parse( json );

		} else {

			// by default, we assume a constructor compatible with the base
			return new trackType( json.name, json.times, json.values, json.interpolation );

		}

	}

	Object.assign( AnimationClip, {

		parse: function ( json ) {

			var tracks = [],
				jsonTracks = json.tracks,
				frameTime = 1.0 / ( json.fps || 1.0 );

			for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) {

				tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime ) );

			}

			return new AnimationClip( json.name, json.duration, tracks, json.blendMode );

		},

		toJSON: function ( clip ) {

			var tracks = [],
				clipTracks = clip.tracks;

			var json = {

				'name': clip.name,
				'duration': clip.duration,
				'tracks': tracks,
				'uuid': clip.uuid,
				'blendMode': clip.blendMode

			};

			for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) {

				tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) );

			}

			return json;

		},

		CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) {

			var numMorphTargets = morphTargetSequence.length;
			var tracks = [];

			for ( var i = 0; i < numMorphTargets; i ++ ) {

				var times = [];
				var values = [];

				times.push(
					( i + numMorphTargets - 1 ) % numMorphTargets,
					i,
					( i + 1 ) % numMorphTargets );

				values.push( 0, 1, 0 );

				var order = AnimationUtils.getKeyframeOrder( times );
				times = AnimationUtils.sortedArray( times, 1, order );
				values = AnimationUtils.sortedArray( values, 1, order );

				// if there is a key at the first frame, duplicate it as the
				// last frame as well for perfect loop.
				if ( ! noLoop && times[ 0 ] === 0 ) {

					times.push( numMorphTargets );
					values.push( values[ 0 ] );

				}

				tracks.push(
					new NumberKeyframeTrack(
						'.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']',
						times, values
					).scale( 1.0 / fps ) );

			}

			return new AnimationClip( name, - 1, tracks );

		},

		findByName: function ( objectOrClipArray, name ) {

			var clipArray = objectOrClipArray;

			if ( ! Array.isArray( objectOrClipArray ) ) {

				var o = objectOrClipArray;
				clipArray = o.geometry && o.geometry.animations || o.animations;

			}

			for ( var i = 0; i < clipArray.length; i ++ ) {

				if ( clipArray[ i ].name === name ) {

					return clipArray[ i ];

				}

			}

			return null;

		},

		CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) {

			var animationToMorphTargets = {};

			// tested with https://regex101.com/ on trick sequences
			// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
			var pattern = /^([\w-]*?)([\d]+)$/;

			// sort morph target names into animation groups based
			// patterns like Walk_001, Walk_002, Run_001, Run_002
			for ( var i = 0, il = morphTargets.length; i < il; i ++ ) {

				var morphTarget = morphTargets[ i ];
				var parts = morphTarget.name.match( pattern );

				if ( parts && parts.length > 1 ) {

					var name = parts[ 1 ];

					var animationMorphTargets = animationToMorphTargets[ name ];
					if ( ! animationMorphTargets ) {

						animationToMorphTargets[ name ] = animationMorphTargets = [];

					}

					animationMorphTargets.push( morphTarget );

				}

			}

			var clips = [];

			for ( var name in animationToMorphTargets ) {

				clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );

			}

			return clips;

		},

		// parse the animation.hierarchy format
		parseAnimation: function ( animation, bones ) {

			if ( ! animation ) {

				console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' );
				return null;

			}

			var addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) {

				// only return track if there are actually keys.
				if ( animationKeys.length !== 0 ) {

					var times = [];
					var values = [];

					AnimationUtils.flattenJSON( animationKeys, times, values, propertyName );

					// empty keys are filtered out, so check again
					if ( times.length !== 0 ) {

						destTracks.push( new trackType( trackName, times, values ) );

					}

				}

			};

			var tracks = [];

			var clipName = animation.name || 'default';
			// automatic length determination in AnimationClip.
			var duration = animation.length || - 1;
			var fps = animation.fps || 30;
			var blendMode = animation.blendMode;

			var hierarchyTracks = animation.hierarchy || [];

			for ( var h = 0; h < hierarchyTracks.length; h ++ ) {

				var animationKeys = hierarchyTracks[ h ].keys;

				// skip empty tracks
				if ( ! animationKeys || animationKeys.length === 0 ) { continue; }

				// process morph targets
				if ( animationKeys[ 0 ].morphTargets ) {

					// figure out all morph targets used in this track
					var morphTargetNames = {};

					for ( var k = 0; k < animationKeys.length; k ++ ) {

						if ( animationKeys[ k ].morphTargets ) {

							for ( var m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) {

								morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1;

							}

						}

					}

					// create a track for each morph target with all zero
					// morphTargetInfluences except for the keys in which
					// the morphTarget is named.
					for ( var morphTargetName in morphTargetNames ) {

						var times = [];
						var values = [];

						for ( var m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) {

							var animationKey = animationKeys[ k ];

							times.push( animationKey.time );
							values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 );

						}

						tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) );

					}

					duration = morphTargetNames.length * ( fps || 1.0 );

				} else {

					// ...assume skeletal animation

					var boneName = '.bones[' + bones[ h ].name + ']';

					addNonemptyTrack(
						VectorKeyframeTrack, boneName + '.position',
						animationKeys, 'pos', tracks );

					addNonemptyTrack(
						QuaternionKeyframeTrack, boneName + '.quaternion',
						animationKeys, 'rot', tracks );

					addNonemptyTrack(
						VectorKeyframeTrack, boneName + '.scale',
						animationKeys, 'scl', tracks );

				}

			}

			if ( tracks.length === 0 ) {

				return null;

			}

			var clip = new AnimationClip( clipName, duration, tracks, blendMode );

			return clip;

		}

	} );

	Object.assign( AnimationClip.prototype, {

		resetDuration: function () {

			var tracks = this.tracks, duration = 0;

			for ( var i = 0, n = tracks.length; i !== n; ++ i ) {

				var track = this.tracks[ i ];

				duration = Math.max( duration, track.times[ track.times.length - 1 ] );

			}

			this.duration = duration;

			return this;

		},

		trim: function () {

			for ( var i = 0; i < this.tracks.length; i ++ ) {

				this.tracks[ i ].trim( 0, this.duration );

			}

			return this;

		},

		validate: function () {

			var valid = true;

			for ( var i = 0; i < this.tracks.length; i ++ ) {

				valid = valid && this.tracks[ i ].validate();

			}

			return valid;

		},

		optimize: function () {

			for ( var i = 0; i < this.tracks.length; i ++ ) {

				this.tracks[ i ].optimize();

			}

			return this;

		},

		clone: function () {

			var tracks = [];

			for ( var i = 0; i < this.tracks.length; i ++ ) {

				tracks.push( this.tracks[ i ].clone() );

			}

			return new AnimationClip( this.name, this.duration, tracks, this.blendMode );

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	var Cache = {

		enabled: false,

		files: {},

		add: function ( key, file ) {

			if ( this.enabled === false ) { return; }

			// console.log( 'THREE.Cache', 'Adding key:', key );

			this.files[ key ] = file;

		},

		get: function ( key ) {

			if ( this.enabled === false ) { return; }

			// console.log( 'THREE.Cache', 'Checking key:', key );

			return this.files[ key ];

		},

		remove: function ( key ) {

			delete this.files[ key ];

		},

		clear: function () {

			this.files = {};

		}

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function LoadingManager( onLoad, onProgress, onError ) {

		var scope = this;

		var isLoading = false;
		var itemsLoaded = 0;
		var itemsTotal = 0;
		var urlModifier = undefined;
		var handlers = [];

		// Refer to #5689 for the reason why we don't set .onStart
		// in the constructor

		this.onStart = undefined;
		this.onLoad = onLoad;
		this.onProgress = onProgress;
		this.onError = onError;

		this.itemStart = function ( url ) {

			itemsTotal ++;

			if ( isLoading === false ) {

				if ( scope.onStart !== undefined ) {

					scope.onStart( url, itemsLoaded, itemsTotal );

				}

			}

			isLoading = true;

		};

		this.itemEnd = function ( url ) {

			itemsLoaded ++;

			if ( scope.onProgress !== undefined ) {

				scope.onProgress( url, itemsLoaded, itemsTotal );

			}

			if ( itemsLoaded === itemsTotal ) {

				isLoading = false;

				if ( scope.onLoad !== undefined ) {

					scope.onLoad();

				}

			}

		};

		this.itemError = function ( url ) {

			if ( scope.onError !== undefined ) {

				scope.onError( url );

			}

		};

		this.resolveURL = function ( url ) {

			if ( urlModifier ) {

				return urlModifier( url );

			}

			return url;

		};

		this.setURLModifier = function ( transform ) {

			urlModifier = transform;

			return this;

		};

		this.addHandler = function ( regex, loader ) {

			handlers.push( regex, loader );

			return this;

		};

		this.removeHandler = function ( regex ) {

			var index = handlers.indexOf( regex );

			if ( index !== - 1 ) {

				handlers.splice( index, 2 );

			}

			return this;

		};

		this.getHandler = function ( file ) {

			for ( var i = 0, l = handlers.length; i < l; i += 2 ) {

				var regex = handlers[ i ];
				var loader = handlers[ i + 1 ];

				if ( regex.global ) { regex.lastIndex = 0; } // see #17920

				if ( regex.test( file ) ) {

					return loader;

				}

			}

			return null;

		};

	}

	var DefaultLoadingManager = new LoadingManager();

	/**
	 * @author alteredq / http://alteredqualia.com/
	 */

	function Loader( manager ) {

		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

		this.crossOrigin = 'anonymous';
		this.path = '';
		this.resourcePath = '';

	}

	Object.assign( Loader.prototype, {

		load: function ( /* url, onLoad, onProgress, onError */ ) {},

		loadAsync: function ( url, onProgress ) {

			var scope = this;

			return new Promise( function ( resolve, reject ) {

				scope.load( url, resolve, onProgress, reject );

			} );

		},

		parse: function ( /* data */ ) {},

		setCrossOrigin: function ( crossOrigin ) {

			this.crossOrigin = crossOrigin;
			return this;

		},

		setPath: function ( path ) {

			this.path = path;
			return this;

		},

		setResourcePath: function ( resourcePath ) {

			this.resourcePath = resourcePath;
			return this;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	var loading = {};

	function FileLoader( manager ) {

		Loader.call( this, manager );

	}

	FileLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: FileLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			if ( url === undefined ) { url = ''; }

			if ( this.path !== undefined ) { url = this.path + url; }

			url = this.manager.resolveURL( url );

			var scope = this;

			var cached = Cache.get( url );

			if ( cached !== undefined ) {

				scope.manager.itemStart( url );

				setTimeout( function () {

					if ( onLoad ) { onLoad( cached ); }

					scope.manager.itemEnd( url );

				}, 0 );

				return cached;

			}

			// Check if request is duplicate

			if ( loading[ url ] !== undefined ) {

				loading[ url ].push( {

					onLoad: onLoad,
					onProgress: onProgress,
					onError: onError

				} );

				return;

			}

			// Check for data: URI
			var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
			var dataUriRegexResult = url.match( dataUriRegex );

			// Safari can not handle Data URIs through XMLHttpRequest so process manually
			if ( dataUriRegexResult ) {

				var mimeType = dataUriRegexResult[ 1 ];
				var isBase64 = !! dataUriRegexResult[ 2 ];
				var data = dataUriRegexResult[ 3 ];

				data = decodeURIComponent( data );

				if ( isBase64 ) { data = atob( data ); }

				try {

					var response;
					var responseType = ( this.responseType || '' ).toLowerCase();

					switch ( responseType ) {

						case 'arraybuffer':
						case 'blob':

							var view = new Uint8Array( data.length );

							for ( var i = 0; i < data.length; i ++ ) {

								view[ i ] = data.charCodeAt( i );

							}

							if ( responseType === 'blob' ) {

								response = new Blob( [ view.buffer ], { type: mimeType } );

							} else {

								response = view.buffer;

							}

							break;

						case 'document':

							var parser = new DOMParser();
							response = parser.parseFromString( data, mimeType );

							break;

						case 'json':

							response = JSON.parse( data );

							break;

						default: // 'text' or other

							response = data;

							break;

					}

					// Wait for next browser tick like standard XMLHttpRequest event dispatching does
					setTimeout( function () {

						if ( onLoad ) { onLoad( response ); }

						scope.manager.itemEnd( url );

					}, 0 );

				} catch ( error ) {

					// Wait for next browser tick like standard XMLHttpRequest event dispatching does
					setTimeout( function () {

						if ( onError ) { onError( error ); }

						scope.manager.itemError( url );
						scope.manager.itemEnd( url );

					}, 0 );

				}

			} else {

				// Initialise array for duplicate requests

				loading[ url ] = [];

				loading[ url ].push( {

					onLoad: onLoad,
					onProgress: onProgress,
					onError: onError

				} );

				var request = new XMLHttpRequest();

				request.open( 'GET', url, true );

				request.addEventListener( 'load', function ( event ) {

					var response = this.response;

					var callbacks = loading[ url ];

					delete loading[ url ];

					if ( this.status === 200 || this.status === 0 ) {

						// Some browsers return HTTP Status 0 when using non-http protocol
						// e.g. 'file://' or 'data://'. Handle as success.

						if ( this.status === 0 ) { console.warn( 'THREE.FileLoader: HTTP Status 0 received.' ); }

						// Add to cache only on HTTP success, so that we do not cache
						// error response bodies as proper responses to requests.
						Cache.add( url, response );

						for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

							var callback = callbacks[ i ];
							if ( callback.onLoad ) { callback.onLoad( response ); }

						}

						scope.manager.itemEnd( url );

					} else {

						for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

							var callback = callbacks[ i ];
							if ( callback.onError ) { callback.onError( event ); }

						}

						scope.manager.itemError( url );
						scope.manager.itemEnd( url );

					}

				}, false );

				request.addEventListener( 'progress', function ( event ) {

					var callbacks = loading[ url ];

					for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

						var callback = callbacks[ i ];
						if ( callback.onProgress ) { callback.onProgress( event ); }

					}

				}, false );

				request.addEventListener( 'error', function ( event ) {

					var callbacks = loading[ url ];

					delete loading[ url ];

					for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

						var callback = callbacks[ i ];
						if ( callback.onError ) { callback.onError( event ); }

					}

					scope.manager.itemError( url );
					scope.manager.itemEnd( url );

				}, false );

				request.addEventListener( 'abort', function ( event ) {

					var callbacks = loading[ url ];

					delete loading[ url ];

					for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

						var callback = callbacks[ i ];
						if ( callback.onError ) { callback.onError( event ); }

					}

					scope.manager.itemError( url );
					scope.manager.itemEnd( url );

				}, false );

				if ( this.responseType !== undefined ) { request.responseType = this.responseType; }
				if ( this.withCredentials !== undefined ) { request.withCredentials = this.withCredentials; }

				if ( request.overrideMimeType ) { request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' ); }

				for ( var header in this.requestHeader ) {

					request.setRequestHeader( header, this.requestHeader[ header ] );

				}

				request.send( null );

			}

			scope.manager.itemStart( url );

			return request;

		},

		setResponseType: function ( value ) {

			this.responseType = value;
			return this;

		},

		setWithCredentials: function ( value ) {

			this.withCredentials = value;
			return this;

		},

		setMimeType: function ( value ) {

			this.mimeType = value;
			return this;

		},

		setRequestHeader: function ( value ) {

			this.requestHeader = value;
			return this;

		}

	} );

	/**
	 * @author bhouston / http://clara.io/
	 */

	function AnimationLoader( manager ) {

		Loader.call( this, manager );

	}

	AnimationLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: AnimationLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			var scope = this;

			var loader = new FileLoader( scope.manager );
			loader.setPath( scope.path );
			loader.load( url, function ( text ) {

				onLoad( scope.parse( JSON.parse( text ) ) );

			}, onProgress, onError );

		},

		parse: function ( json ) {

			var animations = [];

			for ( var i = 0; i < json.length; i ++ ) {

				var clip = AnimationClip.parse( json[ i ] );

				animations.push( clip );

			}

			return animations;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 *
	 * Abstract Base class to block based textures loader (dds, pvr, ...)
	 *
	 * Sub classes have to implement the parse() method which will be used in load().
	 */

	function CompressedTextureLoader( manager ) {

		Loader.call( this, manager );

	}

	CompressedTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: CompressedTextureLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			var scope = this;

			var images = [];

			var texture = new CompressedTexture();
			texture.image = images;

			var loader = new FileLoader( this.manager );
			loader.setPath( this.path );
			loader.setResponseType( 'arraybuffer' );

			function loadTexture( i ) {

				loader.load( url[ i ], function ( buffer ) {

					var texDatas = scope.parse( buffer, true );

					images[ i ] = {
						width: texDatas.width,
						height: texDatas.height,
						format: texDatas.format,
						mipmaps: texDatas.mipmaps
					};

					loaded += 1;

					if ( loaded === 6 ) {

						if ( texDatas.mipmapCount === 1 )
							{ texture.minFilter = LinearFilter; }

						texture.format = texDatas.format;
						texture.needsUpdate = true;

						if ( onLoad ) { onLoad( texture ); }

					}

				}, onProgress, onError );

			}

			if ( Array.isArray( url ) ) {

				var loaded = 0;

				for ( var i = 0, il = url.length; i < il; ++ i ) {

					loadTexture( i );

				}

			} else {

				// compressed cubemap texture stored in a single DDS file

				loader.load( url, function ( buffer ) {

					var texDatas = scope.parse( buffer, true );

					if ( texDatas.isCubemap ) {

						var faces = texDatas.mipmaps.length / texDatas.mipmapCount;

						for ( var f = 0; f < faces; f ++ ) {

							images[ f ] = { mipmaps: [] };

							for ( var i = 0; i < texDatas.mipmapCount; i ++ ) {

								images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] );
								images[ f ].format = texDatas.format;
								images[ f ].width = texDatas.width;
								images[ f ].height = texDatas.height;

							}

						}

					} else {

						texture.image.width = texDatas.width;
						texture.image.height = texDatas.height;
						texture.mipmaps = texDatas.mipmaps;

					}

					if ( texDatas.mipmapCount === 1 ) {

						texture.minFilter = LinearFilter;

					}

					texture.format = texDatas.format;
					texture.needsUpdate = true;

					if ( onLoad ) { onLoad( texture ); }

				}, onProgress, onError );

			}

			return texture;

		}

	} );

	/**
	 * @author Nikos M. / https://github.com/foo123/
	 *
	 * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
	 *
	 * Sub classes have to implement the parse() method which will be used in load().
	 */

	function DataTextureLoader( manager ) {

		Loader.call( this, manager );

	}

	DataTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: DataTextureLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			var scope = this;

			var texture = new DataTexture();

			var loader = new FileLoader( this.manager );
			loader.setResponseType( 'arraybuffer' );
			loader.setPath( this.path );
			loader.load( url, function ( buffer ) {

				var texData = scope.parse( buffer );

				if ( ! texData ) { return; }

				if ( texData.image !== undefined ) {

					texture.image = texData.image;

				} else if ( texData.data !== undefined ) {

					texture.image.width = texData.width;
					texture.image.height = texData.height;
					texture.image.data = texData.data;

				}

				texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping;
				texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping;

				texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter;
				texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter;

				texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1;

				if ( texData.format !== undefined ) {

					texture.format = texData.format;

				}

				if ( texData.type !== undefined ) {

					texture.type = texData.type;

				}

				if ( texData.mipmaps !== undefined ) {

					texture.mipmaps = texData.mipmaps;
					texture.minFilter = LinearMipmapLinearFilter; // presumably...

				}

				if ( texData.mipmapCount === 1 ) {

					texture.minFilter = LinearFilter;

				}

				texture.needsUpdate = true;

				if ( onLoad ) { onLoad( texture, texData ); }

			}, onProgress, onError );


			return texture;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function ImageLoader( manager ) {

		Loader.call( this, manager );

	}

	ImageLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: ImageLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			if ( this.path !== undefined ) { url = this.path + url; }

			url = this.manager.resolveURL( url );

			var scope = this;

			var cached = Cache.get( url );

			if ( cached !== undefined ) {

				scope.manager.itemStart( url );

				setTimeout( function () {

					if ( onLoad ) { onLoad( cached ); }

					scope.manager.itemEnd( url );

				}, 0 );

				return cached;

			}

			var image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' );

			function onImageLoad() {

				image.removeEventListener( 'load', onImageLoad, false );
				image.removeEventListener( 'error', onImageError, false );

				Cache.add( url, this );

				if ( onLoad ) { onLoad( this ); }

				scope.manager.itemEnd( url );

			}

			function onImageError( event ) {

				image.removeEventListener( 'load', onImageLoad, false );
				image.removeEventListener( 'error', onImageError, false );

				if ( onError ) { onError( event ); }

				scope.manager.itemError( url );
				scope.manager.itemEnd( url );

			}

			image.addEventListener( 'load', onImageLoad, false );
			image.addEventListener( 'error', onImageError, false );

			if ( url.substr( 0, 5 ) !== 'data:' ) {

				if ( this.crossOrigin !== undefined ) { image.crossOrigin = this.crossOrigin; }

			}

			scope.manager.itemStart( url );

			image.src = url;

			return image;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */


	function CubeTextureLoader( manager ) {

		Loader.call( this, manager );

	}

	CubeTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: CubeTextureLoader,

		load: function ( urls, onLoad, onProgress, onError ) {

			var texture = new CubeTexture();

			var loader = new ImageLoader( this.manager );
			loader.setCrossOrigin( this.crossOrigin );
			loader.setPath( this.path );

			var loaded = 0;

			function loadTexture( i ) {

				loader.load( urls[ i ], function ( image ) {

					texture.images[ i ] = image;

					loaded ++;

					if ( loaded === 6 ) {

						texture.needsUpdate = true;

						if ( onLoad ) { onLoad( texture ); }

					}

				}, undefined, onError );

			}

			for ( var i = 0; i < urls.length; ++ i ) {

				loadTexture( i );

			}

			return texture;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function TextureLoader( manager ) {

		Loader.call( this, manager );

	}

	TextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: TextureLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			var texture = new Texture();

			var loader = new ImageLoader( this.manager );
			loader.setCrossOrigin( this.crossOrigin );
			loader.setPath( this.path );

			loader.load( url, function ( image ) {

				texture.image = image;

				// JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
				var isJPEG = url.search( /\.jpe?g($|\?)/i ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0;

				texture.format = isJPEG ? RGBFormat : RGBAFormat;
				texture.needsUpdate = true;

				if ( onLoad !== undefined ) {

					onLoad( texture );

				}

			}, onProgress, onError );

			return texture;

		}

	} );

	/**
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 * Extensible curve object
	 *
	 * Some common of curve methods:
	 * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )
	 * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )
	 * .getPoints(), .getSpacedPoints()
	 * .getLength()
	 * .updateArcLengths()
	 *
	 * This following curves inherit from THREE.Curve:
	 *
	 * -- 2D curves --
	 * THREE.ArcCurve
	 * THREE.CubicBezierCurve
	 * THREE.EllipseCurve
	 * THREE.LineCurve
	 * THREE.QuadraticBezierCurve
	 * THREE.SplineCurve
	 *
	 * -- 3D curves --
	 * THREE.CatmullRomCurve3
	 * THREE.CubicBezierCurve3
	 * THREE.LineCurve3
	 * THREE.QuadraticBezierCurve3
	 *
	 * A series of curves can be represented as a THREE.CurvePath.
	 *
	 **/

	/**************************************************************
	 *	Abstract Curve base class
	 **************************************************************/

	function Curve() {

		this.type = 'Curve';

		this.arcLengthDivisions = 200;

	}

	Object.assign( Curve.prototype, {

		// Virtual base class method to overwrite and implement in subclasses
		//	- t [0 .. 1]

		getPoint: function ( /* t, optionalTarget */ ) {

			console.warn( 'THREE.Curve: .getPoint() not implemented.' );
			return null;

		},

		// Get point at relative position in curve according to arc length
		// - u [0 .. 1]

		getPointAt: function ( u, optionalTarget ) {

			var t = this.getUtoTmapping( u );
			return this.getPoint( t, optionalTarget );

		},

		// Get sequence of points using getPoint( t )

		getPoints: function ( divisions ) {

			if ( divisions === undefined ) { divisions = 5; }

			var points = [];

			for ( var d = 0; d <= divisions; d ++ ) {

				points.push( this.getPoint( d / divisions ) );

			}

			return points;

		},

		// Get sequence of points using getPointAt( u )

		getSpacedPoints: function ( divisions ) {

			if ( divisions === undefined ) { divisions = 5; }

			var points = [];

			for ( var d = 0; d <= divisions; d ++ ) {

				points.push( this.getPointAt( d / divisions ) );

			}

			return points;

		},

		// Get total curve arc length

		getLength: function () {

			var lengths = this.getLengths();
			return lengths[ lengths.length - 1 ];

		},

		// Get list of cumulative segment lengths

		getLengths: function ( divisions ) {

			if ( divisions === undefined ) { divisions = this.arcLengthDivisions; }

			if ( this.cacheArcLengths &&
				( this.cacheArcLengths.length === divisions + 1 ) &&
				! this.needsUpdate ) {

				return this.cacheArcLengths;

			}

			this.needsUpdate = false;

			var cache = [];
			var current, last = this.getPoint( 0 );
			var p, sum = 0;

			cache.push( 0 );

			for ( p = 1; p <= divisions; p ++ ) {

				current = this.getPoint( p / divisions );
				sum += current.distanceTo( last );
				cache.push( sum );
				last = current;

			}

			this.cacheArcLengths = cache;

			return cache; // { sums: cache, sum: sum }; Sum is in the last element.

		},

		updateArcLengths: function () {

			this.needsUpdate = true;
			this.getLengths();

		},

		// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant

		getUtoTmapping: function ( u, distance ) {

			var arcLengths = this.getLengths();

			var i = 0, il = arcLengths.length;

			var targetArcLength; // The targeted u distance value to get

			if ( distance ) {

				targetArcLength = distance;

			} else {

				targetArcLength = u * arcLengths[ il - 1 ];

			}

			// binary search for the index with largest value smaller than target u distance

			var low = 0, high = il - 1, comparison;

			while ( low <= high ) {

				i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats

				comparison = arcLengths[ i ] - targetArcLength;

				if ( comparison < 0 ) {

					low = i + 1;

				} else if ( comparison > 0 ) {

					high = i - 1;

				} else {

					high = i;
					break;

					// DONE

				}

			}

			i = high;

			if ( arcLengths[ i ] === targetArcLength ) {

				return i / ( il - 1 );

			}

			// we could get finer grain at lengths, or use simple interpolation between two points

			var lengthBefore = arcLengths[ i ];
			var lengthAfter = arcLengths[ i + 1 ];

			var segmentLength = lengthAfter - lengthBefore;

			// determine where we are between the 'before' and 'after' points

			var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;

			// add that fractional amount to t

			var t = ( i + segmentFraction ) / ( il - 1 );

			return t;

		},

		// Returns a unit vector tangent at t
		// In case any sub curve does not implement its tangent derivation,
		// 2 points a small delta apart will be used to find its gradient
		// which seems to give a reasonable approximation

		getTangent: function ( t, optionalTarget ) {

			var delta = 0.0001;
			var t1 = t - delta;
			var t2 = t + delta;

			// Capping in case of danger

			if ( t1 < 0 ) { t1 = 0; }
			if ( t2 > 1 ) { t2 = 1; }

			var pt1 = this.getPoint( t1 );
			var pt2 = this.getPoint( t2 );

			var tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() );

			tangent.copy( pt2 ).sub( pt1 ).normalize();

			return tangent;

		},

		getTangentAt: function ( u, optionalTarget ) {

			var t = this.getUtoTmapping( u );
			return this.getTangent( t, optionalTarget );

		},

		computeFrenetFrames: function ( segments, closed ) {

			// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf

			var normal = new Vector3();

			var tangents = [];
			var normals = [];
			var binormals = [];

			var vec = new Vector3();
			var mat = new Matrix4();

			var i, u, theta;

			// compute the tangent vectors for each segment on the curve

			for ( i = 0; i <= segments; i ++ ) {

				u = i / segments;

				tangents[ i ] = this.getTangentAt( u, new Vector3() );
				tangents[ i ].normalize();

			}

			// select an initial normal vector perpendicular to the first tangent vector,
			// and in the direction of the minimum tangent xyz component

			normals[ 0 ] = new Vector3();
			binormals[ 0 ] = new Vector3();
			var min = Number.MAX_VALUE;
			var tx = Math.abs( tangents[ 0 ].x );
			var ty = Math.abs( tangents[ 0 ].y );
			var tz = Math.abs( tangents[ 0 ].z );

			if ( tx <= min ) {

				min = tx;
				normal.set( 1, 0, 0 );

			}

			if ( ty <= min ) {

				min = ty;
				normal.set( 0, 1, 0 );

			}

			if ( tz <= min ) {

				normal.set( 0, 0, 1 );

			}

			vec.crossVectors( tangents[ 0 ], normal ).normalize();

			normals[ 0 ].crossVectors( tangents[ 0 ], vec );
			binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );


			// compute the slowly-varying normal and binormal vectors for each segment on the curve

			for ( i = 1; i <= segments; i ++ ) {

				normals[ i ] = normals[ i - 1 ].clone();

				binormals[ i ] = binormals[ i - 1 ].clone();

				vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );

				if ( vec.length() > Number.EPSILON ) {

					vec.normalize();

					theta = Math.acos( MathUtils.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors

					normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );

				}

				binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );

			}

			// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same

			if ( closed === true ) {

				theta = Math.acos( MathUtils.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
				theta /= segments;

				if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {

					theta = - theta;

				}

				for ( i = 1; i <= segments; i ++ ) {

					// twist a little...
					normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
					binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );

				}

			}

			return {
				tangents: tangents,
				normals: normals,
				binormals: binormals
			};

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( source ) {

			this.arcLengthDivisions = source.arcLengthDivisions;

			return this;

		},

		toJSON: function () {

			var data = {
				metadata: {
					version: 4.5,
					type: 'Curve',
					generator: 'Curve.toJSON'
				}
			};

			data.arcLengthDivisions = this.arcLengthDivisions;
			data.type = this.type;

			return data;

		},

		fromJSON: function ( json ) {

			this.arcLengthDivisions = json.arcLengthDivisions;

			return this;

		}

	} );

	function EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

		Curve.call( this );

		this.type = 'EllipseCurve';

		this.aX = aX || 0;
		this.aY = aY || 0;

		this.xRadius = xRadius || 1;
		this.yRadius = yRadius || 1;

		this.aStartAngle = aStartAngle || 0;
		this.aEndAngle = aEndAngle || 2 * Math.PI;

		this.aClockwise = aClockwise || false;

		this.aRotation = aRotation || 0;

	}

	EllipseCurve.prototype = Object.create( Curve.prototype );
	EllipseCurve.prototype.constructor = EllipseCurve;

	EllipseCurve.prototype.isEllipseCurve = true;

	EllipseCurve.prototype.getPoint = function ( t, optionalTarget ) {

		var point = optionalTarget || new Vector2();

		var twoPi = Math.PI * 2;
		var deltaAngle = this.aEndAngle - this.aStartAngle;
		var samePoints = Math.abs( deltaAngle ) < Number.EPSILON;

		// ensures that deltaAngle is 0 .. 2 PI
		while ( deltaAngle < 0 ) { deltaAngle += twoPi; }
		while ( deltaAngle > twoPi ) { deltaAngle -= twoPi; }

		if ( deltaAngle < Number.EPSILON ) {

			if ( samePoints ) {

				deltaAngle = 0;

			} else {

				deltaAngle = twoPi;

			}

		}

		if ( this.aClockwise === true && ! samePoints ) {

			if ( deltaAngle === twoPi ) {

				deltaAngle = - twoPi;

			} else {

				deltaAngle = deltaAngle - twoPi;

			}

		}

		var angle = this.aStartAngle + t * deltaAngle;
		var x = this.aX + this.xRadius * Math.cos( angle );
		var y = this.aY + this.yRadius * Math.sin( angle );

		if ( this.aRotation !== 0 ) {

			var cos = Math.cos( this.aRotation );
			var sin = Math.sin( this.aRotation );

			var tx = x - this.aX;
			var ty = y - this.aY;

			// Rotate the point about the center of the ellipse.
			x = tx * cos - ty * sin + this.aX;
			y = tx * sin + ty * cos + this.aY;

		}

		return point.set( x, y );

	};

	EllipseCurve.prototype.copy = function ( source ) {

		Curve.prototype.copy.call( this, source );

		this.aX = source.aX;
		this.aY = source.aY;

		this.xRadius = source.xRadius;
		this.yRadius = source.yRadius;

		this.aStartAngle = source.aStartAngle;
		this.aEndAngle = source.aEndAngle;

		this.aClockwise = source.aClockwise;

		this.aRotation = source.aRotation;

		return this;

	};


	EllipseCurve.prototype.toJSON = function () {

		var data = Curve.prototype.toJSON.call( this );

		data.aX = this.aX;
		data.aY = this.aY;

		data.xRadius = this.xRadius;
		data.yRadius = this.yRadius;

		data.aStartAngle = this.aStartAngle;
		data.aEndAngle = this.aEndAngle;

		data.aClockwise = this.aClockwise;

		data.aRotation = this.aRotation;

		return data;

	};

	EllipseCurve.prototype.fromJSON = function ( json ) {

		Curve.prototype.fromJSON.call( this, json );

		this.aX = json.aX;
		this.aY = json.aY;

		this.xRadius = json.xRadius;
		this.yRadius = json.yRadius;

		this.aStartAngle = json.aStartAngle;
		this.aEndAngle = json.aEndAngle;

		this.aClockwise = json.aClockwise;

		this.aRotation = json.aRotation;

		return this;

	};

	function ArcCurve( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

		EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );

		this.type = 'ArcCurve';

	}

	ArcCurve.prototype = Object.create( EllipseCurve.prototype );
	ArcCurve.prototype.constructor = ArcCurve;

	ArcCurve.prototype.isArcCurve = true;

	/**
	 * @author zz85 https://github.com/zz85
	 *
	 * Centripetal CatmullRom Curve - which is useful for avoiding
	 * cusps and self-intersections in non-uniform catmull rom curves.
	 * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
	 *
	 * curve.type accepts centripetal(default), chordal and catmullrom
	 * curve.tension is used for catmullrom which defaults to 0.5
	 */


	/*
	Based on an optimized c++ solution in
	 - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
	 - http://ideone.com/NoEbVM

	This CubicPoly class could be used for reusing some variables and calculations,
	but for three.js curve use, it could be possible inlined and flatten into a single function call
	which can be placed in CurveUtils.
	*/

	function CubicPoly() {

		var c0 = 0, c1 = 0, c2 = 0, c3 = 0;

		/*
		 * Compute coefficients for a cubic polynomial
		 *   p(s) = c0 + c1*s + c2*s^2 + c3*s^3
		 * such that
		 *   p(0) = x0, p(1) = x1
		 *  and
		 *   p'(0) = t0, p'(1) = t1.
		 */
		function init( x0, x1, t0, t1 ) {

			c0 = x0;
			c1 = t0;
			c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1;
			c3 = 2 * x0 - 2 * x1 + t0 + t1;

		}

		return {

			initCatmullRom: function ( x0, x1, x2, x3, tension ) {

				init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) );

			},

			initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) {

				// compute tangents when parameterized in [t1,t2]
				var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1;
				var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2;

				// rescale tangents for parametrization in [0,1]
				t1 *= dt1;
				t2 *= dt1;

				init( x1, x2, t1, t2 );

			},

			calc: function ( t ) {

				var t2 = t * t;
				var t3 = t2 * t;
				return c0 + c1 * t + c2 * t2 + c3 * t3;

			}

		};

	}

	//

	var tmp = new Vector3();
	var px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly();

	function CatmullRomCurve3( points, closed, curveType, tension ) {

		Curve.call( this );

		this.type = 'CatmullRomCurve3';

		this.points = points || [];
		this.closed = closed || false;
		this.curveType = curveType || 'centripetal';
		this.tension = tension || 0.5;

	}

	CatmullRomCurve3.prototype = Object.create( Curve.prototype );
	CatmullRomCurve3.prototype.constructor = CatmullRomCurve3;

	CatmullRomCurve3.prototype.isCatmullRomCurve3 = true;

	CatmullRomCurve3.prototype.getPoint = function ( t, optionalTarget ) {

		var point = optionalTarget || new Vector3();

		var points = this.points;
		var l = points.length;

		var p = ( l - ( this.closed ? 0 : 1 ) ) * t;
		var intPoint = Math.floor( p );
		var weight = p - intPoint;

		if ( this.closed ) {

			intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l;

		} else if ( weight === 0 && intPoint === l - 1 ) {

			intPoint = l - 2;
			weight = 1;

		}

		var p0, p1, p2, p3; // 4 points

		if ( this.closed || intPoint > 0 ) {

			p0 = points[ ( intPoint - 1 ) % l ];

		} else {

			// extrapolate first point
			tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] );
			p0 = tmp;

		}

		p1 = points[ intPoint % l ];
		p2 = points[ ( intPoint + 1 ) % l ];

		if ( this.closed || intPoint + 2 < l ) {

			p3 = points[ ( intPoint + 2 ) % l ];

		} else {

			// extrapolate last point
			tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] );
			p3 = tmp;

		}

		if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) {

			// init Centripetal / Chordal Catmull-Rom
			var pow = this.curveType === 'chordal' ? 0.5 : 0.25;
			var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow );
			var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow );
			var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow );

			// safety check for repeated points
			if ( dt1 < 1e-4 ) { dt1 = 1.0; }
			if ( dt0 < 1e-4 ) { dt0 = dt1; }
			if ( dt2 < 1e-4 ) { dt2 = dt1; }

			px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 );
			py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 );
			pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 );

		} else if ( this.curveType === 'catmullrom' ) {

			px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension );
			py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension );
			pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension );

		}

		point.set(
			px.calc( weight ),
			py.calc( weight ),
			pz.calc( weight )
		);

		return point;

	};

	CatmullRomCurve3.prototype.copy = function ( source ) {

		Curve.prototype.copy.call( this, source );

		this.points = [];

		for ( var i = 0, l = source.points.length; i < l; i ++ ) {

			var point = source.points[ i ];

			this.points.push( point.clone() );

		}

		this.closed = source.closed;
		this.curveType = source.curveType;
		this.tension = source.tension;

		return this;

	};

	CatmullRomCurve3.prototype.toJSON = function () {

		var data = Curve.prototype.toJSON.call( this );

		data.points = [];

		for ( var i = 0, l = this.points.length; i < l; i ++ ) {

			var point = this.points[ i ];
			data.points.push( point.toArray() );

		}

		data.closed = this.closed;
		data.curveType = this.curveType;
		data.tension = this.tension;

		return data;

	};

	CatmullRomCurve3.prototype.fromJSON = function ( json ) {

		Curve.prototype.fromJSON.call( this, json );

		this.points = [];

		for ( var i = 0, l = json.points.length; i < l; i ++ ) {

			var point = json.points[ i ];
			this.points.push( new Vector3().fromArray( point ) );

		}

		this.closed = json.closed;
		this.curveType = json.curveType;
		this.tension = json.tension;

		return this;

	};

	/**
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 *
	 * Bezier Curves formulas obtained from
	 * http://en.wikipedia.org/wiki/Bézier_curve
	 */

	function CatmullRom( t, p0, p1, p2, p3 ) {

		var v0 = ( p2 - p0 ) * 0.5;
		var v1 = ( p3 - p1 ) * 0.5;
		var t2 = t * t;
		var t3 = t * t2;
		return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;

	}

	//

	function QuadraticBezierP0( t, p ) {

		var k = 1 - t;
		return k * k * p;

	}

	function QuadraticBezierP1( t, p ) {

		return 2 * ( 1 - t ) * t * p;

	}

	function QuadraticBezierP2( t, p ) {

		return t * t * p;

	}

	function QuadraticBezier( t, p0, p1, p2 ) {

		return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) +
			QuadraticBezierP2( t, p2 );

	}

	//

	function CubicBezierP0( t, p ) {

		var k = 1 - t;
		return k * k * k * p;

	}

	function CubicBezierP1( t, p ) {

		var k = 1 - t;
		return 3 * k * k * t * p;

	}

	function CubicBezierP2( t, p ) {

		return 3 * ( 1 - t ) * t * t * p;

	}

	function CubicBezierP3( t, p ) {

		return t * t * t * p;

	}

	function CubicBezier( t, p0, p1, p2, p3 ) {

		return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) +
			CubicBezierP3( t, p3 );

	}

	function CubicBezierCurve( v0, v1, v2, v3 ) {

		Curve.call( this );

		this.type = 'CubicBezierCurve';

		this.v0 = v0 || new Vector2();
		this.v1 = v1 || new Vector2();
		this.v2 = v2 || new Vector2();
		this.v3 = v3 || new Vector2();

	}

	CubicBezierCurve.prototype = Object.create( Curve.prototype );
	CubicBezierCurve.prototype.constructor = CubicBezierCurve;

	CubicBezierCurve.prototype.isCubicBezierCurve = true;

	CubicBezierCurve.prototype.getPoint = function ( t, optionalTarget ) {

		var point = optionalTarget || new Vector2();

		var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;

		point.set(
			CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
			CubicBezier( t, v0.y, v1.y, v2.y, v3.y )
		);

		return point;

	};

	CubicBezierCurve.prototype.copy = function ( source ) {

		Curve.prototype.copy.call( this, source );

		this.v0.copy( source.v0 );
		this.v1.copy( source.v1 );
		this.v2.copy( source.v2 );
		this.v3.copy( source.v3 );

		return this;

	};

	CubicBezierCurve.prototype.toJSON = function () {

		var data = Curve.prototype.toJSON.call( this );

		data.v0 = this.v0.toArray();
		data.v1 = this.v1.toArray();
		data.v2 = this.v2.toArray();
		data.v3 = this.v3.toArray();

		return data;

	};

	CubicBezierCurve.prototype.fromJSON = function ( json ) {

		Curve.prototype.fromJSON.call( this, json );

		this.v0.fromArray( json.v0 );
		this.v1.fromArray( json.v1 );
		this.v2.fromArray( json.v2 );
		this.v3.fromArray( json.v3 );

		return this;

	};

	function CubicBezierCurve3( v0, v1, v2, v3 ) {

		Curve.call( this );

		this.type = 'CubicBezierCurve3';

		this.v0 = v0 || new Vector3();
		this.v1 = v1 || new Vector3();
		this.v2 = v2 || new Vector3();
		this.v3 = v3 || new Vector3();

	}

	CubicBezierCurve3.prototype = Object.create( Curve.prototype );
	CubicBezierCurve3.prototype.constructor = CubicBezierCurve3;

	CubicBezierCurve3.prototype.isCubicBezierCurve3 = true;

	CubicBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) {

		var point = optionalTarget || new Vector3();

		var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;

		point.set(
			CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
			CubicBezier( t, v0.y, v1.y, v2.y, v3.y ),
			CubicBezier( t, v0.z, v1.z, v2.z, v3.z )
		);

		return point;

	};

	CubicBezierCurve3.prototype.copy = function ( source ) {

		Curve.prototype.copy.call( this, source );

		this.v0.copy( source.v0 );
		this.v1.copy( source.v1 );
		this.v2.copy( source.v2 );
		this.v3.copy( source.v3 );

		return this;

	};

	CubicBezierCurve3.prototype.toJSON = function () {

		var data = Curve.prototype.toJSON.call( this );

		data.v0 = this.v0.toArray();
		data.v1 = this.v1.toArray();
		data.v2 = this.v2.toArray();
		data.v3 = this.v3.toArray();

		return data;

	};

	CubicBezierCurve3.prototype.fromJSON = function ( json ) {

		Curve.prototype.fromJSON.call( this, json );

		this.v0.fromArray( json.v0 );
		this.v1.fromArray( json.v1 );
		this.v2.fromArray( json.v2 );
		this.v3.fromArray( json.v3 );

		return this;

	};

	function LineCurve( v1, v2 ) {

		Curve.call( this );

		this.type = 'LineCurve';

		this.v1 = v1 || new Vector2();
		this.v2 = v2 || new Vector2();

	}

	LineCurve.prototype = Object.create( Curve.prototype );
	LineCurve.prototype.constructor = LineCurve;

	LineCurve.prototype.isLineCurve = true;

	LineCurve.prototype.getPoint = function ( t, optionalTarget ) {

		var point = optionalTarget || new Vector2();

		if ( t === 1 ) {

			point.copy( this.v2 );

		} else {

			point.copy( this.v2 ).sub( this.v1 );
			point.multiplyScalar( t ).add( this.v1 );

		}

		return point;

	};

	// Line curve is linear, so we can overwrite default getPointAt

	LineCurve.prototype.getPointAt = function ( u, optionalTarget ) {

		return this.getPoint( u, optionalTarget );

	};

	LineCurve.prototype.getTangent = function ( t, optionalTarget ) {

		var tangent = optionalTarget || new Vector2();

		var tangent = tangent.copy( this.v2 ).sub( this.v1 ).normalize();

		return tangent;

	};

	LineCurve.prototype.copy = function ( source ) {

		Curve.prototype.copy.call( this, source );

		this.v1.copy( source.v1 );
		this.v2.copy( source.v2 );

		return this;

	};

	LineCurve.prototype.toJSON = function () {

		var data = Curve.prototype.toJSON.call( this );

		data.v1 = this.v1.toArray();
		data.v2 = this.v2.toArray();

		return data;

	};

	LineCurve.prototype.fromJSON = function ( json ) {

		Curve.prototype.fromJSON.call( this, json );

		this.v1.fromArray( json.v1 );
		this.v2.fromArray( json.v2 );

		return this;

	};

	function LineCurve3( v1, v2 ) {

		Curve.call( this );

		this.type = 'LineCurve3';

		this.v1 = v1 || new Vector3();
		this.v2 = v2 || new Vector3();

	}

	LineCurve3.prototype = Object.create( Curve.prototype );
	LineCurve3.prototype.constructor = LineCurve3;

	LineCurve3.prototype.isLineCurve3 = true;

	LineCurve3.prototype.getPoint = function ( t, optionalTarget ) {

		var point = optionalTarget || new Vector3();

		if ( t === 1 ) {

			point.copy( this.v2 );

		} else {

			point.copy( this.v2 ).sub( this.v1 );
			point.multiplyScalar( t ).add( this.v1 );

		}

		return point;

	};

	// Line curve is linear, so we can overwrite default getPointAt

	LineCurve3.prototype.getPointAt = function ( u, optionalTarget ) {

		return this.getPoint( u, optionalTarget );

	};

	LineCurve3.prototype.copy = function ( source ) {

		Curve.prototype.copy.call( this, source );

		this.v1.copy( source.v1 );
		this.v2.copy( source.v2 );

		return this;

	};

	LineCurve3.prototype.toJSON = function () {

		var data = Curve.prototype.toJSON.call( this );

		data.v1 = this.v1.toArray();
		data.v2 = this.v2.toArray();

		return data;

	};

	LineCurve3.prototype.fromJSON = function ( json ) {

		Curve.prototype.fromJSON.call( this, json );

		this.v1.fromArray( json.v1 );
		this.v2.fromArray( json.v2 );

		return this;

	};

	function QuadraticBezierCurve( v0, v1, v2 ) {

		Curve.call( this );

		this.type = 'QuadraticBezierCurve';

		this.v0 = v0 || new Vector2();
		this.v1 = v1 || new Vector2();
		this.v2 = v2 || new Vector2();

	}

	QuadraticBezierCurve.prototype = Object.create( Curve.prototype );
	QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve;

	QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true;

	QuadraticBezierCurve.prototype.getPoint = function ( t, optionalTarget ) {

		var point = optionalTarget || new Vector2();

		var v0 = this.v0, v1 = this.v1, v2 = this.v2;

		point.set(
			QuadraticBezier( t, v0.x, v1.x, v2.x ),
			QuadraticBezier( t, v0.y, v1.y, v2.y )
		);

		return point;

	};

	QuadraticBezierCurve.prototype.copy = function ( source ) {

		Curve.prototype.copy.call( this, source );

		this.v0.copy( source.v0 );
		this.v1.copy( source.v1 );
		this.v2.copy( source.v2 );

		return this;

	};

	QuadraticBezierCurve.prototype.toJSON = function () {

		var data = Curve.prototype.toJSON.call( this );

		data.v0 = this.v0.toArray();
		data.v1 = this.v1.toArray();
		data.v2 = this.v2.toArray();

		return data;

	};

	QuadraticBezierCurve.prototype.fromJSON = function ( json ) {

		Curve.prototype.fromJSON.call( this, json );

		this.v0.fromArray( json.v0 );
		this.v1.fromArray( json.v1 );
		this.v2.fromArray( json.v2 );

		return this;

	};

	function QuadraticBezierCurve3( v0, v1, v2 ) {

		Curve.call( this );

		this.type = 'QuadraticBezierCurve3';

		this.v0 = v0 || new Vector3();
		this.v1 = v1 || new Vector3();
		this.v2 = v2 || new Vector3();

	}

	QuadraticBezierCurve3.prototype = Object.create( Curve.prototype );
	QuadraticBezierCurve3.prototype.constructor = QuadraticBezierCurve3;

	QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true;

	QuadraticBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) {

		var point = optionalTarget || new Vector3();

		var v0 = this.v0, v1 = this.v1, v2 = this.v2;

		point.set(
			QuadraticBezier( t, v0.x, v1.x, v2.x ),
			QuadraticBezier( t, v0.y, v1.y, v2.y ),
			QuadraticBezier( t, v0.z, v1.z, v2.z )
		);

		return point;

	};

	QuadraticBezierCurve3.prototype.copy = function ( source ) {

		Curve.prototype.copy.call( this, source );

		this.v0.copy( source.v0 );
		this.v1.copy( source.v1 );
		this.v2.copy( source.v2 );

		return this;

	};

	QuadraticBezierCurve3.prototype.toJSON = function () {

		var data = Curve.prototype.toJSON.call( this );

		data.v0 = this.v0.toArray();
		data.v1 = this.v1.toArray();
		data.v2 = this.v2.toArray();

		return data;

	};

	QuadraticBezierCurve3.prototype.fromJSON = function ( json ) {

		Curve.prototype.fromJSON.call( this, json );

		this.v0.fromArray( json.v0 );
		this.v1.fromArray( json.v1 );
		this.v2.fromArray( json.v2 );

		return this;

	};

	function SplineCurve( points /* array of Vector2 */ ) {

		Curve.call( this );

		this.type = 'SplineCurve';

		this.points = points || [];

	}

	SplineCurve.prototype = Object.create( Curve.prototype );
	SplineCurve.prototype.constructor = SplineCurve;

	SplineCurve.prototype.isSplineCurve = true;

	SplineCurve.prototype.getPoint = function ( t, optionalTarget ) {

		var point = optionalTarget || new Vector2();

		var points = this.points;
		var p = ( points.length - 1 ) * t;

		var intPoint = Math.floor( p );
		var weight = p - intPoint;

		var p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ];
		var p1 = points[ intPoint ];
		var p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ];
		var p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ];

		point.set(
			CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ),
			CatmullRom( weight, p0.y, p1.y, p2.y, p3.y )
		);

		return point;

	};

	SplineCurve.prototype.copy = function ( source ) {

		Curve.prototype.copy.call( this, source );

		this.points = [];

		for ( var i = 0, l = source.points.length; i < l; i ++ ) {

			var point = source.points[ i ];

			this.points.push( point.clone() );

		}

		return this;

	};

	SplineCurve.prototype.toJSON = function () {

		var data = Curve.prototype.toJSON.call( this );

		data.points = [];

		for ( var i = 0, l = this.points.length; i < l; i ++ ) {

			var point = this.points[ i ];
			data.points.push( point.toArray() );

		}

		return data;

	};

	SplineCurve.prototype.fromJSON = function ( json ) {

		Curve.prototype.fromJSON.call( this, json );

		this.points = [];

		for ( var i = 0, l = json.points.length; i < l; i ++ ) {

			var point = json.points[ i ];
			this.points.push( new Vector2().fromArray( point ) );

		}

		return this;

	};

	var Curves = /*#__PURE__*/Object.freeze({
		__proto__: null,
		ArcCurve: ArcCurve,
		CatmullRomCurve3: CatmullRomCurve3,
		CubicBezierCurve: CubicBezierCurve,
		CubicBezierCurve3: CubicBezierCurve3,
		EllipseCurve: EllipseCurve,
		LineCurve: LineCurve,
		LineCurve3: LineCurve3,
		QuadraticBezierCurve: QuadraticBezierCurve,
		QuadraticBezierCurve3: QuadraticBezierCurve3,
		SplineCurve: SplineCurve
	});

	/**
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 *
	 **/

	/**************************************************************
	 *	Curved Path - a curve path is simply a array of connected
	 *  curves, but retains the api of a curve
	 **************************************************************/

	function CurvePath() {

		Curve.call( this );

		this.type = 'CurvePath';

		this.curves = [];
		this.autoClose = false; // Automatically closes the path

	}

	CurvePath.prototype = Object.assign( Object.create( Curve.prototype ), {

		constructor: CurvePath,

		add: function ( curve ) {

			this.curves.push( curve );

		},

		closePath: function () {

			// Add a line curve if start and end of lines are not connected
			var startPoint = this.curves[ 0 ].getPoint( 0 );
			var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 );

			if ( ! startPoint.equals( endPoint ) ) {

				this.curves.push( new LineCurve( endPoint, startPoint ) );

			}

		},

		// To get accurate point with reference to
		// entire path distance at time t,
		// following has to be done:

		// 1. Length of each sub path have to be known
		// 2. Locate and identify type of curve
		// 3. Get t for the curve
		// 4. Return curve.getPointAt(t')

		getPoint: function ( t ) {

			var d = t * this.getLength();
			var curveLengths = this.getCurveLengths();
			var i = 0;

			// To think about boundaries points.

			while ( i < curveLengths.length ) {

				if ( curveLengths[ i ] >= d ) {

					var diff = curveLengths[ i ] - d;
					var curve = this.curves[ i ];

					var segmentLength = curve.getLength();
					var u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;

					return curve.getPointAt( u );

				}

				i ++;

			}

			return null;

			// loop where sum != 0, sum > d , sum+1 <d

		},

		// We cannot use the default THREE.Curve getPoint() with getLength() because in
		// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
		// getPoint() depends on getLength

		getLength: function () {

			var lens = this.getCurveLengths();
			return lens[ lens.length - 1 ];

		},

		// cacheLengths must be recalculated.
		updateArcLengths: function () {

			this.needsUpdate = true;
			this.cacheLengths = null;
			this.getCurveLengths();

		},

		// Compute lengths and cache them
		// We cannot overwrite getLengths() because UtoT mapping uses it.

		getCurveLengths: function () {

			// We use cache values if curves and cache array are same length

			if ( this.cacheLengths && this.cacheLengths.length === this.curves.length ) {

				return this.cacheLengths;

			}

			// Get length of sub-curve
			// Push sums into cached array

			var lengths = [], sums = 0;

			for ( var i = 0, l = this.curves.length; i < l; i ++ ) {

				sums += this.curves[ i ].getLength();
				lengths.push( sums );

			}

			this.cacheLengths = lengths;

			return lengths;

		},

		getSpacedPoints: function ( divisions ) {

			if ( divisions === undefined ) { divisions = 40; }

			var points = [];

			for ( var i = 0; i <= divisions; i ++ ) {

				points.push( this.getPoint( i / divisions ) );

			}

			if ( this.autoClose ) {

				points.push( points[ 0 ] );

			}

			return points;

		},

		getPoints: function ( divisions ) {

			divisions = divisions || 12;

			var points = [], last;

			for ( var i = 0, curves = this.curves; i < curves.length; i ++ ) {

				var curve = curves[ i ];
				var resolution = ( curve && curve.isEllipseCurve ) ? divisions * 2
					: ( curve && ( curve.isLineCurve || curve.isLineCurve3 ) ) ? 1
						: ( curve && curve.isSplineCurve ) ? divisions * curve.points.length
							: divisions;

				var pts = curve.getPoints( resolution );

				for ( var j = 0; j < pts.length; j ++ ) {

					var point = pts[ j ];

					if ( last && last.equals( point ) ) { continue; } // ensures no consecutive points are duplicates

					points.push( point );
					last = point;

				}

			}

			if ( this.autoClose && points.length > 1 && ! points[ points.length - 1 ].equals( points[ 0 ] ) ) {

				points.push( points[ 0 ] );

			}

			return points;

		},

		copy: function ( source ) {

			Curve.prototype.copy.call( this, source );

			this.curves = [];

			for ( var i = 0, l = source.curves.length; i < l; i ++ ) {

				var curve = source.curves[ i ];

				this.curves.push( curve.clone() );

			}

			this.autoClose = source.autoClose;

			return this;

		},

		toJSON: function () {

			var data = Curve.prototype.toJSON.call( this );

			data.autoClose = this.autoClose;
			data.curves = [];

			for ( var i = 0, l = this.curves.length; i < l; i ++ ) {

				var curve = this.curves[ i ];
				data.curves.push( curve.toJSON() );

			}

			return data;

		},

		fromJSON: function ( json ) {

			Curve.prototype.fromJSON.call( this, json );

			this.autoClose = json.autoClose;
			this.curves = [];

			for ( var i = 0, l = json.curves.length; i < l; i ++ ) {

				var curve = json.curves[ i ];
				this.curves.push( new Curves[ curve.type ]().fromJSON( curve ) );

			}

			return this;

		}

	} );

	/**
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 * Creates free form 2d path using series of points, lines or curves.
	 **/

	function Path( points ) {

		CurvePath.call( this );

		this.type = 'Path';

		this.currentPoint = new Vector2();

		if ( points ) {

			this.setFromPoints( points );

		}

	}

	Path.prototype = Object.assign( Object.create( CurvePath.prototype ), {

		constructor: Path,

		setFromPoints: function ( points ) {

			this.moveTo( points[ 0 ].x, points[ 0 ].y );

			for ( var i = 1, l = points.length; i < l; i ++ ) {

				this.lineTo( points[ i ].x, points[ i ].y );

			}

			return this;

		},

		moveTo: function ( x, y ) {

			this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying?

			return this;

		},

		lineTo: function ( x, y ) {

			var curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) );
			this.curves.push( curve );

			this.currentPoint.set( x, y );

			return this;

		},

		quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {

			var curve = new QuadraticBezierCurve(
				this.currentPoint.clone(),
				new Vector2( aCPx, aCPy ),
				new Vector2( aX, aY )
			);

			this.curves.push( curve );

			this.currentPoint.set( aX, aY );

			return this;

		},

		bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {

			var curve = new CubicBezierCurve(
				this.currentPoint.clone(),
				new Vector2( aCP1x, aCP1y ),
				new Vector2( aCP2x, aCP2y ),
				new Vector2( aX, aY )
			);

			this.curves.push( curve );

			this.currentPoint.set( aX, aY );

			return this;

		},

		splineThru: function ( pts /*Array of Vector*/ ) {

			var npts = [ this.currentPoint.clone() ].concat( pts );

			var curve = new SplineCurve( npts );
			this.curves.push( curve );

			this.currentPoint.copy( pts[ pts.length - 1 ] );

			return this;

		},

		arc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

			var x0 = this.currentPoint.x;
			var y0 = this.currentPoint.y;

			this.absarc( aX + x0, aY + y0, aRadius,
				aStartAngle, aEndAngle, aClockwise );

			return this;

		},

		absarc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

			this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );

			return this;

		},

		ellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

			var x0 = this.currentPoint.x;
			var y0 = this.currentPoint.y;

			this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );

			return this;

		},

		absellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

			var curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );

			if ( this.curves.length > 0 ) {

				// if a previous curve is present, attempt to join
				var firstPoint = curve.getPoint( 0 );

				if ( ! firstPoint.equals( this.currentPoint ) ) {

					this.lineTo( firstPoint.x, firstPoint.y );

				}

			}

			this.curves.push( curve );

			var lastPoint = curve.getPoint( 1 );
			this.currentPoint.copy( lastPoint );

			return this;

		},

		copy: function ( source ) {

			CurvePath.prototype.copy.call( this, source );

			this.currentPoint.copy( source.currentPoint );

			return this;

		},

		toJSON: function () {

			var data = CurvePath.prototype.toJSON.call( this );

			data.currentPoint = this.currentPoint.toArray();

			return data;

		},

		fromJSON: function ( json ) {

			CurvePath.prototype.fromJSON.call( this, json );

			this.currentPoint.fromArray( json.currentPoint );

			return this;

		}

	} );

	/**
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 * Defines a 2d shape plane using paths.
	 **/

	// STEP 1 Create a path.
	// STEP 2 Turn path into shape.
	// STEP 3 ExtrudeGeometry takes in Shape/Shapes
	// STEP 3a - Extract points from each shape, turn to vertices
	// STEP 3b - Triangulate each shape, add faces.

	function Shape( points ) {

		Path.call( this, points );

		this.uuid = MathUtils.generateUUID();

		this.type = 'Shape';

		this.holes = [];

	}

	Shape.prototype = Object.assign( Object.create( Path.prototype ), {

		constructor: Shape,

		getPointsHoles: function ( divisions ) {

			var holesPts = [];

			for ( var i = 0, l = this.holes.length; i < l; i ++ ) {

				holesPts[ i ] = this.holes[ i ].getPoints( divisions );

			}

			return holesPts;

		},

		// get points of shape and holes (keypoints based on segments parameter)

		extractPoints: function ( divisions ) {

			return {

				shape: this.getPoints( divisions ),
				holes: this.getPointsHoles( divisions )

			};

		},

		copy: function ( source ) {

			Path.prototype.copy.call( this, source );

			this.holes = [];

			for ( var i = 0, l = source.holes.length; i < l; i ++ ) {

				var hole = source.holes[ i ];

				this.holes.push( hole.clone() );

			}

			return this;

		},

		toJSON: function () {

			var data = Path.prototype.toJSON.call( this );

			data.uuid = this.uuid;
			data.holes = [];

			for ( var i = 0, l = this.holes.length; i < l; i ++ ) {

				var hole = this.holes[ i ];
				data.holes.push( hole.toJSON() );

			}

			return data;

		},

		fromJSON: function ( json ) {

			Path.prototype.fromJSON.call( this, json );

			this.uuid = json.uuid;
			this.holes = [];

			for ( var i = 0, l = json.holes.length; i < l; i ++ ) {

				var hole = json.holes[ i ];
				this.holes.push( new Path().fromJSON( hole ) );

			}

			return this;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 */

	function Light( color, intensity ) {

		Object3D.call( this );

		this.type = 'Light';

		this.color = new Color( color );
		this.intensity = intensity !== undefined ? intensity : 1;

		this.receiveShadow = undefined;

	}

	Light.prototype = Object.assign( Object.create( Object3D.prototype ), {

		constructor: Light,

		isLight: true,

		copy: function ( source ) {

			Object3D.prototype.copy.call( this, source );

			this.color.copy( source.color );
			this.intensity = source.intensity;

			return this;

		},

		toJSON: function ( meta ) {

			var data = Object3D.prototype.toJSON.call( this, meta );

			data.object.color = this.color.getHex();
			data.object.intensity = this.intensity;

			if ( this.groundColor !== undefined ) { data.object.groundColor = this.groundColor.getHex(); }

			if ( this.distance !== undefined ) { data.object.distance = this.distance; }
			if ( this.angle !== undefined ) { data.object.angle = this.angle; }
			if ( this.decay !== undefined ) { data.object.decay = this.decay; }
			if ( this.penumbra !== undefined ) { data.object.penumbra = this.penumbra; }

			if ( this.shadow !== undefined ) { data.object.shadow = this.shadow.toJSON(); }

			return data;

		}

	} );

	/**
	 * @author alteredq / http://alteredqualia.com/
	 */

	function HemisphereLight( skyColor, groundColor, intensity ) {

		Light.call( this, skyColor, intensity );

		this.type = 'HemisphereLight';

		this.castShadow = undefined;

		this.position.copy( Object3D.DefaultUp );
		this.updateMatrix();

		this.groundColor = new Color( groundColor );

	}

	HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), {

		constructor: HemisphereLight,

		isHemisphereLight: true,

		copy: function ( source ) {

			Light.prototype.copy.call( this, source );

			this.groundColor.copy( source.groundColor );

			return this;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function LightShadow( camera ) {

		this.camera = camera;

		this.bias = 0;
		this.radius = 1;

		this.mapSize = new Vector2( 512, 512 );

		this.map = null;
		this.mapPass = null;
		this.matrix = new Matrix4();

		this._frustum = new Frustum();
		this._frameExtents = new Vector2( 1, 1 );

		this._viewportCount = 1;

		this._viewports = [

			new Vector4( 0, 0, 1, 1 )

		];

	}

	Object.assign( LightShadow.prototype, {

		_projScreenMatrix: new Matrix4(),

		_lightPositionWorld: new Vector3(),

		_lookTarget: new Vector3(),

		getViewportCount: function () {

			return this._viewportCount;

		},

		getFrustum: function () {

			return this._frustum;

		},

		updateMatrices: function ( light ) {

			var shadowCamera = this.camera,
				shadowMatrix = this.matrix,
				projScreenMatrix = this._projScreenMatrix,
				lookTarget = this._lookTarget,
				lightPositionWorld = this._lightPositionWorld;

			lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
			shadowCamera.position.copy( lightPositionWorld );

			lookTarget.setFromMatrixPosition( light.target.matrixWorld );
			shadowCamera.lookAt( lookTarget );
			shadowCamera.updateMatrixWorld();

			projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse );
			this._frustum.setFromProjectionMatrix( projScreenMatrix );

			shadowMatrix.set(
				0.5, 0.0, 0.0, 0.5,
				0.0, 0.5, 0.0, 0.5,
				0.0, 0.0, 0.5, 0.5,
				0.0, 0.0, 0.0, 1.0
			);

			shadowMatrix.multiply( shadowCamera.projectionMatrix );
			shadowMatrix.multiply( shadowCamera.matrixWorldInverse );

		},

		getViewport: function ( viewportIndex ) {

			return this._viewports[ viewportIndex ];

		},

		getFrameExtents: function () {

			return this._frameExtents;

		},

		copy: function ( source ) {

			this.camera = source.camera.clone();

			this.bias = source.bias;
			this.radius = source.radius;

			this.mapSize.copy( source.mapSize );

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		toJSON: function () {

			var object = {};

			if ( this.bias !== 0 ) { object.bias = this.bias; }
			if ( this.radius !== 1 ) { object.radius = this.radius; }
			if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) { object.mapSize = this.mapSize.toArray(); }

			object.camera = this.camera.toJSON( false ).object;
			delete object.camera.matrix;

			return object;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function SpotLightShadow() {

		LightShadow.call( this, new PerspectiveCamera( 50, 1, 0.5, 500 ) );

	}

	SpotLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {

		constructor: SpotLightShadow,

		isSpotLightShadow: true,

		updateMatrices: function ( light ) {

			var camera = this.camera;

			var fov = MathUtils.RAD2DEG * 2 * light.angle;
			var aspect = this.mapSize.width / this.mapSize.height;
			var far = light.distance || camera.far;

			if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) {

				camera.fov = fov;
				camera.aspect = aspect;
				camera.far = far;
				camera.updateProjectionMatrix();

			}

			LightShadow.prototype.updateMatrices.call( this, light );

		}

	} );

	/**
	 * @author alteredq / http://alteredqualia.com/
	 */

	function SpotLight( color, intensity, distance, angle, penumbra, decay ) {

		Light.call( this, color, intensity );

		this.type = 'SpotLight';

		this.position.copy( Object3D.DefaultUp );
		this.updateMatrix();

		this.target = new Object3D();

		Object.defineProperty( this, 'power', {
			get: function () {

				// intensity = power per solid angle.
				// ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
				return this.intensity * Math.PI;

			},
			set: function ( power ) {

				// intensity = power per solid angle.
				// ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
				this.intensity = power / Math.PI;

			}
		} );

		this.distance = ( distance !== undefined ) ? distance : 0;
		this.angle = ( angle !== undefined ) ? angle : Math.PI / 3;
		this.penumbra = ( penumbra !== undefined ) ? penumbra : 0;
		this.decay = ( decay !== undefined ) ? decay : 1;	// for physically correct lights, should be 2.

		this.shadow = new SpotLightShadow();

	}

	SpotLight.prototype = Object.assign( Object.create( Light.prototype ), {

		constructor: SpotLight,

		isSpotLight: true,

		copy: function ( source ) {

			Light.prototype.copy.call( this, source );

			this.distance = source.distance;
			this.angle = source.angle;
			this.penumbra = source.penumbra;
			this.decay = source.decay;

			this.target = source.target.clone();

			this.shadow = source.shadow.clone();

			return this;

		}

	} );

	function PointLightShadow() {

		LightShadow.call( this, new PerspectiveCamera( 90, 1, 0.5, 500 ) );

		this._frameExtents = new Vector2( 4, 2 );

		this._viewportCount = 6;

		this._viewports = [
			// These viewports map a cube-map onto a 2D texture with the
			// following orientation:
			//
			//  xzXZ
			//   y Y
			//
			// X - Positive x direction
			// x - Negative x direction
			// Y - Positive y direction
			// y - Negative y direction
			// Z - Positive z direction
			// z - Negative z direction

			// positive X
			new Vector4( 2, 1, 1, 1 ),
			// negative X
			new Vector4( 0, 1, 1, 1 ),
			// positive Z
			new Vector4( 3, 1, 1, 1 ),
			// negative Z
			new Vector4( 1, 1, 1, 1 ),
			// positive Y
			new Vector4( 3, 0, 1, 1 ),
			// negative Y
			new Vector4( 1, 0, 1, 1 )
		];

		this._cubeDirections = [
			new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ),
			new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 )
		];

		this._cubeUps = [
			new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ),
			new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ),	new Vector3( 0, 0, - 1 )
		];

	}

	PointLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {

		constructor: PointLightShadow,

		isPointLightShadow: true,

		updateMatrices: function ( light, viewportIndex ) {

			if ( viewportIndex === undefined ) { viewportIndex = 0; }

			var camera = this.camera,
				shadowMatrix = this.matrix,
				lightPositionWorld = this._lightPositionWorld,
				lookTarget = this._lookTarget,
				projScreenMatrix = this._projScreenMatrix;

			lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
			camera.position.copy( lightPositionWorld );

			lookTarget.copy( camera.position );
			lookTarget.add( this._cubeDirections[ viewportIndex ] );
			camera.up.copy( this._cubeUps[ viewportIndex ] );
			camera.lookAt( lookTarget );
			camera.updateMatrixWorld();

			shadowMatrix.makeTranslation( - lightPositionWorld.x, - lightPositionWorld.y, - lightPositionWorld.z );

			projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
			this._frustum.setFromProjectionMatrix( projScreenMatrix );

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */


	function PointLight( color, intensity, distance, decay ) {

		Light.call( this, color, intensity );

		this.type = 'PointLight';

		Object.defineProperty( this, 'power', {
			get: function () {

				// intensity = power per solid angle.
				// ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
				return this.intensity * 4 * Math.PI;

			},
			set: function ( power ) {

				// intensity = power per solid angle.
				// ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
				this.intensity = power / ( 4 * Math.PI );

			}
		} );

		this.distance = ( distance !== undefined ) ? distance : 0;
		this.decay = ( decay !== undefined ) ? decay : 1;	// for physically correct lights, should be 2.

		this.shadow = new PointLightShadow();

	}

	PointLight.prototype = Object.assign( Object.create( Light.prototype ), {

		constructor: PointLight,

		isPointLight: true,

		copy: function ( source ) {

			Light.prototype.copy.call( this, source );

			this.distance = source.distance;
			this.decay = source.decay;

			this.shadow = source.shadow.clone();

			return this;

		}

	} );

	/**
	 * @author alteredq / http://alteredqualia.com/
	 * @author arose / http://github.com/arose
	 */

	function OrthographicCamera( left, right, top, bottom, near, far ) {

		Camera.call( this );

		this.type = 'OrthographicCamera';

		this.zoom = 1;
		this.view = null;

		this.left = ( left !== undefined ) ? left : - 1;
		this.right = ( right !== undefined ) ? right : 1;
		this.top = ( top !== undefined ) ? top : 1;
		this.bottom = ( bottom !== undefined ) ? bottom : - 1;

		this.near = ( near !== undefined ) ? near : 0.1;
		this.far = ( far !== undefined ) ? far : 2000;

		this.updateProjectionMatrix();

	}

	OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), {

		constructor: OrthographicCamera,

		isOrthographicCamera: true,

		copy: function ( source, recursive ) {

			Camera.prototype.copy.call( this, source, recursive );

			this.left = source.left;
			this.right = source.right;
			this.top = source.top;
			this.bottom = source.bottom;
			this.near = source.near;
			this.far = source.far;

			this.zoom = source.zoom;
			this.view = source.view === null ? null : Object.assign( {}, source.view );

			return this;

		},

		setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {

			if ( this.view === null ) {

				this.view = {
					enabled: true,
					fullWidth: 1,
					fullHeight: 1,
					offsetX: 0,
					offsetY: 0,
					width: 1,
					height: 1
				};

			}

			this.view.enabled = true;
			this.view.fullWidth = fullWidth;
			this.view.fullHeight = fullHeight;
			this.view.offsetX = x;
			this.view.offsetY = y;
			this.view.width = width;
			this.view.height = height;

			this.updateProjectionMatrix();

		},

		clearViewOffset: function () {

			if ( this.view !== null ) {

				this.view.enabled = false;

			}

			this.updateProjectionMatrix();

		},

		updateProjectionMatrix: function () {

			var dx = ( this.right - this.left ) / ( 2 * this.zoom );
			var dy = ( this.top - this.bottom ) / ( 2 * this.zoom );
			var cx = ( this.right + this.left ) / 2;
			var cy = ( this.top + this.bottom ) / 2;

			var left = cx - dx;
			var right = cx + dx;
			var top = cy + dy;
			var bottom = cy - dy;

			if ( this.view !== null && this.view.enabled ) {

				var scaleW = ( this.right - this.left ) / this.view.fullWidth / this.zoom;
				var scaleH = ( this.top - this.bottom ) / this.view.fullHeight / this.zoom;

				left += scaleW * this.view.offsetX;
				right = left + scaleW * this.view.width;
				top -= scaleH * this.view.offsetY;
				bottom = top - scaleH * this.view.height;

			}

			this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far );

			this.projectionMatrixInverse.getInverse( this.projectionMatrix );

		},

		toJSON: function ( meta ) {

			var data = Object3D.prototype.toJSON.call( this, meta );

			data.object.zoom = this.zoom;
			data.object.left = this.left;
			data.object.right = this.right;
			data.object.top = this.top;
			data.object.bottom = this.bottom;
			data.object.near = this.near;
			data.object.far = this.far;

			if ( this.view !== null ) { data.object.view = Object.assign( {}, this.view ); }

			return data;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function DirectionalLightShadow() {

		LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) );

	}

	DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {

		constructor: DirectionalLightShadow,

		isDirectionalLightShadow: true,

		updateMatrices: function ( light ) {

			LightShadow.prototype.updateMatrices.call( this, light );

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author alteredq / http://alteredqualia.com/
	 */

	function DirectionalLight( color, intensity ) {

		Light.call( this, color, intensity );

		this.type = 'DirectionalLight';

		this.position.copy( Object3D.DefaultUp );
		this.updateMatrix();

		this.target = new Object3D();

		this.shadow = new DirectionalLightShadow();

	}

	DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), {

		constructor: DirectionalLight,

		isDirectionalLight: true,

		copy: function ( source ) {

			Light.prototype.copy.call( this, source );

			this.target = source.target.clone();

			this.shadow = source.shadow.clone();

			return this;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function AmbientLight( color, intensity ) {

		Light.call( this, color, intensity );

		this.type = 'AmbientLight';

		this.castShadow = undefined;

	}

	AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), {

		constructor: AmbientLight,

		isAmbientLight: true

	} );

	/**
	 * @author abelnation / http://github.com/abelnation
	 */

	function RectAreaLight( color, intensity, width, height ) {

		Light.call( this, color, intensity );

		this.type = 'RectAreaLight';

		this.width = ( width !== undefined ) ? width : 10;
		this.height = ( height !== undefined ) ? height : 10;

	}

	RectAreaLight.prototype = Object.assign( Object.create( Light.prototype ), {

		constructor: RectAreaLight,

		isRectAreaLight: true,

		copy: function ( source ) {

			Light.prototype.copy.call( this, source );

			this.width = source.width;
			this.height = source.height;

			return this;

		},

		toJSON: function ( meta ) {

			var data = Light.prototype.toJSON.call( this, meta );

			data.object.width = this.width;
			data.object.height = this.height;

			return data;

		}

	} );

	/**
	 * @author bhouston / http://clara.io
	 * @author WestLangley / http://github.com/WestLangley
	 *
	 * Primary reference:
	 *   https://graphics.stanford.edu/papers/envmap/envmap.pdf
	 *
	 * Secondary reference:
	 *   https://www.ppsloan.org/publications/StupidSH36.pdf
	 */

	// 3-band SH defined by 9 coefficients

	function SphericalHarmonics3() {

		this.coefficients = [];

		for ( var i = 0; i < 9; i ++ ) {

			this.coefficients.push( new Vector3() );

		}

	}

	Object.assign( SphericalHarmonics3.prototype, {

		isSphericalHarmonics3: true,

		set: function ( coefficients ) {

			for ( var i = 0; i < 9; i ++ ) {

				this.coefficients[ i ].copy( coefficients[ i ] );

			}

			return this;

		},

		zero: function () {

			for ( var i = 0; i < 9; i ++ ) {

				this.coefficients[ i ].set( 0, 0, 0 );

			}

			return this;

		},

		// get the radiance in the direction of the normal
		// target is a Vector3
		getAt: function ( normal, target ) {

			// normal is assumed to be unit length

			var x = normal.x, y = normal.y, z = normal.z;

			var coeff = this.coefficients;

			// band 0
			target.copy( coeff[ 0 ] ).multiplyScalar( 0.282095 );

			// band 1
			target.addScaledVector( coeff[ 1 ], 0.488603 * y );
			target.addScaledVector( coeff[ 2 ], 0.488603 * z );
			target.addScaledVector( coeff[ 3 ], 0.488603 * x );

			// band 2
			target.addScaledVector( coeff[ 4 ], 1.092548 * ( x * y ) );
			target.addScaledVector( coeff[ 5 ], 1.092548 * ( y * z ) );
			target.addScaledVector( coeff[ 6 ], 0.315392 * ( 3.0 * z * z - 1.0 ) );
			target.addScaledVector( coeff[ 7 ], 1.092548 * ( x * z ) );
			target.addScaledVector( coeff[ 8 ], 0.546274 * ( x * x - y * y ) );

			return target;

		},

		// get the irradiance (radiance convolved with cosine lobe) in the direction of the normal
		// target is a Vector3
		// https://graphics.stanford.edu/papers/envmap/envmap.pdf
		getIrradianceAt: function ( normal, target ) {

			// normal is assumed to be unit length

			var x = normal.x, y = normal.y, z = normal.z;

			var coeff = this.coefficients;

			// band 0
			target.copy( coeff[ 0 ] ).multiplyScalar( 0.886227 ); // π * 0.282095

			// band 1
			target.addScaledVector( coeff[ 1 ], 2.0 * 0.511664 * y ); // ( 2 * π / 3 ) * 0.488603
			target.addScaledVector( coeff[ 2 ], 2.0 * 0.511664 * z );
			target.addScaledVector( coeff[ 3 ], 2.0 * 0.511664 * x );

			// band 2
			target.addScaledVector( coeff[ 4 ], 2.0 * 0.429043 * x * y ); // ( π / 4 ) * 1.092548
			target.addScaledVector( coeff[ 5 ], 2.0 * 0.429043 * y * z );
			target.addScaledVector( coeff[ 6 ], 0.743125 * z * z - 0.247708 ); // ( π / 4 ) * 0.315392 * 3
			target.addScaledVector( coeff[ 7 ], 2.0 * 0.429043 * x * z );
			target.addScaledVector( coeff[ 8 ], 0.429043 * ( x * x - y * y ) ); // ( π / 4 ) * 0.546274

			return target;

		},

		add: function ( sh ) {

			for ( var i = 0; i < 9; i ++ ) {

				this.coefficients[ i ].add( sh.coefficients[ i ] );

			}

			return this;

		},

		addScaledSH: function ( sh, s ) {

			for ( var i = 0; i < 9; i ++ ) {

				this.coefficients[ i ].addScaledVector( sh.coefficients[ i ], s );

			}

			return this;

		},

		scale: function ( s ) {

			for ( var i = 0; i < 9; i ++ ) {

				this.coefficients[ i ].multiplyScalar( s );

			}

			return this;

		},

		lerp: function ( sh, alpha ) {

			for ( var i = 0; i < 9; i ++ ) {

				this.coefficients[ i ].lerp( sh.coefficients[ i ], alpha );

			}

			return this;

		},

		equals: function ( sh ) {

			for ( var i = 0; i < 9; i ++ ) {

				if ( ! this.coefficients[ i ].equals( sh.coefficients[ i ] ) ) {

					return false;

				}

			}

			return true;

		},

		copy: function ( sh ) {

			return this.set( sh.coefficients );

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		fromArray: function ( array, offset ) {

			if ( offset === undefined ) { offset = 0; }

			var coefficients = this.coefficients;

			for ( var i = 0; i < 9; i ++ ) {

				coefficients[ i ].fromArray( array, offset + ( i * 3 ) );

			}

			return this;

		},

		toArray: function ( array, offset ) {

			if ( array === undefined ) { array = []; }
			if ( offset === undefined ) { offset = 0; }

			var coefficients = this.coefficients;

			for ( var i = 0; i < 9; i ++ ) {

				coefficients[ i ].toArray( array, offset + ( i * 3 ) );

			}

			return array;

		}

	} );

	Object.assign( SphericalHarmonics3, {

		// evaluate the basis functions
		// shBasis is an Array[ 9 ]
		getBasisAt: function ( normal, shBasis ) {

			// normal is assumed to be unit length

			var x = normal.x, y = normal.y, z = normal.z;

			// band 0
			shBasis[ 0 ] = 0.282095;

			// band 1
			shBasis[ 1 ] = 0.488603 * y;
			shBasis[ 2 ] = 0.488603 * z;
			shBasis[ 3 ] = 0.488603 * x;

			// band 2
			shBasis[ 4 ] = 1.092548 * x * y;
			shBasis[ 5 ] = 1.092548 * y * z;
			shBasis[ 6 ] = 0.315392 * ( 3 * z * z - 1 );
			shBasis[ 7 ] = 1.092548 * x * z;
			shBasis[ 8 ] = 0.546274 * ( x * x - y * y );

		}

	} );

	/**
	 * @author WestLangley / http://github.com/WestLangley
	 *
	 * A LightProbe is a source of indirect-diffuse light
	 */

	function LightProbe( sh, intensity ) {

		Light.call( this, undefined, intensity );

		this.type = 'LightProbe';

		this.sh = ( sh !== undefined ) ? sh : new SphericalHarmonics3();

	}

	LightProbe.prototype = Object.assign( Object.create( Light.prototype ), {

		constructor: LightProbe,

		isLightProbe: true,

		copy: function ( source ) {

			Light.prototype.copy.call( this, source );

			this.sh.copy( source.sh );

			return this;

		},

		fromJSON: function ( json ) {

			this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON();
			this.sh.fromArray( json.sh );

			return this;

		},

		toJSON: function ( meta ) {

			var data = Light.prototype.toJSON.call( this, meta );

			data.object.sh = this.sh.toArray();

			return data;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function MaterialLoader( manager ) {

		Loader.call( this, manager );

		this.textures = {};

	}

	MaterialLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: MaterialLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			var scope = this;

			var loader = new FileLoader( scope.manager );
			loader.setPath( scope.path );
			loader.load( url, function ( text ) {

				onLoad( scope.parse( JSON.parse( text ) ) );

			}, onProgress, onError );

		},

		parse: function ( json ) {

			var textures = this.textures;

			function getTexture( name ) {

				if ( textures[ name ] === undefined ) {

					console.warn( 'THREE.MaterialLoader: Undefined texture', name );

				}

				return textures[ name ];

			}

			var material = new Materials[ json.type ]();

			if ( json.uuid !== undefined ) { material.uuid = json.uuid; }
			if ( json.name !== undefined ) { material.name = json.name; }
			if ( json.color !== undefined ) { material.color.setHex( json.color ); }
			if ( json.roughness !== undefined ) { material.roughness = json.roughness; }
			if ( json.metalness !== undefined ) { material.metalness = json.metalness; }
			if ( json.sheen !== undefined ) { material.sheen = new Color().setHex( json.sheen ); }
			if ( json.emissive !== undefined ) { material.emissive.setHex( json.emissive ); }
			if ( json.specular !== undefined ) { material.specular.setHex( json.specular ); }
			if ( json.shininess !== undefined ) { material.shininess = json.shininess; }
			if ( json.clearcoat !== undefined ) { material.clearcoat = json.clearcoat; }
			if ( json.clearcoatRoughness !== undefined ) { material.clearcoatRoughness = json.clearcoatRoughness; }
			if ( json.fog !== undefined ) { material.fog = json.fog; }
			if ( json.flatShading !== undefined ) { material.flatShading = json.flatShading; }
			if ( json.blending !== undefined ) { material.blending = json.blending; }
			if ( json.combine !== undefined ) { material.combine = json.combine; }
			if ( json.side !== undefined ) { material.side = json.side; }
			if ( json.opacity !== undefined ) { material.opacity = json.opacity; }
			if ( json.transparent !== undefined ) { material.transparent = json.transparent; }
			if ( json.alphaTest !== undefined ) { material.alphaTest = json.alphaTest; }
			if ( json.depthTest !== undefined ) { material.depthTest = json.depthTest; }
			if ( json.depthWrite !== undefined ) { material.depthWrite = json.depthWrite; }
			if ( json.colorWrite !== undefined ) { material.colorWrite = json.colorWrite; }

			if ( json.stencilWrite !== undefined ) { material.stencilWrite = json.stencilWrite; }
			if ( json.stencilWriteMask !== undefined ) { material.stencilWriteMask = json.stencilWriteMask; }
			if ( json.stencilFunc !== undefined ) { material.stencilFunc = json.stencilFunc; }
			if ( json.stencilRef !== undefined ) { material.stencilRef = json.stencilRef; }
			if ( json.stencilFuncMask !== undefined ) { material.stencilFuncMask = json.stencilFuncMask; }
			if ( json.stencilFail !== undefined ) { material.stencilFail = json.stencilFail; }
			if ( json.stencilZFail !== undefined ) { material.stencilZFail = json.stencilZFail; }
			if ( json.stencilZPass !== undefined ) { material.stencilZPass = json.stencilZPass; }

			if ( json.wireframe !== undefined ) { material.wireframe = json.wireframe; }
			if ( json.wireframeLinewidth !== undefined ) { material.wireframeLinewidth = json.wireframeLinewidth; }
			if ( json.wireframeLinecap !== undefined ) { material.wireframeLinecap = json.wireframeLinecap; }
			if ( json.wireframeLinejoin !== undefined ) { material.wireframeLinejoin = json.wireframeLinejoin; }

			if ( json.rotation !== undefined ) { material.rotation = json.rotation; }

			if ( json.linewidth !== 1 ) { material.linewidth = json.linewidth; }
			if ( json.dashSize !== undefined ) { material.dashSize = json.dashSize; }
			if ( json.gapSize !== undefined ) { material.gapSize = json.gapSize; }
			if ( json.scale !== undefined ) { material.scale = json.scale; }

			if ( json.polygonOffset !== undefined ) { material.polygonOffset = json.polygonOffset; }
			if ( json.polygonOffsetFactor !== undefined ) { material.polygonOffsetFactor = json.polygonOffsetFactor; }
			if ( json.polygonOffsetUnits !== undefined ) { material.polygonOffsetUnits = json.polygonOffsetUnits; }

			if ( json.skinning !== undefined ) { material.skinning = json.skinning; }
			if ( json.morphTargets !== undefined ) { material.morphTargets = json.morphTargets; }
			if ( json.morphNormals !== undefined ) { material.morphNormals = json.morphNormals; }
			if ( json.dithering !== undefined ) { material.dithering = json.dithering; }

			if ( json.vertexTangents !== undefined ) { material.vertexTangents = json.vertexTangents; }

			if ( json.visible !== undefined ) { material.visible = json.visible; }

			if ( json.toneMapped !== undefined ) { material.toneMapped = json.toneMapped; }

			if ( json.userData !== undefined ) { material.userData = json.userData; }

			if ( json.vertexColors !== undefined ) {

				if ( typeof json.vertexColors === 'number' ) {

					material.vertexColors = ( json.vertexColors > 0 ) ? true : false;

				} else {

					material.vertexColors = json.vertexColors;

				}

			}

			// Shader Material

			if ( json.uniforms !== undefined ) {

				for ( var name in json.uniforms ) {

					var uniform = json.uniforms[ name ];

					material.uniforms[ name ] = {};

					switch ( uniform.type ) {

						case 't':
							material.uniforms[ name ].value = getTexture( uniform.value );
							break;

						case 'c':
							material.uniforms[ name ].value = new Color().setHex( uniform.value );
							break;

						case 'v2':
							material.uniforms[ name ].value = new Vector2().fromArray( uniform.value );
							break;

						case 'v3':
							material.uniforms[ name ].value = new Vector3().fromArray( uniform.value );
							break;

						case 'v4':
							material.uniforms[ name ].value = new Vector4().fromArray( uniform.value );
							break;

						case 'm3':
							material.uniforms[ name ].value = new Matrix3().fromArray( uniform.value );

						case 'm4':
							material.uniforms[ name ].value = new Matrix4().fromArray( uniform.value );
							break;

						default:
							material.uniforms[ name ].value = uniform.value;

					}

				}

			}

			if ( json.defines !== undefined ) { material.defines = json.defines; }
			if ( json.vertexShader !== undefined ) { material.vertexShader = json.vertexShader; }
			if ( json.fragmentShader !== undefined ) { material.fragmentShader = json.fragmentShader; }

			if ( json.extensions !== undefined ) {

				for ( var key in json.extensions ) {

					material.extensions[ key ] = json.extensions[ key ];

				}

			}

			// Deprecated

			if ( json.shading !== undefined ) { material.flatShading = json.shading === 1; } // THREE.FlatShading

			// for PointsMaterial

			if ( json.size !== undefined ) { material.size = json.size; }
			if ( json.sizeAttenuation !== undefined ) { material.sizeAttenuation = json.sizeAttenuation; }

			// maps

			if ( json.map !== undefined ) { material.map = getTexture( json.map ); }
			if ( json.matcap !== undefined ) { material.matcap = getTexture( json.matcap ); }

			if ( json.alphaMap !== undefined ) { material.alphaMap = getTexture( json.alphaMap ); }

			if ( json.bumpMap !== undefined ) { material.bumpMap = getTexture( json.bumpMap ); }
			if ( json.bumpScale !== undefined ) { material.bumpScale = json.bumpScale; }

			if ( json.normalMap !== undefined ) { material.normalMap = getTexture( json.normalMap ); }
			if ( json.normalMapType !== undefined ) { material.normalMapType = json.normalMapType; }
			if ( json.normalScale !== undefined ) {

				var normalScale = json.normalScale;

				if ( Array.isArray( normalScale ) === false ) {

					// Blender exporter used to export a scalar. See #7459

					normalScale = [ normalScale, normalScale ];

				}

				material.normalScale = new Vector2().fromArray( normalScale );

			}

			if ( json.displacementMap !== undefined ) { material.displacementMap = getTexture( json.displacementMap ); }
			if ( json.displacementScale !== undefined ) { material.displacementScale = json.displacementScale; }
			if ( json.displacementBias !== undefined ) { material.displacementBias = json.displacementBias; }

			if ( json.roughnessMap !== undefined ) { material.roughnessMap = getTexture( json.roughnessMap ); }
			if ( json.metalnessMap !== undefined ) { material.metalnessMap = getTexture( json.metalnessMap ); }

			if ( json.emissiveMap !== undefined ) { material.emissiveMap = getTexture( json.emissiveMap ); }
			if ( json.emissiveIntensity !== undefined ) { material.emissiveIntensity = json.emissiveIntensity; }

			if ( json.specularMap !== undefined ) { material.specularMap = getTexture( json.specularMap ); }

			if ( json.envMap !== undefined ) { material.envMap = getTexture( json.envMap ); }
			if ( json.envMapIntensity !== undefined ) { material.envMapIntensity = json.envMapIntensity; }

			if ( json.reflectivity !== undefined ) { material.reflectivity = json.reflectivity; }
			if ( json.refractionRatio !== undefined ) { material.refractionRatio = json.refractionRatio; }

			if ( json.lightMap !== undefined ) { material.lightMap = getTexture( json.lightMap ); }
			if ( json.lightMapIntensity !== undefined ) { material.lightMapIntensity = json.lightMapIntensity; }

			if ( json.aoMap !== undefined ) { material.aoMap = getTexture( json.aoMap ); }
			if ( json.aoMapIntensity !== undefined ) { material.aoMapIntensity = json.aoMapIntensity; }

			if ( json.gradientMap !== undefined ) { material.gradientMap = getTexture( json.gradientMap ); }

			if ( json.clearcoatMap !== undefined ) { material.clearcoatMap = getTexture( json.clearcoatMap ); }
			if ( json.clearcoatRoughnessMap !== undefined ) { material.clearcoatRoughnessMap = getTexture( json.clearcoatRoughnessMap ); }
			if ( json.clearcoatNormalMap !== undefined ) { material.clearcoatNormalMap = getTexture( json.clearcoatNormalMap ); }
			if ( json.clearcoatNormalScale !== undefined ) { material.clearcoatNormalScale = new Vector2().fromArray( json.clearcoatNormalScale ); }

			return material;

		},

		setTextures: function ( value ) {

			this.textures = value;
			return this;

		}

	} );

	/**
	 * @author Don McCurdy / https://www.donmccurdy.com
	 */

	var LoaderUtils = {

		decodeText: function ( array ) {

			if ( typeof TextDecoder !== 'undefined' ) {

				return new TextDecoder().decode( array );

			}

			// Avoid the String.fromCharCode.apply(null, array) shortcut, which
			// throws a "maximum call stack size exceeded" error for large arrays.

			var s = '';

			for ( var i = 0, il = array.length; i < il; i ++ ) {

				// Implicitly assumes little-endian.
				s += String.fromCharCode( array[ i ] );

			}

			try {

				// merges multi-byte utf-8 characters.

				return decodeURIComponent( escape( s ) );

			} catch ( e ) { // see #16358

				return s;

			}

		},

		extractUrlBase: function ( url ) {

			var index = url.lastIndexOf( '/' );

			if ( index === - 1 ) { return './'; }

			return url.substr( 0, index + 1 );

		}

	};

	/**
	 * @author benaadams / https://twitter.com/ben_a_adams
	 */

	function InstancedBufferGeometry() {

		BufferGeometry.call( this );

		this.type = 'InstancedBufferGeometry';
		this.maxInstancedCount = undefined;

	}

	InstancedBufferGeometry.prototype = Object.assign( Object.create( BufferGeometry.prototype ), {

		constructor: InstancedBufferGeometry,

		isInstancedBufferGeometry: true,

		copy: function ( source ) {

			BufferGeometry.prototype.copy.call( this, source );

			this.maxInstancedCount = source.maxInstancedCount;

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		toJSON: function () {

			var data = BufferGeometry.prototype.toJSON.call( this );

			data.maxInstancedCount = this.maxInstancedCount;

			data.isInstancedBufferGeometry = true;

			return data;

		}

	} );

	/**
	 * @author benaadams / https://twitter.com/ben_a_adams
	 */

	function InstancedBufferAttribute( array, itemSize, normalized, meshPerAttribute ) {

		if ( typeof ( normalized ) === 'number' ) {

			meshPerAttribute = normalized;

			normalized = false;

			console.error( 'THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.' );

		}

		BufferAttribute.call( this, array, itemSize, normalized );

		this.meshPerAttribute = meshPerAttribute || 1;

	}

	InstancedBufferAttribute.prototype = Object.assign( Object.create( BufferAttribute.prototype ), {

		constructor: InstancedBufferAttribute,

		isInstancedBufferAttribute: true,

		copy: function ( source ) {

			BufferAttribute.prototype.copy.call( this, source );

			this.meshPerAttribute = source.meshPerAttribute;

			return this;

		},

		toJSON: function ()	{

			var data = BufferAttribute.prototype.toJSON.call( this );

			data.meshPerAttribute = this.meshPerAttribute;

			data.isInstancedBufferAttribute = true;

			return data;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function BufferGeometryLoader( manager ) {

		Loader.call( this, manager );

	}

	BufferGeometryLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: BufferGeometryLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			var scope = this;

			var loader = new FileLoader( scope.manager );
			loader.setPath( scope.path );
			loader.load( url, function ( text ) {

				onLoad( scope.parse( JSON.parse( text ) ) );

			}, onProgress, onError );

		},

		parse: function ( json ) {

			var geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry();

			var index = json.data.index;

			if ( index !== undefined ) {

				var typedArray = new TYPED_ARRAYS[ index.type ]( index.array );
				geometry.setIndex( new BufferAttribute( typedArray, 1 ) );

			}

			var attributes = json.data.attributes;

			for ( var key in attributes ) {

				var attribute = attributes[ key ];
				var typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array );
				var bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute;
				var bufferAttribute = new bufferAttributeConstr( typedArray, attribute.itemSize, attribute.normalized );
				if ( attribute.name !== undefined ) { bufferAttribute.name = attribute.name; }
				geometry.setAttribute( key, bufferAttribute );

			}

			var morphAttributes = json.data.morphAttributes;

			if ( morphAttributes ) {

				for ( var key in morphAttributes ) {

					var attributeArray = morphAttributes[ key ];

					var array = [];

					for ( var i = 0, il = attributeArray.length; i < il; i ++ ) {

						var attribute = attributeArray[ i ];
						var typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array );

						var bufferAttribute = new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized );
						if ( attribute.name !== undefined ) { bufferAttribute.name = attribute.name; }
						array.push( bufferAttribute );

					}

					geometry.morphAttributes[ key ] = array;

				}

			}

			var morphTargetsRelative = json.data.morphTargetsRelative;

			if ( morphTargetsRelative ) {

				geometry.morphTargetsRelative = true;

			}

			var groups = json.data.groups || json.data.drawcalls || json.data.offsets;

			if ( groups !== undefined ) {

				for ( var i = 0, n = groups.length; i !== n; ++ i ) {

					var group = groups[ i ];

					geometry.addGroup( group.start, group.count, group.materialIndex );

				}

			}

			var boundingSphere = json.data.boundingSphere;

			if ( boundingSphere !== undefined ) {

				var center = new Vector3();

				if ( boundingSphere.center !== undefined ) {

					center.fromArray( boundingSphere.center );

				}

				geometry.boundingSphere = new Sphere( center, boundingSphere.radius );

			}

			if ( json.name ) { geometry.name = json.name; }
			if ( json.userData ) { geometry.userData = json.userData; }

			return geometry;

		}

	} );

	var TYPED_ARRAYS = {
		Int8Array: Int8Array,
		Uint8Array: Uint8Array,
		// Workaround for IE11 pre KB2929437. See #11440
		Uint8ClampedArray: typeof Uint8ClampedArray !== 'undefined' ? Uint8ClampedArray : Uint8Array,
		Int16Array: Int16Array,
		Uint16Array: Uint16Array,
		Int32Array: Int32Array,
		Uint32Array: Uint32Array,
		Float32Array: Float32Array,
		Float64Array: Float64Array
	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function ObjectLoader( manager ) {

		Loader.call( this, manager );

	}

	ObjectLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: ObjectLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			var scope = this;

			var path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path;
			this.resourcePath = this.resourcePath || path;

			var loader = new FileLoader( scope.manager );
			loader.setPath( this.path );
			loader.load( url, function ( text ) {

				var json = null;

				try {

					json = JSON.parse( text );

				} catch ( error ) {

					if ( onError !== undefined ) { onError( error ); }

					console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message );

					return;

				}

				var metadata = json.metadata;

				if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) {

					console.error( 'THREE.ObjectLoader: Can\'t load ' + url );
					return;

				}

				scope.parse( json, onLoad );

			}, onProgress, onError );

		},

		parse: function ( json, onLoad ) {

			var shapes = this.parseShape( json.shapes );
			var geometries = this.parseGeometries( json.geometries, shapes );

			var images = this.parseImages( json.images, function () {

				if ( onLoad !== undefined ) { onLoad( object ); }

			} );

			var textures = this.parseTextures( json.textures, images );
			var materials = this.parseMaterials( json.materials, textures );

			var object = this.parseObject( json.object, geometries, materials );

			if ( json.animations ) {

				object.animations = this.parseAnimations( json.animations );

			}

			if ( json.images === undefined || json.images.length === 0 ) {

				if ( onLoad !== undefined ) { onLoad( object ); }

			}

			return object;

		},

		parseShape: function ( json ) {

			var shapes = {};

			if ( json !== undefined ) {

				for ( var i = 0, l = json.length; i < l; i ++ ) {

					var shape = new Shape().fromJSON( json[ i ] );

					shapes[ shape.uuid ] = shape;

				}

			}

			return shapes;

		},

		parseGeometries: function ( json, shapes ) {

			var geometries = {};

			if ( json !== undefined ) {

				var bufferGeometryLoader = new BufferGeometryLoader();

				for ( var i = 0, l = json.length; i < l; i ++ ) {

					var geometry;
					var data = json[ i ];

					switch ( data.type ) {

						case 'PlaneGeometry':
						case 'PlaneBufferGeometry':

							geometry = new Geometries[ data.type ](
								data.width,
								data.height,
								data.widthSegments,
								data.heightSegments
							);

							break;

						case 'BoxGeometry':
						case 'BoxBufferGeometry':
						case 'CubeGeometry': // backwards compatible

							geometry = new Geometries[ data.type ](
								data.width,
								data.height,
								data.depth,
								data.widthSegments,
								data.heightSegments,
								data.depthSegments
							);

							break;

						case 'CircleGeometry':
						case 'CircleBufferGeometry':

							geometry = new Geometries[ data.type ](
								data.radius,
								data.segments,
								data.thetaStart,
								data.thetaLength
							);

							break;

						case 'CylinderGeometry':
						case 'CylinderBufferGeometry':

							geometry = new Geometries[ data.type ](
								data.radiusTop,
								data.radiusBottom,
								data.height,
								data.radialSegments,
								data.heightSegments,
								data.openEnded,
								data.thetaStart,
								data.thetaLength
							);

							break;

						case 'ConeGeometry':
						case 'ConeBufferGeometry':

							geometry = new Geometries[ data.type ](
								data.radius,
								data.height,
								data.radialSegments,
								data.heightSegments,
								data.openEnded,
								data.thetaStart,
								data.thetaLength
							);

							break;

						case 'SphereGeometry':
						case 'SphereBufferGeometry':

							geometry = new Geometries[ data.type ](
								data.radius,
								data.widthSegments,
								data.heightSegments,
								data.phiStart,
								data.phiLength,
								data.thetaStart,
								data.thetaLength
							);

							break;

						case 'DodecahedronGeometry':
						case 'DodecahedronBufferGeometry':
						case 'IcosahedronGeometry':
						case 'IcosahedronBufferGeometry':
						case 'OctahedronGeometry':
						case 'OctahedronBufferGeometry':
						case 'TetrahedronGeometry':
						case 'TetrahedronBufferGeometry':

							geometry = new Geometries[ data.type ](
								data.radius,
								data.detail
							);

							break;

						case 'RingGeometry':
						case 'RingBufferGeometry':

							geometry = new Geometries[ data.type ](
								data.innerRadius,
								data.outerRadius,
								data.thetaSegments,
								data.phiSegments,
								data.thetaStart,
								data.thetaLength
							);

							break;

						case 'TorusGeometry':
						case 'TorusBufferGeometry':

							geometry = new Geometries[ data.type ](
								data.radius,
								data.tube,
								data.radialSegments,
								data.tubularSegments,
								data.arc
							);

							break;

						case 'TorusKnotGeometry':
						case 'TorusKnotBufferGeometry':

							geometry = new Geometries[ data.type ](
								data.radius,
								data.tube,
								data.tubularSegments,
								data.radialSegments,
								data.p,
								data.q
							);

							break;

						case 'TubeGeometry':
						case 'TubeBufferGeometry':

							// This only works for built-in curves (e.g. CatmullRomCurve3).
							// User defined curves or instances of CurvePath will not be deserialized.
							geometry = new Geometries[ data.type ](
								new Curves[ data.path.type ]().fromJSON( data.path ),
								data.tubularSegments,
								data.radius,
								data.radialSegments,
								data.closed
							);

							break;

						case 'LatheGeometry':
						case 'LatheBufferGeometry':

							geometry = new Geometries[ data.type ](
								data.points,
								data.segments,
								data.phiStart,
								data.phiLength
							);

							break;

						case 'PolyhedronGeometry':
						case 'PolyhedronBufferGeometry':

							geometry = new Geometries[ data.type ](
								data.vertices,
								data.indices,
								data.radius,
								data.details
							);

							break;

						case 'ShapeGeometry':
						case 'ShapeBufferGeometry':

							var geometryShapes = [];

							for ( var j = 0, jl = data.shapes.length; j < jl; j ++ ) {

								var shape = shapes[ data.shapes[ j ] ];

								geometryShapes.push( shape );

							}

							geometry = new Geometries[ data.type ](
								geometryShapes,
								data.curveSegments
							);

							break;


						case 'ExtrudeGeometry':
						case 'ExtrudeBufferGeometry':

							var geometryShapes = [];

							for ( var j = 0, jl = data.shapes.length; j < jl; j ++ ) {

								var shape = shapes[ data.shapes[ j ] ];

								geometryShapes.push( shape );

							}

							var extrudePath = data.options.extrudePath;

							if ( extrudePath !== undefined ) {

								data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath );

							}

							geometry = new Geometries[ data.type ](
								geometryShapes,
								data.options
							);

							break;

						case 'BufferGeometry':
						case 'InstancedBufferGeometry':

							geometry = bufferGeometryLoader.parse( data );

							break;

						case 'Geometry':

							console.error( 'THREE.ObjectLoader: Loading "Geometry" is not supported anymore.' );

							break;

						default:

							console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' );

							continue;

					}

					geometry.uuid = data.uuid;

					if ( data.name !== undefined ) { geometry.name = data.name; }
					if ( geometry.isBufferGeometry === true && data.userData !== undefined ) { geometry.userData = data.userData; }

					geometries[ data.uuid ] = geometry;

				}

			}

			return geometries;

		},

		parseMaterials: function ( json, textures ) {

			var cache = {}; // MultiMaterial
			var materials = {};

			if ( json !== undefined ) {

				var loader = new MaterialLoader();
				loader.setTextures( textures );

				for ( var i = 0, l = json.length; i < l; i ++ ) {

					var data = json[ i ];

					if ( data.type === 'MultiMaterial' ) {

						// Deprecated

						var array = [];

						for ( var j = 0; j < data.materials.length; j ++ ) {

							var material = data.materials[ j ];

							if ( cache[ material.uuid ] === undefined ) {

								cache[ material.uuid ] = loader.parse( material );

							}

							array.push( cache[ material.uuid ] );

						}

						materials[ data.uuid ] = array;

					} else {

						if ( cache[ data.uuid ] === undefined ) {

							cache[ data.uuid ] = loader.parse( data );

						}

						materials[ data.uuid ] = cache[ data.uuid ];

					}

				}

			}

			return materials;

		},

		parseAnimations: function ( json ) {

			var animations = [];

			for ( var i = 0; i < json.length; i ++ ) {

				var data = json[ i ];

				var clip = AnimationClip.parse( data );

				if ( data.uuid !== undefined ) { clip.uuid = data.uuid; }

				animations.push( clip );

			}

			return animations;

		},

		parseImages: function ( json, onLoad ) {

			var scope = this;
			var images = {};

			function loadImage( url ) {

				scope.manager.itemStart( url );

				return loader.load( url, function () {

					scope.manager.itemEnd( url );

				}, undefined, function () {

					scope.manager.itemError( url );
					scope.manager.itemEnd( url );

				} );

			}

			if ( json !== undefined && json.length > 0 ) {

				var manager = new LoadingManager( onLoad );

				var loader = new ImageLoader( manager );
				loader.setCrossOrigin( this.crossOrigin );

				for ( var i = 0, il = json.length; i < il; i ++ ) {

					var image = json[ i ];
					var url = image.url;

					if ( Array.isArray( url ) ) {

						// load array of images e.g CubeTexture

						images[ image.uuid ] = [];

						for ( var j = 0, jl = url.length; j < jl; j ++ ) {

							var currentUrl = url[ j ];

							var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( currentUrl ) ? currentUrl : scope.resourcePath + currentUrl;

							images[ image.uuid ].push( loadImage( path ) );

						}

					} else {

						// load single image

						var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.resourcePath + image.url;

						images[ image.uuid ] = loadImage( path );

					}

				}

			}

			return images;

		},

		parseTextures: function ( json, images ) {

			function parseConstant( value, type ) {

				if ( typeof value === 'number' ) { return value; }

				console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value );

				return type[ value ];

			}

			var textures = {};

			if ( json !== undefined ) {

				for ( var i = 0, l = json.length; i < l; i ++ ) {

					var data = json[ i ];

					if ( data.image === undefined ) {

						console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid );

					}

					if ( images[ data.image ] === undefined ) {

						console.warn( 'THREE.ObjectLoader: Undefined image', data.image );

					}

					var texture;

					if ( Array.isArray( images[ data.image ] ) ) {

						texture = new CubeTexture( images[ data.image ] );

					} else {

						texture = new Texture( images[ data.image ] );

					}

					texture.needsUpdate = true;

					texture.uuid = data.uuid;

					if ( data.name !== undefined ) { texture.name = data.name; }

					if ( data.mapping !== undefined ) { texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING ); }

					if ( data.offset !== undefined ) { texture.offset.fromArray( data.offset ); }
					if ( data.repeat !== undefined ) { texture.repeat.fromArray( data.repeat ); }
					if ( data.center !== undefined ) { texture.center.fromArray( data.center ); }
					if ( data.rotation !== undefined ) { texture.rotation = data.rotation; }

					if ( data.wrap !== undefined ) {

						texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING );
						texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING );

					}

					if ( data.format !== undefined ) { texture.format = data.format; }
					if ( data.type !== undefined ) { texture.type = data.type; }
					if ( data.encoding !== undefined ) { texture.encoding = data.encoding; }

					if ( data.minFilter !== undefined ) { texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER ); }
					if ( data.magFilter !== undefined ) { texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER ); }
					if ( data.anisotropy !== undefined ) { texture.anisotropy = data.anisotropy; }

					if ( data.flipY !== undefined ) { texture.flipY = data.flipY; }

					if ( data.premultiplyAlpha !== undefined ) { texture.premultiplyAlpha = data.premultiplyAlpha; }
					if ( data.unpackAlignment !== undefined ) { texture.unpackAlignment = data.unpackAlignment; }

					textures[ data.uuid ] = texture;

				}

			}

			return textures;

		},

		parseObject: function ( data, geometries, materials ) {

			var object;

			function getGeometry( name ) {

				if ( geometries[ name ] === undefined ) {

					console.warn( 'THREE.ObjectLoader: Undefined geometry', name );

				}

				return geometries[ name ];

			}

			function getMaterial( name ) {

				if ( name === undefined ) { return undefined; }

				if ( Array.isArray( name ) ) {

					var array = [];

					for ( var i = 0, l = name.length; i < l; i ++ ) {

						var uuid = name[ i ];

						if ( materials[ uuid ] === undefined ) {

							console.warn( 'THREE.ObjectLoader: Undefined material', uuid );

						}

						array.push( materials[ uuid ] );

					}

					return array;

				}

				if ( materials[ name ] === undefined ) {

					console.warn( 'THREE.ObjectLoader: Undefined material', name );

				}

				return materials[ name ];

			}

			switch ( data.type ) {

				case 'Scene':

					object = new Scene();

					if ( data.background !== undefined ) {

						if ( Number.isInteger( data.background ) ) {

							object.background = new Color( data.background );

						}

					}

					if ( data.fog !== undefined ) {

						if ( data.fog.type === 'Fog' ) {

							object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far );

						} else if ( data.fog.type === 'FogExp2' ) {

							object.fog = new FogExp2( data.fog.color, data.fog.density );

						}

					}

					break;

				case 'PerspectiveCamera':

					object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far );

					if ( data.focus !== undefined ) { object.focus = data.focus; }
					if ( data.zoom !== undefined ) { object.zoom = data.zoom; }
					if ( data.filmGauge !== undefined ) { object.filmGauge = data.filmGauge; }
					if ( data.filmOffset !== undefined ) { object.filmOffset = data.filmOffset; }
					if ( data.view !== undefined ) { object.view = Object.assign( {}, data.view ); }

					break;

				case 'OrthographicCamera':

					object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far );

					if ( data.zoom !== undefined ) { object.zoom = data.zoom; }
					if ( data.view !== undefined ) { object.view = Object.assign( {}, data.view ); }

					break;

				case 'AmbientLight':

					object = new AmbientLight( data.color, data.intensity );

					break;

				case 'DirectionalLight':

					object = new DirectionalLight( data.color, data.intensity );

					break;

				case 'PointLight':

					object = new PointLight( data.color, data.intensity, data.distance, data.decay );

					break;

				case 'RectAreaLight':

					object = new RectAreaLight( data.color, data.intensity, data.width, data.height );

					break;

				case 'SpotLight':

					object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay );

					break;

				case 'HemisphereLight':

					object = new HemisphereLight( data.color, data.groundColor, data.intensity );

					break;

				case 'LightProbe':

					object = new LightProbe().fromJSON( data );

					break;

				case 'SkinnedMesh':

					console.warn( 'THREE.ObjectLoader.parseObject() does not support SkinnedMesh yet.' );

				case 'Mesh':

					var geometry = getGeometry( data.geometry );
					var material = getMaterial( data.material );

					object = new Mesh( geometry, material );

					break;

				case 'InstancedMesh':

					var geometry = getGeometry( data.geometry );
					var material = getMaterial( data.material );
					var count = data.count;
					var instanceMatrix = data.instanceMatrix;

					object = new InstancedMesh( geometry, material, count );
					object.instanceMatrix = new BufferAttribute( new Float32Array( instanceMatrix.array ), 16 );

					break;

				case 'LOD':

					object = new LOD();

					break;

				case 'Line':

					object = new Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode );

					break;

				case 'LineLoop':

					object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) );

					break;

				case 'LineSegments':

					object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) );

					break;

				case 'PointCloud':
				case 'Points':

					object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) );

					break;

				case 'Sprite':

					object = new Sprite( getMaterial( data.material ) );

					break;

				case 'Group':

					object = new Group();

					break;

				default:

					object = new Object3D();

			}

			object.uuid = data.uuid;

			if ( data.name !== undefined ) { object.name = data.name; }

			if ( data.matrix !== undefined ) {

				object.matrix.fromArray( data.matrix );

				if ( data.matrixAutoUpdate !== undefined ) { object.matrixAutoUpdate = data.matrixAutoUpdate; }
				if ( object.matrixAutoUpdate ) { object.matrix.decompose( object.position, object.quaternion, object.scale ); }

			} else {

				if ( data.position !== undefined ) { object.position.fromArray( data.position ); }
				if ( data.rotation !== undefined ) { object.rotation.fromArray( data.rotation ); }
				if ( data.quaternion !== undefined ) { object.quaternion.fromArray( data.quaternion ); }
				if ( data.scale !== undefined ) { object.scale.fromArray( data.scale ); }

			}

			if ( data.castShadow !== undefined ) { object.castShadow = data.castShadow; }
			if ( data.receiveShadow !== undefined ) { object.receiveShadow = data.receiveShadow; }

			if ( data.shadow ) {

				if ( data.shadow.bias !== undefined ) { object.shadow.bias = data.shadow.bias; }
				if ( data.shadow.radius !== undefined ) { object.shadow.radius = data.shadow.radius; }
				if ( data.shadow.mapSize !== undefined ) { object.shadow.mapSize.fromArray( data.shadow.mapSize ); }
				if ( data.shadow.camera !== undefined ) { object.shadow.camera = this.parseObject( data.shadow.camera ); }

			}

			if ( data.visible !== undefined ) { object.visible = data.visible; }
			if ( data.frustumCulled !== undefined ) { object.frustumCulled = data.frustumCulled; }
			if ( data.renderOrder !== undefined ) { object.renderOrder = data.renderOrder; }
			if ( data.userData !== undefined ) { object.userData = data.userData; }
			if ( data.layers !== undefined ) { object.layers.mask = data.layers; }

			if ( data.children !== undefined ) {

				var children = data.children;

				for ( var i = 0; i < children.length; i ++ ) {

					object.add( this.parseObject( children[ i ], geometries, materials ) );

				}

			}

			if ( data.type === 'LOD' ) {

				if ( data.autoUpdate !== undefined ) { object.autoUpdate = data.autoUpdate; }

				var levels = data.levels;

				for ( var l = 0; l < levels.length; l ++ ) {

					var level = levels[ l ];
					var child = object.getObjectByProperty( 'uuid', level.object );

					if ( child !== undefined ) {

						object.addLevel( child, level.distance );

					}

				}

			}

			return object;

		}

	} );

	var TEXTURE_MAPPING = {
		UVMapping: UVMapping,
		CubeReflectionMapping: CubeReflectionMapping,
		CubeRefractionMapping: CubeRefractionMapping,
		EquirectangularReflectionMapping: EquirectangularReflectionMapping,
		EquirectangularRefractionMapping: EquirectangularRefractionMapping,
		SphericalReflectionMapping: SphericalReflectionMapping,
		CubeUVReflectionMapping: CubeUVReflectionMapping,
		CubeUVRefractionMapping: CubeUVRefractionMapping
	};

	var TEXTURE_WRAPPING = {
		RepeatWrapping: RepeatWrapping,
		ClampToEdgeWrapping: ClampToEdgeWrapping,
		MirroredRepeatWrapping: MirroredRepeatWrapping
	};

	var TEXTURE_FILTER = {
		NearestFilter: NearestFilter,
		NearestMipmapNearestFilter: NearestMipmapNearestFilter,
		NearestMipmapLinearFilter: NearestMipmapLinearFilter,
		LinearFilter: LinearFilter,
		LinearMipmapNearestFilter: LinearMipmapNearestFilter,
		LinearMipmapLinearFilter: LinearMipmapLinearFilter
	};

	/**
	 * @author thespite / http://clicktorelease.com/
	 */


	function ImageBitmapLoader( manager ) {

		if ( typeof createImageBitmap === 'undefined' ) {

			console.warn( 'THREE.ImageBitmapLoader: createImageBitmap() not supported.' );

		}

		if ( typeof fetch === 'undefined' ) {

			console.warn( 'THREE.ImageBitmapLoader: fetch() not supported.' );

		}

		Loader.call( this, manager );

		this.options = undefined;

	}

	ImageBitmapLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: ImageBitmapLoader,

		setOptions: function setOptions( options ) {

			this.options = options;

			return this;

		},

		load: function ( url, onLoad, onProgress, onError ) {

			if ( url === undefined ) { url = ''; }

			if ( this.path !== undefined ) { url = this.path + url; }

			url = this.manager.resolveURL( url );

			var scope = this;

			var cached = Cache.get( url );

			if ( cached !== undefined ) {

				scope.manager.itemStart( url );

				setTimeout( function () {

					if ( onLoad ) { onLoad( cached ); }

					scope.manager.itemEnd( url );

				}, 0 );

				return cached;

			}

			fetch( url ).then( function ( res ) {

				return res.blob();

			} ).then( function ( blob ) {

				if ( scope.options === undefined ) {

					// Workaround for FireFox. It causes an error if you pass options.
					return createImageBitmap( blob );

				} else {

					return createImageBitmap( blob, scope.options );

				}

			} ).then( function ( imageBitmap ) {

				Cache.add( url, imageBitmap );

				if ( onLoad ) { onLoad( imageBitmap ); }

				scope.manager.itemEnd( url );

			} ).catch( function ( e ) {

				if ( onError ) { onError( e ); }

				scope.manager.itemError( url );
				scope.manager.itemEnd( url );

			} );

			scope.manager.itemStart( url );

		}

	} );

	/**
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 * minimal class for proxing functions to Path. Replaces old "extractSubpaths()"
	 **/

	function ShapePath() {

		this.type = 'ShapePath';

		this.color = new Color();

		this.subPaths = [];
		this.currentPath = null;

	}

	Object.assign( ShapePath.prototype, {

		moveTo: function ( x, y ) {

			this.currentPath = new Path();
			this.subPaths.push( this.currentPath );
			this.currentPath.moveTo( x, y );

			return this;

		},

		lineTo: function ( x, y ) {

			this.currentPath.lineTo( x, y );

			return this;

		},

		quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {

			this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY );

			return this;

		},

		bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {

			this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY );

			return this;

		},

		splineThru: function ( pts ) {

			this.currentPath.splineThru( pts );

			return this;

		},

		toShapes: function ( isCCW, noHoles ) {

			function toShapesNoHoles( inSubpaths ) {

				var shapes = [];

				for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) {

					var tmpPath = inSubpaths[ i ];

					var tmpShape = new Shape();
					tmpShape.curves = tmpPath.curves;

					shapes.push( tmpShape );

				}

				return shapes;

			}

			function isPointInsidePolygon( inPt, inPolygon ) {

				var polyLen = inPolygon.length;

				// inPt on polygon contour => immediate success    or
				// toggling of inside/outside at every single! intersection point of an edge
				//  with the horizontal line through inPt, left of inPt
				//  not counting lowerY endpoints of edges and whole edges on that line
				var inside = false;
				for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) {

					var edgeLowPt = inPolygon[ p ];
					var edgeHighPt = inPolygon[ q ];

					var edgeDx = edgeHighPt.x - edgeLowPt.x;
					var edgeDy = edgeHighPt.y - edgeLowPt.y;

					if ( Math.abs( edgeDy ) > Number.EPSILON ) {

						// not parallel
						if ( edgeDy < 0 ) {

							edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx;
							edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy;

						}

						if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) 		{ continue; }

						if ( inPt.y === edgeLowPt.y ) {

							if ( inPt.x === edgeLowPt.x )		{ return	true; }		// inPt is on contour ?
							// continue;				// no intersection or edgeLowPt => doesn't count !!!

						} else {

							var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y );
							if ( perpEdge === 0 )				{ return	true; }		// inPt is on contour ?
							if ( perpEdge < 0 ) 				{ continue; }
							inside = ! inside;		// true intersection left of inPt

						}

					} else {

						// parallel or collinear
						if ( inPt.y !== edgeLowPt.y ) 		{ continue; }			// parallel
						// edge lies on the same horizontal line as inPt
						if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) ||
							 ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) )		{ return	true; }	// inPt: Point on contour !
						// continue;

					}

				}

				return	inside;

			}

			var isClockWise = ShapeUtils.isClockWise;

			var subPaths = this.subPaths;
			if ( subPaths.length === 0 ) { return []; }

			if ( noHoles === true )	{ return	toShapesNoHoles( subPaths ); }


			var solid, tmpPath, tmpShape, shapes = [];

			if ( subPaths.length === 1 ) {

				tmpPath = subPaths[ 0 ];
				tmpShape = new Shape();
				tmpShape.curves = tmpPath.curves;
				shapes.push( tmpShape );
				return shapes;

			}

			var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() );
			holesFirst = isCCW ? ! holesFirst : holesFirst;

			// console.log("Holes first", holesFirst);

			var betterShapeHoles = [];
			var newShapes = [];
			var newShapeHoles = [];
			var mainIdx = 0;
			var tmpPoints;

			newShapes[ mainIdx ] = undefined;
			newShapeHoles[ mainIdx ] = [];

			for ( var i = 0, l = subPaths.length; i < l; i ++ ) {

				tmpPath = subPaths[ i ];
				tmpPoints = tmpPath.getPoints();
				solid = isClockWise( tmpPoints );
				solid = isCCW ? ! solid : solid;

				if ( solid ) {

					if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) )	{ mainIdx ++; }

					newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints };
					newShapes[ mainIdx ].s.curves = tmpPath.curves;

					if ( holesFirst )	{ mainIdx ++; }
					newShapeHoles[ mainIdx ] = [];

					//console.log('cw', i);

				} else {

					newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } );

					//console.log('ccw', i);

				}

			}

			// only Holes? -> probably all Shapes with wrong orientation
			if ( ! newShapes[ 0 ] )	{ return	toShapesNoHoles( subPaths ); }


			if ( newShapes.length > 1 ) {

				var ambiguous = false;
				var toChange = [];

				for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {

					betterShapeHoles[ sIdx ] = [];

				}

				for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {

					var sho = newShapeHoles[ sIdx ];

					for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) {

						var ho = sho[ hIdx ];
						var hole_unassigned = true;

						for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) {

							if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) {

								if ( sIdx !== s2Idx )	{ toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } ); }
								if ( hole_unassigned ) {

									hole_unassigned = false;
									betterShapeHoles[ s2Idx ].push( ho );

								} else {

									ambiguous = true;

								}

							}

						}

						if ( hole_unassigned ) {

							betterShapeHoles[ sIdx ].push( ho );

						}

					}

				}
				// console.log("ambiguous: ", ambiguous);

				if ( toChange.length > 0 ) {

					// console.log("to change: ", toChange);
					if ( ! ambiguous )	{ newShapeHoles = betterShapeHoles; }

				}

			}

			var tmpHoles;

			for ( var i = 0, il = newShapes.length; i < il; i ++ ) {

				tmpShape = newShapes[ i ].s;
				shapes.push( tmpShape );
				tmpHoles = newShapeHoles[ i ];

				for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) {

					tmpShape.holes.push( tmpHoles[ j ].h );

				}

			}

			//console.log("shape", shapes);

			return shapes;

		}

	} );

	/**
	 * @author zz85 / http://www.lab4games.net/zz85/blog
	 * @author mrdoob / http://mrdoob.com/
	 */


	function Font( data ) {

		this.type = 'Font';

		this.data = data;

	}

	Object.assign( Font.prototype, {

		isFont: true,

		generateShapes: function ( text, size ) {

			if ( size === undefined ) { size = 100; }

			var shapes = [];
			var paths = createPaths( text, size, this.data );

			for ( var p = 0, pl = paths.length; p < pl; p ++ ) {

				Array.prototype.push.apply( shapes, paths[ p ].toShapes() );

			}

			return shapes;

		}

	} );

	function createPaths( text, size, data ) {

		var chars = Array.from ? Array.from( text ) : String( text ).split( '' ); // workaround for IE11, see #13988
		var scale = size / data.resolution;
		var line_height = ( data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness ) * scale;

		var paths = [];

		var offsetX = 0, offsetY = 0;

		for ( var i = 0; i < chars.length; i ++ ) {

			var char = chars[ i ];

			if ( char === '\n' ) {

				offsetX = 0;
				offsetY -= line_height;

			} else {

				var ret = createPath( char, scale, offsetX, offsetY, data );
				offsetX += ret.offsetX;
				paths.push( ret.path );

			}

		}

		return paths;

	}

	function createPath( char, scale, offsetX, offsetY, data ) {

		var glyph = data.glyphs[ char ] || data.glyphs[ '?' ];

		if ( ! glyph ) {

			console.error( 'THREE.Font: character "' + char + '" does not exists in font family ' + data.familyName + '.' );

			return;

		}

		var path = new ShapePath();

		var x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2;

		if ( glyph.o ) {

			var outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) );

			for ( var i = 0, l = outline.length; i < l; ) {

				var action = outline[ i ++ ];

				switch ( action ) {

					case 'm': // moveTo

						x = outline[ i ++ ] * scale + offsetX;
						y = outline[ i ++ ] * scale + offsetY;

						path.moveTo( x, y );

						break;

					case 'l': // lineTo

						x = outline[ i ++ ] * scale + offsetX;
						y = outline[ i ++ ] * scale + offsetY;

						path.lineTo( x, y );

						break;

					case 'q': // quadraticCurveTo

						cpx = outline[ i ++ ] * scale + offsetX;
						cpy = outline[ i ++ ] * scale + offsetY;
						cpx1 = outline[ i ++ ] * scale + offsetX;
						cpy1 = outline[ i ++ ] * scale + offsetY;

						path.quadraticCurveTo( cpx1, cpy1, cpx, cpy );

						break;

					case 'b': // bezierCurveTo

						cpx = outline[ i ++ ] * scale + offsetX;
						cpy = outline[ i ++ ] * scale + offsetY;
						cpx1 = outline[ i ++ ] * scale + offsetX;
						cpy1 = outline[ i ++ ] * scale + offsetY;
						cpx2 = outline[ i ++ ] * scale + offsetX;
						cpy2 = outline[ i ++ ] * scale + offsetY;

						path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy );

						break;

				}

			}

		}

		return { offsetX: glyph.ha * scale, path: path };

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function FontLoader( manager ) {

		Loader.call( this, manager );

	}

	FontLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: FontLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			var scope = this;

			var loader = new FileLoader( this.manager );
			loader.setPath( this.path );
			loader.load( url, function ( text ) {

				var json;

				try {

					json = JSON.parse( text );

				} catch ( e ) {

					console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' );
					json = JSON.parse( text.substring( 65, text.length - 2 ) );

				}

				var font = scope.parse( json );

				if ( onLoad ) { onLoad( font ); }

			}, onProgress, onError );

		},

		parse: function ( json ) {

			return new Font( json );

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	var _context;

	var AudioContext = {

		getContext: function () {

			if ( _context === undefined ) {

				_context = new ( window.AudioContext || window.webkitAudioContext )();

			}

			return _context;

		},

		setContext: function ( value ) {

			_context = value;

		}

	};

	/**
	 * @author Reece Aaron Lecrivain / http://reecenotes.com/
	 */

	function AudioLoader( manager ) {

		Loader.call( this, manager );

	}

	AudioLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: AudioLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			var loader = new FileLoader( this.manager );
			loader.setResponseType( 'arraybuffer' );
			loader.setPath( this.path );
			loader.load( url, function ( buffer ) {

				// Create a copy of the buffer. The `decodeAudioData` method
				// detaches the buffer when complete, preventing reuse.
				var bufferCopy = buffer.slice( 0 );

				var context = AudioContext.getContext();
				context.decodeAudioData( bufferCopy, function ( audioBuffer ) {

					onLoad( audioBuffer );

				} );

			}, onProgress, onError );

		}

	} );

	/**
	 * @author WestLangley / http://github.com/WestLangley
	 */

	function HemisphereLightProbe( skyColor, groundColor, intensity ) {

		LightProbe.call( this, undefined, intensity );

		var color1 = new Color().set( skyColor );
		var color2 = new Color().set( groundColor );

		var sky = new Vector3( color1.r, color1.g, color1.b );
		var ground = new Vector3( color2.r, color2.g, color2.b );

		// without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI );
		var c0 = Math.sqrt( Math.PI );
		var c1 = c0 * Math.sqrt( 0.75 );

		this.sh.coefficients[ 0 ].copy( sky ).add( ground ).multiplyScalar( c0 );
		this.sh.coefficients[ 1 ].copy( sky ).sub( ground ).multiplyScalar( c1 );

	}

	HemisphereLightProbe.prototype = Object.assign( Object.create( LightProbe.prototype ), {

		constructor: HemisphereLightProbe,

		isHemisphereLightProbe: true,

		copy: function ( source ) { // modifying colors not currently supported

			LightProbe.prototype.copy.call( this, source );

			return this;

		},

		toJSON: function ( meta ) {

			var data = LightProbe.prototype.toJSON.call( this, meta );

			// data.sh = this.sh.toArray(); // todo

			return data;

		}

	} );

	/**
	 * @author WestLangley / http://github.com/WestLangley
	 */

	function AmbientLightProbe( color, intensity ) {

		LightProbe.call( this, undefined, intensity );

		var color1 = new Color().set( color );

		// without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI );
		this.sh.coefficients[ 0 ].set( color1.r, color1.g, color1.b ).multiplyScalar( 2 * Math.sqrt( Math.PI ) );

	}

	AmbientLightProbe.prototype = Object.assign( Object.create( LightProbe.prototype ), {

		constructor: AmbientLightProbe,

		isAmbientLightProbe: true,

		copy: function ( source ) { // modifying color not currently supported

			LightProbe.prototype.copy.call( this, source );

			return this;

		},

		toJSON: function ( meta ) {

			var data = LightProbe.prototype.toJSON.call( this, meta );

			// data.sh = this.sh.toArray(); // todo

			return data;

		}

	} );

	var _eyeRight = new Matrix4();
	var _eyeLeft = new Matrix4();

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function StereoCamera() {

		this.type = 'StereoCamera';

		this.aspect = 1;

		this.eyeSep = 0.064;

		this.cameraL = new PerspectiveCamera();
		this.cameraL.layers.enable( 1 );
		this.cameraL.matrixAutoUpdate = false;

		this.cameraR = new PerspectiveCamera();
		this.cameraR.layers.enable( 2 );
		this.cameraR.matrixAutoUpdate = false;

		this._cache = {
			focus: null,
			fov: null,
			aspect: null,
			near: null,
			far: null,
			zoom: null,
			eyeSep: null
		};

	}

	Object.assign( StereoCamera.prototype, {

		update: function ( camera ) {

			var cache = this._cache;

			var needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov ||
				cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near ||
				cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep;

			if ( needsUpdate ) {

				cache.focus = camera.focus;
				cache.fov = camera.fov;
				cache.aspect = camera.aspect * this.aspect;
				cache.near = camera.near;
				cache.far = camera.far;
				cache.zoom = camera.zoom;
				cache.eyeSep = this.eyeSep;

				// Off-axis stereoscopic effect based on
				// http://paulbourke.net/stereographics/stereorender/

				var projectionMatrix = camera.projectionMatrix.clone();
				var eyeSepHalf = cache.eyeSep / 2;
				var eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus;
				var ymax = ( cache.near * Math.tan( MathUtils.DEG2RAD * cache.fov * 0.5 ) ) / cache.zoom;
				var xmin, xmax;

				// translate xOffset

				_eyeLeft.elements[ 12 ] = - eyeSepHalf;
				_eyeRight.elements[ 12 ] = eyeSepHalf;

				// for left eye

				xmin = - ymax * cache.aspect + eyeSepOnProjection;
				xmax = ymax * cache.aspect + eyeSepOnProjection;

				projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin );
				projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );

				this.cameraL.projectionMatrix.copy( projectionMatrix );

				// for right eye

				xmin = - ymax * cache.aspect - eyeSepOnProjection;
				xmax = ymax * cache.aspect - eyeSepOnProjection;

				projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin );
				projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );

				this.cameraR.projectionMatrix.copy( projectionMatrix );

			}

			this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeLeft );
			this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeRight );

		}

	} );

	/**
	 * @author alteredq / http://alteredqualia.com/
	 */

	function Clock( autoStart ) {

		this.autoStart = ( autoStart !== undefined ) ? autoStart : true;

		this.startTime = 0;
		this.oldTime = 0;
		this.elapsedTime = 0;

		this.running = false;

	}

	Object.assign( Clock.prototype, {

		start: function () {

			this.startTime = ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732

			this.oldTime = this.startTime;
			this.elapsedTime = 0;
			this.running = true;

		},

		stop: function () {

			this.getElapsedTime();
			this.running = false;
			this.autoStart = false;

		},

		getElapsedTime: function () {

			this.getDelta();
			return this.elapsedTime;

		},

		getDelta: function () {

			var diff = 0;

			if ( this.autoStart && ! this.running ) {

				this.start();
				return 0;

			}

			if ( this.running ) {

				var newTime = ( typeof performance === 'undefined' ? Date : performance ).now();

				diff = ( newTime - this.oldTime ) / 1000;
				this.oldTime = newTime;

				this.elapsedTime += diff;

			}

			return diff;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	var _position$2 = new Vector3();
	var _quaternion$3 = new Quaternion();
	var _scale$1 = new Vector3();
	var _orientation = new Vector3();

	function AudioListener() {

		Object3D.call( this );

		this.type = 'AudioListener';

		this.context = AudioContext.getContext();

		this.gain = this.context.createGain();
		this.gain.connect( this.context.destination );

		this.filter = null;

		this.timeDelta = 0;

		// private

		this._clock = new Clock();

	}

	AudioListener.prototype = Object.assign( Object.create( Object3D.prototype ), {

		constructor: AudioListener,

		getInput: function () {

			return this.gain;

		},

		removeFilter: function ( ) {

			if ( this.filter !== null ) {

				this.gain.disconnect( this.filter );
				this.filter.disconnect( this.context.destination );
				this.gain.connect( this.context.destination );
				this.filter = null;

			}

			return this;

		},

		getFilter: function () {

			return this.filter;

		},

		setFilter: function ( value ) {

			if ( this.filter !== null ) {

				this.gain.disconnect( this.filter );
				this.filter.disconnect( this.context.destination );

			} else {

				this.gain.disconnect( this.context.destination );

			}

			this.filter = value;
			this.gain.connect( this.filter );
			this.filter.connect( this.context.destination );

			return this;

		},

		getMasterVolume: function () {

			return this.gain.gain.value;

		},

		setMasterVolume: function ( value ) {

			this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 );

			return this;

		},

		updateMatrixWorld: function ( force ) {

			Object3D.prototype.updateMatrixWorld.call( this, force );

			var listener = this.context.listener;
			var up = this.up;

			this.timeDelta = this._clock.getDelta();

			this.matrixWorld.decompose( _position$2, _quaternion$3, _scale$1 );

			_orientation.set( 0, 0, - 1 ).applyQuaternion( _quaternion$3 );

			if ( listener.positionX ) {

				// code path for Chrome (see #14393)

				var endTime = this.context.currentTime + this.timeDelta;

				listener.positionX.linearRampToValueAtTime( _position$2.x, endTime );
				listener.positionY.linearRampToValueAtTime( _position$2.y, endTime );
				listener.positionZ.linearRampToValueAtTime( _position$2.z, endTime );
				listener.forwardX.linearRampToValueAtTime( _orientation.x, endTime );
				listener.forwardY.linearRampToValueAtTime( _orientation.y, endTime );
				listener.forwardZ.linearRampToValueAtTime( _orientation.z, endTime );
				listener.upX.linearRampToValueAtTime( up.x, endTime );
				listener.upY.linearRampToValueAtTime( up.y, endTime );
				listener.upZ.linearRampToValueAtTime( up.z, endTime );

			} else {

				listener.setPosition( _position$2.x, _position$2.y, _position$2.z );
				listener.setOrientation( _orientation.x, _orientation.y, _orientation.z, up.x, up.y, up.z );

			}

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author Reece Aaron Lecrivain / http://reecenotes.com/
	 */

	function Audio( listener ) {

		Object3D.call( this );

		this.type = 'Audio';

		this.listener = listener;
		this.context = listener.context;

		this.gain = this.context.createGain();
		this.gain.connect( listener.getInput() );

		this.autoplay = false;

		this.buffer = null;
		this.detune = 0;
		this.loop = false;
		this.loopStart = 0;
		this.loopEnd = 0;
		this.offset = 0;
		this.duration = undefined;
		this.playbackRate = 1;
		this.isPlaying = false;
		this.hasPlaybackControl = true;
		this.sourceType = 'empty';

		this._startedAt = 0;
		this._progress = 0;

		this.filters = [];

	}

	Audio.prototype = Object.assign( Object.create( Object3D.prototype ), {

		constructor: Audio,

		getOutput: function () {

			return this.gain;

		},

		setNodeSource: function ( audioNode ) {

			this.hasPlaybackControl = false;
			this.sourceType = 'audioNode';
			this.source = audioNode;
			this.connect();

			return this;

		},

		setMediaElementSource: function ( mediaElement ) {

			this.hasPlaybackControl = false;
			this.sourceType = 'mediaNode';
			this.source = this.context.createMediaElementSource( mediaElement );
			this.connect();

			return this;

		},

		setMediaStreamSource: function ( mediaStream ) {

			this.hasPlaybackControl = false;
			this.sourceType = 'mediaStreamNode';
			this.source = this.context.createMediaStreamSource( mediaStream );
			this.connect();

			return this;

		},

		setBuffer: function ( audioBuffer ) {

			this.buffer = audioBuffer;
			this.sourceType = 'buffer';

			if ( this.autoplay ) { this.play(); }

			return this;

		},

		play: function ( delay ) {

			if ( delay === undefined ) { delay = 0; }

			if ( this.isPlaying === true ) {

				console.warn( 'THREE.Audio: Audio is already playing.' );
				return;

			}

			if ( this.hasPlaybackControl === false ) {

				console.warn( 'THREE.Audio: this Audio has no playback control.' );
				return;

			}

			this._startedAt = this.context.currentTime + delay;

			var source = this.context.createBufferSource();
			source.buffer = this.buffer;
			source.loop = this.loop;
			source.loopStart = this.loopStart;
			source.loopEnd = this.loopEnd;
			source.onended = this.onEnded.bind( this );
			source.start( this._startedAt, this._progress + this.offset, this.duration );

			this.isPlaying = true;

			this.source = source;

			this.setDetune( this.detune );
			this.setPlaybackRate( this.playbackRate );

			return this.connect();

		},

		pause: function () {

			if ( this.hasPlaybackControl === false ) {

				console.warn( 'THREE.Audio: this Audio has no playback control.' );
				return;

			}

			if ( this.isPlaying === true ) {

				// update current progress

				this._progress += Math.max( this.context.currentTime - this._startedAt, 0 ) * this.playbackRate;

				if ( this.loop === true ) {

					// ensure _progress does not exceed duration with looped audios

					this._progress = this._progress % ( this.duration || this.buffer.duration );

				}

				this.source.stop();
				this.source.onended = null;

				this.isPlaying = false;

			}

			return this;

		},

		stop: function () {

			if ( this.hasPlaybackControl === false ) {

				console.warn( 'THREE.Audio: this Audio has no playback control.' );
				return;

			}

			this._progress = 0;

			this.source.stop();
			this.source.onended = null;
			this.isPlaying = false;

			return this;

		},

		connect: function () {

			if ( this.filters.length > 0 ) {

				this.source.connect( this.filters[ 0 ] );

				for ( var i = 1, l = this.filters.length; i < l; i ++ ) {

					this.filters[ i - 1 ].connect( this.filters[ i ] );

				}

				this.filters[ this.filters.length - 1 ].connect( this.getOutput() );

			} else {

				this.source.connect( this.getOutput() );

			}

			return this;

		},

		disconnect: function () {

			if ( this.filters.length > 0 ) {

				this.source.disconnect( this.filters[ 0 ] );

				for ( var i = 1, l = this.filters.length; i < l; i ++ ) {

					this.filters[ i - 1 ].disconnect( this.filters[ i ] );

				}

				this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() );

			} else {

				this.source.disconnect( this.getOutput() );

			}

			return this;

		},

		getFilters: function () {

			return this.filters;

		},

		setFilters: function ( value ) {

			if ( ! value ) { value = []; }

			if ( this.isPlaying === true ) {

				this.disconnect();
				this.filters = value;
				this.connect();

			} else {

				this.filters = value;

			}

			return this;

		},

		setDetune: function ( value ) {

			this.detune = value;

			if ( this.source.detune === undefined ) { return; } // only set detune when available

			if ( this.isPlaying === true ) {

				this.source.detune.setTargetAtTime( this.detune, this.context.currentTime, 0.01 );

			}

			return this;

		},

		getDetune: function () {

			return this.detune;

		},

		getFilter: function () {

			return this.getFilters()[ 0 ];

		},

		setFilter: function ( filter ) {

			return this.setFilters( filter ? [ filter ] : [] );

		},

		setPlaybackRate: function ( value ) {

			if ( this.hasPlaybackControl === false ) {

				console.warn( 'THREE.Audio: this Audio has no playback control.' );
				return;

			}

			this.playbackRate = value;

			if ( this.isPlaying === true ) {

				this.source.playbackRate.setTargetAtTime( this.playbackRate, this.context.currentTime, 0.01 );

			}

			return this;

		},

		getPlaybackRate: function () {

			return this.playbackRate;

		},

		onEnded: function () {

			this.isPlaying = false;

		},

		getLoop: function () {

			if ( this.hasPlaybackControl === false ) {

				console.warn( 'THREE.Audio: this Audio has no playback control.' );
				return false;

			}

			return this.loop;

		},

		setLoop: function ( value ) {

			if ( this.hasPlaybackControl === false ) {

				console.warn( 'THREE.Audio: this Audio has no playback control.' );
				return;

			}

			this.loop = value;

			if ( this.isPlaying === true ) {

				this.source.loop = this.loop;

			}

			return this;

		},

		setLoopStart: function ( value ) {

			this.loopStart = value;

			return this;

		},

		setLoopEnd: function ( value ) {

			this.loopEnd = value;

			return this;

		},

		getVolume: function () {

			return this.gain.gain.value;

		},

		setVolume: function ( value ) {

			this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 );

			return this;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	var _position$3 = new Vector3();
	var _quaternion$4 = new Quaternion();
	var _scale$2 = new Vector3();
	var _orientation$1 = new Vector3();

	function PositionalAudio( listener ) {

		Audio.call( this, listener );

		this.panner = this.context.createPanner();
		this.panner.panningModel = 'HRTF';
		this.panner.connect( this.gain );

	}

	PositionalAudio.prototype = Object.assign( Object.create( Audio.prototype ), {

		constructor: PositionalAudio,

		getOutput: function () {

			return this.panner;

		},

		getRefDistance: function () {

			return this.panner.refDistance;

		},

		setRefDistance: function ( value ) {

			this.panner.refDistance = value;

			return this;

		},

		getRolloffFactor: function () {

			return this.panner.rolloffFactor;

		},

		setRolloffFactor: function ( value ) {

			this.panner.rolloffFactor = value;

			return this;

		},

		getDistanceModel: function () {

			return this.panner.distanceModel;

		},

		setDistanceModel: function ( value ) {

			this.panner.distanceModel = value;

			return this;

		},

		getMaxDistance: function () {

			return this.panner.maxDistance;

		},

		setMaxDistance: function ( value ) {

			this.panner.maxDistance = value;

			return this;

		},

		setDirectionalCone: function ( coneInnerAngle, coneOuterAngle, coneOuterGain ) {

			this.panner.coneInnerAngle = coneInnerAngle;
			this.panner.coneOuterAngle = coneOuterAngle;
			this.panner.coneOuterGain = coneOuterGain;

			return this;

		},

		updateMatrixWorld: function ( force ) {

			Object3D.prototype.updateMatrixWorld.call( this, force );

			if ( this.hasPlaybackControl === true && this.isPlaying === false ) { return; }

			this.matrixWorld.decompose( _position$3, _quaternion$4, _scale$2 );

			_orientation$1.set( 0, 0, 1 ).applyQuaternion( _quaternion$4 );

			var panner = this.panner;

			if ( panner.positionX ) {

				// code path for Chrome and Firefox (see #14393)

				var endTime = this.context.currentTime + this.listener.timeDelta;

				panner.positionX.linearRampToValueAtTime( _position$3.x, endTime );
				panner.positionY.linearRampToValueAtTime( _position$3.y, endTime );
				panner.positionZ.linearRampToValueAtTime( _position$3.z, endTime );
				panner.orientationX.linearRampToValueAtTime( _orientation$1.x, endTime );
				panner.orientationY.linearRampToValueAtTime( _orientation$1.y, endTime );
				panner.orientationZ.linearRampToValueAtTime( _orientation$1.z, endTime );

			} else {

				panner.setPosition( _position$3.x, _position$3.y, _position$3.z );
				panner.setOrientation( _orientation$1.x, _orientation$1.y, _orientation$1.z );

			}

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function AudioAnalyser( audio, fftSize ) {

		this.analyser = audio.context.createAnalyser();
		this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048;

		this.data = new Uint8Array( this.analyser.frequencyBinCount );

		audio.getOutput().connect( this.analyser );

	}

	Object.assign( AudioAnalyser.prototype, {

		getFrequencyData: function () {

			this.analyser.getByteFrequencyData( this.data );

			return this.data;

		},

		getAverageFrequency: function () {

			var value = 0, data = this.getFrequencyData();

			for ( var i = 0; i < data.length; i ++ ) {

				value += data[ i ];

			}

			return value / data.length;

		}

	} );

	/**
	 *
	 * Buffered scene graph property that allows weighted accumulation.
	 *
	 *
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 * @author tschw
	 */

	function PropertyMixer( binding, typeName, valueSize ) {

		this.binding = binding;
		this.valueSize = valueSize;

		var mixFunction,
			mixFunctionAdditive,
			setIdentity;

		// buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ]
		//
		// interpolators can use .buffer as their .result
		// the data then goes to 'incoming'
		//
		// 'accu0' and 'accu1' are used frame-interleaved for
		// the cumulative result and are compared to detect
		// changes
		//
		// 'orig' stores the original state of the property
		//
		// 'add' is used for additive cumulative results
		//
		// 'work' is optional and is only present for quaternion types. It is used
		// to store intermediate quaternion multiplication results

		switch ( typeName ) {

			case 'quaternion':
				mixFunction = this._slerp;
				mixFunctionAdditive = this._slerpAdditive;
				setIdentity = this._setAdditiveIdentityQuaternion;

				this.buffer = new Float64Array( valueSize * 6 );
				this._workIndex = 5;
				break;

			case 'string':
			case 'bool':
				mixFunction = this._select;

				// Use the regular mix function and for additive on these types,
				// additive is not relevant for non-numeric types
				mixFunctionAdditive = this._select;

				setIdentity = this._setAdditiveIdentityOther;

				this.buffer = new Array( valueSize * 5 );
				break;

			default:
				mixFunction = this._lerp;
				mixFunctionAdditive = this._lerpAdditive;
				setIdentity = this._setAdditiveIdentityNumeric;

				this.buffer = new Float64Array( valueSize * 5 );

		}

		this._mixBufferRegion = mixFunction;
		this._mixBufferRegionAdditive = mixFunctionAdditive;
		this._setIdentity = setIdentity;
		this._origIndex = 3;
		this._addIndex = 4;

		this.cumulativeWeight = 0;
		this.cumulativeWeightAdditive = 0;

		this.useCount = 0;
		this.referenceCount = 0;

	}

	Object.assign( PropertyMixer.prototype, {

		// accumulate data in the 'incoming' region into 'accu<i>'
		accumulate: function ( accuIndex, weight ) {

			// note: happily accumulating nothing when weight = 0, the caller knows
			// the weight and shouldn't have made the call in the first place

			var buffer = this.buffer,
				stride = this.valueSize,
				offset = accuIndex * stride + stride,

				currentWeight = this.cumulativeWeight;

			if ( currentWeight === 0 ) {

				// accuN := incoming * weight

				for ( var i = 0; i !== stride; ++ i ) {

					buffer[ offset + i ] = buffer[ i ];

				}

				currentWeight = weight;

			} else {

				// accuN := accuN + incoming * weight

				currentWeight += weight;
				var mix = weight / currentWeight;
				this._mixBufferRegion( buffer, offset, 0, mix, stride );

			}

			this.cumulativeWeight = currentWeight;

		},

		// accumulate data in the 'incoming' region into 'add'
		accumulateAdditive: function ( weight ) {

			var buffer = this.buffer,
				stride = this.valueSize,
				offset = stride * this._addIndex;

			if ( this.cumulativeWeightAdditive === 0 ) {

				// add = identity

				this._setIdentity();

			}

			// add := add + incoming * weight

			this._mixBufferRegionAdditive( buffer, offset, 0, weight, stride );
			this.cumulativeWeightAdditive += weight;

		},

		// apply the state of 'accu<i>' to the binding when accus differ
		apply: function ( accuIndex ) {

			var stride = this.valueSize,
				buffer = this.buffer,
				offset = accuIndex * stride + stride,

				weight = this.cumulativeWeight,
				weightAdditive = this.cumulativeWeightAdditive,

				binding = this.binding;

			this.cumulativeWeight = 0;
			this.cumulativeWeightAdditive = 0;

			if ( weight < 1 ) {

				// accuN := accuN + original * ( 1 - cumulativeWeight )

				var originalValueOffset = stride * this._origIndex;

				this._mixBufferRegion(
					buffer, offset, originalValueOffset, 1 - weight, stride );

			}

			if ( weightAdditive > 0 ) {

				// accuN := accuN + additive accuN

				this._mixBufferRegionAdditive( buffer, offset, this._addIndex * stride, 1, stride );

			}

			for ( var i = stride, e = stride + stride; i !== e; ++ i ) {

				if ( buffer[ i ] !== buffer[ i + stride ] ) {

					// value has changed -> update scene graph

					binding.setValue( buffer, offset );
					break;

				}

			}

		},

		// remember the state of the bound property and copy it to both accus
		saveOriginalState: function () {

			var binding = this.binding;

			var buffer = this.buffer,
				stride = this.valueSize,

				originalValueOffset = stride * this._origIndex;

			binding.getValue( buffer, originalValueOffset );

			// accu[0..1] := orig -- initially detect changes against the original
			for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) {

				buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ];

			}

			// Add to identity for additive
			this._setIdentity();

			this.cumulativeWeight = 0;
			this.cumulativeWeightAdditive = 0;

		},

		// apply the state previously taken via 'saveOriginalState' to the binding
		restoreOriginalState: function () {

			var originalValueOffset = this.valueSize * 3;
			this.binding.setValue( this.buffer, originalValueOffset );

		},

		_setAdditiveIdentityNumeric: function () {

			var startIndex = this._addIndex * this.valueSize;

			this.buffer.fill( 0, startIndex, startIndex + this.valueSize );

		},

		_setAdditiveIdentityQuaternion: function () {

			this._setAdditiveIdentityNumeric();
			this.buffer[ this._addIndex * 4 + 3 ] = 1;

		},

		_setAdditiveIdentityOther: function () {

			var startIndex = this._origIndex * this.valueSize;
			var targetIndex = this._addIndex * this.valueSize;

			this.buffer.copyWithin( targetIndex, startIndex, this.valueSize );

		},


		// mix functions

		_select: function ( buffer, dstOffset, srcOffset, t, stride ) {

			if ( t >= 0.5 ) {

				for ( var i = 0; i !== stride; ++ i ) {

					buffer[ dstOffset + i ] = buffer[ srcOffset + i ];

				}

			}

		},

		_slerp: function ( buffer, dstOffset, srcOffset, t ) {

			Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t );

		},

		_slerpAdditive: function ( buffer, dstOffset, srcOffset, t, stride ) {

			var workOffset = this._workIndex * stride;

			// Store result in intermediate buffer offset
			Quaternion.multiplyQuaternionsFlat( buffer, workOffset, buffer, dstOffset, buffer, srcOffset );

			// Slerp to the intermediate result
			Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t );

		},

		_lerp: function ( buffer, dstOffset, srcOffset, t, stride ) {

			var s = 1 - t;

			for ( var i = 0; i !== stride; ++ i ) {

				var j = dstOffset + i;

				buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t;

			}

		},

		_lerpAdditive: function ( buffer, dstOffset, srcOffset, t, stride ) {

			for ( var i = 0; i !== stride; ++ i ) {

				var j = dstOffset + i;

				buffer[ j ] = buffer[ j ] + buffer[ srcOffset + i ] * t;

			}

		}

	} );

	/**
	 *
	 * A reference to a real property in the scene graph.
	 *
	 *
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 * @author tschw
	 */

	// Characters [].:/ are reserved for track binding syntax.
	var _RESERVED_CHARS_RE = '\\[\\]\\.:\\/';
	var _reservedRe = new RegExp( '[' + _RESERVED_CHARS_RE + ']', 'g' );

	// Attempts to allow node names from any language. ES5's `\w` regexp matches
	// only latin characters, and the unicode \p{L} is not yet supported. So
	// instead, we exclude reserved characters and match everything else.
	var _wordChar = '[^' + _RESERVED_CHARS_RE + ']';
	var _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace( '\\.', '' ) + ']';

	// Parent directories, delimited by '/' or ':'. Currently unused, but must
	// be matched to parse the rest of the track name.
	var _directoryRe = /((?:WC+[\/:])*)/.source.replace( 'WC', _wordChar );

	// Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
	var _nodeRe = /(WCOD+)?/.source.replace( 'WCOD', _wordCharOrDot );

	// Object on target node, and accessor. May not contain reserved
	// characters. Accessor may contain any character except closing bracket.
	var _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', _wordChar );

	// Property and accessor. May not contain reserved characters. Accessor may
	// contain any non-bracket characters.
	var _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', _wordChar );

	var _trackRe = new RegExp( ''
		+ '^'
		+ _directoryRe
		+ _nodeRe
		+ _objectRe
		+ _propertyRe
		+ '$'
	);

	var _supportedObjectNames = [ 'material', 'materials', 'bones' ];

	function Composite( targetGroup, path, optionalParsedPath ) {

		var parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path );

		this._targetGroup = targetGroup;
		this._bindings = targetGroup.subscribe_( path, parsedPath );

	}

	Object.assign( Composite.prototype, {

		getValue: function ( array, offset ) {

			this.bind(); // bind all binding

			var firstValidIndex = this._targetGroup.nCachedObjects_,
				binding = this._bindings[ firstValidIndex ];

			// and only call .getValue on the first
			if ( binding !== undefined ) { binding.getValue( array, offset ); }

		},

		setValue: function ( array, offset ) {

			var bindings = this._bindings;

			for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {

				bindings[ i ].setValue( array, offset );

			}

		},

		bind: function () {

			var bindings = this._bindings;

			for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {

				bindings[ i ].bind();

			}

		},

		unbind: function () {

			var bindings = this._bindings;

			for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {

				bindings[ i ].unbind();

			}

		}

	} );


	function PropertyBinding( rootNode, path, parsedPath ) {

		this.path = path;
		this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path );

		this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode;

		this.rootNode = rootNode;

	}

	Object.assign( PropertyBinding, {

		Composite: Composite,

		create: function ( root, path, parsedPath ) {

			if ( ! ( root && root.isAnimationObjectGroup ) ) {

				return new PropertyBinding( root, path, parsedPath );

			} else {

				return new PropertyBinding.Composite( root, path, parsedPath );

			}

		},

		/**
		 * Replaces spaces with underscores and removes unsupported characters from
		 * node names, to ensure compatibility with parseTrackName().
		 *
		 * @param {string} name Node name to be sanitized.
		 * @return {string}
		 */
		sanitizeNodeName: function ( name ) {

			return name.replace( /\s/g, '_' ).replace( _reservedRe, '' );

		},

		parseTrackName: function ( trackName ) {

			var matches = _trackRe.exec( trackName );

			if ( ! matches ) {

				throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName );

			}

			var results = {
				// directoryName: matches[ 1 ], // (tschw) currently unused
				nodeName: matches[ 2 ],
				objectName: matches[ 3 ],
				objectIndex: matches[ 4 ],
				propertyName: matches[ 5 ], // required
				propertyIndex: matches[ 6 ]
			};

			var lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' );

			if ( lastDot !== undefined && lastDot !== - 1 ) {

				var objectName = results.nodeName.substring( lastDot + 1 );

				// Object names must be checked against a whitelist. Otherwise, there
				// is no way to parse 'foo.bar.baz': 'baz' must be a property, but
				// 'bar' could be the objectName, or part of a nodeName (which can
				// include '.' characters).
				if ( _supportedObjectNames.indexOf( objectName ) !== - 1 ) {

					results.nodeName = results.nodeName.substring( 0, lastDot );
					results.objectName = objectName;

				}

			}

			if ( results.propertyName === null || results.propertyName.length === 0 ) {

				throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName );

			}

			return results;

		},

		findNode: function ( root, nodeName ) {

			if ( ! nodeName || nodeName === "" || nodeName === "." || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) {

				return root;

			}

			// search into skeleton bones.
			if ( root.skeleton ) {

				var bone = root.skeleton.getBoneByName( nodeName );

				if ( bone !== undefined ) {

					return bone;

				}

			}

			// search into node subtree.
			if ( root.children ) {

				var searchNodeSubtree = function ( children ) {

					for ( var i = 0; i < children.length; i ++ ) {

						var childNode = children[ i ];

						if ( childNode.name === nodeName || childNode.uuid === nodeName ) {

							return childNode;

						}

						var result = searchNodeSubtree( childNode.children );

						if ( result ) { return result; }

					}

					return null;

				};

				var subTreeNode = searchNodeSubtree( root.children );

				if ( subTreeNode ) {

					return subTreeNode;

				}

			}

			return null;

		}

	} );

	Object.assign( PropertyBinding.prototype, { // prototype, continued

		// these are used to "bind" a nonexistent property
		_getValue_unavailable: function () {},
		_setValue_unavailable: function () {},

		BindingType: {
			Direct: 0,
			EntireArray: 1,
			ArrayElement: 2,
			HasFromToArray: 3
		},

		Versioning: {
			None: 0,
			NeedsUpdate: 1,
			MatrixWorldNeedsUpdate: 2
		},

		GetterByBindingType: [

			function getValue_direct( buffer, offset ) {

				buffer[ offset ] = this.node[ this.propertyName ];

			},

			function getValue_array( buffer, offset ) {

				var source = this.resolvedProperty;

				for ( var i = 0, n = source.length; i !== n; ++ i ) {

					buffer[ offset ++ ] = source[ i ];

				}

			},

			function getValue_arrayElement( buffer, offset ) {

				buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ];

			},

			function getValue_toArray( buffer, offset ) {

				this.resolvedProperty.toArray( buffer, offset );

			}

		],

		SetterByBindingTypeAndVersioning: [

			[
				// Direct

				function setValue_direct( buffer, offset ) {

					this.targetObject[ this.propertyName ] = buffer[ offset ];

				},

				function setValue_direct_setNeedsUpdate( buffer, offset ) {

					this.targetObject[ this.propertyName ] = buffer[ offset ];
					this.targetObject.needsUpdate = true;

				},

				function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) {

					this.targetObject[ this.propertyName ] = buffer[ offset ];
					this.targetObject.matrixWorldNeedsUpdate = true;

				}

			], [

				// EntireArray

				function setValue_array( buffer, offset ) {

					var dest = this.resolvedProperty;

					for ( var i = 0, n = dest.length; i !== n; ++ i ) {

						dest[ i ] = buffer[ offset ++ ];

					}

				},

				function setValue_array_setNeedsUpdate( buffer, offset ) {

					var dest = this.resolvedProperty;

					for ( var i = 0, n = dest.length; i !== n; ++ i ) {

						dest[ i ] = buffer[ offset ++ ];

					}

					this.targetObject.needsUpdate = true;

				},

				function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) {

					var dest = this.resolvedProperty;

					for ( var i = 0, n = dest.length; i !== n; ++ i ) {

						dest[ i ] = buffer[ offset ++ ];

					}

					this.targetObject.matrixWorldNeedsUpdate = true;

				}

			], [

				// ArrayElement

				function setValue_arrayElement( buffer, offset ) {

					this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];

				},

				function setValue_arrayElement_setNeedsUpdate( buffer, offset ) {

					this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
					this.targetObject.needsUpdate = true;

				},

				function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) {

					this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
					this.targetObject.matrixWorldNeedsUpdate = true;

				}

			], [

				// HasToFromArray

				function setValue_fromArray( buffer, offset ) {

					this.resolvedProperty.fromArray( buffer, offset );

				},

				function setValue_fromArray_setNeedsUpdate( buffer, offset ) {

					this.resolvedProperty.fromArray( buffer, offset );
					this.targetObject.needsUpdate = true;

				},

				function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) {

					this.resolvedProperty.fromArray( buffer, offset );
					this.targetObject.matrixWorldNeedsUpdate = true;

				}

			]

		],

		getValue: function getValue_unbound( targetArray, offset ) {

			this.bind();
			this.getValue( targetArray, offset );

			// Note: This class uses a State pattern on a per-method basis:
			// 'bind' sets 'this.getValue' / 'setValue' and shadows the
			// prototype version of these methods with one that represents
			// the bound state. When the property is not found, the methods
			// become no-ops.

		},

		setValue: function getValue_unbound( sourceArray, offset ) {

			this.bind();
			this.setValue( sourceArray, offset );

		},

		// create getter / setter pair for a property in the scene graph
		bind: function () {

			var targetObject = this.node,
				parsedPath = this.parsedPath,

				objectName = parsedPath.objectName,
				propertyName = parsedPath.propertyName,
				propertyIndex = parsedPath.propertyIndex;

			if ( ! targetObject ) {

				targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode;

				this.node = targetObject;

			}

			// set fail state so we can just 'return' on error
			this.getValue = this._getValue_unavailable;
			this.setValue = this._setValue_unavailable;

			// ensure there is a value node
			if ( ! targetObject ) {

				console.error( 'THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.' );
				return;

			}

			if ( objectName ) {

				var objectIndex = parsedPath.objectIndex;

				// special cases were we need to reach deeper into the hierarchy to get the face materials....
				switch ( objectName ) {

					case 'materials':

						if ( ! targetObject.material ) {

							console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this );
							return;

						}

						if ( ! targetObject.material.materials ) {

							console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this );
							return;

						}

						targetObject = targetObject.material.materials;

						break;

					case 'bones':

						if ( ! targetObject.skeleton ) {

							console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this );
							return;

						}

						// potential future optimization: skip this if propertyIndex is already an integer
						// and convert the integer string to a true integer.

						targetObject = targetObject.skeleton.bones;

						// support resolving morphTarget names into indices.
						for ( var i = 0; i < targetObject.length; i ++ ) {

							if ( targetObject[ i ].name === objectIndex ) {

								objectIndex = i;
								break;

							}

						}

						break;

					default:

						if ( targetObject[ objectName ] === undefined ) {

							console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this );
							return;

						}

						targetObject = targetObject[ objectName ];

				}


				if ( objectIndex !== undefined ) {

					if ( targetObject[ objectIndex ] === undefined ) {

						console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject );
						return;

					}

					targetObject = targetObject[ objectIndex ];

				}

			}

			// resolve property
			var nodeProperty = targetObject[ propertyName ];

			if ( nodeProperty === undefined ) {

				var nodeName = parsedPath.nodeName;

				console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName +
					'.' + propertyName + ' but it wasn\'t found.', targetObject );
				return;

			}

			// determine versioning scheme
			var versioning = this.Versioning.None;

			this.targetObject = targetObject;

			if ( targetObject.needsUpdate !== undefined ) { // material

				versioning = this.Versioning.NeedsUpdate;

			} else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform

				versioning = this.Versioning.MatrixWorldNeedsUpdate;

			}

			// determine how the property gets bound
			var bindingType = this.BindingType.Direct;

			if ( propertyIndex !== undefined ) {

				// access a sub element of the property array (only primitives are supported right now)

				if ( propertyName === "morphTargetInfluences" ) {

					// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.

					// support resolving morphTarget names into indices.
					if ( ! targetObject.geometry ) {

						console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this );
						return;

					}

					if ( targetObject.geometry.isBufferGeometry ) {

						if ( ! targetObject.geometry.morphAttributes ) {

							console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this );
							return;

						}

						for ( var i = 0; i < this.node.geometry.morphAttributes.position.length; i ++ ) {

							if ( targetObject.geometry.morphAttributes.position[ i ].name === propertyIndex ) {

								propertyIndex = i;
								break;

							}

						}


					} else {

						if ( ! targetObject.geometry.morphTargets ) {

							console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphTargets.', this );
							return;

						}

						for ( var i = 0; i < this.node.geometry.morphTargets.length; i ++ ) {

							if ( targetObject.geometry.morphTargets[ i ].name === propertyIndex ) {

								propertyIndex = i;
								break;

							}

						}

					}

				}

				bindingType = this.BindingType.ArrayElement;

				this.resolvedProperty = nodeProperty;
				this.propertyIndex = propertyIndex;

			} else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) {

				// must use copy for Object3D.Euler/Quaternion

				bindingType = this.BindingType.HasFromToArray;

				this.resolvedProperty = nodeProperty;

			} else if ( Array.isArray( nodeProperty ) ) {

				bindingType = this.BindingType.EntireArray;

				this.resolvedProperty = nodeProperty;

			} else {

				this.propertyName = propertyName;

			}

			// select getter / setter
			this.getValue = this.GetterByBindingType[ bindingType ];
			this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ];

		},

		unbind: function () {

			this.node = null;

			// back to the prototype version of getValue / setValue
			// note: avoiding to mutate the shape of 'this' via 'delete'
			this.getValue = this._getValue_unbound;
			this.setValue = this._setValue_unbound;

		}

	} );

	// DECLARE ALIAS AFTER assign prototype
	Object.assign( PropertyBinding.prototype, {

		// initial state of these methods that calls 'bind'
		_getValue_unbound: PropertyBinding.prototype.getValue,
		_setValue_unbound: PropertyBinding.prototype.setValue,

	} );

	/**
	 *
	 * A group of objects that receives a shared animation state.
	 *
	 * Usage:
	 *
	 *  - Add objects you would otherwise pass as 'root' to the
	 *    constructor or the .clipAction method of AnimationMixer.
	 *
	 *  - Instead pass this object as 'root'.
	 *
	 *  - You can also add and remove objects later when the mixer
	 *    is running.
	 *
	 * Note:
	 *
	 *    Objects of this class appear as one object to the mixer,
	 *    so cache control of the individual objects must be done
	 *    on the group.
	 *
	 * Limitation:
	 *
	 *  - The animated properties must be compatible among the
	 *    all objects in the group.
	 *
	 *  - A single property can either be controlled through a
	 *    target group or directly, but not both.
	 *
	 * @author tschw
	 */

	function AnimationObjectGroup() {

		this.uuid = MathUtils.generateUUID();

		// cached objects followed by the active ones
		this._objects = Array.prototype.slice.call( arguments );

		this.nCachedObjects_ = 0; // threshold
		// note: read by PropertyBinding.Composite

		var indices = {};
		this._indicesByUUID = indices; // for bookkeeping

		for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

			indices[ arguments[ i ].uuid ] = i;

		}

		this._paths = []; // inside: string
		this._parsedPaths = []; // inside: { we don't care, here }
		this._bindings = []; // inside: Array< PropertyBinding >
		this._bindingsIndicesByPath = {}; // inside: indices in these arrays

		var scope = this;

		this.stats = {

			objects: {
				get total() {

					return scope._objects.length;

				},
				get inUse() {

					return this.total - scope.nCachedObjects_;

				}
			},
			get bindingsPerObject() {

				return scope._bindings.length;

			}

		};

	}

	Object.assign( AnimationObjectGroup.prototype, {

		isAnimationObjectGroup: true,

		add: function () {

			var objects = this._objects,
				nObjects = objects.length,
				nCachedObjects = this.nCachedObjects_,
				indicesByUUID = this._indicesByUUID,
				paths = this._paths,
				parsedPaths = this._parsedPaths,
				bindings = this._bindings,
				nBindings = bindings.length,
				knownObject = undefined;

			for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

				var object = arguments[ i ],
					uuid = object.uuid,
					index = indicesByUUID[ uuid ];

				if ( index === undefined ) {

					// unknown object -> add it to the ACTIVE region

					index = nObjects ++;
					indicesByUUID[ uuid ] = index;
					objects.push( object );

					// accounting is done, now do the same for all bindings

					for ( var j = 0, m = nBindings; j !== m; ++ j ) {

						bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) );

					}

				} else if ( index < nCachedObjects ) {

					knownObject = objects[ index ];

					// move existing object to the ACTIVE region

					var firstActiveIndex = -- nCachedObjects,
						lastCachedObject = objects[ firstActiveIndex ];

					indicesByUUID[ lastCachedObject.uuid ] = index;
					objects[ index ] = lastCachedObject;

					indicesByUUID[ uuid ] = firstActiveIndex;
					objects[ firstActiveIndex ] = object;

					// accounting is done, now do the same for all bindings

					for ( var j = 0, m = nBindings; j !== m; ++ j ) {

						var bindingsForPath = bindings[ j ],
							lastCached = bindingsForPath[ firstActiveIndex ],
							binding = bindingsForPath[ index ];

						bindingsForPath[ index ] = lastCached;

						if ( binding === undefined ) {

							// since we do not bother to create new bindings
							// for objects that are cached, the binding may
							// or may not exist

							binding = new PropertyBinding( object, paths[ j ], parsedPaths[ j ] );

						}

						bindingsForPath[ firstActiveIndex ] = binding;

					}

				} else if ( objects[ index ] !== knownObject ) {

					console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' +
						'detected. Clean the caches or recreate your infrastructure when reloading scenes.' );

				} // else the object is already where we want it to be

			} // for arguments

			this.nCachedObjects_ = nCachedObjects;

		},

		remove: function () {

			var objects = this._objects,
				nCachedObjects = this.nCachedObjects_,
				indicesByUUID = this._indicesByUUID,
				bindings = this._bindings,
				nBindings = bindings.length;

			for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

				var object = arguments[ i ],
					uuid = object.uuid,
					index = indicesByUUID[ uuid ];

				if ( index !== undefined && index >= nCachedObjects ) {

					// move existing object into the CACHED region

					var lastCachedIndex = nCachedObjects ++,
						firstActiveObject = objects[ lastCachedIndex ];

					indicesByUUID[ firstActiveObject.uuid ] = index;
					objects[ index ] = firstActiveObject;

					indicesByUUID[ uuid ] = lastCachedIndex;
					objects[ lastCachedIndex ] = object;

					// accounting is done, now do the same for all bindings

					for ( var j = 0, m = nBindings; j !== m; ++ j ) {

						var bindingsForPath = bindings[ j ],
							firstActive = bindingsForPath[ lastCachedIndex ],
							binding = bindingsForPath[ index ];

						bindingsForPath[ index ] = firstActive;
						bindingsForPath[ lastCachedIndex ] = binding;

					}

				}

			} // for arguments

			this.nCachedObjects_ = nCachedObjects;

		},

		// remove & forget
		uncache: function () {

			var objects = this._objects,
				nObjects = objects.length,
				nCachedObjects = this.nCachedObjects_,
				indicesByUUID = this._indicesByUUID,
				bindings = this._bindings,
				nBindings = bindings.length;

			for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

				var object = arguments[ i ],
					uuid = object.uuid,
					index = indicesByUUID[ uuid ];

				if ( index !== undefined ) {

					delete indicesByUUID[ uuid ];

					if ( index < nCachedObjects ) {

						// object is cached, shrink the CACHED region

						var firstActiveIndex = -- nCachedObjects,
							lastCachedObject = objects[ firstActiveIndex ],
							lastIndex = -- nObjects,
							lastObject = objects[ lastIndex ];

						// last cached object takes this object's place
						indicesByUUID[ lastCachedObject.uuid ] = index;
						objects[ index ] = lastCachedObject;

						// last object goes to the activated slot and pop
						indicesByUUID[ lastObject.uuid ] = firstActiveIndex;
						objects[ firstActiveIndex ] = lastObject;
						objects.pop();

						// accounting is done, now do the same for all bindings

						for ( var j = 0, m = nBindings; j !== m; ++ j ) {

							var bindingsForPath = bindings[ j ],
								lastCached = bindingsForPath[ firstActiveIndex ],
								last = bindingsForPath[ lastIndex ];

							bindingsForPath[ index ] = lastCached;
							bindingsForPath[ firstActiveIndex ] = last;
							bindingsForPath.pop();

						}

					} else {

						// object is active, just swap with the last and pop

						var lastIndex = -- nObjects,
							lastObject = objects[ lastIndex ];

						indicesByUUID[ lastObject.uuid ] = index;
						objects[ index ] = lastObject;
						objects.pop();

						// accounting is done, now do the same for all bindings

						for ( var j = 0, m = nBindings; j !== m; ++ j ) {

							var bindingsForPath = bindings[ j ];

							bindingsForPath[ index ] = bindingsForPath[ lastIndex ];
							bindingsForPath.pop();

						}

					} // cached or active

				} // if object is known

			} // for arguments

			this.nCachedObjects_ = nCachedObjects;

		},

		// Internal interface used by befriended PropertyBinding.Composite:

		subscribe_: function ( path, parsedPath ) {

			// returns an array of bindings for the given path that is changed
			// according to the contained objects in the group

			var indicesByPath = this._bindingsIndicesByPath,
				index = indicesByPath[ path ],
				bindings = this._bindings;

			if ( index !== undefined ) { return bindings[ index ]; }

			var paths = this._paths,
				parsedPaths = this._parsedPaths,
				objects = this._objects,
				nObjects = objects.length,
				nCachedObjects = this.nCachedObjects_,
				bindingsForPath = new Array( nObjects );

			index = bindings.length;

			indicesByPath[ path ] = index;

			paths.push( path );
			parsedPaths.push( parsedPath );
			bindings.push( bindingsForPath );

			for ( var i = nCachedObjects, n = objects.length; i !== n; ++ i ) {

				var object = objects[ i ];
				bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath );

			}

			return bindingsForPath;

		},

		unsubscribe_: function ( path ) {

			// tells the group to forget about a property path and no longer
			// update the array previously obtained with 'subscribe_'

			var indicesByPath = this._bindingsIndicesByPath,
				index = indicesByPath[ path ];

			if ( index !== undefined ) {

				var paths = this._paths,
					parsedPaths = this._parsedPaths,
					bindings = this._bindings,
					lastBindingsIndex = bindings.length - 1,
					lastBindings = bindings[ lastBindingsIndex ],
					lastBindingsPath = path[ lastBindingsIndex ];

				indicesByPath[ lastBindingsPath ] = index;

				bindings[ index ] = lastBindings;
				bindings.pop();

				parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ];
				parsedPaths.pop();

				paths[ index ] = paths[ lastBindingsIndex ];
				paths.pop();

			}

		}

	} );

	/**
	 *
	 * Action provided by AnimationMixer for scheduling clip playback on specific
	 * objects.
	 *
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 * @author tschw
	 *
	 */

	function AnimationAction( mixer, clip, localRoot, blendMode ) {

		this._mixer = mixer;
		this._clip = clip;
		this._localRoot = localRoot || null;
		this.blendMode = blendMode || clip.blendMode;

		var tracks = clip.tracks,
			nTracks = tracks.length,
			interpolants = new Array( nTracks );

		var interpolantSettings = {
			endingStart: ZeroCurvatureEnding,
			endingEnd: ZeroCurvatureEnding
		};

		for ( var i = 0; i !== nTracks; ++ i ) {

			var interpolant = tracks[ i ].createInterpolant( null );
			interpolants[ i ] = interpolant;
			interpolant.settings = interpolantSettings;

		}

		this._interpolantSettings = interpolantSettings;

		this._interpolants = interpolants; // bound by the mixer

		// inside: PropertyMixer (managed by the mixer)
		this._propertyBindings = new Array( nTracks );

		this._cacheIndex = null; // for the memory manager
		this._byClipCacheIndex = null; // for the memory manager

		this._timeScaleInterpolant = null;
		this._weightInterpolant = null;

		this.loop = LoopRepeat;
		this._loopCount = - 1;

		// global mixer time when the action is to be started
		// it's set back to 'null' upon start of the action
		this._startTime = null;

		// scaled local time of the action
		// gets clamped or wrapped to 0..clip.duration according to loop
		this.time = 0;

		this.timeScale = 1;
		this._effectiveTimeScale = 1;

		this.weight = 1;
		this._effectiveWeight = 1;

		this.repetitions = Infinity; // no. of repetitions when looping

		this.paused = false; // true -> zero effective time scale
		this.enabled = true; // false -> zero effective weight

		this.clampWhenFinished = false;// keep feeding the last frame?

		this.zeroSlopeAtStart = true;// for smooth interpolation w/o separate
		this.zeroSlopeAtEnd = true;// clips for start, loop and end

	}

	Object.assign( AnimationAction.prototype, {

		// State & Scheduling

		play: function () {

			this._mixer._activateAction( this );

			return this;

		},

		stop: function () {

			this._mixer._deactivateAction( this );

			return this.reset();

		},

		reset: function () {

			this.paused = false;
			this.enabled = true;

			this.time = 0; // restart clip
			this._loopCount = - 1;// forget previous loops
			this._startTime = null;// forget scheduling

			return this.stopFading().stopWarping();

		},

		isRunning: function () {

			return this.enabled && ! this.paused && this.timeScale !== 0 &&
				this._startTime === null && this._mixer._isActiveAction( this );

		},

		// return true when play has been called
		isScheduled: function () {

			return this._mixer._isActiveAction( this );

		},

		startAt: function ( time ) {

			this._startTime = time;

			return this;

		},

		setLoop: function ( mode, repetitions ) {

			this.loop = mode;
			this.repetitions = repetitions;

			return this;

		},

		// Weight

		// set the weight stopping any scheduled fading
		// although .enabled = false yields an effective weight of zero, this
		// method does *not* change .enabled, because it would be confusing
		setEffectiveWeight: function ( weight ) {

			this.weight = weight;

			// note: same logic as when updated at runtime
			this._effectiveWeight = this.enabled ? weight : 0;

			return this.stopFading();

		},

		// return the weight considering fading and .enabled
		getEffectiveWeight: function () {

			return this._effectiveWeight;

		},

		fadeIn: function ( duration ) {

			return this._scheduleFading( duration, 0, 1 );

		},

		fadeOut: function ( duration ) {

			return this._scheduleFading( duration, 1, 0 );

		},

		crossFadeFrom: function ( fadeOutAction, duration, warp ) {

			fadeOutAction.fadeOut( duration );
			this.fadeIn( duration );

			if ( warp ) {

				var fadeInDuration = this._clip.duration,
					fadeOutDuration = fadeOutAction._clip.duration,

					startEndRatio = fadeOutDuration / fadeInDuration,
					endStartRatio = fadeInDuration / fadeOutDuration;

				fadeOutAction.warp( 1.0, startEndRatio, duration );
				this.warp( endStartRatio, 1.0, duration );

			}

			return this;

		},

		crossFadeTo: function ( fadeInAction, duration, warp ) {

			return fadeInAction.crossFadeFrom( this, duration, warp );

		},

		stopFading: function () {

			var weightInterpolant = this._weightInterpolant;

			if ( weightInterpolant !== null ) {

				this._weightInterpolant = null;
				this._mixer._takeBackControlInterpolant( weightInterpolant );

			}

			return this;

		},

		// Time Scale Control

		// set the time scale stopping any scheduled warping
		// although .paused = true yields an effective time scale of zero, this
		// method does *not* change .paused, because it would be confusing
		setEffectiveTimeScale: function ( timeScale ) {

			this.timeScale = timeScale;
			this._effectiveTimeScale = this.paused ? 0 : timeScale;

			return this.stopWarping();

		},

		// return the time scale considering warping and .paused
		getEffectiveTimeScale: function () {

			return this._effectiveTimeScale;

		},

		setDuration: function ( duration ) {

			this.timeScale = this._clip.duration / duration;

			return this.stopWarping();

		},

		syncWith: function ( action ) {

			this.time = action.time;
			this.timeScale = action.timeScale;

			return this.stopWarping();

		},

		halt: function ( duration ) {

			return this.warp( this._effectiveTimeScale, 0, duration );

		},

		warp: function ( startTimeScale, endTimeScale, duration ) {

			var mixer = this._mixer, now = mixer.time,
				interpolant = this._timeScaleInterpolant,

				timeScale = this.timeScale;

			if ( interpolant === null ) {

				interpolant = mixer._lendControlInterpolant();
				this._timeScaleInterpolant = interpolant;

			}

			var times = interpolant.parameterPositions,
				values = interpolant.sampleValues;

			times[ 0 ] = now;
			times[ 1 ] = now + duration;

			values[ 0 ] = startTimeScale / timeScale;
			values[ 1 ] = endTimeScale / timeScale;

			return this;

		},

		stopWarping: function () {

			var timeScaleInterpolant = this._timeScaleInterpolant;

			if ( timeScaleInterpolant !== null ) {

				this._timeScaleInterpolant = null;
				this._mixer._takeBackControlInterpolant( timeScaleInterpolant );

			}

			return this;

		},

		// Object Accessors

		getMixer: function () {

			return this._mixer;

		},

		getClip: function () {

			return this._clip;

		},

		getRoot: function () {

			return this._localRoot || this._mixer._root;

		},

		// Interna

		_update: function ( time, deltaTime, timeDirection, accuIndex ) {

			// called by the mixer

			if ( ! this.enabled ) {

				// call ._updateWeight() to update ._effectiveWeight

				this._updateWeight( time );
				return;

			}

			var startTime = this._startTime;

			if ( startTime !== null ) {

				// check for scheduled start of action

				var timeRunning = ( time - startTime ) * timeDirection;
				if ( timeRunning < 0 || timeDirection === 0 ) {

					return; // yet to come / don't decide when delta = 0

				}

				// start

				this._startTime = null; // unschedule
				deltaTime = timeDirection * timeRunning;

			}

			// apply time scale and advance time

			deltaTime *= this._updateTimeScale( time );
			var clipTime = this._updateTime( deltaTime );

			// note: _updateTime may disable the action resulting in
			// an effective weight of 0

			var weight = this._updateWeight( time );

			if ( weight > 0 ) {

				var interpolants = this._interpolants;
				var propertyMixers = this._propertyBindings;

				switch ( this.blendMode ) {

					case AdditiveAnimationBlendMode:

						for ( var j = 0, m = interpolants.length; j !== m; ++ j ) {

							interpolants[ j ].evaluate( clipTime );
							propertyMixers[ j ].accumulateAdditive( weight );

						}

						break;

					case NormalAnimationBlendMode:
					default:

						for ( var j = 0, m = interpolants.length; j !== m; ++ j ) {

							interpolants[ j ].evaluate( clipTime );
							propertyMixers[ j ].accumulate( accuIndex, weight );

						}

				}

			}

		},

		_updateWeight: function ( time ) {

			var weight = 0;

			if ( this.enabled ) {

				weight = this.weight;
				var interpolant = this._weightInterpolant;

				if ( interpolant !== null ) {

					var interpolantValue = interpolant.evaluate( time )[ 0 ];

					weight *= interpolantValue;

					if ( time > interpolant.parameterPositions[ 1 ] ) {

						this.stopFading();

						if ( interpolantValue === 0 ) {

							// faded out, disable
							this.enabled = false;

						}

					}

				}

			}

			this._effectiveWeight = weight;
			return weight;

		},

		_updateTimeScale: function ( time ) {

			var timeScale = 0;

			if ( ! this.paused ) {

				timeScale = this.timeScale;

				var interpolant = this._timeScaleInterpolant;

				if ( interpolant !== null ) {

					var interpolantValue = interpolant.evaluate( time )[ 0 ];

					timeScale *= interpolantValue;

					if ( time > interpolant.parameterPositions[ 1 ] ) {

						this.stopWarping();

						if ( timeScale === 0 ) {

							// motion has halted, pause
							this.paused = true;

						} else {

							// warp done - apply final time scale
							this.timeScale = timeScale;

						}

					}

				}

			}

			this._effectiveTimeScale = timeScale;
			return timeScale;

		},

		_updateTime: function ( deltaTime ) {

			var time = this.time + deltaTime;
			var duration = this._clip.duration;
			var loop = this.loop;
			var loopCount = this._loopCount;

			var pingPong = ( loop === LoopPingPong );

			if ( deltaTime === 0 ) {

				if ( loopCount === - 1 ) { return time; }

				return ( pingPong && ( loopCount & 1 ) === 1 ) ? duration - time : time;

			}

			if ( loop === LoopOnce ) {

				if ( loopCount === - 1 ) {

					// just started

					this._loopCount = 0;
					this._setEndings( true, true, false );

				}

				handle_stop: {

					if ( time >= duration ) {

						time = duration;

					} else if ( time < 0 ) {

						time = 0;

					} else {

						this.time = time;

						break handle_stop;

					}

					if ( this.clampWhenFinished ) { this.paused = true; }
					else { this.enabled = false; }

					this.time = time;

					this._mixer.dispatchEvent( {
						type: 'finished', action: this,
						direction: deltaTime < 0 ? - 1 : 1
					} );

				}

			} else { // repetitive Repeat or PingPong

				if ( loopCount === - 1 ) {

					// just started

					if ( deltaTime >= 0 ) {

						loopCount = 0;

						this._setEndings( true, this.repetitions === 0, pingPong );

					} else {

						// when looping in reverse direction, the initial
						// transition through zero counts as a repetition,
						// so leave loopCount at -1

						this._setEndings( this.repetitions === 0, true, pingPong );

					}

				}

				if ( time >= duration || time < 0 ) {

					// wrap around

					var loopDelta = Math.floor( time / duration ); // signed
					time -= duration * loopDelta;

					loopCount += Math.abs( loopDelta );

					var pending = this.repetitions - loopCount;

					if ( pending <= 0 ) {

						// have to stop (switch state, clamp time, fire event)

						if ( this.clampWhenFinished ) { this.paused = true; }
						else { this.enabled = false; }

						time = deltaTime > 0 ? duration : 0;

						this.time = time;

						this._mixer.dispatchEvent( {
							type: 'finished', action: this,
							direction: deltaTime > 0 ? 1 : - 1
						} );

					} else {

						// keep running

						if ( pending === 1 ) {

							// entering the last round

							var atStart = deltaTime < 0;
							this._setEndings( atStart, ! atStart, pingPong );

						} else {

							this._setEndings( false, false, pingPong );

						}

						this._loopCount = loopCount;

						this.time = time;

						this._mixer.dispatchEvent( {
							type: 'loop', action: this, loopDelta: loopDelta
						} );

					}

				} else {

					this.time = time;

				}

				if ( pingPong && ( loopCount & 1 ) === 1 ) {

					// invert time for the "pong round"

					return duration - time;

				}

			}

			return time;

		},

		_setEndings: function ( atStart, atEnd, pingPong ) {

			var settings = this._interpolantSettings;

			if ( pingPong ) {

				settings.endingStart = ZeroSlopeEnding;
				settings.endingEnd = ZeroSlopeEnding;

			} else {

				// assuming for LoopOnce atStart == atEnd == true

				if ( atStart ) {

					settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;

				} else {

					settings.endingStart = WrapAroundEnding;

				}

				if ( atEnd ) {

					settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;

				} else {

					settings.endingEnd 	 = WrapAroundEnding;

				}

			}

		},

		_scheduleFading: function ( duration, weightNow, weightThen ) {

			var mixer = this._mixer, now = mixer.time,
				interpolant = this._weightInterpolant;

			if ( interpolant === null ) {

				interpolant = mixer._lendControlInterpolant();
				this._weightInterpolant = interpolant;

			}

			var times = interpolant.parameterPositions,
				values = interpolant.sampleValues;

			times[ 0 ] = now;
			values[ 0 ] = weightNow;
			times[ 1 ] = now + duration;
			values[ 1 ] = weightThen;

			return this;

		}

	} );

	/**
	 *
	 * Player for AnimationClips.
	 *
	 *
	 * @author Ben Houston / http://clara.io/
	 * @author David Sarno / http://lighthaus.us/
	 * @author tschw
	 */

	function AnimationMixer( root ) {

		this._root = root;
		this._initMemoryManager();
		this._accuIndex = 0;

		this.time = 0;

		this.timeScale = 1.0;

	}

	AnimationMixer.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

		constructor: AnimationMixer,

		_bindAction: function ( action, prototypeAction ) {

			var root = action._localRoot || this._root,
				tracks = action._clip.tracks,
				nTracks = tracks.length,
				bindings = action._propertyBindings,
				interpolants = action._interpolants,
				rootUuid = root.uuid,
				bindingsByRoot = this._bindingsByRootAndName,
				bindingsByName = bindingsByRoot[ rootUuid ];

			if ( bindingsByName === undefined ) {

				bindingsByName = {};
				bindingsByRoot[ rootUuid ] = bindingsByName;

			}

			for ( var i = 0; i !== nTracks; ++ i ) {

				var track = tracks[ i ],
					trackName = track.name,
					binding = bindingsByName[ trackName ];

				if ( binding !== undefined ) {

					bindings[ i ] = binding;

				} else {

					binding = bindings[ i ];

					if ( binding !== undefined ) {

						// existing binding, make sure the cache knows

						if ( binding._cacheIndex === null ) {

							++ binding.referenceCount;
							this._addInactiveBinding( binding, rootUuid, trackName );

						}

						continue;

					}

					var path = prototypeAction && prototypeAction.
						_propertyBindings[ i ].binding.parsedPath;

					binding = new PropertyMixer(
						PropertyBinding.create( root, trackName, path ),
						track.ValueTypeName, track.getValueSize() );

					++ binding.referenceCount;
					this._addInactiveBinding( binding, rootUuid, trackName );

					bindings[ i ] = binding;

				}

				interpolants[ i ].resultBuffer = binding.buffer;

			}

		},

		_activateAction: function ( action ) {

			if ( ! this._isActiveAction( action ) ) {

				if ( action._cacheIndex === null ) {

					// this action has been forgotten by the cache, but the user
					// appears to be still using it -> rebind

					var rootUuid = ( action._localRoot || this._root ).uuid,
						clipUuid = action._clip.uuid,
						actionsForClip = this._actionsByClip[ clipUuid ];

					this._bindAction( action,
						actionsForClip && actionsForClip.knownActions[ 0 ] );

					this._addInactiveAction( action, clipUuid, rootUuid );

				}

				var bindings = action._propertyBindings;

				// increment reference counts / sort out state
				for ( var i = 0, n = bindings.length; i !== n; ++ i ) {

					var binding = bindings[ i ];

					if ( binding.useCount ++ === 0 ) {

						this._lendBinding( binding );
						binding.saveOriginalState();

					}

				}

				this._lendAction( action );

			}

		},

		_deactivateAction: function ( action ) {

			if ( this._isActiveAction( action ) ) {

				var bindings = action._propertyBindings;

				// decrement reference counts / sort out state
				for ( var i = 0, n = bindings.length; i !== n; ++ i ) {

					var binding = bindings[ i ];

					if ( -- binding.useCount === 0 ) {

						binding.restoreOriginalState();
						this._takeBackBinding( binding );

					}

				}

				this._takeBackAction( action );

			}

		},

		// Memory manager

		_initMemoryManager: function () {

			this._actions = []; // 'nActiveActions' followed by inactive ones
			this._nActiveActions = 0;

			this._actionsByClip = {};
			// inside:
			// {
			// 	knownActions: Array< AnimationAction > - used as prototypes
			// 	actionByRoot: AnimationAction - lookup
			// }


			this._bindings = []; // 'nActiveBindings' followed by inactive ones
			this._nActiveBindings = 0;

			this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >


			this._controlInterpolants = []; // same game as above
			this._nActiveControlInterpolants = 0;

			var scope = this;

			this.stats = {

				actions: {
					get total() {

						return scope._actions.length;

					},
					get inUse() {

						return scope._nActiveActions;

					}
				},
				bindings: {
					get total() {

						return scope._bindings.length;

					},
					get inUse() {

						return scope._nActiveBindings;

					}
				},
				controlInterpolants: {
					get total() {

						return scope._controlInterpolants.length;

					},
					get inUse() {

						return scope._nActiveControlInterpolants;

					}
				}

			};

		},

		// Memory management for AnimationAction objects

		_isActiveAction: function ( action ) {

			var index = action._cacheIndex;
			return index !== null && index < this._nActiveActions;

		},

		_addInactiveAction: function ( action, clipUuid, rootUuid ) {

			var actions = this._actions,
				actionsByClip = this._actionsByClip,
				actionsForClip = actionsByClip[ clipUuid ];

			if ( actionsForClip === undefined ) {

				actionsForClip = {

					knownActions: [ action ],
					actionByRoot: {}

				};

				action._byClipCacheIndex = 0;

				actionsByClip[ clipUuid ] = actionsForClip;

			} else {

				var knownActions = actionsForClip.knownActions;

				action._byClipCacheIndex = knownActions.length;
				knownActions.push( action );

			}

			action._cacheIndex = actions.length;
			actions.push( action );

			actionsForClip.actionByRoot[ rootUuid ] = action;

		},

		_removeInactiveAction: function ( action ) {

			var actions = this._actions,
				lastInactiveAction = actions[ actions.length - 1 ],
				cacheIndex = action._cacheIndex;

			lastInactiveAction._cacheIndex = cacheIndex;
			actions[ cacheIndex ] = lastInactiveAction;
			actions.pop();

			action._cacheIndex = null;


			var clipUuid = action._clip.uuid,
				actionsByClip = this._actionsByClip,
				actionsForClip = actionsByClip[ clipUuid ],
				knownActionsForClip = actionsForClip.knownActions,

				lastKnownAction =
					knownActionsForClip[ knownActionsForClip.length - 1 ],

				byClipCacheIndex = action._byClipCacheIndex;

			lastKnownAction._byClipCacheIndex = byClipCacheIndex;
			knownActionsForClip[ byClipCacheIndex ] = lastKnownAction;
			knownActionsForClip.pop();

			action._byClipCacheIndex = null;


			var actionByRoot = actionsForClip.actionByRoot,
				rootUuid = ( action._localRoot || this._root ).uuid;

			delete actionByRoot[ rootUuid ];

			if ( knownActionsForClip.length === 0 ) {

				delete actionsByClip[ clipUuid ];

			}

			this._removeInactiveBindingsForAction( action );

		},

		_removeInactiveBindingsForAction: function ( action ) {

			var bindings = action._propertyBindings;
			for ( var i = 0, n = bindings.length; i !== n; ++ i ) {

				var binding = bindings[ i ];

				if ( -- binding.referenceCount === 0 ) {

					this._removeInactiveBinding( binding );

				}

			}

		},

		_lendAction: function ( action ) {

			// [ active actions |  inactive actions  ]
			// [  active actions >| inactive actions ]
			//                 s        a
			//                  <-swap->
			//                 a        s

			var actions = this._actions,
				prevIndex = action._cacheIndex,

				lastActiveIndex = this._nActiveActions ++,

				firstInactiveAction = actions[ lastActiveIndex ];

			action._cacheIndex = lastActiveIndex;
			actions[ lastActiveIndex ] = action;

			firstInactiveAction._cacheIndex = prevIndex;
			actions[ prevIndex ] = firstInactiveAction;

		},

		_takeBackAction: function ( action ) {

			// [  active actions  | inactive actions ]
			// [ active actions |< inactive actions  ]
			//        a        s
			//         <-swap->
			//        s        a

			var actions = this._actions,
				prevIndex = action._cacheIndex,

				firstInactiveIndex = -- this._nActiveActions,

				lastActiveAction = actions[ firstInactiveIndex ];

			action._cacheIndex = firstInactiveIndex;
			actions[ firstInactiveIndex ] = action;

			lastActiveAction._cacheIndex = prevIndex;
			actions[ prevIndex ] = lastActiveAction;

		},

		// Memory management for PropertyMixer objects

		_addInactiveBinding: function ( binding, rootUuid, trackName ) {

			var bindingsByRoot = this._bindingsByRootAndName,
				bindingByName = bindingsByRoot[ rootUuid ],

				bindings = this._bindings;

			if ( bindingByName === undefined ) {

				bindingByName = {};
				bindingsByRoot[ rootUuid ] = bindingByName;

			}

			bindingByName[ trackName ] = binding;

			binding._cacheIndex = bindings.length;
			bindings.push( binding );

		},

		_removeInactiveBinding: function ( binding ) {

			var bindings = this._bindings,
				propBinding = binding.binding,
				rootUuid = propBinding.rootNode.uuid,
				trackName = propBinding.path,
				bindingsByRoot = this._bindingsByRootAndName,
				bindingByName = bindingsByRoot[ rootUuid ],

				lastInactiveBinding = bindings[ bindings.length - 1 ],
				cacheIndex = binding._cacheIndex;

			lastInactiveBinding._cacheIndex = cacheIndex;
			bindings[ cacheIndex ] = lastInactiveBinding;
			bindings.pop();

			delete bindingByName[ trackName ];

			if ( Object.keys( bindingByName ).length === 0 ) {

				delete bindingsByRoot[ rootUuid ];

			}

		},

		_lendBinding: function ( binding ) {

			var bindings = this._bindings,
				prevIndex = binding._cacheIndex,

				lastActiveIndex = this._nActiveBindings ++,

				firstInactiveBinding = bindings[ lastActiveIndex ];

			binding._cacheIndex = lastActiveIndex;
			bindings[ lastActiveIndex ] = binding;

			firstInactiveBinding._cacheIndex = prevIndex;
			bindings[ prevIndex ] = firstInactiveBinding;

		},

		_takeBackBinding: function ( binding ) {

			var bindings = this._bindings,
				prevIndex = binding._cacheIndex,

				firstInactiveIndex = -- this._nActiveBindings,

				lastActiveBinding = bindings[ firstInactiveIndex ];

			binding._cacheIndex = firstInactiveIndex;
			bindings[ firstInactiveIndex ] = binding;

			lastActiveBinding._cacheIndex = prevIndex;
			bindings[ prevIndex ] = lastActiveBinding;

		},


		// Memory management of Interpolants for weight and time scale

		_lendControlInterpolant: function () {

			var interpolants = this._controlInterpolants,
				lastActiveIndex = this._nActiveControlInterpolants ++,
				interpolant = interpolants[ lastActiveIndex ];

			if ( interpolant === undefined ) {

				interpolant = new LinearInterpolant(
					new Float32Array( 2 ), new Float32Array( 2 ),
					1, this._controlInterpolantsResultBuffer );

				interpolant.__cacheIndex = lastActiveIndex;
				interpolants[ lastActiveIndex ] = interpolant;

			}

			return interpolant;

		},

		_takeBackControlInterpolant: function ( interpolant ) {

			var interpolants = this._controlInterpolants,
				prevIndex = interpolant.__cacheIndex,

				firstInactiveIndex = -- this._nActiveControlInterpolants,

				lastActiveInterpolant = interpolants[ firstInactiveIndex ];

			interpolant.__cacheIndex = firstInactiveIndex;
			interpolants[ firstInactiveIndex ] = interpolant;

			lastActiveInterpolant.__cacheIndex = prevIndex;
			interpolants[ prevIndex ] = lastActiveInterpolant;

		},

		_controlInterpolantsResultBuffer: new Float32Array( 1 ),

		// return an action for a clip optionally using a custom root target
		// object (this method allocates a lot of dynamic memory in case a
		// previously unknown clip/root combination is specified)
		clipAction: function ( clip, optionalRoot, blendMode ) {

			var root = optionalRoot || this._root,
				rootUuid = root.uuid,

				clipObject = typeof clip === 'string' ?
					AnimationClip.findByName( root, clip ) : clip,

				clipUuid = clipObject !== null ? clipObject.uuid : clip,

				actionsForClip = this._actionsByClip[ clipUuid ],
				prototypeAction = null;

			if ( blendMode === undefined ) {

				if ( clipObject !== null ) {

					blendMode = clipObject.blendMode;

				} else {

					blendMode = NormalAnimationBlendMode;

				}

			}

			if ( actionsForClip !== undefined ) {

				var existingAction =
						actionsForClip.actionByRoot[ rootUuid ];

				if ( existingAction !== undefined && existingAction.blendMode === blendMode ) {

					return existingAction;

				}

				// we know the clip, so we don't have to parse all
				// the bindings again but can just copy
				prototypeAction = actionsForClip.knownActions[ 0 ];

				// also, take the clip from the prototype action
				if ( clipObject === null )
					{ clipObject = prototypeAction._clip; }

			}

			// clip must be known when specified via string
			if ( clipObject === null ) { return null; }

			// allocate all resources required to run it
			var newAction = new AnimationAction( this, clipObject, optionalRoot, blendMode );

			this._bindAction( newAction, prototypeAction );

			// and make the action known to the memory manager
			this._addInactiveAction( newAction, clipUuid, rootUuid );

			return newAction;

		},

		// get an existing action
		existingAction: function ( clip, optionalRoot ) {

			var root = optionalRoot || this._root,
				rootUuid = root.uuid,

				clipObject = typeof clip === 'string' ?
					AnimationClip.findByName( root, clip ) : clip,

				clipUuid = clipObject ? clipObject.uuid : clip,

				actionsForClip = this._actionsByClip[ clipUuid ];

			if ( actionsForClip !== undefined ) {

				return actionsForClip.actionByRoot[ rootUuid ] || null;

			}

			return null;

		},

		// deactivates all previously scheduled actions
		stopAllAction: function () {

			var actions = this._actions,
				nActions = this._nActiveActions,
				bindings = this._bindings,
				nBindings = this._nActiveBindings;

			this._nActiveActions = 0;
			this._nActiveBindings = 0;

			for ( var i = 0; i !== nActions; ++ i ) {

				actions[ i ].reset();

			}

			for ( var i = 0; i !== nBindings; ++ i ) {

				bindings[ i ].useCount = 0;

			}

			return this;

		},

		// advance the time and update apply the animation
		update: function ( deltaTime ) {

			deltaTime *= this.timeScale;

			var actions = this._actions,
				nActions = this._nActiveActions,

				time = this.time += deltaTime,
				timeDirection = Math.sign( deltaTime ),

				accuIndex = this._accuIndex ^= 1;

			// run active actions

			for ( var i = 0; i !== nActions; ++ i ) {

				var action = actions[ i ];

				action._update( time, deltaTime, timeDirection, accuIndex );

			}

			// update scene graph

			var bindings = this._bindings,
				nBindings = this._nActiveBindings;

			for ( var i = 0; i !== nBindings; ++ i ) {

				bindings[ i ].apply( accuIndex );

			}

			return this;

		},

		// Allows you to seek to a specific time in an animation.
		setTime: function ( timeInSeconds ) {

			this.time = 0; // Zero out time attribute for AnimationMixer object;
			for ( var i = 0; i < this._actions.length; i ++ ) {

				this._actions[ i ].time = 0; // Zero out time attribute for all associated AnimationAction objects.

			}

			return this.update( timeInSeconds ); // Update used to set exact time. Returns "this" AnimationMixer object.

		},

		// return this mixer's root target object
		getRoot: function () {

			return this._root;

		},

		// free all resources specific to a particular clip
		uncacheClip: function ( clip ) {

			var actions = this._actions,
				clipUuid = clip.uuid,
				actionsByClip = this._actionsByClip,
				actionsForClip = actionsByClip[ clipUuid ];

			if ( actionsForClip !== undefined ) {

				// note: just calling _removeInactiveAction would mess up the
				// iteration state and also require updating the state we can
				// just throw away

				var actionsToRemove = actionsForClip.knownActions;

				for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) {

					var action = actionsToRemove[ i ];

					this._deactivateAction( action );

					var cacheIndex = action._cacheIndex,
						lastInactiveAction = actions[ actions.length - 1 ];

					action._cacheIndex = null;
					action._byClipCacheIndex = null;

					lastInactiveAction._cacheIndex = cacheIndex;
					actions[ cacheIndex ] = lastInactiveAction;
					actions.pop();

					this._removeInactiveBindingsForAction( action );

				}

				delete actionsByClip[ clipUuid ];

			}

		},

		// free all resources specific to a particular root target object
		uncacheRoot: function ( root ) {

			var rootUuid = root.uuid,
				actionsByClip = this._actionsByClip;

			for ( var clipUuid in actionsByClip ) {

				var actionByRoot = actionsByClip[ clipUuid ].actionByRoot,
					action = actionByRoot[ rootUuid ];

				if ( action !== undefined ) {

					this._deactivateAction( action );
					this._removeInactiveAction( action );

				}

			}

			var bindingsByRoot = this._bindingsByRootAndName,
				bindingByName = bindingsByRoot[ rootUuid ];

			if ( bindingByName !== undefined ) {

				for ( var trackName in bindingByName ) {

					var binding = bindingByName[ trackName ];
					binding.restoreOriginalState();
					this._removeInactiveBinding( binding );

				}

			}

		},

		// remove a targeted clip from the cache
		uncacheAction: function ( clip, optionalRoot ) {

			var action = this.existingAction( clip, optionalRoot );

			if ( action !== null ) {

				this._deactivateAction( action );
				this._removeInactiveAction( action );

			}

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function Uniform( value ) {

		if ( typeof value === 'string' ) {

			console.warn( 'THREE.Uniform: Type parameter is no longer needed.' );
			value = arguments[ 1 ];

		}

		this.value = value;

	}

	Uniform.prototype.clone = function () {

		return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() );

	};

	/**
	 * @author benaadams / https://twitter.com/ben_a_adams
	 */

	function InstancedInterleavedBuffer( array, stride, meshPerAttribute ) {

		InterleavedBuffer.call( this, array, stride );

		this.meshPerAttribute = meshPerAttribute || 1;

	}

	InstancedInterleavedBuffer.prototype = Object.assign( Object.create( InterleavedBuffer.prototype ), {

		constructor: InstancedInterleavedBuffer,

		isInstancedInterleavedBuffer: true,

		copy: function ( source ) {

			InterleavedBuffer.prototype.copy.call( this, source );

			this.meshPerAttribute = source.meshPerAttribute;

			return this;

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author bhouston / http://clara.io/
	 * @author stephomi / http://stephaneginier.com/
	 */

	function Raycaster( origin, direction, near, far ) {

		this.ray = new Ray( origin, direction );
		// direction is assumed to be normalized (for accurate distance calculations)

		this.near = near || 0;
		this.far = far || Infinity;
		this.camera = null;
		this.layers = new Layers();

		this.params = {
			Mesh: {},
			Line: { threshold: 1 },
			LOD: {},
			Points: { threshold: 1 },
			Sprite: {}
		};

		Object.defineProperties( this.params, {
			PointCloud: {
				get: function () {

					console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' );
					return this.Points;

				}
			}
		} );

	}

	function ascSort( a, b ) {

		return a.distance - b.distance;

	}

	function intersectObject( object, raycaster, intersects, recursive ) {

		if ( object.layers.test( raycaster.layers ) ) {

			object.raycast( raycaster, intersects );

		}

		if ( recursive === true ) {

			var children = object.children;

			for ( var i = 0, l = children.length; i < l; i ++ ) {

				intersectObject( children[ i ], raycaster, intersects, true );

			}

		}

	}

	Object.assign( Raycaster.prototype, {

		set: function ( origin, direction ) {

			// direction is assumed to be normalized (for accurate distance calculations)

			this.ray.set( origin, direction );

		},

		setFromCamera: function ( coords, camera ) {

			if ( ( camera && camera.isPerspectiveCamera ) ) {

				this.ray.origin.setFromMatrixPosition( camera.matrixWorld );
				this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize();
				this.camera = camera;

			} else if ( ( camera && camera.isOrthographicCamera ) ) {

				this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera
				this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld );
				this.camera = camera;

			} else {

				console.error( 'THREE.Raycaster: Unsupported camera type.' );

			}

		},

		intersectObject: function ( object, recursive, optionalTarget ) {

			var intersects = optionalTarget || [];

			intersectObject( object, this, intersects, recursive );

			intersects.sort( ascSort );

			return intersects;

		},

		intersectObjects: function ( objects, recursive, optionalTarget ) {

			var intersects = optionalTarget || [];

			if ( Array.isArray( objects ) === false ) {

				console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' );
				return intersects;

			}

			for ( var i = 0, l = objects.length; i < l; i ++ ) {

				intersectObject( objects[ i ], this, intersects, recursive );

			}

			intersects.sort( ascSort );

			return intersects;

		}

	} );

	/**
	 * @author bhouston / http://clara.io
	 * @author WestLangley / http://github.com/WestLangley
	 *
	 * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
	 *
	 * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up.
	 * The azimuthal angle (theta) is measured from the positive z-axis.
	 */

	function Spherical( radius, phi, theta ) {

		this.radius = ( radius !== undefined ) ? radius : 1.0;
		this.phi = ( phi !== undefined ) ? phi : 0; // polar angle
		this.theta = ( theta !== undefined ) ? theta : 0; // azimuthal angle

		return this;

	}

	Object.assign( Spherical.prototype, {

		set: function ( radius, phi, theta ) {

			this.radius = radius;
			this.phi = phi;
			this.theta = theta;

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( other ) {

			this.radius = other.radius;
			this.phi = other.phi;
			this.theta = other.theta;

			return this;

		},

		// restrict phi to be betwee EPS and PI-EPS
		makeSafe: function () {

			var EPS = 0.000001;
			this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) );

			return this;

		},

		setFromVector3: function ( v ) {

			return this.setFromCartesianCoords( v.x, v.y, v.z );

		},

		setFromCartesianCoords: function ( x, y, z ) {

			this.radius = Math.sqrt( x * x + y * y + z * z );

			if ( this.radius === 0 ) {

				this.theta = 0;
				this.phi = 0;

			} else {

				this.theta = Math.atan2( x, z );
				this.phi = Math.acos( MathUtils.clamp( y / this.radius, - 1, 1 ) );

			}

			return this;

		}

	} );

	/**
	 * @author Mugen87 / https://github.com/Mugen87
	 *
	 * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
	 *
	 */

	function Cylindrical( radius, theta, y ) {

		this.radius = ( radius !== undefined ) ? radius : 1.0; // distance from the origin to a point in the x-z plane
		this.theta = ( theta !== undefined ) ? theta : 0; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
		this.y = ( y !== undefined ) ? y : 0; // height above the x-z plane

		return this;

	}

	Object.assign( Cylindrical.prototype, {

		set: function ( radius, theta, y ) {

			this.radius = radius;
			this.theta = theta;
			this.y = y;

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( other ) {

			this.radius = other.radius;
			this.theta = other.theta;
			this.y = other.y;

			return this;

		},

		setFromVector3: function ( v ) {

			return this.setFromCartesianCoords( v.x, v.y, v.z );

		},

		setFromCartesianCoords: function ( x, y, z ) {

			this.radius = Math.sqrt( x * x + z * z );
			this.theta = Math.atan2( x, z );
			this.y = y;

			return this;

		}

	} );

	/**
	 * @author bhouston / http://clara.io
	 */

	var _vector$7 = new Vector2();

	function Box2( min, max ) {

		this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity );
		this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity );

	}

	Object.assign( Box2.prototype, {

		set: function ( min, max ) {

			this.min.copy( min );
			this.max.copy( max );

			return this;

		},

		setFromPoints: function ( points ) {

			this.makeEmpty();

			for ( var i = 0, il = points.length; i < il; i ++ ) {

				this.expandByPoint( points[ i ] );

			}

			return this;

		},

		setFromCenterAndSize: function ( center, size ) {

			var halfSize = _vector$7.copy( size ).multiplyScalar( 0.5 );
			this.min.copy( center ).sub( halfSize );
			this.max.copy( center ).add( halfSize );

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( box ) {

			this.min.copy( box.min );
			this.max.copy( box.max );

			return this;

		},

		makeEmpty: function () {

			this.min.x = this.min.y = + Infinity;
			this.max.x = this.max.y = - Infinity;

			return this;

		},

		isEmpty: function () {

			// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes

			return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y );

		},

		getCenter: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Box2: .getCenter() target is now required' );
				target = new Vector2();

			}

			return this.isEmpty() ? target.set( 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );

		},

		getSize: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Box2: .getSize() target is now required' );
				target = new Vector2();

			}

			return this.isEmpty() ? target.set( 0, 0 ) : target.subVectors( this.max, this.min );

		},

		expandByPoint: function ( point ) {

			this.min.min( point );
			this.max.max( point );

			return this;

		},

		expandByVector: function ( vector ) {

			this.min.sub( vector );
			this.max.add( vector );

			return this;

		},

		expandByScalar: function ( scalar ) {

			this.min.addScalar( - scalar );
			this.max.addScalar( scalar );

			return this;

		},

		containsPoint: function ( point ) {

			return point.x < this.min.x || point.x > this.max.x ||
				point.y < this.min.y || point.y > this.max.y ? false : true;

		},

		containsBox: function ( box ) {

			return this.min.x <= box.min.x && box.max.x <= this.max.x &&
				this.min.y <= box.min.y && box.max.y <= this.max.y;

		},

		getParameter: function ( point, target ) {

			// This can potentially have a divide by zero if the box
			// has a size dimension of 0.

			if ( target === undefined ) {

				console.warn( 'THREE.Box2: .getParameter() target is now required' );
				target = new Vector2();

			}

			return target.set(
				( point.x - this.min.x ) / ( this.max.x - this.min.x ),
				( point.y - this.min.y ) / ( this.max.y - this.min.y )
			);

		},

		intersectsBox: function ( box ) {

			// using 4 splitting planes to rule out intersections

			return box.max.x < this.min.x || box.min.x > this.max.x ||
				box.max.y < this.min.y || box.min.y > this.max.y ? false : true;

		},

		clampPoint: function ( point, target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Box2: .clampPoint() target is now required' );
				target = new Vector2();

			}

			return target.copy( point ).clamp( this.min, this.max );

		},

		distanceToPoint: function ( point ) {

			var clampedPoint = _vector$7.copy( point ).clamp( this.min, this.max );
			return clampedPoint.sub( point ).length();

		},

		intersect: function ( box ) {

			this.min.max( box.min );
			this.max.min( box.max );

			return this;

		},

		union: function ( box ) {

			this.min.min( box.min );
			this.max.max( box.max );

			return this;

		},

		translate: function ( offset ) {

			this.min.add( offset );
			this.max.add( offset );

			return this;

		},

		equals: function ( box ) {

			return box.min.equals( this.min ) && box.max.equals( this.max );

		}

	} );

	/**
	 * @author bhouston / http://clara.io
	 */

	var _startP = new Vector3();
	var _startEnd = new Vector3();

	function Line3( start, end ) {

		this.start = ( start !== undefined ) ? start : new Vector3();
		this.end = ( end !== undefined ) ? end : new Vector3();

	}

	Object.assign( Line3.prototype, {

		set: function ( start, end ) {

			this.start.copy( start );
			this.end.copy( end );

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		},

		copy: function ( line ) {

			this.start.copy( line.start );
			this.end.copy( line.end );

			return this;

		},

		getCenter: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Line3: .getCenter() target is now required' );
				target = new Vector3();

			}

			return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 );

		},

		delta: function ( target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Line3: .delta() target is now required' );
				target = new Vector3();

			}

			return target.subVectors( this.end, this.start );

		},

		distanceSq: function () {

			return this.start.distanceToSquared( this.end );

		},

		distance: function () {

			return this.start.distanceTo( this.end );

		},

		at: function ( t, target ) {

			if ( target === undefined ) {

				console.warn( 'THREE.Line3: .at() target is now required' );
				target = new Vector3();

			}

			return this.delta( target ).multiplyScalar( t ).add( this.start );

		},

		closestPointToPointParameter: function ( point, clampToLine ) {

			_startP.subVectors( point, this.start );
			_startEnd.subVectors( this.end, this.start );

			var startEnd2 = _startEnd.dot( _startEnd );
			var startEnd_startP = _startEnd.dot( _startP );

			var t = startEnd_startP / startEnd2;

			if ( clampToLine ) {

				t = MathUtils.clamp( t, 0, 1 );

			}

			return t;

		},

		closestPointToPoint: function ( point, clampToLine, target ) {

			var t = this.closestPointToPointParameter( point, clampToLine );

			if ( target === undefined ) {

				console.warn( 'THREE.Line3: .closestPointToPoint() target is now required' );
				target = new Vector3();

			}

			return this.delta( target ).multiplyScalar( t ).add( this.start );

		},

		applyMatrix4: function ( matrix ) {

			this.start.applyMatrix4( matrix );
			this.end.applyMatrix4( matrix );

			return this;

		},

		equals: function ( line ) {

			return line.start.equals( this.start ) && line.end.equals( this.end );

		}

	} );

	/**
	 * @author alteredq / http://alteredqualia.com/
	 */

	function ImmediateRenderObject( material ) {

		Object3D.call( this );

		this.material = material;
		this.render = function ( /* renderCallback */ ) {};

	}

	ImmediateRenderObject.prototype = Object.create( Object3D.prototype );
	ImmediateRenderObject.prototype.constructor = ImmediateRenderObject;

	ImmediateRenderObject.prototype.isImmediateRenderObject = true;

	/**
	 * @author alteredq / http://alteredqualia.com/
	 * @author mrdoob / http://mrdoob.com/
	 * @author WestLangley / http://github.com/WestLangley
	 */

	var _vector$8 = new Vector3();

	function SpotLightHelper( light, color ) {

		Object3D.call( this );

		this.light = light;
		this.light.updateMatrixWorld();

		this.matrix = light.matrixWorld;
		this.matrixAutoUpdate = false;

		this.color = color;

		var geometry = new BufferGeometry();

		var positions = [
			0, 0, 0, 	0, 0, 1,
			0, 0, 0, 	1, 0, 1,
			0, 0, 0,	- 1, 0, 1,
			0, 0, 0, 	0, 1, 1,
			0, 0, 0, 	0, - 1, 1
		];

		for ( var i = 0, j = 1, l = 32; i < l; i ++, j ++ ) {

			var p1 = ( i / l ) * Math.PI * 2;
			var p2 = ( j / l ) * Math.PI * 2;

			positions.push(
				Math.cos( p1 ), Math.sin( p1 ), 1,
				Math.cos( p2 ), Math.sin( p2 ), 1
			);

		}

		geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );

		var material = new LineBasicMaterial( { fog: false, toneMapped: false } );

		this.cone = new LineSegments( geometry, material );
		this.add( this.cone );

		this.update();

	}

	SpotLightHelper.prototype = Object.create( Object3D.prototype );
	SpotLightHelper.prototype.constructor = SpotLightHelper;

	SpotLightHelper.prototype.dispose = function () {

		this.cone.geometry.dispose();
		this.cone.material.dispose();

	};

	SpotLightHelper.prototype.update = function () {

		this.light.updateMatrixWorld();

		var coneLength = this.light.distance ? this.light.distance : 1000;
		var coneWidth = coneLength * Math.tan( this.light.angle );

		this.cone.scale.set( coneWidth, coneWidth, coneLength );

		_vector$8.setFromMatrixPosition( this.light.target.matrixWorld );

		this.cone.lookAt( _vector$8 );

		if ( this.color !== undefined ) {

			this.cone.material.color.set( this.color );

		} else {

			this.cone.material.color.copy( this.light.color );

		}

	};

	/**
	 * @author Sean Griffin / http://twitter.com/sgrif
	 * @author Michael Guerrero / http://realitymeltdown.com
	 * @author mrdoob / http://mrdoob.com/
	 * @author ikerr / http://verold.com
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	var _vector$9 = new Vector3();
	var _boneMatrix = new Matrix4();
	var _matrixWorldInv = new Matrix4();

	function getBoneList( object ) {

		var boneList = [];

		if ( object && object.isBone ) {

			boneList.push( object );

		}

		for ( var i = 0; i < object.children.length; i ++ ) {

			boneList.push.apply( boneList, getBoneList( object.children[ i ] ) );

		}

		return boneList;

	}

	function SkeletonHelper( object ) {

		var bones = getBoneList( object );

		var geometry = new BufferGeometry();

		var vertices = [];
		var colors = [];

		var color1 = new Color( 0, 0, 1 );
		var color2 = new Color( 0, 1, 0 );

		for ( var i = 0; i < bones.length; i ++ ) {

			var bone = bones[ i ];

			if ( bone.parent && bone.parent.isBone ) {

				vertices.push( 0, 0, 0 );
				vertices.push( 0, 0, 0 );
				colors.push( color1.r, color1.g, color1.b );
				colors.push( color2.r, color2.g, color2.b );

			}

		}

		geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

		var material = new LineBasicMaterial( { vertexColors: true, depthTest: false, depthWrite: false, toneMapped: false, transparent: true } );

		LineSegments.call( this, geometry, material );

		this.type = 'SkeletonHelper';

		this.root = object;
		this.bones = bones;

		this.matrix = object.matrixWorld;
		this.matrixAutoUpdate = false;

	}

	SkeletonHelper.prototype = Object.create( LineSegments.prototype );
	SkeletonHelper.prototype.constructor = SkeletonHelper;

	SkeletonHelper.prototype.isSkeletonHelper = true;

	SkeletonHelper.prototype.updateMatrixWorld = function ( force ) {

		var bones = this.bones;

		var geometry = this.geometry;
		var position = geometry.getAttribute( 'position' );

		_matrixWorldInv.getInverse( this.root.matrixWorld );

		for ( var i = 0, j = 0; i < bones.length; i ++ ) {

			var bone = bones[ i ];

			if ( bone.parent && bone.parent.isBone ) {

				_boneMatrix.multiplyMatrices( _matrixWorldInv, bone.matrixWorld );
				_vector$9.setFromMatrixPosition( _boneMatrix );
				position.setXYZ( j, _vector$9.x, _vector$9.y, _vector$9.z );

				_boneMatrix.multiplyMatrices( _matrixWorldInv, bone.parent.matrixWorld );
				_vector$9.setFromMatrixPosition( _boneMatrix );
				position.setXYZ( j + 1, _vector$9.x, _vector$9.y, _vector$9.z );

				j += 2;

			}

		}

		geometry.getAttribute( 'position' ).needsUpdate = true;

		Object3D.prototype.updateMatrixWorld.call( this, force );

	};

	/**
	 * @author alteredq / http://alteredqualia.com/
	 * @author mrdoob / http://mrdoob.com/
	 */

	function PointLightHelper( light, sphereSize, color ) {

		this.light = light;
		this.light.updateMatrixWorld();

		this.color = color;

		var geometry = new SphereBufferGeometry( sphereSize, 4, 2 );
		var material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } );

		Mesh.call( this, geometry, material );

		this.type = 'PointLightHelper';

		this.matrix = this.light.matrixWorld;
		this.matrixAutoUpdate = false;

		this.update();


		/*
		var distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 );
		var distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );

		this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );
		this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );

		var d = light.distance;

		if ( d === 0.0 ) {

			this.lightDistance.visible = false;

		} else {

			this.lightDistance.scale.set( d, d, d );

		}

		this.add( this.lightDistance );
		*/

	}

	PointLightHelper.prototype = Object.create( Mesh.prototype );
	PointLightHelper.prototype.constructor = PointLightHelper;

	PointLightHelper.prototype.dispose = function () {

		this.geometry.dispose();
		this.material.dispose();

	};

	PointLightHelper.prototype.update = function () {

		if ( this.color !== undefined ) {

			this.material.color.set( this.color );

		} else {

			this.material.color.copy( this.light.color );

		}

		/*
		var d = this.light.distance;

		if ( d === 0.0 ) {

			this.lightDistance.visible = false;

		} else {

			this.lightDistance.visible = true;
			this.lightDistance.scale.set( d, d, d );

		}
		*/

	};

	/**
	 * @author alteredq / http://alteredqualia.com/
	 * @author mrdoob / http://mrdoob.com/
	 * @author Mugen87 / https://github.com/Mugen87
	 */

	var _vector$a = new Vector3();
	var _color1 = new Color();
	var _color2 = new Color();

	function HemisphereLightHelper( light, size, color ) {

		Object3D.call( this );

		this.light = light;
		this.light.updateMatrixWorld();

		this.matrix = light.matrixWorld;
		this.matrixAutoUpdate = false;

		this.color = color;

		var geometry = new OctahedronBufferGeometry( size );
		geometry.rotateY( Math.PI * 0.5 );

		this.material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } );
		if ( this.color === undefined ) { this.material.vertexColors = true; }

		var position = geometry.getAttribute( 'position' );
		var colors = new Float32Array( position.count * 3 );

		geometry.setAttribute( 'color', new BufferAttribute( colors, 3 ) );

		this.add( new Mesh( geometry, this.material ) );

		this.update();

	}

	HemisphereLightHelper.prototype = Object.create( Object3D.prototype );
	HemisphereLightHelper.prototype.constructor = HemisphereLightHelper;

	HemisphereLightHelper.prototype.dispose = function () {

		this.children[ 0 ].geometry.dispose();
		this.children[ 0 ].material.dispose();

	};

	HemisphereLightHelper.prototype.update = function () {

		var mesh = this.children[ 0 ];

		if ( this.color !== undefined ) {

			this.material.color.set( this.color );

		} else {

			var colors = mesh.geometry.getAttribute( 'color' );

			_color1.copy( this.light.color );
			_color2.copy( this.light.groundColor );

			for ( var i = 0, l = colors.count; i < l; i ++ ) {

				var color = ( i < ( l / 2 ) ) ? _color1 : _color2;

				colors.setXYZ( i, color.r, color.g, color.b );

			}

			colors.needsUpdate = true;

		}

		mesh.lookAt( _vector$a.setFromMatrixPosition( this.light.matrixWorld ).negate() );

	};

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function GridHelper( size, divisions, color1, color2 ) {

		size = size || 10;
		divisions = divisions || 10;
		color1 = new Color( color1 !== undefined ? color1 : 0x444444 );
		color2 = new Color( color2 !== undefined ? color2 : 0x888888 );

		var center = divisions / 2;
		var step = size / divisions;
		var halfSize = size / 2;

		var vertices = [], colors = [];

		for ( var i = 0, j = 0, k = - halfSize; i <= divisions; i ++, k += step ) {

			vertices.push( - halfSize, 0, k, halfSize, 0, k );
			vertices.push( k, 0, - halfSize, k, 0, halfSize );

			var color = i === center ? color1 : color2;

			color.toArray( colors, j ); j += 3;
			color.toArray( colors, j ); j += 3;
			color.toArray( colors, j ); j += 3;
			color.toArray( colors, j ); j += 3;

		}

		var geometry = new BufferGeometry();
		geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

		var material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } );

		LineSegments.call( this, geometry, material );

		this.type = 'GridHelper';

	}

	GridHelper.prototype = Object.assign( Object.create( LineSegments.prototype ), {

		constructor: GridHelper,

		copy: function ( source ) {

			LineSegments.prototype.copy.call( this, source );

			this.geometry.copy( source.geometry );
			this.material.copy( source.material );

			return this;

		},

		clone: function () {

			return new this.constructor().copy( this );

		}

	} );

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author Mugen87 / http://github.com/Mugen87
	 * @author Hectate / http://www.github.com/Hectate
	 */

	function PolarGridHelper( radius, radials, circles, divisions, color1, color2 ) {

		radius = radius || 10;
		radials = radials || 16;
		circles = circles || 8;
		divisions = divisions || 64;
		color1 = new Color( color1 !== undefined ? color1 : 0x444444 );
		color2 = new Color( color2 !== undefined ? color2 : 0x888888 );

		var vertices = [];
		var colors = [];

		var x, z;
		var v, i, j, r, color;

		// create the radials

		for ( i = 0; i <= radials; i ++ ) {

			v = ( i / radials ) * ( Math.PI * 2 );

			x = Math.sin( v ) * radius;
			z = Math.cos( v ) * radius;

			vertices.push( 0, 0, 0 );
			vertices.push( x, 0, z );

			color = ( i & 1 ) ? color1 : color2;

			colors.push( color.r, color.g, color.b );
			colors.push( color.r, color.g, color.b );

		}

		// create the circles

		for ( i = 0; i <= circles; i ++ ) {

			color = ( i & 1 ) ? color1 : color2;

			r = radius - ( radius / circles * i );

			for ( j = 0; j < divisions; j ++ ) {

				// first vertex

				v = ( j / divisions ) * ( Math.PI * 2 );

				x = Math.sin( v ) * r;
				z = Math.cos( v ) * r;

				vertices.push( x, 0, z );
				colors.push( color.r, color.g, color.b );

				// second vertex

				v = ( ( j + 1 ) / divisions ) * ( Math.PI * 2 );

				x = Math.sin( v ) * r;
				z = Math.cos( v ) * r;

				vertices.push( x, 0, z );
				colors.push( color.r, color.g, color.b );

			}

		}

		var geometry = new BufferGeometry();
		geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

		var material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } );

		LineSegments.call( this, geometry, material );

		this.type = 'PolarGridHelper';

	}

	PolarGridHelper.prototype = Object.create( LineSegments.prototype );
	PolarGridHelper.prototype.constructor = PolarGridHelper;

	/**
	 * @author alteredq / http://alteredqualia.com/
	 * @author mrdoob / http://mrdoob.com/
	 * @author WestLangley / http://github.com/WestLangley
	 */

	var _v1$5 = new Vector3();
	var _v2$3 = new Vector3();
	var _v3$1 = new Vector3();

	function DirectionalLightHelper( light, size, color ) {

		Object3D.call( this );

		this.light = light;
		this.light.updateMatrixWorld();

		this.matrix = light.matrixWorld;
		this.matrixAutoUpdate = false;

		this.color = color;

		if ( size === undefined ) { size = 1; }

		var geometry = new BufferGeometry();
		geometry.setAttribute( 'position', new Float32BufferAttribute( [
			- size, size, 0,
			size, size, 0,
			size, - size, 0,
			- size, - size, 0,
			- size, size, 0
		], 3 ) );

		var material = new LineBasicMaterial( { fog: false, toneMapped: false } );

		this.lightPlane = new Line( geometry, material );
		this.add( this.lightPlane );

		geometry = new BufferGeometry();
		geometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) );

		this.targetLine = new Line( geometry, material );
		this.add( this.targetLine );

		this.update();

	}

	DirectionalLightHelper.prototype = Object.create( Object3D.prototype );
	DirectionalLightHelper.prototype.constructor = DirectionalLightHelper;

	DirectionalLightHelper.prototype.dispose = function () {

		this.lightPlane.geometry.dispose();
		this.lightPlane.material.dispose();
		this.targetLine.geometry.dispose();
		this.targetLine.material.dispose();

	};

	DirectionalLightHelper.prototype.update = function () {

		_v1$5.setFromMatrixPosition( this.light.matrixWorld );
		_v2$3.setFromMatrixPosition( this.light.target.matrixWorld );
		_v3$1.subVectors( _v2$3, _v1$5 );

		this.lightPlane.lookAt( _v2$3 );

		if ( this.color !== undefined ) {

			this.lightPlane.material.color.set( this.color );
			this.targetLine.material.color.set( this.color );

		} else {

			this.lightPlane.material.color.copy( this.light.color );
			this.targetLine.material.color.copy( this.light.color );

		}

		this.targetLine.lookAt( _v2$3 );
		this.targetLine.scale.z = _v3$1.length();

	};

	/**
	 * @author alteredq / http://alteredqualia.com/
	 * @author Mugen87 / https://github.com/Mugen87
	 *
	 *	- shows frustum, line of sight and up of the camera
	 *	- suitable for fast updates
	 * 	- based on frustum visualization in lightgl.js shadowmap example
	 *		http://evanw.github.com/lightgl.js/tests/shadowmap.html
	 */

	var _vector$b = new Vector3();
	var _camera = new Camera();

	function CameraHelper( camera ) {

		var geometry = new BufferGeometry();
		var material = new LineBasicMaterial( { color: 0xffffff, vertexColors: true, toneMapped: false } );

		var vertices = [];
		var colors = [];

		var pointMap = {};

		// colors

		var colorFrustum = new Color( 0xffaa00 );
		var colorCone = new Color( 0xff0000 );
		var colorUp = new Color( 0x00aaff );
		var colorTarget = new Color( 0xffffff );
		var colorCross = new Color( 0x333333 );

		// near

		addLine( 'n1', 'n2', colorFrustum );
		addLine( 'n2', 'n4', colorFrustum );
		addLine( 'n4', 'n3', colorFrustum );
		addLine( 'n3', 'n1', colorFrustum );

		// far

		addLine( 'f1', 'f2', colorFrustum );
		addLine( 'f2', 'f4', colorFrustum );
		addLine( 'f4', 'f3', colorFrustum );
		addLine( 'f3', 'f1', colorFrustum );

		// sides

		addLine( 'n1', 'f1', colorFrustum );
		addLine( 'n2', 'f2', colorFrustum );
		addLine( 'n3', 'f3', colorFrustum );
		addLine( 'n4', 'f4', colorFrustum );

		// cone

		addLine( 'p', 'n1', colorCone );
		addLine( 'p', 'n2', colorCone );
		addLine( 'p', 'n3', colorCone );
		addLine( 'p', 'n4', colorCone );

		// up

		addLine( 'u1', 'u2', colorUp );
		addLine( 'u2', 'u3', colorUp );
		addLine( 'u3', 'u1', colorUp );

		// target

		addLine( 'c', 't', colorTarget );
		addLine( 'p', 'c', colorCross );

		// cross

		addLine( 'cn1', 'cn2', colorCross );
		addLine( 'cn3', 'cn4', colorCross );

		addLine( 'cf1', 'cf2', colorCross );
		addLine( 'cf3', 'cf4', colorCross );

		function addLine( a, b, color ) {

			addPoint( a, color );
			addPoint( b, color );

		}

		function addPoint( id, color ) {

			vertices.push( 0, 0, 0 );
			colors.push( color.r, color.g, color.b );

			if ( pointMap[ id ] === undefined ) {

				pointMap[ id ] = [];

			}

			pointMap[ id ].push( ( vertices.length / 3 ) - 1 );

		}

		geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

		LineSegments.call( this, geometry, material );

		this.type = 'CameraHelper';

		this.camera = camera;
		if ( this.camera.updateProjectionMatrix ) { this.camera.updateProjectionMatrix(); }

		this.matrix = camera.matrixWorld;
		this.matrixAutoUpdate = false;

		this.pointMap = pointMap;

		this.update();

	}

	CameraHelper.prototype = Object.create( LineSegments.prototype );
	CameraHelper.prototype.constructor = CameraHelper;

	CameraHelper.prototype.update = function () {

		var geometry = this.geometry;
		var pointMap = this.pointMap;

		var w = 1, h = 1;

		// we need just camera projection matrix inverse
		// world matrix must be identity

		_camera.projectionMatrixInverse.copy( this.camera.projectionMatrixInverse );

		// center / target

		setPoint( 'c', pointMap, geometry, _camera, 0, 0, - 1 );
		setPoint( 't', pointMap, geometry, _camera, 0, 0, 1 );

		// near

		setPoint( 'n1', pointMap, geometry, _camera, - w, - h, - 1 );
		setPoint( 'n2', pointMap, geometry, _camera, w, - h, - 1 );
		setPoint( 'n3', pointMap, geometry, _camera, - w, h, - 1 );
		setPoint( 'n4', pointMap, geometry, _camera, w, h, - 1 );

		// far

		setPoint( 'f1', pointMap, geometry, _camera, - w, - h, 1 );
		setPoint( 'f2', pointMap, geometry, _camera, w, - h, 1 );
		setPoint( 'f3', pointMap, geometry, _camera, - w, h, 1 );
		setPoint( 'f4', pointMap, geometry, _camera, w, h, 1 );

		// up

		setPoint( 'u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, - 1 );
		setPoint( 'u2', pointMap, geometry, _camera, - w * 0.7, h * 1.1, - 1 );
		setPoint( 'u3', pointMap, geometry, _camera, 0, h * 2, - 1 );

		// cross

		setPoint( 'cf1', pointMap, geometry, _camera, - w, 0, 1 );
		setPoint( 'cf2', pointMap, geometry, _camera, w, 0, 1 );
		setPoint( 'cf3', pointMap, geometry, _camera, 0, - h, 1 );
		setPoint( 'cf4', pointMap, geometry, _camera, 0, h, 1 );

		setPoint( 'cn1', pointMap, geometry, _camera, - w, 0, - 1 );
		setPoint( 'cn2', pointMap, geometry, _camera, w, 0, - 1 );
		setPoint( 'cn3', pointMap, geometry, _camera, 0, - h, - 1 );
		setPoint( 'cn4', pointMap, geometry, _camera, 0, h, - 1 );

		geometry.getAttribute( 'position' ).needsUpdate = true;

	};

	function setPoint( point, pointMap, geometry, camera, x, y, z ) {

		_vector$b.set( x, y, z ).unproject( camera );

		var points = pointMap[ point ];

		if ( points !== undefined ) {

			var position = geometry.getAttribute( 'position' );

			for ( var i = 0, l = points.length; i < l; i ++ ) {

				position.setXYZ( points[ i ], _vector$b.x, _vector$b.y, _vector$b.z );

			}

		}

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 * @author Mugen87 / http://github.com/Mugen87
	 */

	var _box$3 = new Box3();

	function BoxHelper( object, color ) {

		this.object = object;

		if ( color === undefined ) { color = 0xffff00; }

		var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );
		var positions = new Float32Array( 8 * 3 );

		var geometry = new BufferGeometry();
		geometry.setIndex( new BufferAttribute( indices, 1 ) );
		geometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) );

		LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );

		this.type = 'BoxHelper';

		this.matrixAutoUpdate = false;

		this.update();

	}

	BoxHelper.prototype = Object.create( LineSegments.prototype );
	BoxHelper.prototype.constructor = BoxHelper;

	BoxHelper.prototype.update = function ( object ) {

		if ( object !== undefined ) {

			console.warn( 'THREE.BoxHelper: .update() has no longer arguments.' );

		}

		if ( this.object !== undefined ) {

			_box$3.setFromObject( this.object );

		}

		if ( _box$3.isEmpty() ) { return; }

		var min = _box$3.min;
		var max = _box$3.max;

		/*
		  5____4
		1/___0/|
		| 6__|_7
		2/___3/

		0: max.x, max.y, max.z
		1: min.x, max.y, max.z
		2: min.x, min.y, max.z
		3: max.x, min.y, max.z
		4: max.x, max.y, min.z
		5: min.x, max.y, min.z
		6: min.x, min.y, min.z
		7: max.x, min.y, min.z
		*/

		var position = this.geometry.attributes.position;
		var array = position.array;

		array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z;
		array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z;
		array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z;
		array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z;
		array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z;
		array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z;
		array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z;
		array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z;

		position.needsUpdate = true;

		this.geometry.computeBoundingSphere();


	};

	BoxHelper.prototype.setFromObject = function ( object ) {

		this.object = object;
		this.update();

		return this;

	};

	BoxHelper.prototype.copy = function ( source ) {

		LineSegments.prototype.copy.call( this, source );

		this.object = source.object;

		return this;

	};

	BoxHelper.prototype.clone = function () {

		return new this.constructor().copy( this );

	};

	/**
	 * @author WestLangley / http://github.com/WestLangley
	 */

	function Box3Helper( box, color ) {

		this.type = 'Box3Helper';

		this.box = box;

		color = color || 0xffff00;

		var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );

		var positions = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, - 1, - 1, - 1, 1, - 1, - 1 ];

		var geometry = new BufferGeometry();

		geometry.setIndex( new BufferAttribute( indices, 1 ) );

		geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );

		LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );

		this.type = 'Box3Helper';

		this.geometry.computeBoundingSphere();

	}

	Box3Helper.prototype = Object.create( LineSegments.prototype );
	Box3Helper.prototype.constructor = Box3Helper;

	Box3Helper.prototype.updateMatrixWorld = function ( force ) {

		var box = this.box;

		if ( box.isEmpty() ) { return; }

		box.getCenter( this.position );

		box.getSize( this.scale );

		this.scale.multiplyScalar( 0.5 );

		Object3D.prototype.updateMatrixWorld.call( this, force );

	};

	/**
	 * @author WestLangley / http://github.com/WestLangley
	 */

	function PlaneHelper( plane, size, hex ) {

		this.plane = plane;

		this.size = ( size === undefined ) ? 1 : size;

		var color = ( hex !== undefined ) ? hex : 0xffff00;

		var positions = [ 1, - 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0 ];

		var geometry = new BufferGeometry();
		geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
		geometry.computeBoundingSphere();

		Line.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );

		this.type = 'PlaneHelper';

		//

		var positions2 = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, - 1, 1, 1, - 1, 1 ];

		var geometry2 = new BufferGeometry();
		geometry2.setAttribute( 'position', new Float32BufferAttribute( positions2, 3 ) );
		geometry2.computeBoundingSphere();

		this.add( new Mesh( geometry2, new MeshBasicMaterial( { color: color, opacity: 0.2, transparent: true, depthWrite: false, toneMapped: false } ) ) );

	}

	PlaneHelper.prototype = Object.create( Line.prototype );
	PlaneHelper.prototype.constructor = PlaneHelper;

	PlaneHelper.prototype.updateMatrixWorld = function ( force ) {

		var scale = - this.plane.constant;

		if ( Math.abs( scale ) < 1e-8 ) { scale = 1e-8; } // sign does not matter

		this.scale.set( 0.5 * this.size, 0.5 * this.size, scale );

		this.children[ 0 ].material.side = ( scale < 0 ) ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here

		this.lookAt( this.plane.normal );

		Object3D.prototype.updateMatrixWorld.call( this, force );

	};

	/**
	 * @author WestLangley / http://github.com/WestLangley
	 * @author zz85 / http://github.com/zz85
	 * @author bhouston / http://clara.io
	 *
	 * Creates an arrow for visualizing directions
	 *
	 * Parameters:
	 *  dir - Vector3
	 *  origin - Vector3
	 *  length - Number
	 *  color - color in hex value
	 *  headLength - Number
	 *  headWidth - Number
	 */

	var _axis = new Vector3();
	var _lineGeometry, _coneGeometry;

	function ArrowHelper( dir, origin, length, color, headLength, headWidth ) {

		// dir is assumed to be normalized

		Object3D.call( this );

		this.type = 'ArrowHelper';

		if ( dir === undefined ) { dir = new Vector3( 0, 0, 1 ); }
		if ( origin === undefined ) { origin = new Vector3( 0, 0, 0 ); }
		if ( length === undefined ) { length = 1; }
		if ( color === undefined ) { color = 0xffff00; }
		if ( headLength === undefined ) { headLength = 0.2 * length; }
		if ( headWidth === undefined ) { headWidth = 0.2 * headLength; }

		if ( _lineGeometry === undefined ) {

			_lineGeometry = new BufferGeometry();
			_lineGeometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) );

			_coneGeometry = new CylinderBufferGeometry( 0, 0.5, 1, 5, 1 );
			_coneGeometry.translate( 0, - 0.5, 0 );

		}

		this.position.copy( origin );

		this.line = new Line( _lineGeometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );
		this.line.matrixAutoUpdate = false;
		this.add( this.line );

		this.cone = new Mesh( _coneGeometry, new MeshBasicMaterial( { color: color, toneMapped: false } ) );
		this.cone.matrixAutoUpdate = false;
		this.add( this.cone );

		this.setDirection( dir );
		this.setLength( length, headLength, headWidth );

	}

	ArrowHelper.prototype = Object.create( Object3D.prototype );
	ArrowHelper.prototype.constructor = ArrowHelper;

	ArrowHelper.prototype.setDirection = function ( dir ) {

		// dir is assumed to be normalized

		if ( dir.y > 0.99999 ) {

			this.quaternion.set( 0, 0, 0, 1 );

		} else if ( dir.y < - 0.99999 ) {

			this.quaternion.set( 1, 0, 0, 0 );

		} else {

			_axis.set( dir.z, 0, - dir.x ).normalize();

			var radians = Math.acos( dir.y );

			this.quaternion.setFromAxisAngle( _axis, radians );

		}

	};

	ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) {

		if ( headLength === undefined ) { headLength = 0.2 * length; }
		if ( headWidth === undefined ) { headWidth = 0.2 * headLength; }

		this.line.scale.set( 1, Math.max( 0.0001, length - headLength ), 1 ); // see #17458
		this.line.updateMatrix();

		this.cone.scale.set( headWidth, headLength, headWidth );
		this.cone.position.y = length;
		this.cone.updateMatrix();

	};

	ArrowHelper.prototype.setColor = function ( color ) {

		this.line.material.color.set( color );
		this.cone.material.color.set( color );

	};

	ArrowHelper.prototype.copy = function ( source ) {

		Object3D.prototype.copy.call( this, source, false );

		this.line.copy( source.line );
		this.cone.copy( source.cone );

		return this;

	};

	ArrowHelper.prototype.clone = function () {

		return new this.constructor().copy( this );

	};

	/**
	 * @author sroucheray / http://sroucheray.org/
	 * @author mrdoob / http://mrdoob.com/
	 */

	function AxesHelper( size ) {

		size = size || 1;

		var vertices = [
			0, 0, 0,	size, 0, 0,
			0, 0, 0,	0, size, 0,
			0, 0, 0,	0, 0, size
		];

		var colors = [
			1, 0, 0,	1, 0.6, 0,
			0, 1, 0,	0.6, 1, 0,
			0, 0, 1,	0, 0.6, 1
		];

		var geometry = new BufferGeometry();
		geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

		var material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } );

		LineSegments.call( this, geometry, material );

		this.type = 'AxesHelper';

	}

	AxesHelper.prototype = Object.create( LineSegments.prototype );
	AxesHelper.prototype.constructor = AxesHelper;

	/**
	 * @author Emmett Lalish / elalish
	 *
	 * This class generates a Prefiltered, Mipmapped Radiance Environment Map
	 * (PMREM) from a cubeMap environment texture. This allows different levels of
	 * blur to be quickly accessed based on material roughness. It is packed into a
	 * special CubeUV format that allows us to perform custom interpolation so that
	 * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
	 * chain, it only goes down to the LOD_MIN level (above), and then creates extra
	 * even more filtered 'mips' at the same LOD_MIN resolution, associated with
	 * higher roughness levels. In this way we maintain resolution to smoothly
	 * interpolate diffuse lighting while limiting sampling computation.
	 */

	var LOD_MIN = 4;
	var LOD_MAX = 8;
	var SIZE_MAX = Math.pow( 2, LOD_MAX );

	// The standard deviations (radians) associated with the extra mips. These are
	// chosen to approximate a Trowbridge-Reitz distribution function times the
	// geometric shadowing function. These sigma values squared must match the
	// variance #defines in cube_uv_reflection_fragment.glsl.js.
	var EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];

	var TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;

	// The maximum length of the blur for loop. Smaller sigmas will use fewer
	// samples and exit early, but not recompile the shader.
	var MAX_SAMPLES = 20;

	var ENCODINGS = {};
	ENCODINGS[ LinearEncoding ] = 0;
	ENCODINGS[ sRGBEncoding ] = 1;
	ENCODINGS[ RGBEEncoding ] = 2;
	ENCODINGS[ RGBM7Encoding ] = 3;
	ENCODINGS[ RGBM16Encoding ] = 4;
	ENCODINGS[ RGBDEncoding ] = 5;
	ENCODINGS[ GammaEncoding ] = 6;

	var _flatCamera = new OrthographicCamera();
	var ref = _createPlanes();
	var _lodPlanes = ref._lodPlanes;
	var _sizeLods = ref._sizeLods;
	var _sigmas = ref._sigmas;
	var _oldTarget = null;

	// Golden Ratio
	var PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
	var INV_PHI = 1 / PHI;

	// Vertices of a dodecahedron (except the opposites, which represent the
	// same axis), used as axis directions evenly spread on a sphere.
	var _axisDirections = [
		new Vector3( 1, 1, 1 ),
		new Vector3( - 1, 1, 1 ),
		new Vector3( 1, 1, - 1 ),
		new Vector3( - 1, 1, - 1 ),
		new Vector3( 0, PHI, INV_PHI ),
		new Vector3( 0, PHI, - INV_PHI ),
		new Vector3( INV_PHI, 0, PHI ),
		new Vector3( - INV_PHI, 0, PHI ),
		new Vector3( PHI, INV_PHI, 0 ),
		new Vector3( - PHI, INV_PHI, 0 ) ];

	function PMREMGenerator( renderer ) {

		this._renderer = renderer;
		this._pingPongRenderTarget = null;

		this._blurMaterial = _getBlurShader( MAX_SAMPLES );
		this._equirectShader = null;
		this._cubemapShader = null;

		this._compileMaterial( this._blurMaterial );

	}

	PMREMGenerator.prototype = {

		constructor: PMREMGenerator,

		/**
		 * Generates a PMREM from a supplied Scene, which can be faster than using an
		 * image if networking bandwidth is low. Optional sigma specifies a blur radius
		 * in radians to be applied to the scene before PMREM generation. Optional near
		 * and far planes ensure the scene is rendered in its entirety (the cubeCamera
		 * is placed at the origin).
		 */
		fromScene: function ( scene, sigma, near, far ) {
			if ( sigma === void 0 ) sigma = 0;
			if ( near === void 0 ) near = 0.1;
			if ( far === void 0 ) far = 100;


			_oldTarget = this._renderer.getRenderTarget();
			var cubeUVRenderTarget = this._allocateTargets();

			this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
			if ( sigma > 0 ) {

				this._blur( cubeUVRenderTarget, 0, 0, sigma );

			}

			this._applyPMREM( cubeUVRenderTarget );
			this._cleanup( cubeUVRenderTarget );

			return cubeUVRenderTarget;

		},

		/**
		 * Generates a PMREM from an equirectangular texture, which can be either LDR
		 * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
		 * as this matches best with the 256 x 256 cubemap output.
		 */
		fromEquirectangular: function ( equirectangular ) {

			equirectangular.magFilter = NearestFilter;
			equirectangular.minFilter = NearestFilter;
			equirectangular.generateMipmaps = false;

			return this.fromCubemap( equirectangular );

		},

		/**
		 * Generates a PMREM from an cubemap texture, which can be either LDR
		 * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
		 * as this matches best with the 256 x 256 cubemap output.
		 */
		fromCubemap: function ( cubemap ) {

			_oldTarget = this._renderer.getRenderTarget();
			var cubeUVRenderTarget = this._allocateTargets( cubemap );
			this._textureToCubeUV( cubemap, cubeUVRenderTarget );
			this._applyPMREM( cubeUVRenderTarget );
			this._cleanup( cubeUVRenderTarget );

			return cubeUVRenderTarget;

		},

		/**
		 * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
		 * your texture's network fetch for increased concurrency.
		 */
		compileCubemapShader: function () {

			if ( this._cubemapShader === null ) {

				this._cubemapShader = _getCubemapShader();
				this._compileMaterial( this._cubemapShader );

			}

		},

		/**
		 * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
		 * your texture's network fetch for increased concurrency.
		 */
		compileEquirectangularShader: function () {

			if ( this._equirectShader === null ) {

				this._equirectShader = _getEquirectShader();
				this._compileMaterial( this._equirectShader );

			}

		},

		/**
		 * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
		 * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
		 * one of them will cause any others to also become unusable.
		 */
		dispose: function () {

			this._blurMaterial.dispose();

			if ( this._cubemapShader !== null ) { this._cubemapShader.dispose(); }
			if ( this._equirectShader !== null ) { this._equirectShader.dispose(); }

			for ( var i = 0; i < _lodPlanes.length; i ++ ) {

				_lodPlanes[ i ].dispose();

			}

		},

		// private interface

		_cleanup: function ( outputTarget ) {

			this._pingPongRenderTarget.dispose();
			this._renderer.setRenderTarget( _oldTarget );
			outputTarget.scissorTest = false;
			// reset viewport and scissor
			outputTarget.setSize( outputTarget.width, outputTarget.height );

		},

		_allocateTargets: function ( equirectangular ) {

			var params = {
				magFilter: NearestFilter,
				minFilter: NearestFilter,
				generateMipmaps: false,
				type: UnsignedByteType,
				format: RGBEFormat,
				encoding: _isLDR( equirectangular ) ? equirectangular.encoding : RGBEEncoding,
				depthBuffer: false,
				stencilBuffer: false
			};

			var cubeUVRenderTarget = _createRenderTarget( params );
			cubeUVRenderTarget.depthBuffer = equirectangular ? false : true;
			this._pingPongRenderTarget = _createRenderTarget( params );
			return cubeUVRenderTarget;

		},

		_compileMaterial: function ( material ) {

			var tmpScene = new Scene();
			tmpScene.add( new Mesh( _lodPlanes[ 0 ], material ) );
			this._renderer.compile( tmpScene, _flatCamera );

		},

		_sceneToCubeUV: function ( scene, near, far, cubeUVRenderTarget ) {

			var fov = 90;
			var aspect = 1;
			var cubeCamera = new PerspectiveCamera( fov, aspect, near, far );
			var upSign = [ 1, 1, 1, 1, - 1, 1 ];
			var forwardSign = [ 1, 1, - 1, - 1, - 1, 1 ];
			var renderer = this._renderer;

			var outputEncoding = renderer.outputEncoding;
			var toneMapping = renderer.toneMapping;
			var toneMappingExposure = renderer.toneMappingExposure;
			var clearColor = renderer.getClearColor();
			var clearAlpha = renderer.getClearAlpha();

			renderer.toneMapping = LinearToneMapping;
			renderer.toneMappingExposure = 1.0;
			renderer.outputEncoding = LinearEncoding;
			scene.scale.z *= - 1;

			var background = scene.background;
			if ( background && background.isColor ) {

				background.convertSRGBToLinear();
				// Convert linear to RGBE
				var maxComponent = Math.max( background.r, background.g, background.b );
				var fExp = Math.min( Math.max( Math.ceil( Math.log2( maxComponent ) ), - 128.0 ), 127.0 );
				background = background.multiplyScalar( Math.pow( 2.0, - fExp ) );
				var alpha = ( fExp + 128.0 ) / 255.0;
				renderer.setClearColor( background, alpha );
				scene.background = null;

			}

			for ( var i = 0; i < 6; i ++ ) {

				var col = i % 3;
				if ( col == 0 ) {

					cubeCamera.up.set( 0, upSign[ i ], 0 );
					cubeCamera.lookAt( forwardSign[ i ], 0, 0 );

				} else if ( col == 1 ) {

					cubeCamera.up.set( 0, 0, upSign[ i ] );
					cubeCamera.lookAt( 0, forwardSign[ i ], 0 );

				} else {

					cubeCamera.up.set( 0, upSign[ i ], 0 );
					cubeCamera.lookAt( 0, 0, forwardSign[ i ] );

				}

				_setViewport( cubeUVRenderTarget,
					col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX );
				renderer.setRenderTarget( cubeUVRenderTarget );
				renderer.render( scene, cubeCamera );

			}

			renderer.toneMapping = toneMapping;
			renderer.toneMappingExposure = toneMappingExposure;
			renderer.outputEncoding = outputEncoding;
			renderer.setClearColor( clearColor, clearAlpha );
			scene.scale.z *= - 1;

		},

		_textureToCubeUV: function ( texture, cubeUVRenderTarget ) {

			var scene = new Scene();
			var renderer = this._renderer;

			if ( texture.isCubeTexture ) {

				if ( this._cubemapShader == null ) {

					this._cubemapShader = _getCubemapShader();

				}

			} else {

				if ( this._equirectShader == null ) {

					this._equirectShader = _getEquirectShader();

				}

			}

			var material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
			scene.add( new Mesh( _lodPlanes[ 0 ], material ) );

			var uniforms = material.uniforms;

			uniforms[ 'envMap' ].value = texture;

			if ( ! texture.isCubeTexture ) {

				uniforms[ 'texelSize' ].value.set( 1.0 / texture.image.width, 1.0 / texture.image.height );

			}

			uniforms[ 'inputEncoding' ].value = ENCODINGS[ texture.encoding ];
			uniforms[ 'outputEncoding' ].value = ENCODINGS[ cubeUVRenderTarget.texture.encoding ];

			_setViewport( cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX );

			renderer.setRenderTarget( cubeUVRenderTarget );
			renderer.render( scene, _flatCamera );

		},

		_applyPMREM: function ( cubeUVRenderTarget ) {

			var renderer = this._renderer;
			var autoClear = renderer.autoClear;
			renderer.autoClear = false;

			for ( var i = 1; i < TOTAL_LODS; i ++ ) {

				var sigma = Math.sqrt( _sigmas[ i ] * _sigmas[ i ] - _sigmas[ i - 1 ] * _sigmas[ i - 1 ] );

				var poleAxis = _axisDirections[ ( i - 1 ) % _axisDirections.length ];

				this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );

			}

			renderer.autoClear = autoClear;

		},

		/**
		 * This is a two-pass Gaussian blur for a cubemap. Normally this is done
		 * vertically and horizontally, but this breaks down on a cube. Here we apply
		 * the blur latitudinally (around the poles), and then longitudinally (towards
		 * the poles) to approximate the orthogonally-separable blur. It is least
		 * accurate at the poles, but still does a decent job.
		 */
		_blur: function ( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {

			var pingPongRenderTarget = this._pingPongRenderTarget;

			this._halfBlur(
				cubeUVRenderTarget,
				pingPongRenderTarget,
				lodIn,
				lodOut,
				sigma,
				'latitudinal',
				poleAxis );

			this._halfBlur(
				pingPongRenderTarget,
				cubeUVRenderTarget,
				lodOut,
				lodOut,
				sigma,
				'longitudinal',
				poleAxis );

		},

		_halfBlur: function ( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {

			var renderer = this._renderer;
			var blurMaterial = this._blurMaterial;

			if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {

				console.error(
					'blur direction must be either latitudinal or longitudinal!' );

			}

			// Number of standard deviations at which to cut off the discrete approximation.
			var STANDARD_DEVIATIONS = 3;

			var blurScene = new Scene();
			blurScene.add( new Mesh( _lodPlanes[ lodOut ], blurMaterial ) );
			var blurUniforms = blurMaterial.uniforms;

			var pixels = _sizeLods[ lodIn ] - 1;
			var radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
			var sigmaPixels = sigmaRadians / radiansPerPixel;
			var samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;

			if ( samples > MAX_SAMPLES ) {

				console.warn( ("sigmaRadians, " + sigmaRadians + ", is too large and will clip, as it requested " + samples + " samples when the maximum is set to " + MAX_SAMPLES) );

			}

			var weights = [];
			var sum = 0;

			for ( var i = 0; i < MAX_SAMPLES; ++ i ) {

				var x = i / sigmaPixels;
				var weight = Math.exp( - x * x / 2 );
				weights.push( weight );

				if ( i == 0 ) {

					sum += weight;

				} else if ( i < samples ) {

					sum += 2 * weight;

				}

			}

			for ( var i = 0; i < weights.length; i ++ ) {

				weights[ i ] = weights[ i ] / sum;

			}

			blurUniforms[ 'envMap' ].value = targetIn.texture;
			blurUniforms[ 'samples' ].value = samples;
			blurUniforms[ 'weights' ].value = weights;
			blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal';

			if ( poleAxis ) {

				blurUniforms[ 'poleAxis' ].value = poleAxis;

			}

			blurUniforms[ 'dTheta' ].value = radiansPerPixel;
			blurUniforms[ 'mipInt' ].value = LOD_MAX - lodIn;
			blurUniforms[ 'inputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
			blurUniforms[ 'outputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];

			var outputSize = _sizeLods[ lodOut ];
			var x = 3 * Math.max( 0, SIZE_MAX - 2 * outputSize );
			var y = ( lodOut === 0 ? 0 : 2 * SIZE_MAX ) + 2 * outputSize * ( lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0 );

			_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
			renderer.setRenderTarget( targetOut );
			renderer.render( blurScene, _flatCamera );

		}

	};

	function _isLDR( texture ) {

		if ( texture === undefined || texture.type !== UnsignedByteType ) { return false; }

		return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;

	}

	function _createPlanes() {

		var _lodPlanes = [];
		var _sizeLods = [];
		var _sigmas = [];

		var lod = LOD_MAX;

		for ( var i = 0; i < TOTAL_LODS; i ++ ) {

			var sizeLod = Math.pow( 2, lod );
			_sizeLods.push( sizeLod );
			var sigma = 1.0 / sizeLod;

			if ( i > LOD_MAX - LOD_MIN ) {

				sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ];

			} else if ( i == 0 ) {

				sigma = 0;

			}

			_sigmas.push( sigma );

			var texelSize = 1.0 / ( sizeLod - 1 );
			var min = - texelSize / 2;
			var max = 1 + texelSize / 2;
			var uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];

			var cubeFaces = 6;
			var vertices = 6;
			var positionSize = 3;
			var uvSize = 2;
			var faceIndexSize = 1;

			var position = new Float32Array( positionSize * vertices * cubeFaces );
			var uv = new Float32Array( uvSize * vertices * cubeFaces );
			var faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );

			for ( var face = 0; face < cubeFaces; face ++ ) {

				var x = ( face % 3 ) * 2 / 3 - 1;
				var y = face > 2 ? 0 : - 1;
				var coordinates = [
					x, y, 0,
					x + 2 / 3, y, 0,
					x + 2 / 3, y + 1, 0,
					x, y, 0,
					x + 2 / 3, y + 1, 0,
					x, y + 1, 0
				];
				position.set( coordinates, positionSize * vertices * face );
				uv.set( uv1, uvSize * vertices * face );
				var fill = [ face, face, face, face, face, face ];
				faceIndex.set( fill, faceIndexSize * vertices * face );

			}

			var planes = new BufferGeometry();
			planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
			planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
			planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
			_lodPlanes.push( planes );

			if ( lod > LOD_MIN ) {

				lod --;

			}

		}

		return { _lodPlanes: _lodPlanes, _sizeLods: _sizeLods, _sigmas: _sigmas };

	}

	function _createRenderTarget( params ) {

		var cubeUVRenderTarget = new WebGLRenderTarget( 3 * SIZE_MAX, 3 * SIZE_MAX, params );
		cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
		cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
		cubeUVRenderTarget.scissorTest = true;
		return cubeUVRenderTarget;

	}

	function _setViewport( target, x, y, width, height ) {

		target.viewport.set( x, y, width, height );
		target.scissor.set( x, y, width, height );

	}

	function _getBlurShader( maxSamples ) {

		var weights = new Float32Array( maxSamples );
		var poleAxis = new Vector3( 0, 1, 0 );
		var shaderMaterial = new RawShaderMaterial( {

			defines: { 'n': maxSamples },

			uniforms: {
				'envMap': { value: null },
				'samples': { value: 1 },
				'weights': { value: weights },
				'latitudinal': { value: false },
				'dTheta': { value: 0 },
				'mipInt': { value: 0 },
				'poleAxis': { value: poleAxis },
				'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
				'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
			},

			vertexShader: _getCommonVertexShader(),

			fragmentShader: ("\nprecision mediump float;\nprecision mediump int;\nvarying vec3 vOutputDirection;\nuniform sampler2D envMap;\nuniform int samples;\nuniform float weights[n];\nuniform bool latitudinal;\nuniform float dTheta;\nuniform float mipInt;\nuniform vec3 poleAxis;\n\n" + (_getEncodings()) + "\n\n#define ENVMAP_TYPE_CUBE_UV\n#include <cube_uv_reflection_fragment>\n\nvec3 getSample(float theta, vec3 axis) {\n\tfloat cosTheta = cos(theta);\n\t// Rodrigues' axis-angle rotation\n\tvec3 sampleDirection = vOutputDirection * cosTheta\n\t\t+ cross(axis, vOutputDirection) * sin(theta)\n\t\t+ axis * dot(axis, vOutputDirection) * (1.0 - cosTheta);\n\treturn bilinearCubeUV(envMap, sampleDirection, mipInt);\n}\n\nvoid main() {\n\tvec3 axis = latitudinal ? poleAxis : cross(poleAxis, vOutputDirection);\n\tif (all(equal(axis, vec3(0.0))))\n\t\taxis = vec3(vOutputDirection.z, 0.0, - vOutputDirection.x);\n\taxis = normalize(axis);\n\tgl_FragColor = vec4(0.0);\n\tgl_FragColor.rgb += weights[0] * getSample(0.0, axis);\n\tfor (int i = 1; i < n; i++) {\n\t\tif (i >= samples)\n\t\t\tbreak;\n\t\tfloat theta = dTheta * float(i);\n\t\tgl_FragColor.rgb += weights[i] * getSample(-1.0 * theta, axis);\n\t\tgl_FragColor.rgb += weights[i] * getSample(theta, axis);\n\t}\n\tgl_FragColor = linearToOutputTexel(gl_FragColor);\n}\n\t\t"),

			blending: NoBlending,
			depthTest: false,
			depthWrite: false

		} );

		shaderMaterial.type = 'SphericalGaussianBlur';

		return shaderMaterial;

	}

	function _getEquirectShader() {

		var texelSize = new Vector2( 1, 1 );
		var shaderMaterial = new RawShaderMaterial( {

			uniforms: {
				'envMap': { value: null },
				'texelSize': { value: texelSize },
				'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
				'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
			},

			vertexShader: _getCommonVertexShader(),

			fragmentShader: ("\nprecision mediump float;\nprecision mediump int;\nvarying vec3 vOutputDirection;\nuniform sampler2D envMap;\nuniform vec2 texelSize;\n\n" + (_getEncodings()) + "\n\n#define RECIPROCAL_PI 0.31830988618\n#define RECIPROCAL_PI2 0.15915494\n\nvoid main() {\n\tgl_FragColor = vec4(0.0);\n\tvec3 outputDirection = normalize(vOutputDirection);\n\tvec2 uv;\n\tuv.y = asin(clamp(outputDirection.y, -1.0, 1.0)) * RECIPROCAL_PI + 0.5;\n\tuv.x = atan(outputDirection.z, outputDirection.x) * RECIPROCAL_PI2 + 0.5;\n\tvec2 f = fract(uv / texelSize - 0.5);\n\tuv -= f * texelSize;\n\tvec3 tl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n\tuv.x += texelSize.x;\n\tvec3 tr = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n\tuv.y += texelSize.y;\n\tvec3 br = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n\tuv.x -= texelSize.x;\n\tvec3 bl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n\tvec3 tm = mix(tl, tr, f.x);\n\tvec3 bm = mix(bl, br, f.x);\n\tgl_FragColor.rgb = mix(tm, bm, f.y);\n\tgl_FragColor = linearToOutputTexel(gl_FragColor);\n}\n\t\t"),

			blending: NoBlending,
			depthTest: false,
			depthWrite: false

		} );

		shaderMaterial.type = 'EquirectangularToCubeUV';

		return shaderMaterial;

	}

	function _getCubemapShader() {

		var shaderMaterial = new RawShaderMaterial( {

			uniforms: {
				'envMap': { value: null },
				'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
				'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
			},

			vertexShader: _getCommonVertexShader(),

			fragmentShader: ("\nprecision mediump float;\nprecision mediump int;\nvarying vec3 vOutputDirection;\nuniform samplerCube envMap;\n\n" + (_getEncodings()) + "\n\nvoid main() {\n\tgl_FragColor = vec4(0.0);\n\tgl_FragColor.rgb = envMapTexelToLinear(textureCube(envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ))).rgb;\n\tgl_FragColor = linearToOutputTexel(gl_FragColor);\n}\n\t\t"),

			blending: NoBlending,
			depthTest: false,
			depthWrite: false

		} );

		shaderMaterial.type = 'CubemapToCubeUV';

		return shaderMaterial;

	}

	function _getCommonVertexShader() {

		return "\nprecision mediump float;\nprecision mediump int;\nattribute vec3 position;\nattribute vec2 uv;\nattribute float faceIndex;\nvarying vec3 vOutputDirection;\nvec3 getDirection(vec2 uv, float face) {\n\tuv = 2.0 * uv - 1.0;\n\tvec3 direction = vec3(uv, 1.0);\n\tif (face == 0.0) {\n\t\tdirection = direction.zyx;\n\t\tdirection.z *= -1.0;\n\t} else if (face == 1.0) {\n\t\tdirection = direction.xzy;\n\t\tdirection.z *= -1.0;\n\t} else if (face == 3.0) {\n\t\tdirection = direction.zyx;\n\t\tdirection.x *= -1.0;\n\t} else if (face == 4.0) {\n\t\tdirection = direction.xzy;\n\t\tdirection.y *= -1.0;\n\t} else if (face == 5.0) {\n\t\tdirection.xz *= -1.0;\n\t}\n\treturn direction;\n}\nvoid main() {\n\tvOutputDirection = getDirection(uv, faceIndex);\n\tgl_Position = vec4( position, 1.0 );\n}\n\t";

	}

	function _getEncodings() {

		return "\nuniform int inputEncoding;\nuniform int outputEncoding;\n\n#include <encodings_pars_fragment>\n\nvec4 inputTexelToLinear(vec4 value){\n\tif(inputEncoding == 0){\n\t\treturn value;\n\t}else if(inputEncoding == 1){\n\t\treturn sRGBToLinear(value);\n\t}else if(inputEncoding == 2){\n\t\treturn RGBEToLinear(value);\n\t}else if(inputEncoding == 3){\n\t\treturn RGBMToLinear(value, 7.0);\n\t}else if(inputEncoding == 4){\n\t\treturn RGBMToLinear(value, 16.0);\n\t}else if(inputEncoding == 5){\n\t\treturn RGBDToLinear(value, 256.0);\n\t}else{\n\t\treturn GammaToLinear(value, 2.2);\n\t}\n}\n\nvec4 linearToOutputTexel(vec4 value){\n\tif(outputEncoding == 0){\n\t\treturn value;\n\t}else if(outputEncoding == 1){\n\t\treturn LinearTosRGB(value);\n\t}else if(outputEncoding == 2){\n\t\treturn LinearToRGBE(value);\n\t}else if(outputEncoding == 3){\n\t\treturn LinearToRGBM(value, 7.0);\n\t}else if(outputEncoding == 4){\n\t\treturn LinearToRGBM(value, 16.0);\n\t}else if(outputEncoding == 5){\n\t\treturn LinearToRGBD(value, 256.0);\n\t}else{\n\t\treturn LinearToGamma(value, 2.2);\n\t}\n}\n\nvec4 envMapTexelToLinear(vec4 color) {\n\treturn inputTexelToLinear(color);\n}\n\t";

	}

	/**
	 * @author mrdoob / http://mrdoob.com/
	 */

	function Face4( a, b, c, d, normal, color, materialIndex ) {

		console.warn( 'THREE.Face4 has been removed. A THREE.Face3 will be created instead.' );
		return new Face3( a, b, c, normal, color, materialIndex );

	}

	var LineStrip = 0;
	var LinePieces = 1;
	var NoColors = 0;
	var FaceColors = 1;
	var VertexColors = 2;

	function MeshFaceMaterial( materials ) {

		console.warn( 'THREE.MeshFaceMaterial has been removed. Use an Array instead.' );
		return materials;

	}

	function MultiMaterial( materials ) {

		if ( materials === undefined ) { materials = []; }

		console.warn( 'THREE.MultiMaterial has been removed. Use an Array instead.' );
		materials.isMultiMaterial = true;
		materials.materials = materials;
		materials.clone = function () {

			return materials.slice();

		};

		return materials;

	}

	function PointCloud( geometry, material ) {

		console.warn( 'THREE.PointCloud has been renamed to THREE.Points.' );
		return new Points( geometry, material );

	}

	function Particle( material ) {

		console.warn( 'THREE.Particle has been renamed to THREE.Sprite.' );
		return new Sprite( material );

	}

	function ParticleSystem( geometry, material ) {

		console.warn( 'THREE.ParticleSystem has been renamed to THREE.Points.' );
		return new Points( geometry, material );

	}

	function PointCloudMaterial( parameters ) {

		console.warn( 'THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.' );
		return new PointsMaterial( parameters );

	}

	function ParticleBasicMaterial( parameters ) {

		console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.' );
		return new PointsMaterial( parameters );

	}

	function ParticleSystemMaterial( parameters ) {

		console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.' );
		return new PointsMaterial( parameters );

	}

	function Vertex( x, y, z ) {

		console.warn( 'THREE.Vertex has been removed. Use THREE.Vector3 instead.' );
		return new Vector3( x, y, z );

	}

	//

	function DynamicBufferAttribute( array, itemSize ) {

		console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.' );
		return new BufferAttribute( array, itemSize ).setUsage( DynamicDrawUsage );

	}

	function Int8Attribute( array, itemSize ) {

		console.warn( 'THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.' );
		return new Int8BufferAttribute( array, itemSize );

	}

	function Uint8Attribute( array, itemSize ) {

		console.warn( 'THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.' );
		return new Uint8BufferAttribute( array, itemSize );

	}

	function Uint8ClampedAttribute( array, itemSize ) {

		console.warn( 'THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.' );
		return new Uint8ClampedBufferAttribute( array, itemSize );

	}

	function Int16Attribute( array, itemSize ) {

		console.warn( 'THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.' );
		return new Int16BufferAttribute( array, itemSize );

	}

	function Uint16Attribute( array, itemSize ) {

		console.warn( 'THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.' );
		return new Uint16BufferAttribute( array, itemSize );

	}

	function Int32Attribute( array, itemSize ) {

		console.warn( 'THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.' );
		return new Int32BufferAttribute( array, itemSize );

	}

	function Uint32Attribute( array, itemSize ) {

		console.warn( 'THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.' );
		return new Uint32BufferAttribute( array, itemSize );

	}

	function Float32Attribute( array, itemSize ) {

		console.warn( 'THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.' );
		return new Float32BufferAttribute( array, itemSize );

	}

	function Float64Attribute( array, itemSize ) {

		console.warn( 'THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.' );
		return new Float64BufferAttribute( array, itemSize );

	}

	//

	Curve.create = function ( construct, getPoint ) {

		console.log( 'THREE.Curve.create() has been deprecated' );

		construct.prototype = Object.create( Curve.prototype );
		construct.prototype.constructor = construct;
		construct.prototype.getPoint = getPoint;

		return construct;

	};

	//

	Object.assign( CurvePath.prototype, {

		createPointsGeometry: function ( divisions ) {

			console.warn( 'THREE.CurvePath: .createPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );

			// generate geometry from path points (for Line or Points objects)

			var pts = this.getPoints( divisions );
			return this.createGeometry( pts );

		},

		createSpacedPointsGeometry: function ( divisions ) {

			console.warn( 'THREE.CurvePath: .createSpacedPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );

			// generate geometry from equidistant sampling along the path

			var pts = this.getSpacedPoints( divisions );
			return this.createGeometry( pts );

		},

		createGeometry: function ( points ) {

			console.warn( 'THREE.CurvePath: .createGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );

			var geometry = new Geometry();

			for ( var i = 0, l = points.length; i < l; i ++ ) {

				var point = points[ i ];
				geometry.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );

			}

			return geometry;

		}

	} );

	//

	Object.assign( Path.prototype, {

		fromPoints: function ( points ) {

			console.warn( 'THREE.Path: .fromPoints() has been renamed to .setFromPoints().' );
			return this.setFromPoints( points );

		}

	} );

	//

	function ClosedSplineCurve3( points ) {

		console.warn( 'THREE.ClosedSplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' );

		CatmullRomCurve3.call( this, points );
		this.type = 'catmullrom';
		this.closed = true;

	}

	ClosedSplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype );

	//

	function SplineCurve3( points ) {

		console.warn( 'THREE.SplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' );

		CatmullRomCurve3.call( this, points );
		this.type = 'catmullrom';

	}

	SplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype );

	//

	function Spline( points ) {

		console.warn( 'THREE.Spline has been removed. Use THREE.CatmullRomCurve3 instead.' );

		CatmullRomCurve3.call( this, points );
		this.type = 'catmullrom';

	}

	Spline.prototype = Object.create( CatmullRomCurve3.prototype );

	Object.assign( Spline.prototype, {

		initFromArray: function ( /* a */ ) {

			console.error( 'THREE.Spline: .initFromArray() has been removed.' );

		},
		getControlPointsArray: function ( /* optionalTarget */ ) {

			console.error( 'THREE.Spline: .getControlPointsArray() has been removed.' );

		},
		reparametrizeByArcLength: function ( /* samplingCoef */ ) {

			console.error( 'THREE.Spline: .reparametrizeByArcLength() has been removed.' );

		}

	} );

	//

	function AxisHelper( size ) {

		console.warn( 'THREE.AxisHelper has been renamed to THREE.AxesHelper.' );
		return new AxesHelper( size );

	}

	function BoundingBoxHelper( object, color ) {

		console.warn( 'THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.' );
		return new BoxHelper( object, color );

	}

	function EdgesHelper( object, hex ) {

		console.warn( 'THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.' );
		return new LineSegments( new EdgesGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) );

	}

	GridHelper.prototype.setColors = function () {

		console.error( 'THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.' );

	};

	SkeletonHelper.prototype.update = function () {

		console.error( 'THREE.SkeletonHelper: update() no longer needs to be called.' );

	};

	function WireframeHelper( object, hex ) {

		console.warn( 'THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.' );
		return new LineSegments( new WireframeGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) );

	}

	//

	Object.assign( Loader.prototype, {

		extractUrlBase: function ( url ) {

			console.warn( 'THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.' );
			return LoaderUtils.extractUrlBase( url );

		}

	} );

	Loader.Handlers = {

		add: function ( /* regex, loader */ ) {

			console.error( 'THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.' );

		},

		get: function ( /* file */ ) {

			console.error( 'THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.' );

		}

	};

	function XHRLoader( manager ) {

		console.warn( 'THREE.XHRLoader has been renamed to THREE.FileLoader.' );
		return new FileLoader( manager );

	}

	function BinaryTextureLoader( manager ) {

		console.warn( 'THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.' );
		return new DataTextureLoader( manager );

	}

	Object.assign( ObjectLoader.prototype, {

		setTexturePath: function ( value ) {

			console.warn( 'THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().' );
			return this.setResourcePath( value );

		}

	} );

	//

	Object.assign( Box2.prototype, {

		center: function ( optionalTarget ) {

			console.warn( 'THREE.Box2: .center() has been renamed to .getCenter().' );
			return this.getCenter( optionalTarget );

		},
		empty: function () {

			console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' );
			return this.isEmpty();

		},
		isIntersectionBox: function ( box ) {

			console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' );
			return this.intersectsBox( box );

		},
		size: function ( optionalTarget ) {

			console.warn( 'THREE.Box2: .size() has been renamed to .getSize().' );
			return this.getSize( optionalTarget );

		}
	} );

	Object.assign( Box3.prototype, {

		center: function ( optionalTarget ) {

			console.warn( 'THREE.Box3: .center() has been renamed to .getCenter().' );
			return this.getCenter( optionalTarget );

		},
		empty: function () {

			console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' );
			return this.isEmpty();

		},
		isIntersectionBox: function ( box ) {

			console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' );
			return this.intersectsBox( box );

		},
		isIntersectionSphere: function ( sphere ) {

			console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
			return this.intersectsSphere( sphere );

		},
		size: function ( optionalTarget ) {

			console.warn( 'THREE.Box3: .size() has been renamed to .getSize().' );
			return this.getSize( optionalTarget );

		}
	} );

	Object.assign( Sphere.prototype, {

		empty: function () {

			console.warn( 'THREE.Sphere: .empty() has been renamed to .isEmpty().' );
			return this.isEmpty();

		},

	} );

	Frustum.prototype.setFromMatrix = function ( m ) {

		console.warn( 'THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().' );
		return this.setFromProjectionMatrix( m );

	};

	Line3.prototype.center = function ( optionalTarget ) {

		console.warn( 'THREE.Line3: .center() has been renamed to .getCenter().' );
		return this.getCenter( optionalTarget );

	};

	Object.assign( MathUtils, {

		random16: function () {

			console.warn( 'THREE.Math: .random16() has been deprecated. Use Math.random() instead.' );
			return Math.random();

		},

		nearestPowerOfTwo: function ( value ) {

			console.warn( 'THREE.Math: .nearestPowerOfTwo() has been renamed to .floorPowerOfTwo().' );
			return MathUtils.floorPowerOfTwo( value );

		},

		nextPowerOfTwo: function ( value ) {

			console.warn( 'THREE.Math: .nextPowerOfTwo() has been renamed to .ceilPowerOfTwo().' );
			return MathUtils.ceilPowerOfTwo( value );

		}

	} );

	Object.assign( Matrix3.prototype, {

		flattenToArrayOffset: function ( array, offset ) {

			console.warn( "THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." );
			return this.toArray( array, offset );

		},
		multiplyVector3: function ( vector ) {

			console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' );
			return vector.applyMatrix3( this );

		},
		multiplyVector3Array: function ( /* a */ ) {

			console.error( 'THREE.Matrix3: .multiplyVector3Array() has been removed.' );

		},
		applyToBufferAttribute: function ( attribute ) {

			console.warn( 'THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.' );
			return attribute.applyMatrix3( this );

		},
		applyToVector3Array: function ( /* array, offset, length */ ) {

			console.error( 'THREE.Matrix3: .applyToVector3Array() has been removed.' );

		}

	} );

	Object.assign( Matrix4.prototype, {

		extractPosition: function ( m ) {

			console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' );
			return this.copyPosition( m );

		},
		flattenToArrayOffset: function ( array, offset ) {

			console.warn( "THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." );
			return this.toArray( array, offset );

		},
		getPosition: function () {

			console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' );
			return new Vector3().setFromMatrixColumn( this, 3 );

		},
		setRotationFromQuaternion: function ( q ) {

			console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' );
			return this.makeRotationFromQuaternion( q );

		},
		multiplyToArray: function () {

			console.warn( 'THREE.Matrix4: .multiplyToArray() has been removed.' );

		},
		multiplyVector3: function ( vector ) {

			console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
			return vector.applyMatrix4( this );

		},
		multiplyVector4: function ( vector ) {

			console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
			return vector.applyMatrix4( this );

		},
		multiplyVector3Array: function ( /* a */ ) {

			console.error( 'THREE.Matrix4: .multiplyVector3Array() has been removed.' );

		},
		rotateAxis: function ( v ) {

			console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' );
			v.transformDirection( this );

		},
		crossVector: function ( vector ) {

			console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
			return vector.applyMatrix4( this );

		},
		translate: function () {

			console.error( 'THREE.Matrix4: .translate() has been removed.' );

		},
		rotateX: function () {

			console.error( 'THREE.Matrix4: .rotateX() has been removed.' );

		},
		rotateY: function () {

			console.error( 'THREE.Matrix4: .rotateY() has been removed.' );

		},
		rotateZ: function () {

			console.error( 'THREE.Matrix4: .rotateZ() has been removed.' );

		},
		rotateByAxis: function () {

			console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' );

		},
		applyToBufferAttribute: function ( attribute ) {

			console.warn( 'THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.' );
			return attribute.applyMatrix4( this );

		},
		applyToVector3Array: function ( /* array, offset, length */ ) {

			console.error( 'THREE.Matrix4: .applyToVector3Array() has been removed.' );

		},
		makeFrustum: function ( left, right, bottom, top, near, far ) {

			console.warn( 'THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.' );
			return this.makePerspective( left, right, top, bottom, near, far );

		}

	} );

	Plane.prototype.isIntersectionLine = function ( line ) {

		console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' );
		return this.intersectsLine( line );

	};

	Quaternion.prototype.multiplyVector3 = function ( vector ) {

		console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' );
		return vector.applyQuaternion( this );

	};

	Object.assign( Ray.prototype, {

		isIntersectionBox: function ( box ) {

			console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' );
			return this.intersectsBox( box );

		},
		isIntersectionPlane: function ( plane ) {

			console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' );
			return this.intersectsPlane( plane );

		},
		isIntersectionSphere: function ( sphere ) {

			console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
			return this.intersectsSphere( sphere );

		}

	} );

	Object.assign( Triangle.prototype, {

		area: function () {

			console.warn( 'THREE.Triangle: .area() has been renamed to .getArea().' );
			return this.getArea();

		},
		barycoordFromPoint: function ( point, target ) {

			console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' );
			return this.getBarycoord( point, target );

		},
		midpoint: function ( target ) {

			console.warn( 'THREE.Triangle: .midpoint() has been renamed to .getMidpoint().' );
			return this.getMidpoint( target );

		},
		normal: function ( target ) {

			console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' );
			return this.getNormal( target );

		},
		plane: function ( target ) {

			console.warn( 'THREE.Triangle: .plane() has been renamed to .getPlane().' );
			return this.getPlane( target );

		}

	} );

	Object.assign( Triangle, {

		barycoordFromPoint: function ( point, a, b, c, target ) {

			console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' );
			return Triangle.getBarycoord( point, a, b, c, target );

		},
		normal: function ( a, b, c, target ) {

			console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' );
			return Triangle.getNormal( a, b, c, target );

		}

	} );

	Object.assign( Shape.prototype, {

		extractAllPoints: function ( divisions ) {

			console.warn( 'THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.' );
			return this.extractPoints( divisions );

		},
		extrude: function ( options ) {

			console.warn( 'THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.' );
			return new ExtrudeGeometry( this, options );

		},
		makeGeometry: function ( options ) {

			console.warn( 'THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.' );
			return new ShapeGeometry( this, options );

		}

	} );

	Object.assign( Vector2.prototype, {

		fromAttribute: function ( attribute, index, offset ) {

			console.warn( 'THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().' );
			return this.fromBufferAttribute( attribute, index, offset );

		},
		distanceToManhattan: function ( v ) {

			console.warn( 'THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' );
			return this.manhattanDistanceTo( v );

		},
		lengthManhattan: function () {

			console.warn( 'THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().' );
			return this.manhattanLength();

		}

	} );

	Object.assign( Vector3.prototype, {

		setEulerFromRotationMatrix: function () {

			console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' );

		},
		setEulerFromQuaternion: function () {

			console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' );

		},
		getPositionFromMatrix: function ( m ) {

			console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' );
			return this.setFromMatrixPosition( m );

		},
		getScaleFromMatrix: function ( m ) {

			console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' );
			return this.setFromMatrixScale( m );

		},
		getColumnFromMatrix: function ( index, matrix ) {

			console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' );
			return this.setFromMatrixColumn( matrix, index );

		},
		applyProjection: function ( m ) {

			console.warn( 'THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.' );
			return this.applyMatrix4( m );

		},
		fromAttribute: function ( attribute, index, offset ) {

			console.warn( 'THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().' );
			return this.fromBufferAttribute( attribute, index, offset );

		},
		distanceToManhattan: function ( v ) {

			console.warn( 'THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' );
			return this.manhattanDistanceTo( v );

		},
		lengthManhattan: function () {

			console.warn( 'THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().' );
			return this.manhattanLength();

		}

	} );

	Object.assign( Vector4.prototype, {

		fromAttribute: function ( attribute, index, offset ) {

			console.warn( 'THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().' );
			return this.fromBufferAttribute( attribute, index, offset );

		},
		lengthManhattan: function () {

			console.warn( 'THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().' );
			return this.manhattanLength();

		}

	} );

	//

	Object.assign( Geometry.prototype, {

		computeTangents: function () {

			console.error( 'THREE.Geometry: .computeTangents() has been removed.' );

		},
		computeLineDistances: function () {

			console.error( 'THREE.Geometry: .computeLineDistances() has been removed. Use THREE.Line.computeLineDistances() instead.' );

		},
		applyMatrix: function ( matrix ) {

			console.warn( 'THREE.Geometry: .applyMatrix() has been renamed to .applyMatrix4().' );
			return this.applyMatrix4( matrix );

		}

	} );

	Object.assign( Object3D.prototype, {

		getChildByName: function ( name ) {

			console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' );
			return this.getObjectByName( name );

		},
		renderDepth: function () {

			console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' );

		},
		translate: function ( distance, axis ) {

			console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' );
			return this.translateOnAxis( axis, distance );

		},
		getWorldRotation: function () {

			console.error( 'THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.' );

		},
		applyMatrix: function ( matrix ) {

			console.warn( 'THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().' );
			return this.applyMatrix4( matrix );

		}

	} );

	Object.defineProperties( Object3D.prototype, {

		eulerOrder: {
			get: function () {

				console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
				return this.rotation.order;

			},
			set: function ( value ) {

				console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
				this.rotation.order = value;

			}
		},
		useQuaternion: {
			get: function () {

				console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );

			},
			set: function () {

				console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );

			}
		}

	} );

	Object.assign( Mesh.prototype, {

		setDrawMode: function () {

			console.error( 'THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.' );

		},

	} );

	Object.defineProperties( Mesh.prototype, {

		drawMode: {
			get: function () {

				console.error( 'THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.' );
				return TrianglesDrawMode;

			},
			set: function () {

				console.error( 'THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.' );

			}
		}

	} );

	Object.defineProperties( LOD.prototype, {

		objects: {
			get: function () {

				console.warn( 'THREE.LOD: .objects has been renamed to .levels.' );
				return this.levels;

			}
		}

	} );

	Object.defineProperty( Skeleton.prototype, 'useVertexTexture', {

		get: function () {

			console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );

		},
		set: function () {

			console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );

		}

	} );

	SkinnedMesh.prototype.initBones = function () {

		console.error( 'THREE.SkinnedMesh: initBones() has been removed.' );

	};

	Object.defineProperty( Curve.prototype, '__arcLengthDivisions', {

		get: function () {

			console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' );
			return this.arcLengthDivisions;

		},
		set: function ( value ) {

			console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' );
			this.arcLengthDivisions = value;

		}

	} );

	//

	PerspectiveCamera.prototype.setLens = function ( focalLength, filmGauge ) {

		console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " +
				"Use .setFocalLength and .filmGauge for a photographic setup." );

		if ( filmGauge !== undefined ) { this.filmGauge = filmGauge; }
		this.setFocalLength( focalLength );

	};

	//

	Object.defineProperties( Light.prototype, {
		onlyShadow: {
			set: function () {

				console.warn( 'THREE.Light: .onlyShadow has been removed.' );

			}
		},
		shadowCameraFov: {
			set: function ( value ) {

				console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' );
				this.shadow.camera.fov = value;

			}
		},
		shadowCameraLeft: {
			set: function ( value ) {

				console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' );
				this.shadow.camera.left = value;

			}
		},
		shadowCameraRight: {
			set: function ( value ) {

				console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' );
				this.shadow.camera.right = value;

			}
		},
		shadowCameraTop: {
			set: function ( value ) {

				console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' );
				this.shadow.camera.top = value;

			}
		},
		shadowCameraBottom: {
			set: function ( value ) {

				console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' );
				this.shadow.camera.bottom = value;

			}
		},
		shadowCameraNear: {
			set: function ( value ) {

				console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' );
				this.shadow.camera.near = value;

			}
		},
		shadowCameraFar: {
			set: function ( value ) {

				console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' );
				this.shadow.camera.far = value;

			}
		},
		shadowCameraVisible: {
			set: function () {

				console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' );

			}
		},
		shadowBias: {
			set: function ( value ) {

				console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' );
				this.shadow.bias = value;

			}
		},
		shadowDarkness: {
			set: function () {

				console.warn( 'THREE.Light: .shadowDarkness has been removed.' );

			}
		},
		shadowMapWidth: {
			set: function ( value ) {

				console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' );
				this.shadow.mapSize.width = value;

			}
		},
		shadowMapHeight: {
			set: function ( value ) {

				console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' );
				this.shadow.mapSize.height = value;

			}
		}
	} );

	//

	Object.defineProperties( BufferAttribute.prototype, {

		length: {
			get: function () {

				console.warn( 'THREE.BufferAttribute: .length has been deprecated. Use .count instead.' );
				return this.array.length;

			}
		},
		dynamic: {
			get: function () {

				console.warn( 'THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.' );
				return this.usage === DynamicDrawUsage;

			},
			set: function ( /* value */ ) {

				console.warn( 'THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.' );
				this.setUsage( DynamicDrawUsage );

			}
		}

	} );

	Object.assign( BufferAttribute.prototype, {
		setDynamic: function ( value ) {

			console.warn( 'THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.' );
			this.setUsage( value === true ? DynamicDrawUsage : StaticDrawUsage );
			return this;

		},
		copyIndicesArray: function ( /* indices */ ) {

			console.error( 'THREE.BufferAttribute: .copyIndicesArray() has been removed.' );

		},
		setArray: function ( /* array */ ) {

			console.error( 'THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers' );

		}
	} );

	Object.assign( BufferGeometry.prototype, {

		addIndex: function ( index ) {

			console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' );
			this.setIndex( index );

		},
		addAttribute: function ( name, attribute ) {

			console.warn( 'THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().' );

			if ( ! ( attribute && attribute.isBufferAttribute ) && ! ( attribute && attribute.isInterleavedBufferAttribute ) ) {

				console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' );

				return this.setAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) );

			}

			if ( name === 'index' ) {

				console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' );
				this.setIndex( attribute );

				return this;

			}

			return this.setAttribute( name, attribute );

		},
		addDrawCall: function ( start, count, indexOffset ) {

			if ( indexOffset !== undefined ) {

				console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' );

			}

			console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' );
			this.addGroup( start, count );

		},
		clearDrawCalls: function () {

			console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' );
			this.clearGroups();

		},
		computeTangents: function () {

			console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' );

		},
		computeOffsets: function () {

			console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' );

		},
		removeAttribute: function ( name ) {

			console.warn( 'THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().' );

			return this.deleteAttribute( name );

		},
		applyMatrix: function ( matrix ) {

			console.warn( 'THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().' );
			return this.applyMatrix4( matrix );

		}

	} );

	Object.defineProperties( BufferGeometry.prototype, {

		drawcalls: {
			get: function () {

				console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' );
				return this.groups;

			}
		},
		offsets: {
			get: function () {

				console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' );
				return this.groups;

			}
		}

	} );

	Object.defineProperties( Raycaster.prototype, {

		linePrecision: {
			get: function () {

				console.warn( 'THREE.Raycaster: .linePrecision has been deprecated. Use .params.Line.threshold instead.' );
				return this.params.Line.threshold;

			},
			set: function ( value ) {

				console.warn( 'THREE.Raycaster: .linePrecision has been deprecated. Use .params.Line.threshold instead.' );
				this.params.Line.threshold = value;

			}
		}

	} );

	Object.defineProperties( InterleavedBuffer.prototype, {

		dynamic: {
			get: function () {

				console.warn( 'THREE.InterleavedBuffer: .length has been deprecated. Use .usage instead.' );
				return this.usage === DynamicDrawUsage;

			},
			set: function ( value ) {

				console.warn( 'THREE.InterleavedBuffer: .length has been deprecated. Use .usage instead.' );
				this.setUsage( value );

			}
		}

	} );

	Object.assign( InterleavedBuffer.prototype, {
		setDynamic: function ( value ) {

			console.warn( 'THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.' );
			this.setUsage( value === true ? DynamicDrawUsage : StaticDrawUsage );
			return this;

		},
		setArray: function ( /* array */ ) {

			console.error( 'THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers' );

		}
	} );

	//

	Object.assign( ExtrudeBufferGeometry.prototype, {

		getArrays: function () {

			console.error( 'THREE.ExtrudeBufferGeometry: .getArrays() has been removed.' );

		},

		addShapeList: function () {

			console.error( 'THREE.ExtrudeBufferGeometry: .addShapeList() has been removed.' );

		},

		addShape: function () {

			console.error( 'THREE.ExtrudeBufferGeometry: .addShape() has been removed.' );

		}

	} );

	//

	Object.defineProperties( Uniform.prototype, {

		dynamic: {
			set: function () {

				console.warn( 'THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.' );

			}
		},
		onUpdate: {
			value: function () {

				console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' );
				return this;

			}
		}

	} );

	//

	Object.defineProperties( Material.prototype, {

		wrapAround: {
			get: function () {

				console.warn( 'THREE.Material: .wrapAround has been removed.' );

			},
			set: function () {

				console.warn( 'THREE.Material: .wrapAround has been removed.' );

			}
		},

		overdraw: {
			get: function () {

				console.warn( 'THREE.Material: .overdraw has been removed.' );

			},
			set: function () {

				console.warn( 'THREE.Material: .overdraw has been removed.' );

			}
		},

		wrapRGB: {
			get: function () {

				console.warn( 'THREE.Material: .wrapRGB has been removed.' );
				return new Color();

			}
		},

		shading: {
			get: function () {

				console.error( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );

			},
			set: function ( value ) {

				console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );
				this.flatShading = ( value === FlatShading );

			}
		},

		stencilMask: {
			get: function () {

				console.warn( 'THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.' );
				return this.stencilFuncMask;

			},
			set: function ( value ) {

				console.warn( 'THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.' );
				this.stencilFuncMask = value;

			}
		}

	} );

	Object.defineProperties( MeshPhongMaterial.prototype, {

		metal: {
			get: function () {

				console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' );
				return false;

			},
			set: function () {

				console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' );

			}
		}

	} );

	Object.defineProperties( ShaderMaterial.prototype, {

		derivatives: {
			get: function () {

				console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
				return this.extensions.derivatives;

			},
			set: function ( value ) {

				console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
				this.extensions.derivatives = value;

			}
		}

	} );

	//

	Object.assign( WebGLRenderer.prototype, {

		clearTarget: function ( renderTarget, color, depth, stencil ) {

			console.warn( 'THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.' );
			this.setRenderTarget( renderTarget );
			this.clear( color, depth, stencil );

		},
		animate: function ( callback ) {

			console.warn( 'THREE.WebGLRenderer: .animate() is now .setAnimationLoop().' );
			this.setAnimationLoop( callback );

		},
		getCurrentRenderTarget: function () {

			console.warn( 'THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().' );
			return this.getRenderTarget();

		},
		getMaxAnisotropy: function () {

			console.warn( 'THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().' );
			return this.capabilities.getMaxAnisotropy();

		},
		getPrecision: function () {

			console.warn( 'THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.' );
			return this.capabilities.precision;

		},
		resetGLState: function () {

			console.warn( 'THREE.WebGLRenderer: .resetGLState() is now .state.reset().' );
			return this.state.reset();

		},
		supportsFloatTextures: function () {

			console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' );
			return this.extensions.get( 'OES_texture_float' );

		},
		supportsHalfFloatTextures: function () {

			console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' );
			return this.extensions.get( 'OES_texture_half_float' );

		},
		supportsStandardDerivatives: function () {

			console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' );
			return this.extensions.get( 'OES_standard_derivatives' );

		},
		supportsCompressedTextureS3TC: function () {

			console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' );
			return this.extensions.get( 'WEBGL_compressed_texture_s3tc' );

		},
		supportsCompressedTexturePVRTC: function () {

			console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' );
			return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' );

		},
		supportsBlendMinMax: function () {

			console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' );
			return this.extensions.get( 'EXT_blend_minmax' );

		},
		supportsVertexTextures: function () {

			console.warn( 'THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.' );
			return this.capabilities.vertexTextures;

		},
		supportsInstancedArrays: function () {

			console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' );
			return this.extensions.get( 'ANGLE_instanced_arrays' );

		},
		enableScissorTest: function ( boolean ) {

			console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' );
			this.setScissorTest( boolean );

		},
		initMaterial: function () {

			console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' );

		},
		addPrePlugin: function () {

			console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' );

		},
		addPostPlugin: function () {

			console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' );

		},
		updateShadowMap: function () {

			console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' );

		},
		setFaceCulling: function () {

			console.warn( 'THREE.WebGLRenderer: .setFaceCulling() has been removed.' );

		},
		allocTextureUnit: function () {

			console.warn( 'THREE.WebGLRenderer: .allocTextureUnit() has been removed.' );

		},
		setTexture: function () {

			console.warn( 'THREE.WebGLRenderer: .setTexture() has been removed.' );

		},
		setTexture2D: function () {

			console.warn( 'THREE.WebGLRenderer: .setTexture2D() has been removed.' );

		},
		setTextureCube: function () {

			console.warn( 'THREE.WebGLRenderer: .setTextureCube() has been removed.' );

		},
		getActiveMipMapLevel: function () {

			console.warn( 'THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().' );
			return this.getActiveMipmapLevel();

		}

	} );

	Object.defineProperties( WebGLRenderer.prototype, {

		shadowMapEnabled: {
			get: function () {

				return this.shadowMap.enabled;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' );
				this.shadowMap.enabled = value;

			}
		},
		shadowMapType: {
			get: function () {

				return this.shadowMap.type;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' );
				this.shadowMap.type = value;

			}
		},
		shadowMapCullFace: {
			get: function () {

				console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' );
				return undefined;

			},
			set: function ( /* value */ ) {

				console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' );

			}
		},
		context: {
			get: function () {

				console.warn( 'THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.' );
				return this.getContext();

			}
		},
		vr: {
			get: function () {

				console.warn( 'THREE.WebGLRenderer: .vr has been renamed to .xr' );
				return this.xr;

			}
		},
		gammaInput: {
			get: function () {

				console.warn( 'THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.' );
				return false;

			},
			set: function () {

				console.warn( 'THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.' );

			}
		},
		gammaOutput: {
			get: function () {

				console.warn( 'THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.' );
				return false;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.' );
				this.outputEncoding = ( value === true ) ? sRGBEncoding : LinearEncoding;

			}
		}

	} );

	Object.defineProperties( WebGLShadowMap.prototype, {

		cullFace: {
			get: function () {

				console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' );
				return undefined;

			},
			set: function ( /* cullFace */ ) {

				console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' );

			}
		},
		renderReverseSided: {
			get: function () {

				console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' );
				return undefined;

			},
			set: function () {

				console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' );

			}
		},
		renderSingleSided: {
			get: function () {

				console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' );
				return undefined;

			},
			set: function () {

				console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' );

			}
		}

	} );

	function WebGLRenderTargetCube( width, height, options ) {

		console.warn( 'THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).' );
		return new WebGLCubeRenderTarget( width, options );

	}

	//

	Object.defineProperties( WebGLRenderTarget.prototype, {

		wrapS: {
			get: function () {

				console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
				return this.texture.wrapS;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
				this.texture.wrapS = value;

			}
		},
		wrapT: {
			get: function () {

				console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
				return this.texture.wrapT;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
				this.texture.wrapT = value;

			}
		},
		magFilter: {
			get: function () {

				console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
				return this.texture.magFilter;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
				this.texture.magFilter = value;

			}
		},
		minFilter: {
			get: function () {

				console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
				return this.texture.minFilter;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
				this.texture.minFilter = value;

			}
		},
		anisotropy: {
			get: function () {

				console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
				return this.texture.anisotropy;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
				this.texture.anisotropy = value;

			}
		},
		offset: {
			get: function () {

				console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
				return this.texture.offset;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
				this.texture.offset = value;

			}
		},
		repeat: {
			get: function () {

				console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
				return this.texture.repeat;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
				this.texture.repeat = value;

			}
		},
		format: {
			get: function () {

				console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
				return this.texture.format;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
				this.texture.format = value;

			}
		},
		type: {
			get: function () {

				console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
				return this.texture.type;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
				this.texture.type = value;

			}
		},
		generateMipmaps: {
			get: function () {

				console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
				return this.texture.generateMipmaps;

			},
			set: function ( value ) {

				console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
				this.texture.generateMipmaps = value;

			}
		}

	} );

	//

	Object.defineProperties( Audio.prototype, {

		load: {
			value: function ( file ) {

				console.warn( 'THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.' );
				var scope = this;
				var audioLoader = new AudioLoader();
				audioLoader.load( file, function ( buffer ) {

					scope.setBuffer( buffer );

				} );
				return this;

			}
		},
		startTime: {
			set: function () {

				console.warn( 'THREE.Audio: .startTime is now .play( delay ).' );

			}
		}

	} );

	AudioAnalyser.prototype.getData = function () {

		console.warn( 'THREE.AudioAnalyser: .getData() is now .getFrequencyData().' );
		return this.getFrequencyData();

	};

	//

	CubeCamera.prototype.updateCubeMap = function ( renderer, scene ) {

		console.warn( 'THREE.CubeCamera: .updateCubeMap() is now .update().' );
		return this.update( renderer, scene );

	};

	//

	var GeometryUtils = {

		merge: function ( geometry1, geometry2, materialIndexOffset ) {

			console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' );
			var matrix;

			if ( geometry2.isMesh ) {

				geometry2.matrixAutoUpdate && geometry2.updateMatrix();

				matrix = geometry2.matrix;
				geometry2 = geometry2.geometry;

			}

			geometry1.merge( geometry2, matrix, materialIndexOffset );

		},

		center: function ( geometry ) {

			console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' );
			return geometry.center();

		}

	};

	ImageUtils.crossOrigin = undefined;

	ImageUtils.loadTexture = function ( url, mapping, onLoad, onError ) {

		console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' );

		var loader = new TextureLoader();
		loader.setCrossOrigin( this.crossOrigin );

		var texture = loader.load( url, onLoad, undefined, onError );

		if ( mapping ) { texture.mapping = mapping; }

		return texture;

	};

	ImageUtils.loadTextureCube = function ( urls, mapping, onLoad, onError ) {

		console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' );

		var loader = new CubeTextureLoader();
		loader.setCrossOrigin( this.crossOrigin );

		var texture = loader.load( urls, onLoad, undefined, onError );

		if ( mapping ) { texture.mapping = mapping; }

		return texture;

	};

	ImageUtils.loadCompressedTexture = function () {

		console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' );

	};

	ImageUtils.loadCompressedTextureCube = function () {

		console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' );

	};

	//

	function CanvasRenderer() {

		console.error( 'THREE.CanvasRenderer has been removed' );

	}

	//

	function JSONLoader() {

		console.error( 'THREE.JSONLoader has been removed.' );

	}

	//

	var SceneUtils = {

		createMultiMaterialObject: function ( /* geometry, materials */ ) {

			console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' );

		},

		detach: function ( /* child, parent, scene */ ) {

			console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' );

		},

		attach: function ( /* child, scene, parent */ ) {

			console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' );

		}

	};

	//

	function LensFlare() {

		console.error( 'THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js' );

	}

	if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {

		/* eslint-disable no-undef */
		__THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'register', { detail: {
			revision: REVISION,
		} } ) );
		/* eslint-enable no-undef */

	}

	exports.ACESFilmicToneMapping = ACESFilmicToneMapping;
	exports.AddEquation = AddEquation;
	exports.AddOperation = AddOperation;
	exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode;
	exports.AdditiveBlending = AdditiveBlending;
	exports.AlphaFormat = AlphaFormat;
	exports.AlwaysDepth = AlwaysDepth;
	exports.AlwaysStencilFunc = AlwaysStencilFunc;
	exports.AmbientLight = AmbientLight;
	exports.AmbientLightProbe = AmbientLightProbe;
	exports.AnimationClip = AnimationClip;
	exports.AnimationLoader = AnimationLoader;
	exports.AnimationMixer = AnimationMixer;
	exports.AnimationObjectGroup = AnimationObjectGroup;
	exports.AnimationUtils = AnimationUtils;
	exports.ArcCurve = ArcCurve;
	exports.ArrayCamera = ArrayCamera;
	exports.ArrowHelper = ArrowHelper;
	exports.Audio = Audio;
	exports.AudioAnalyser = AudioAnalyser;
	exports.AudioContext = AudioContext;
	exports.AudioListener = AudioListener;
	exports.AudioLoader = AudioLoader;
	exports.AxesHelper = AxesHelper;
	exports.AxisHelper = AxisHelper;
	exports.BackSide = BackSide;
	exports.BasicDepthPacking = BasicDepthPacking;
	exports.BasicShadowMap = BasicShadowMap;
	exports.BinaryTextureLoader = BinaryTextureLoader;
	exports.Bone = Bone;
	exports.BooleanKeyframeTrack = BooleanKeyframeTrack;
	exports.BoundingBoxHelper = BoundingBoxHelper;
	exports.Box2 = Box2;
	exports.Box3 = Box3;
	exports.Box3Helper = Box3Helper;
	exports.BoxBufferGeometry = BoxBufferGeometry;
	exports.BoxGeometry = BoxGeometry;
	exports.BoxHelper = BoxHelper;
	exports.BufferAttribute = BufferAttribute;
	exports.BufferGeometry = BufferGeometry;
	exports.BufferGeometryLoader = BufferGeometryLoader;
	exports.ByteType = ByteType;
	exports.Cache = Cache;
	exports.Camera = Camera;
	exports.CameraHelper = CameraHelper;
	exports.CanvasRenderer = CanvasRenderer;
	exports.CanvasTexture = CanvasTexture;
	exports.CatmullRomCurve3 = CatmullRomCurve3;
	exports.CineonToneMapping = CineonToneMapping;
	exports.CircleBufferGeometry = CircleBufferGeometry;
	exports.CircleGeometry = CircleGeometry;
	exports.ClampToEdgeWrapping = ClampToEdgeWrapping;
	exports.Clock = Clock;
	exports.ClosedSplineCurve3 = ClosedSplineCurve3;
	exports.Color = Color;
	exports.ColorKeyframeTrack = ColorKeyframeTrack;
	exports.CompressedTexture = CompressedTexture;
	exports.CompressedTextureLoader = CompressedTextureLoader;
	exports.ConeBufferGeometry = ConeBufferGeometry;
	exports.ConeGeometry = ConeGeometry;
	exports.CubeCamera = CubeCamera;
	exports.CubeGeometry = BoxGeometry;
	exports.CubeReflectionMapping = CubeReflectionMapping;
	exports.CubeRefractionMapping = CubeRefractionMapping;
	exports.CubeTexture = CubeTexture;
	exports.CubeTextureLoader = CubeTextureLoader;
	exports.CubeUVReflectionMapping = CubeUVReflectionMapping;
	exports.CubeUVRefractionMapping = CubeUVRefractionMapping;
	exports.CubicBezierCurve = CubicBezierCurve;
	exports.CubicBezierCurve3 = CubicBezierCurve3;
	exports.CubicInterpolant = CubicInterpolant;
	exports.CullFaceBack = CullFaceBack;
	exports.CullFaceFront = CullFaceFront;
	exports.CullFaceFrontBack = CullFaceFrontBack;
	exports.CullFaceNone = CullFaceNone;
	exports.Curve = Curve;
	exports.CurvePath = CurvePath;
	exports.CustomBlending = CustomBlending;
	exports.CylinderBufferGeometry = CylinderBufferGeometry;
	exports.CylinderGeometry = CylinderGeometry;
	exports.Cylindrical = Cylindrical;
	exports.DataTexture = DataTexture;
	exports.DataTexture2DArray = DataTexture2DArray;
	exports.DataTexture3D = DataTexture3D;
	exports.DataTextureLoader = DataTextureLoader;
	exports.DecrementStencilOp = DecrementStencilOp;
	exports.DecrementWrapStencilOp = DecrementWrapStencilOp;
	exports.DefaultLoadingManager = DefaultLoadingManager;
	exports.DepthFormat = DepthFormat;
	exports.DepthStencilFormat = DepthStencilFormat;
	exports.DepthTexture = DepthTexture;
	exports.DirectionalLight = DirectionalLight;
	exports.DirectionalLightHelper = DirectionalLightHelper;
	exports.DirectionalLightShadow = DirectionalLightShadow;
	exports.DiscreteInterpolant = DiscreteInterpolant;
	exports.DodecahedronBufferGeometry = DodecahedronBufferGeometry;
	exports.DodecahedronGeometry = DodecahedronGeometry;
	exports.DoubleSide = DoubleSide;
	exports.DstAlphaFactor = DstAlphaFactor;
	exports.DstColorFactor = DstColorFactor;
	exports.DynamicBufferAttribute = DynamicBufferAttribute;
	exports.DynamicCopyUsage = DynamicCopyUsage;
	exports.DynamicDrawUsage = DynamicDrawUsage;
	exports.DynamicReadUsage = DynamicReadUsage;
	exports.EdgesGeometry = EdgesGeometry;
	exports.EdgesHelper = EdgesHelper;
	exports.EllipseCurve = EllipseCurve;
	exports.EqualDepth = EqualDepth;
	exports.EqualStencilFunc = EqualStencilFunc;
	exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping;
	exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping;
	exports.Euler = Euler;
	exports.EventDispatcher = EventDispatcher;
	exports.ExtrudeBufferGeometry = ExtrudeBufferGeometry;
	exports.ExtrudeGeometry = ExtrudeGeometry;
	exports.Face3 = Face3;
	exports.Face4 = Face4;
	exports.FaceColors = FaceColors;
	exports.FileLoader = FileLoader;
	exports.FlatShading = FlatShading;
	exports.Float32Attribute = Float32Attribute;
	exports.Float32BufferAttribute = Float32BufferAttribute;
	exports.Float64Attribute = Float64Attribute;
	exports.Float64BufferAttribute = Float64BufferAttribute;
	exports.FloatType = FloatType;
	exports.Fog = Fog;
	exports.FogExp2 = FogExp2;
	exports.Font = Font;
	exports.FontLoader = FontLoader;
	exports.FrontFaceDirectionCCW = FrontFaceDirectionCCW;
	exports.FrontFaceDirectionCW = FrontFaceDirectionCW;
	exports.FrontSide = FrontSide;
	exports.Frustum = Frustum;
	exports.GammaEncoding = GammaEncoding;
	exports.Geometry = Geometry;
	exports.GeometryUtils = GeometryUtils;
	exports.GreaterDepth = GreaterDepth;
	exports.GreaterEqualDepth = GreaterEqualDepth;
	exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc;
	exports.GreaterStencilFunc = GreaterStencilFunc;
	exports.GridHelper = GridHelper;
	exports.Group = Group;
	exports.HalfFloatType = HalfFloatType;
	exports.HemisphereLight = HemisphereLight;
	exports.HemisphereLightHelper = HemisphereLightHelper;
	exports.HemisphereLightProbe = HemisphereLightProbe;
	exports.IcosahedronBufferGeometry = IcosahedronBufferGeometry;
	exports.IcosahedronGeometry = IcosahedronGeometry;
	exports.ImageBitmapLoader = ImageBitmapLoader;
	exports.ImageLoader = ImageLoader;
	exports.ImageUtils = ImageUtils;
	exports.ImmediateRenderObject = ImmediateRenderObject;
	exports.IncrementStencilOp = IncrementStencilOp;
	exports.IncrementWrapStencilOp = IncrementWrapStencilOp;
	exports.InstancedBufferAttribute = InstancedBufferAttribute;
	exports.InstancedBufferGeometry = InstancedBufferGeometry;
	exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer;
	exports.InstancedMesh = InstancedMesh;
	exports.Int16Attribute = Int16Attribute;
	exports.Int16BufferAttribute = Int16BufferAttribute;
	exports.Int32Attribute = Int32Attribute;
	exports.Int32BufferAttribute = Int32BufferAttribute;
	exports.Int8Attribute = Int8Attribute;
	exports.Int8BufferAttribute = Int8BufferAttribute;
	exports.IntType = IntType;
	exports.InterleavedBuffer = InterleavedBuffer;
	exports.InterleavedBufferAttribute = InterleavedBufferAttribute;
	exports.Interpolant = Interpolant;
	exports.InterpolateDiscrete = InterpolateDiscrete;
	exports.InterpolateLinear = InterpolateLinear;
	exports.InterpolateSmooth = InterpolateSmooth;
	exports.InvertStencilOp = InvertStencilOp;
	exports.JSONLoader = JSONLoader;
	exports.KeepStencilOp = KeepStencilOp;
	exports.KeyframeTrack = KeyframeTrack;
	exports.LOD = LOD;
	exports.LatheBufferGeometry = LatheBufferGeometry;
	exports.LatheGeometry = LatheGeometry;
	exports.Layers = Layers;
	exports.LensFlare = LensFlare;
	exports.LessDepth = LessDepth;
	exports.LessEqualDepth = LessEqualDepth;
	exports.LessEqualStencilFunc = LessEqualStencilFunc;
	exports.LessStencilFunc = LessStencilFunc;
	exports.Light = Light;
	exports.LightProbe = LightProbe;
	exports.LightShadow = LightShadow;
	exports.Line = Line;
	exports.Line3 = Line3;
	exports.LineBasicMaterial = LineBasicMaterial;
	exports.LineCurve = LineCurve;
	exports.LineCurve3 = LineCurve3;
	exports.LineDashedMaterial = LineDashedMaterial;
	exports.LineLoop = LineLoop;
	exports.LinePieces = LinePieces;
	exports.LineSegments = LineSegments;
	exports.LineStrip = LineStrip;
	exports.LinearEncoding = LinearEncoding;
	exports.LinearFilter = LinearFilter;
	exports.LinearInterpolant = LinearInterpolant;
	exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter;
	exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter;
	exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter;
	exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter;
	exports.LinearToneMapping = LinearToneMapping;
	exports.Loader = Loader;
	exports.LoaderUtils = LoaderUtils;
	exports.LoadingManager = LoadingManager;
	exports.LogLuvEncoding = LogLuvEncoding;
	exports.LoopOnce = LoopOnce;
	exports.LoopPingPong = LoopPingPong;
	exports.LoopRepeat = LoopRepeat;
	exports.LuminanceAlphaFormat = LuminanceAlphaFormat;
	exports.LuminanceFormat = LuminanceFormat;
	exports.MOUSE = MOUSE;
	exports.Material = Material;
	exports.MaterialLoader = MaterialLoader;
	exports.Math = MathUtils;
	exports.MathUtils = MathUtils;
	exports.Matrix3 = Matrix3;
	exports.Matrix4 = Matrix4;
	exports.MaxEquation = MaxEquation;
	exports.Mesh = Mesh;
	exports.MeshBasicMaterial = MeshBasicMaterial;
	exports.MeshDepthMaterial = MeshDepthMaterial;
	exports.MeshDistanceMaterial = MeshDistanceMaterial;
	exports.MeshFaceMaterial = MeshFaceMaterial;
	exports.MeshLambertMaterial = MeshLambertMaterial;
	exports.MeshMatcapMaterial = MeshMatcapMaterial;
	exports.MeshNormalMaterial = MeshNormalMaterial;
	exports.MeshPhongMaterial = MeshPhongMaterial;
	exports.MeshPhysicalMaterial = MeshPhysicalMaterial;
	exports.MeshStandardMaterial = MeshStandardMaterial;
	exports.MeshToonMaterial = MeshToonMaterial;
	exports.MinEquation = MinEquation;
	exports.MirroredRepeatWrapping = MirroredRepeatWrapping;
	exports.MixOperation = MixOperation;
	exports.MultiMaterial = MultiMaterial;
	exports.MultiplyBlending = MultiplyBlending;
	exports.MultiplyOperation = MultiplyOperation;
	exports.NearestFilter = NearestFilter;
	exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter;
	exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter;
	exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter;
	exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter;
	exports.NeverDepth = NeverDepth;
	exports.NeverStencilFunc = NeverStencilFunc;
	exports.NoBlending = NoBlending;
	exports.NoColors = NoColors;
	exports.NoToneMapping = NoToneMapping;
	exports.NormalAnimationBlendMode = NormalAnimationBlendMode;
	exports.NormalBlending = NormalBlending;
	exports.NotEqualDepth = NotEqualDepth;
	exports.NotEqualStencilFunc = NotEqualStencilFunc;
	exports.NumberKeyframeTrack = NumberKeyframeTrack;
	exports.Object3D = Object3D;
	exports.ObjectLoader = ObjectLoader;
	exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap;
	exports.OctahedronBufferGeometry = OctahedronBufferGeometry;
	exports.OctahedronGeometry = OctahedronGeometry;
	exports.OneFactor = OneFactor;
	exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor;
	exports.OneMinusDstColorFactor = OneMinusDstColorFactor;
	exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor;
	exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor;
	exports.OrthographicCamera = OrthographicCamera;
	exports.PCFShadowMap = PCFShadowMap;
	exports.PCFSoftShadowMap = PCFSoftShadowMap;
	exports.PMREMGenerator = PMREMGenerator;
	exports.ParametricBufferGeometry = ParametricBufferGeometry;
	exports.ParametricGeometry = ParametricGeometry;
	exports.Particle = Particle;
	exports.ParticleBasicMaterial = ParticleBasicMaterial;
	exports.ParticleSystem = ParticleSystem;
	exports.ParticleSystemMaterial = ParticleSystemMaterial;
	exports.Path = Path;
	exports.PerspectiveCamera = PerspectiveCamera;
	exports.Plane = Plane;
	exports.PlaneBufferGeometry = PlaneBufferGeometry;
	exports.PlaneGeometry = PlaneGeometry;
	exports.PlaneHelper = PlaneHelper;
	exports.PointCloud = PointCloud;
	exports.PointCloudMaterial = PointCloudMaterial;
	exports.PointLight = PointLight;
	exports.PointLightHelper = PointLightHelper;
	exports.Points = Points;
	exports.PointsMaterial = PointsMaterial;
	exports.PolarGridHelper = PolarGridHelper;
	exports.PolyhedronBufferGeometry = PolyhedronBufferGeometry;
	exports.PolyhedronGeometry = PolyhedronGeometry;
	exports.PositionalAudio = PositionalAudio;
	exports.PropertyBinding = PropertyBinding;
	exports.PropertyMixer = PropertyMixer;
	exports.QuadraticBezierCurve = QuadraticBezierCurve;
	exports.QuadraticBezierCurve3 = QuadraticBezierCurve3;
	exports.Quaternion = Quaternion;
	exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack;
	exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant;
	exports.REVISION = REVISION;
	exports.RGBADepthPacking = RGBADepthPacking;
	exports.RGBAFormat = RGBAFormat;
	exports.RGBAIntegerFormat = RGBAIntegerFormat;
	exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format;
	exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format;
	exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format;
	exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format;
	exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format;
	exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format;
	exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format;
	exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format;
	exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format;
	exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format;
	exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format;
	exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format;
	exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format;
	exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format;
	exports.RGBA_BPTC_Format = RGBA_BPTC_Format;
	exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format;
	exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format;
	exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format;
	exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format;
	exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format;
	exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format;
	exports.RGBDEncoding = RGBDEncoding;
	exports.RGBEEncoding = RGBEEncoding;
	exports.RGBEFormat = RGBEFormat;
	exports.RGBFormat = RGBFormat;
	exports.RGBIntegerFormat = RGBIntegerFormat;
	exports.RGBM16Encoding = RGBM16Encoding;
	exports.RGBM7Encoding = RGBM7Encoding;
	exports.RGB_ETC1_Format = RGB_ETC1_Format;
	exports.RGB_ETC2_Format = RGB_ETC2_Format;
	exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format;
	exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format;
	exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format;
	exports.RGFormat = RGFormat;
	exports.RGIntegerFormat = RGIntegerFormat;
	exports.RawShaderMaterial = RawShaderMaterial;
	exports.Ray = Ray;
	exports.Raycaster = Raycaster;
	exports.RectAreaLight = RectAreaLight;
	exports.RedFormat = RedFormat;
	exports.RedIntegerFormat = RedIntegerFormat;
	exports.ReinhardToneMapping = ReinhardToneMapping;
	exports.RepeatWrapping = RepeatWrapping;
	exports.ReplaceStencilOp = ReplaceStencilOp;
	exports.ReverseSubtractEquation = ReverseSubtractEquation;
	exports.RingBufferGeometry = RingBufferGeometry;
	exports.RingGeometry = RingGeometry;
	exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format;
	exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format;
	exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format;
	exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format;
	exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format;
	exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format;
	exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format;
	exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format;
	exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format;
	exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format;
	exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format;
	exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format;
	exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format;
	exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format;
	exports.Scene = Scene;
	exports.SceneUtils = SceneUtils;
	exports.ShaderChunk = ShaderChunk;
	exports.ShaderLib = ShaderLib;
	exports.ShaderMaterial = ShaderMaterial;
	exports.ShadowMaterial = ShadowMaterial;
	exports.Shape = Shape;
	exports.ShapeBufferGeometry = ShapeBufferGeometry;
	exports.ShapeGeometry = ShapeGeometry;
	exports.ShapePath = ShapePath;
	exports.ShapeUtils = ShapeUtils;
	exports.ShortType = ShortType;
	exports.Skeleton = Skeleton;
	exports.SkeletonHelper = SkeletonHelper;
	exports.SkinnedMesh = SkinnedMesh;
	exports.SmoothShading = SmoothShading;
	exports.Sphere = Sphere;
	exports.SphereBufferGeometry = SphereBufferGeometry;
	exports.SphereGeometry = SphereGeometry;
	exports.Spherical = Spherical;
	exports.SphericalHarmonics3 = SphericalHarmonics3;
	exports.SphericalReflectionMapping = SphericalReflectionMapping;
	exports.Spline = Spline;
	exports.SplineCurve = SplineCurve;
	exports.SplineCurve3 = SplineCurve3;
	exports.SpotLight = SpotLight;
	exports.SpotLightHelper = SpotLightHelper;
	exports.SpotLightShadow = SpotLightShadow;
	exports.Sprite = Sprite;
	exports.SpriteMaterial = SpriteMaterial;
	exports.SrcAlphaFactor = SrcAlphaFactor;
	exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor;
	exports.SrcColorFactor = SrcColorFactor;
	exports.StaticCopyUsage = StaticCopyUsage;
	exports.StaticDrawUsage = StaticDrawUsage;
	exports.StaticReadUsage = StaticReadUsage;
	exports.StereoCamera = StereoCamera;
	exports.StreamCopyUsage = StreamCopyUsage;
	exports.StreamDrawUsage = StreamDrawUsage;
	exports.StreamReadUsage = StreamReadUsage;
	exports.StringKeyframeTrack = StringKeyframeTrack;
	exports.SubtractEquation = SubtractEquation;
	exports.SubtractiveBlending = SubtractiveBlending;
	exports.TOUCH = TOUCH;
	exports.TangentSpaceNormalMap = TangentSpaceNormalMap;
	exports.TetrahedronBufferGeometry = TetrahedronBufferGeometry;
	exports.TetrahedronGeometry = TetrahedronGeometry;
	exports.TextBufferGeometry = TextBufferGeometry;
	exports.TextGeometry = TextGeometry;
	exports.Texture = Texture;
	exports.TextureLoader = TextureLoader;
	exports.TorusBufferGeometry = TorusBufferGeometry;
	exports.TorusGeometry = TorusGeometry;
	exports.TorusKnotBufferGeometry = TorusKnotBufferGeometry;
	exports.TorusKnotGeometry = TorusKnotGeometry;
	exports.Triangle = Triangle;
	exports.TriangleFanDrawMode = TriangleFanDrawMode;
	exports.TriangleStripDrawMode = TriangleStripDrawMode;
	exports.TrianglesDrawMode = TrianglesDrawMode;
	exports.TubeBufferGeometry = TubeBufferGeometry;
	exports.TubeGeometry = TubeGeometry;
	exports.UVMapping = UVMapping;
	exports.Uint16Attribute = Uint16Attribute;
	exports.Uint16BufferAttribute = Uint16BufferAttribute;
	exports.Uint32Attribute = Uint32Attribute;
	exports.Uint32BufferAttribute = Uint32BufferAttribute;
	exports.Uint8Attribute = Uint8Attribute;
	exports.Uint8BufferAttribute = Uint8BufferAttribute;
	exports.Uint8ClampedAttribute = Uint8ClampedAttribute;
	exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute;
	exports.Uncharted2ToneMapping = Uncharted2ToneMapping;
	exports.Uniform = Uniform;
	exports.UniformsLib = UniformsLib;
	exports.UniformsUtils = UniformsUtils;
	exports.UnsignedByteType = UnsignedByteType;
	exports.UnsignedInt248Type = UnsignedInt248Type;
	exports.UnsignedIntType = UnsignedIntType;
	exports.UnsignedShort4444Type = UnsignedShort4444Type;
	exports.UnsignedShort5551Type = UnsignedShort5551Type;
	exports.UnsignedShort565Type = UnsignedShort565Type;
	exports.UnsignedShortType = UnsignedShortType;
	exports.VSMShadowMap = VSMShadowMap;
	exports.Vector2 = Vector2;
	exports.Vector3 = Vector3;
	exports.Vector4 = Vector4;
	exports.VectorKeyframeTrack = VectorKeyframeTrack;
	exports.Vertex = Vertex;
	exports.VertexColors = VertexColors;
	exports.VideoTexture = VideoTexture;
	exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget;
	exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget;
	exports.WebGLRenderTarget = WebGLRenderTarget;
	exports.WebGLRenderTargetCube = WebGLRenderTargetCube;
	exports.WebGLRenderer = WebGLRenderer;
	exports.WebGLUtils = WebGLUtils;
	exports.WireframeGeometry = WireframeGeometry;
	exports.WireframeHelper = WireframeHelper;
	exports.WrapAroundEnding = WrapAroundEnding;
	exports.XHRLoader = XHRLoader;
	exports.ZeroCurvatureEnding = ZeroCurvatureEnding;
	exports.ZeroFactor = ZeroFactor;
	exports.ZeroSlopeEnding = ZeroSlopeEnding;
	exports.ZeroStencilOp = ZeroStencilOp;
	exports.sRGBEncoding = sRGBEncoding;

	Object.defineProperty(exports, '__esModule', { value: true });

})));

},{}],35:[function(require,module,exports){
(function (setImmediate,clearImmediate){
var nextTick = require('process/browser.js').nextTick;
var apply = Function.prototype.apply;
var slice = Array.prototype.slice;
var immediateIds = {};
var nextImmediateId = 0;

// DOM APIs, for completeness

exports.setTimeout = function() {
  return new Timeout(apply.call(setTimeout, window, arguments), clearTimeout);
};
exports.setInterval = function() {
  return new Timeout(apply.call(setInterval, window, arguments), clearInterval);
};
exports.clearTimeout =
exports.clearInterval = function(timeout) { timeout.close(); };

function Timeout(id, clearFn) {
  this._id = id;
  this._clearFn = clearFn;
}
Timeout.prototype.unref = Timeout.prototype.ref = function() {};
Timeout.prototype.close = function() {
  this._clearFn.call(window, this._id);
};

// Does not start the time, just sets up the members needed.
exports.enroll = function(item, msecs) {
  clearTimeout(item._idleTimeoutId);
  item._idleTimeout = msecs;
};

exports.unenroll = function(item) {
  clearTimeout(item._idleTimeoutId);
  item._idleTimeout = -1;
};

exports._unrefActive = exports.active = function(item) {
  clearTimeout(item._idleTimeoutId);

  var msecs = item._idleTimeout;
  if (msecs >= 0) {
    item._idleTimeoutId = setTimeout(function onTimeout() {
      if (item._onTimeout)
        item._onTimeout();
    }, msecs);
  }
};

// That's not how node.js implements it but the exposed api is the same.
exports.setImmediate = typeof setImmediate === "function" ? setImmediate : function(fn) {
  var id = nextImmediateId++;
  var args = arguments.length < 2 ? false : slice.call(arguments, 1);

  immediateIds[id] = true;

  nextTick(function onNextTick() {
    if (immediateIds[id]) {
      // fn.call() is faster so we optimize for the common use-case
      // @see http://jsperf.com/call-apply-segu
      if (args) {
        fn.apply(null, args);
      } else {
        fn.call(null);
      }
      // Prevent ids from leaking
      exports.clearImmediate(id);
    }
  });

  return id;
};

exports.clearImmediate = typeof clearImmediate === "function" ? clearImmediate : function(id) {
  delete immediateIds[id];
};
}).call(this,require("timers").setImmediate,require("timers").clearImmediate)
},{"process/browser.js":21,"timers":35}],36:[function(require,module,exports){
(function (global){

/**
 * Module exports.
 */

module.exports = deprecate;

/**
 * Mark that a method should not be used.
 * Returns a modified function which warns once by default.
 *
 * If `localStorage.noDeprecation = true` is set, then it is a no-op.
 *
 * If `localStorage.throwDeprecation = true` is set, then deprecated functions
 * will throw an Error when invoked.
 *
 * If `localStorage.traceDeprecation = true` is set, then deprecated functions
 * will invoke `console.trace()` instead of `console.error()`.
 *
 * @param {Function} fn - the function to deprecate
 * @param {String} msg - the string to print to the console when `fn` is invoked
 * @returns {Function} a new "deprecated" version of `fn`
 * @api public
 */

function deprecate (fn, msg) {
  if (config('noDeprecation')) {
    return fn;
  }

  var warned = false;
  function deprecated() {
    if (!warned) {
      if (config('throwDeprecation')) {
        throw new Error(msg);
      } else if (config('traceDeprecation')) {
        console.trace(msg);
      } else {
        console.warn(msg);
      }
      warned = true;
    }
    return fn.apply(this, arguments);
  }

  return deprecated;
}

/**
 * Checks `localStorage` for boolean values for the given `name`.
 *
 * @param {String} name
 * @returns {Boolean}
 * @api private
 */

function config (name) {
  // accessing global.localStorage can trigger a DOMException in sandboxed iframes
  try {
    if (!global.localStorage) return false;
  } catch (_) {
    return false;
  }
  var val = global.localStorage[name];
  if (null == val) return false;
  return String(val).toLowerCase() === 'true';
}

}).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {})
},{}],37:[function(require,module,exports){
arguments[4][3][0].apply(exports,arguments)
},{"dup":3}],38:[function(require,module,exports){
arguments[4][4][0].apply(exports,arguments)
},{"./support/isBuffer":37,"_process":21,"dup":4,"inherits":12}],39:[function(require,module,exports){
var v1 = require('./v1');
var v4 = require('./v4');

var uuid = v4;
uuid.v1 = v1;
uuid.v4 = v4;

module.exports = uuid;

},{"./v1":42,"./v4":43}],40:[function(require,module,exports){
/**
 * Convert array of 16 byte values to UUID string format of the form:
 * XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 */
var byteToHex = [];
for (var i = 0; i < 256; ++i) {
  byteToHex[i] = (i + 0x100).toString(16).substr(1);
}

function bytesToUuid(buf, offset) {
  var i = offset || 0;
  var bth = byteToHex;
  // join used to fix memory issue caused by concatenation: https://bugs.chromium.org/p/v8/issues/detail?id=3175#c4
  return ([
    bth[buf[i++]], bth[buf[i++]],
    bth[buf[i++]], bth[buf[i++]], '-',
    bth[buf[i++]], bth[buf[i++]], '-',
    bth[buf[i++]], bth[buf[i++]], '-',
    bth[buf[i++]], bth[buf[i++]], '-',
    bth[buf[i++]], bth[buf[i++]],
    bth[buf[i++]], bth[buf[i++]],
    bth[buf[i++]], bth[buf[i++]]
  ]).join('');
}

module.exports = bytesToUuid;

},{}],41:[function(require,module,exports){
// Unique ID creation requires a high quality random # generator.  In the
// browser this is a little complicated due to unknown quality of Math.random()
// and inconsistent support for the `crypto` API.  We do the best we can via
// feature-detection

// getRandomValues needs to be invoked in a context where "this" is a Crypto
// implementation. Also, find the complete implementation of crypto on IE11.
var getRandomValues = (typeof(crypto) != 'undefined' && crypto.getRandomValues && crypto.getRandomValues.bind(crypto)) ||
                      (typeof(msCrypto) != 'undefined' && typeof window.msCrypto.getRandomValues == 'function' && msCrypto.getRandomValues.bind(msCrypto));

if (getRandomValues) {
  // WHATWG crypto RNG - http://wiki.whatwg.org/wiki/Crypto
  var rnds8 = new Uint8Array(16); // eslint-disable-line no-undef

  module.exports = function whatwgRNG() {
    getRandomValues(rnds8);
    return rnds8;
  };
} else {
  // Math.random()-based (RNG)
  //
  // If all else fails, use Math.random().  It's fast, but is of unspecified
  // quality.
  var rnds = new Array(16);

  module.exports = function mathRNG() {
    for (var i = 0, r; i < 16; i++) {
      if ((i & 0x03) === 0) r = Math.random() * 0x100000000;
      rnds[i] = r >>> ((i & 0x03) << 3) & 0xff;
    }

    return rnds;
  };
}

},{}],42:[function(require,module,exports){
var rng = require('./lib/rng');
var bytesToUuid = require('./lib/bytesToUuid');

// **`v1()` - Generate time-based UUID**
//
// Inspired by https://github.com/LiosK/UUID.js
// and http://docs.python.org/library/uuid.html

var _nodeId;
var _clockseq;

// Previous uuid creation time
var _lastMSecs = 0;
var _lastNSecs = 0;

// See https://github.com/uuidjs/uuid for API details
function v1(options, buf, offset) {
  var i = buf && offset || 0;
  var b = buf || [];

  options = options || {};
  var node = options.node || _nodeId;
  var clockseq = options.clockseq !== undefined ? options.clockseq : _clockseq;

  // node and clockseq need to be initialized to random values if they're not
  // specified.  We do this lazily to minimize issues related to insufficient
  // system entropy.  See #189
  if (node == null || clockseq == null) {
    var seedBytes = rng();
    if (node == null) {
      // Per 4.5, create and 48-bit node id, (47 random bits + multicast bit = 1)
      node = _nodeId = [
        seedBytes[0] | 0x01,
        seedBytes[1], seedBytes[2], seedBytes[3], seedBytes[4], seedBytes[5]
      ];
    }
    if (clockseq == null) {
      // Per 4.2.2, randomize (14 bit) clockseq
      clockseq = _clockseq = (seedBytes[6] << 8 | seedBytes[7]) & 0x3fff;
    }
  }

  // UUID timestamps are 100 nano-second units since the Gregorian epoch,
  // (1582-10-15 00:00).  JSNumbers aren't precise enough for this, so
  // time is handled internally as 'msecs' (integer milliseconds) and 'nsecs'
  // (100-nanoseconds offset from msecs) since unix epoch, 1970-01-01 00:00.
  var msecs = options.msecs !== undefined ? options.msecs : new Date().getTime();

  // Per 4.2.1.2, use count of uuid's generated during the current clock
  // cycle to simulate higher resolution clock
  var nsecs = options.nsecs !== undefined ? options.nsecs : _lastNSecs + 1;

  // Time since last uuid creation (in msecs)
  var dt = (msecs - _lastMSecs) + (nsecs - _lastNSecs)/10000;

  // Per 4.2.1.2, Bump clockseq on clock regression
  if (dt < 0 && options.clockseq === undefined) {
    clockseq = clockseq + 1 & 0x3fff;
  }

  // Reset nsecs if clock regresses (new clockseq) or we've moved onto a new
  // time interval
  if ((dt < 0 || msecs > _lastMSecs) && options.nsecs === undefined) {
    nsecs = 0;
  }

  // Per 4.2.1.2 Throw error if too many uuids are requested
  if (nsecs >= 10000) {
    throw new Error('uuid.v1(): Can\'t create more than 10M uuids/sec');
  }

  _lastMSecs = msecs;
  _lastNSecs = nsecs;
  _clockseq = clockseq;

  // Per 4.1.4 - Convert from unix epoch to Gregorian epoch
  msecs += 12219292800000;

  // `time_low`
  var tl = ((msecs & 0xfffffff) * 10000 + nsecs) % 0x100000000;
  b[i++] = tl >>> 24 & 0xff;
  b[i++] = tl >>> 16 & 0xff;
  b[i++] = tl >>> 8 & 0xff;
  b[i++] = tl & 0xff;

  // `time_mid`
  var tmh = (msecs / 0x100000000 * 10000) & 0xfffffff;
  b[i++] = tmh >>> 8 & 0xff;
  b[i++] = tmh & 0xff;

  // `time_high_and_version`
  b[i++] = tmh >>> 24 & 0xf | 0x10; // include version
  b[i++] = tmh >>> 16 & 0xff;

  // `clock_seq_hi_and_reserved` (Per 4.2.2 - include variant)
  b[i++] = clockseq >>> 8 | 0x80;

  // `clock_seq_low`
  b[i++] = clockseq & 0xff;

  // `node`
  for (var n = 0; n < 6; ++n) {
    b[i + n] = node[n];
  }

  return buf ? buf : bytesToUuid(b);
}

module.exports = v1;

},{"./lib/bytesToUuid":40,"./lib/rng":41}],43:[function(require,module,exports){
var rng = require('./lib/rng');
var bytesToUuid = require('./lib/bytesToUuid');

function v4(options, buf, offset) {
  var i = buf && offset || 0;

  if (typeof(options) == 'string') {
    buf = options === 'binary' ? new Array(16) : null;
    options = null;
  }
  options = options || {};

  var rnds = options.random || (options.rng || rng)();

  // Per 4.4, set bits for version and `clock_seq_hi_and_reserved`
  rnds[6] = (rnds[6] & 0x0f) | 0x40;
  rnds[8] = (rnds[8] & 0x3f) | 0x80;

  // Copy bytes to buffer, if provided
  if (buf) {
    for (var ii = 0; ii < 16; ++ii) {
      buf[i + ii] = rnds[ii];
    }
  }

  return buf || bytesToUuid(rnds);
}

module.exports = v4;

},{"./lib/bytesToUuid":40,"./lib/rng":41}],44:[function(require,module,exports){
(function (Buffer){
const Peer = require('../../server/src/peer')
const VideoConverter = require('./lib/dist/video-converter');
const msgpack = require('msgpack5')();
const rematrix = require('rematrix');
const THREE = require('three');

var debug = require("./lib/dist/util/debug");
debug.setLogger(null,console.error);

let current_data = {};
let peer;

/**
 * Validates that the user is logged in by sending the token 
 */
checkIfLoggedIn = async () => {
    //     const token = window.localStorage.getItem('token')
    //     console.log(token)
    //     if(!token){
    //         console.log("You need to login")
    //         renderLogin()
    //     }else{

    //         //Check if the token is valid
    //         const response = await fetch('http://localhost:8080/auth/validation', {
    //             method: 'POST',
    //             headers: {'Authorization': token}
    //         })
    //         console.log('RESPONSE', response)
            
    //         //Token is valid, show available streams
    //         if(response.status === 200){
    //             console.log("SUCCESS")
                 renderThumbnails()

    //         }
    //     }
}

/**
 * Returns a list of available streams
 */
getAvailableStreams = async () => {
    try{
        const streamsInJson = await fetch(`./streams`);
        const streams = await streamsInJson.json();
        console.log('AVAILABLE', streams)
        return streams;
    }catch(err){
        console.log(err)
    }
}


createVideoPlayer = () => {
	const containerDiv = document.getElementById('container');
	containerDiv.innerHTML = '';
    /*containerDiv.innerHTML = `<h1>Stream from source ${current_data.uri}</h1><br>
        <button onclick="renderThumbnails(); closeStream()">Go back</button>
        <button onclick="connectToStream('${current_data.uri}')">Start Stream</button><br>
        <button onclick="webSocketTest()">WebSocket Test</button><br>
        <video id="ftlab-stream-video" width="640" height="360"></video>`;
    containerDiv.innerHTML += '<br>'
    containerDiv.innerHTML += ''*/
    createPeer();
	//connectToStream();
	window.ftlstream = new FTLStream(peer, current_data.uri, containerDiv);
}

/**
 * Creates thumbnail (image) for all available streams and adds them to div class='container'
 */
renderThumbnails = async () => {
    const thumbnails = await getAvailableStreams();
    const containerDiv = document.getElementById('container')
    containerDiv.innerHTML = '';
    containerDiv.innerHTML = `<button onClick="configs()">change configs</button>`
    containerDiv.innerHTML += `<div class="ftlab-stream-thumbnails"></div>`
    if(thumbnails.length === 0){
        containerDiv.innerHTML = `<h3>No streams running currently</h3>`
    }else{
        for(var i=0; i<thumbnails.length; i++){
            const encodedURI = encodeURIComponent(thumbnails[i])
            current_data.uri = thumbnails[i]
            try{
                const someData = await fetch(`./stream/rgb?uri=${encodedURI}`)
                if(!someData.ok){
                    throw new Error('Image not found')
                }
                const myBlob = await someData.blob();
                const objectURL = URL.createObjectURL(myBlob);
                // containerDiv.innerHTML += createCard()
                containerDiv.innerHTML += createCard(objectURL, i+4)
            }catch(err){
                console.log("Couldn't create thumbnail");
                console.log(err) 
            }
        }
    }
}


/** 
 * Method to create a single thumbnail
 */
createCard = (url, viewers) => {
    return `<div class='ftlab-card-component' >
                <img src='${url}' class="thumbnail-img" alt="Hups" width="250px"></img>
                <p>Viewers: ${viewers}</p>
                <button onclick="createVideoPlayer()">button</button>
            </div>`
}


createPeer = () => {
	// FOR PRODUCTION
	console.log("HOST", location.host);
    const ws = new WebSocket("ws://" + location.host + location.pathname);
	//const ws = new WebSocket("ws://localhost:8080")
    ws.binaryType = "arraybuffer";
    peer = new Peer(ws)
}

webSocketTest = () => {
    peer.send("update_cfg", "ftl://utu.fi#reconstruction_default/0/renderer/cool_effect", "true")    
}

function FTLFrameset(id) {
	this.id = id;
	this.sources = {};
}

function FTLStream(peer, uri, element) {
	this.uri = uri;
	this.peer = peer;

	this.current = "";
	this.current_fs = 0;
	this.current_source = 0;
	this.current_channel = 0;

	this.framesets = {};

	this.handlers = {};

	//this.elements_ = {};
	//this.converters_ = {};

	//const element = document.getElementById('ftlab-stream-video');
	this.outer = element;
	this.outer.classList.add("ftl");
	this.outer.classList.add("container");
	this.element = document.createElement("VIDEO");
	this.element.setAttribute("width", 640);
	this.element.setAttribute("height", 360);
	this.element.setAttribute("controls", true);
	this.element.style.display = "none";
	this.element.classList.add("ftl");
	this.element.id = "ftl-video-element";
	this.outer.appendChild(this.element);

	//this.player = videojs('ftl-video-element');
	//this.player.vr({projection: '360'});

	if (false) {
		this.camera = new THREE.PerspectiveCamera( 75, window.innerWidth / window.innerHeight, 1, 1100 );
	} else {
		this.camera = new THREE.OrthographicCamera(window.innerWidth/-2, window.innerWidth/2, window.innerHeight/2, window.innerHeight/-2, 1, 4);
	}
	this.camera.target = new THREE.Vector3( 0, 0, 0 );

	this.scene = new THREE.Scene();

	var geometry;
	
	if (false) {
		geometry = new THREE.SphereBufferGeometry( 500, 60, 40 );
	} else {
		geometry = new THREE.PlaneGeometry(1280, 720, 32);
	}
	// invert the geometry on the x-axis so that all of the faces point inward
	geometry.scale( - 1, 1, 1 );

	var texture = new THREE.VideoTexture( this.element );
	var material = new THREE.MeshBasicMaterial( { map: texture } );

	this.mesh = new THREE.Mesh( geometry, material );

	this.scene.add( this.mesh );

	this.renderer = new THREE.WebGLRenderer();
	this.renderer.setPixelRatio( window.devicePixelRatio );
	this.renderer.setSize( window.innerWidth, window.innerHeight );
	this.outer.appendChild( this.renderer.domElement );

	var me = this;

	this.isUserInteracting = false;
	this.onPointerDownPointerX = 0;
	this.onPointerDownPointerY = 0;
	this.onPointerDownLon = 0;
	this.onPointerDownLat = 0;
	this.lon = 0;
	this.lat = 0;
	this.distance = 2.0;

	this.overlay = document.createElement("DIV");
	this.overlay.classList.add("ftl");
	this.overlay.classList.add("overlay");
	this.overlay.setAttribute("tabindex","0");
	this.outer.appendChild(this.overlay);

	this.overlay.addEventListener('mousedown', (event) => {
		event.preventDefault();

		this.isUserInteracting = true;

		this.onPointerDownPointerX = event.clientX;
		this.onPointerDownPointerY = event.clientY;

		this.onPointerDownLon = this.lon;
		this.onPointerDownLat = this.lat;
	});

	this.overlay.addEventListener('mousemove', (event) => {
		if ( this.isUserInteracting === true ) {
			//this.lon = ( this.onPointerDownPointerX - event.clientX ) * 0.1 + this.onPointerDownLon;
			//this.lat = ( this.onPointerDownPointerY - event.clientY ) * 0.1 + this.onPointerDownLat;

			this.rotationX += event.movementY * (1/25) * 5.0;
			this.rotationY -= event.movementX * (1/25) * 5.0;
			this.updatePose();
		}
	});

	this.overlay.addEventListener('mouseup', (event) => {
		this.isUserInteracting = false;
	});

	this.overlay.addEventListener('wheel', (event) => {
		event.preventDefault();
		this.distance += event.deltaY * 0.05;
		this.distance = THREE.MathUtils.clamp( this.distance, 1, 50 );
	});

	function update() {
		me.lat = Math.max( - 85, Math.min( 85, me.lat ) );
		let phi = THREE.MathUtils.degToRad( 90 - me.lat );
		let theta = THREE.MathUtils.degToRad( me.lon );

		//me.camera.position.x = me.distance * Math.sin( phi ) * Math.cos( theta );
		//me.camera.position.y = me.distance * Math.cos( phi );
		//me.camera.position.z = me.distance * Math.sin( phi ) * Math.sin( theta );

		me.camera.position.x = 0;
		me.camera.position.y = 0;
		me.camera.position.z = -2;

		me.camera.lookAt( me.camera.target );

		me.renderer.render( me.scene, me.camera );

	}

	function animate() {

		requestAnimationFrame( animate );
		update();

	}

	animate();

	this.play_button = document.createElement("BUTTON");
	this.play_button.innerHTML = "Play";
	this.play_button.classList.add("ftl");
	this.play_button.classList.add("play");
	this.play_button.onclick = () => {
		this.start(0,0,0);
	}
	this.overlay.appendChild(this.play_button);

	this.pause_button = document.createElement("BUTTON");
	this.pause_button.innerHTML = "Pause";
	this.pause_button.classList.add("ftl");
	this.pause_button.classList.add("pause");
	this.pause_button.onclick = () => {
		this.pause();
	}
	this.overlay.appendChild(this.pause_button);

	this.paused = false;

	this.overlay.addEventListener('keydown', (event) => {
		console.log(event);
		switch(event.code) {
		case "KeyW"		: this.translateZ += 0.05; this.updatePose(); break;
		case "KeyS"		: this.translateZ -= 0.05; this.updatePose(); break;
		case "KeyA"		: this.translateX -= 0.05; this.updatePose(); break;
		case "KeyD"		: this.translateX += 0.05; this.updatePose(); break;
		}
	});

	/*this.element.onmousemove = (event) => {
		console.log(event);
		if (event.buttons == 1) {
			this.rotationX += event.movementY * (1/25) * 5.0;
			this.rotationY -= event.movementX * (1/25) * 5.0;
			this.updatePose();
		}
	}*/

	this.rotationX = 0;
	this.rotationY = 0;
	this.rotationZ = 0;
	this.translateX = 0;
	this.translateY = 0;
	this.translateZ = 0;

	//this.element.onclick = () => {
		//let pose = [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];
		//this.rotation += 10;
		//let pose = rematrix.rotateZ(this.rotation);
		//this.setPose(pose);
	//}

    this.converter = null;

    let rxcount = 0;
    let ts = 0;
	let dts = 0;

    this.peer.bind(uri, (latency, streampckg, pckg) => {
		if (this.paused) {
			return;
		}

        if(pckg[0] === 2){  // H264 packet.
			let id = "id-"+streampckg[1]+"-"+streampckg[2]+"-"+streampckg[3];

			if (this.current == id) {
				rxcount++;
				if (rxcount >= 25) {
					rxcount = 0;
					peer.send(uri, 0, [1,0,255,0],[255,7,35,0,0,Buffer.alloc(0)]);
					//peer.send(current_data.uri, 0, [255,7,35,0,0,Buffer.alloc(0)], [1,0,255,0]);
				}
			
				if (this.converter) {
					/*function decode(value){
						this.converter.appendRawData(value);
					}
					decode(pckg[5]);*/
					if (this.converter.sourceBuffer && this.converter.sourceBuffer.mode != "sequence") {
						this.converter.sourceBuffer.mode = 'sequence';
					}
					this.converter.appendRawData(pckg[5], (streampckg[0]-ts));
					this.converter.play();
				} else {
					if (ts > 0) {
						dts = streampckg[0] - ts;
						console.log("Framerate = ", 1000/dts);
						this.converter = new VideoConverter.default(this.element, 31, 1);
						dts = 0;
					}
					ts = streampckg[0];
				}
			}
        } else if (pckg[0] === 103) {
			//console.log(msgpack.decode(pckg[5]));
		}
	});
	
	//this.start();
	if (this.peer.status == 2) {
		this.start(0,0,0);
	} else {
		this.peer.on("connect", (p)=> {
			this.start(0,0,0);
		});
	}
}

FTLStream.prototype.on = function(name, cb) {
	if (!this.handlers.hasOwnProperty(name)) {
		this.handlers[name] = [];
	}
	this.handlers[name].push(cb);
}

FTLStream.prototype.notify = function (name, ...args) {
	if (this.handlers.hasOwnProperty(name)) {
		let a = this.handlers[name];
		for (let i=0; i<a.length; ++i) {
			a[i].apply(this, args);
		}
	}
}

FTLStream.prototype.pause = function() {
	this.paused = !this.paused;
	if (!this.paused) {
		this.start(0,0,0);
		this.element.play();
	} else {
		this.element.pause();
	}
}

FTLStream.prototype.updatePose = function() {
	let poseRX = rematrix.rotateX(this.rotationX);
	let poseRY = rematrix.rotateY(this.rotationY);
	let poseRZ = rematrix.rotateZ(this.rotationZ);
	let poseT = rematrix.translate3d(this.translateX, this.translateY, this.translateZ);
	let pose = [poseT,poseRX,poseRY,poseRZ].reduce(rematrix.multiply);
	this.setPose(pose);
}

FTLStream.prototype.setPose = function(pose) {
	if (pose.length != 16) {
		console.error("Invalid pose");
		return;
	}
	this.peer.send(this.uri, 0, [1, this.current_fs, this.current_source, 66],
		[103, 7, 1, 0, 0, msgpack.encode(pose)]);
}

FTLStream.prototype.start = function(fs, source, channel) {
	let id = "id-"+fs+"-"+source+"-"+channel;
	this.current = id;
	this.current_fs = fs;
	this.current_source = source;
	this.current_channel = channel;

	if (this.found) {
		this.peer.send(this.uri, 0, [1,fs,255,channel],[255,7,35,0,0,Buffer.alloc(0)]);
	} else {
		this.peer.rpc("find_stream", (res) => {
			this.found = true;
			this.peer.send(this.uri, 0, [1,fs,255,channel],[255,7,35,0,0,Buffer.alloc(0)]);
		}, this.uri);
	}
}


/*connectToStream = () => {
    const element = document.getElementById('ftlab-stream-video');
    let converter = null;

    let rxcount = 0;
    let ts = 0;
    let dts = 0;

    peer.bind(current_data.uri, (latency, streampckg, pckg) => {
        if(pckg[0] === 2){
            rxcount++;
            if (rxcount >= 25) {
                rxcount = 0;
                peer.send(current_data.uri, 0, [1,0,255,0],[255,7,35,0,0,Buffer.alloc(0)]);
                //peer.send(current_data.uri, 0, [255,7,35,0,0,Buffer.alloc(0)], [1,0,255,0]);
            }

            if (converter) {
                function decode(value){
                    converter.appendRawData(value);
                }
                decode(pckg[5]);
                converter.play();
            } else {
                if (ts > 0) {
                    dts = streampckg[0] - ts;
                    console.log("Framerate = ", 1000/dts);
                    converter = new VideoConverter.default(element, 30, 1);
                }
                ts = streampckg[0];
            }
        } else if (pckg[0] === 103) {
			console.log(msgpack.decode(pckg[5]));
		}
    })

    // Start the transaction
    //peer.send("get_stream", (current_data.uri, 30, 0, current_data.uri));

    peer.rpc("find_stream", (res) => {
        peer.send(current_data.uri, 0, [1,0,255,0],[255,7,35,0,0,Buffer.alloc(0)]);
        //peer.send(current_data.uri, [255,7,35,0,0,Buffer.alloc(0)], [1,0,255,0]);
    }, current_data.uri);
}*/

closeStream = () => {
    peer.sock.close()
}



/**
 * **************
 * CONFIGURATIONS
 * **************
 */


current_data.configURI = "ftl://utu.fi#reconstruction_snap8/net"

configs = () => {
    const container = document.getElementById("container");
    container.innerHTML = `<div class="ftlab-configurations"></div>`;
    renderConfigOptions();
}


renderConfigOptions = () => {
    const input = `<p>input1</p><br>ftl://utu.fi#<input type="text">`
    const doc = document.getElementsByClassName('ftlab-configurations')[0];
    doc.innerHTML = input;
}

/**
 * 
 */
loadConfigs = async (str) => {
    const configURI = encodeURIComponent(`ftl://utu.fi#reconstruction_snap8${str}`);
    const uri = encodeURIComponent(current_data.uri)
    const rawResp = await fetch(`./stream/config?settings=${configURI}&uri=${uri}`)
    const response = await rawResp.json();
    const content = JSON.parse(response);
    container.innerHTML += `<p>${response}</p>`;
}

// current_data.configData = '{"peers": 1}';

/**
 * Method to send configurations to backend 
 */
saveConfigs = async () => {
    let {uri, configURI, configData} = current_data
    const rawResp = await fetch('./stream/config', {
        method: 'POST',
        headers: {
            'Accept': 'application/json',
            'Content-Type': 'application/json'
        },
        body: JSON.stringify({peerURI: uri, configURI, data: configData, saveToCPP: true})
    });
    const content = await rawResp.json();
}
}).call(this,require("buffer").Buffer)
},{"../../server/src/peer":53,"./lib/dist/util/debug":50,"./lib/dist/video-converter":52,"buffer":8,"msgpack5":15,"rematrix":31,"three":34}],45:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var bit_stream_1 = require("./util/bit-stream");
var debug = require("./util/debug");
var NALU_1 = require("./util/NALU");
var H264Parser = (function () {
    function H264Parser(remuxer) {
        this.remuxer = remuxer;
        this.track = remuxer.mp4track;
    }
    H264Parser.prototype.parseSEI = function (sei) {
        var messages = H264Parser.readSEI(sei);
        for (var _i = 0, messages_1 = messages; _i < messages_1.length; _i++) {
            var m = messages_1[_i];
            switch (m.type) {
                case 0:
                    this.track.seiBuffering = true;
                    break;
                case 5:
                    return true;
                default:
                    break;
            }
        }
        return false;
    };
    H264Parser.prototype.parseSPS = function (sps) {
        var config = H264Parser.readSPS(sps);
        this.track.width = config.width;
        this.track.height = config.height;
        this.track.sps = [sps];
        this.track.codec = 'avc1.';
        var codecArray = new DataView(sps.buffer, sps.byteOffset + 1, 4);
        for (var i = 0; i < 3; ++i) {
            var h = codecArray.getUint8(i).toString(16);
            if (h.length < 2) {
                h = '0' + h;
            }
            this.track.codec += h;
        }
    };
    H264Parser.prototype.parsePPS = function (pps) {
        this.track.pps = [pps];
    };
    H264Parser.prototype.parseNAL = function (unit) {
        if (!unit) {
            return false;
        }
        var push = false;
        switch (unit.type()) {
            case NALU_1.default.NDR:
            case NALU_1.default.IDR:
                push = true;
                break;
            case NALU_1.default.SEI:
                push = this.parseSEI(unit.getData().subarray(4));
                break;
            case NALU_1.default.SPS:
                if (this.track.sps.length === 0) {
                    this.parseSPS(unit.getData().subarray(4));
                    debug.log(" Found SPS type NALU frame.");
                    if (!this.remuxer.readyToDecode && this.track.pps.length > 0 && this.track.sps.length > 0) {
                        this.remuxer.readyToDecode = true;
                    }
                }
                break;
            case NALU_1.default.PPS:
                if (this.track.pps.length === 0) {
                    this.parsePPS(unit.getData().subarray(4));
                    debug.log(" Found PPS type NALU frame.");
                    if (!this.remuxer.readyToDecode && this.track.pps.length > 0 && this.track.sps.length > 0) {
                        this.remuxer.readyToDecode = true;
                    }
                }
                break;
            default:
                debug.log(" Found Unknown type NALU frame. type=" + unit.type());
                break;
        }
        return push;
    };
    H264Parser.skipScalingList = function (decoder, count) {
        var lastScale = 8;
        var nextScale = 8;
        for (var j = 0; j < count; j++) {
            if (nextScale !== 0) {
                var deltaScale = decoder.readEG();
                nextScale = (lastScale + deltaScale + 256) % 256;
            }
            lastScale = (nextScale === 0) ? lastScale : nextScale;
        }
    };
    H264Parser.readSPS = function (data) {
        var decoder = new bit_stream_1.default(data);
        var frameCropLeftOffset = 0;
        var frameCropRightOffset = 0;
        var frameCropTopOffset = 0;
        var frameCropBottomOffset = 0;
        var sarScale = 1;
        decoder.readUByte();
        var profileIdc = decoder.readUByte();
        decoder.skipBits(5);
        decoder.skipBits(3);
        decoder.skipBits(8);
        decoder.skipUEG();
        if (profileIdc === 100 ||
            profileIdc === 110 ||
            profileIdc === 122 ||
            profileIdc === 244 ||
            profileIdc === 44 ||
            profileIdc === 83 ||
            profileIdc === 86 ||
            profileIdc === 118 ||
            profileIdc === 128) {
            var chromaFormatIdc = decoder.readUEG();
            if (chromaFormatIdc === 3) {
                decoder.skipBits(1);
            }
            decoder.skipUEG();
            decoder.skipUEG();
            decoder.skipBits(1);
            if (decoder.readBoolean()) {
                var scalingListCount = (chromaFormatIdc !== 3) ? 8 : 12;
                for (var i = 0; i < scalingListCount; ++i) {
                    if (decoder.readBoolean()) {
                        if (i < 6) {
                            H264Parser.skipScalingList(decoder, 16);
                        }
                        else {
                            H264Parser.skipScalingList(decoder, 64);
                        }
                    }
                }
            }
        }
        decoder.skipUEG();
        var picOrderCntType = decoder.readUEG();
        if (picOrderCntType === 0) {
            decoder.readUEG();
        }
        else if (picOrderCntType === 1) {
            decoder.skipBits(1);
            decoder.skipEG();
            decoder.skipEG();
            var numRefFramesInPicOrderCntCycle = decoder.readUEG();
            for (var i = 0; i < numRefFramesInPicOrderCntCycle; ++i) {
                decoder.skipEG();
            }
        }
        decoder.skipUEG();
        decoder.skipBits(1);
        var picWidthInMbsMinus1 = decoder.readUEG();
        var picHeightInMapUnitsMinus1 = decoder.readUEG();
        var frameMbsOnlyFlag = decoder.readBits(1);
        if (frameMbsOnlyFlag === 0) {
            decoder.skipBits(1);
        }
        decoder.skipBits(1);
        if (decoder.readBoolean()) {
            frameCropLeftOffset = decoder.readUEG();
            frameCropRightOffset = decoder.readUEG();
            frameCropTopOffset = decoder.readUEG();
            frameCropBottomOffset = decoder.readUEG();
        }
        if (decoder.readBoolean()) {
            if (decoder.readBoolean()) {
                var sarRatio = void 0;
                var aspectRatioIdc = decoder.readUByte();
                switch (aspectRatioIdc) {
                    case 1:
                        sarRatio = [1, 1];
                        break;
                    case 2:
                        sarRatio = [12, 11];
                        break;
                    case 3:
                        sarRatio = [10, 11];
                        break;
                    case 4:
                        sarRatio = [16, 11];
                        break;
                    case 5:
                        sarRatio = [40, 33];
                        break;
                    case 6:
                        sarRatio = [24, 11];
                        break;
                    case 7:
                        sarRatio = [20, 11];
                        break;
                    case 8:
                        sarRatio = [32, 11];
                        break;
                    case 9:
                        sarRatio = [80, 33];
                        break;
                    case 10:
                        sarRatio = [18, 11];
                        break;
                    case 11:
                        sarRatio = [15, 11];
                        break;
                    case 12:
                        sarRatio = [64, 33];
                        break;
                    case 13:
                        sarRatio = [160, 99];
                        break;
                    case 14:
                        sarRatio = [4, 3];
                        break;
                    case 15:
                        sarRatio = [3, 2];
                        break;
                    case 16:
                        sarRatio = [2, 1];
                        break;
                    case 255: {
                        sarRatio = [decoder.readUByte() << 8 | decoder.readUByte(), decoder.readUByte() << 8 | decoder.readUByte()];
                        break;
                    }
                    default: {
                        debug.error("  H264: Unknown aspectRatioIdc=" + aspectRatioIdc);
                    }
                }
                if (sarRatio) {
                    sarScale = sarRatio[0] / sarRatio[1];
                }
            }
            if (decoder.readBoolean()) {
                decoder.skipBits(1);
            }
            if (decoder.readBoolean()) {
                decoder.skipBits(4);
                if (decoder.readBoolean()) {
                    decoder.skipBits(24);
                }
            }
            if (decoder.readBoolean()) {
                decoder.skipUEG();
                decoder.skipUEG();
            }
            if (decoder.readBoolean()) {
                var unitsInTick = decoder.readUInt();
                var timeScale = decoder.readUInt();
                var fixedFrameRate = decoder.readBoolean();
                var frameDuration = timeScale / (2 * unitsInTick);
                debug.log("timescale: " + timeScale + "; unitsInTick: " + unitsInTick + "; " +
                    ("fixedFramerate: " + fixedFrameRate + "; avgFrameDuration: " + frameDuration));
            }
        }
        return {
            width: Math.ceil((((picWidthInMbsMinus1 + 1) * 16) - frameCropLeftOffset * 2 - frameCropRightOffset * 2) * sarScale),
            height: ((2 - frameMbsOnlyFlag) * (picHeightInMapUnitsMinus1 + 1) * 16) -
                ((frameMbsOnlyFlag ? 2 : 4) * (frameCropTopOffset + frameCropBottomOffset)),
        };
    };
    H264Parser.readSEI = function (data) {
        var decoder = new bit_stream_1.default(data);
        decoder.skipBits(8);
        var result = [];
        while (decoder.bitsAvailable > 3 * 8) {
            result.push(this.readSEIMessage(decoder));
        }
        return result;
    };
    H264Parser.readSEIMessage = function (decoder) {
        function get() {
            var result = 0;
            while (true) {
                var value = decoder.readUByte();
                result += value;
                if (value !== 0xff) {
                    break;
                }
            }
            return result;
        }
        var payloadType = get();
        var payloadSize = get();
        return this.readSEIPayload(decoder, payloadType, payloadSize);
    };
    H264Parser.readSEIPayload = function (decoder, type, size) {
        var result;
        switch (type) {
            default:
                result = { type: type };
                decoder.skipBits(size * 8);
        }
        decoder.skipBits(decoder.bitsAvailable % 8);
        return result;
    };
    return H264Parser;
}());
exports.default = H264Parser;

},{"./util/NALU":48,"./util/bit-stream":49,"./util/debug":50}],46:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var h264_parser_1 = require("./h264-parser");
var debug = require("./util/debug");
var NALU_1 = require("./util/NALU");
var trackId = 1;
var H264Remuxer = (function () {
    function H264Remuxer(fps, framePerFragment, timescale) {
        this.fps = fps;
        this.framePerFragment = framePerFragment;
        this.timescale = timescale;
        this.readyToDecode = false;
        this.totalDTS = 0;
        this.stepDTS = Math.round(this.timescale / this.fps);
        this.frameCount = 0;
        this.seq = 1;
        this.mp4track = {
            id: H264Remuxer.getTrackID(),
            type: 'video',
            len: 0,
            codec: '',
            sps: [],
            pps: [],
            seiBuffering: false,
            width: 0,
            height: 0,
            timescale: timescale,
            duration: timescale,
            samples: [],
            isKeyFrame: true,
        };
        this.unitSamples = [[]];
        this.parser = new h264_parser_1.default(this);
    }
    H264Remuxer.getTrackID = function () {
        return trackId++;
    };
    Object.defineProperty(H264Remuxer.prototype, "seqNum", {
        get: function () {
            return this.seq;
        },
        enumerable: true,
        configurable: true
    });
    H264Remuxer.prototype.remux = function (nalu) {
        if (this.mp4track.seiBuffering && nalu.type() === NALU_1.default.SEI) {
            return this.createNextFrame();
        }
        if (this.parser.parseNAL(nalu)) {
            this.unitSamples[this.unitSamples.length - 1].push(nalu);
            this.mp4track.len += nalu.getSize();
        }
        if (!this.mp4track.seiBuffering && (nalu.type() === NALU_1.default.IDR || nalu.type() === NALU_1.default.NDR)) {
            return this.createNextFrame();
        }
        return;
    };
    H264Remuxer.prototype.createNextFrame = function () {
        if (this.mp4track.len > 0) {
            this.frameCount++;
            if (this.frameCount % this.framePerFragment === 0) {
                var fragment = this.getFragment();
                if (fragment) {
                    var dts = this.totalDTS;
                    this.totalDTS = this.stepDTS * this.frameCount;
                    return [dts, fragment];
                }
                else {
                    debug.log("No mp4 sample data.");
                }
            }
            this.unitSamples.push([]);
        }
        return;
    };
    H264Remuxer.prototype.flush = function () {
        this.seq++;
        this.mp4track.len = 0;
        this.mp4track.samples = [];
        this.mp4track.isKeyFrame = false;
        this.unitSamples = [[]];
    };
    H264Remuxer.prototype.getFragment = function () {
        if (!this.checkReadyToDecode()) {
            return undefined;
        }
        var payload = new Uint8Array(this.mp4track.len);
        this.mp4track.samples = [];
        var offset = 0;
        for (var i = 0, len = this.unitSamples.length; i < len; i++) {
            var units = this.unitSamples[i];
            if (units.length === 0) {
                continue;
            }
            var mp4Sample = {
                size: 0,
                cts: this.stepDTS * i,
            };
            for (var _i = 0, units_1 = units; _i < units_1.length; _i++) {
                var unit = units_1[_i];
                mp4Sample.size += unit.getSize();
                payload.set(unit.getData(), offset);
                offset += unit.getSize();
            }
            this.mp4track.samples.push(mp4Sample);
        }
        if (offset === 0) {
            return undefined;
        }
        return payload;
    };
    H264Remuxer.prototype.checkReadyToDecode = function () {
        if (!this.readyToDecode || this.unitSamples.filter(function (array) { return array.length > 0; }).length === 0) {
            debug.log("Not ready to decode! readyToDecode(" + this.readyToDecode + ") is false or units is empty.");
            return false;
        }
        return true;
    };
    return H264Remuxer;
}());
exports.default = H264Remuxer;

},{"./h264-parser":45,"./util/NALU":48,"./util/debug":50}],47:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var MP4 = (function () {
    function MP4() {
    }
    MP4.init = function () {
        MP4.initalized = true;
        MP4.types = {
            avc1: [],
            avcC: [],
            btrt: [],
            dinf: [],
            dref: [],
            esds: [],
            ftyp: [],
            hdlr: [],
            mdat: [],
            mdhd: [],
            mdia: [],
            mfhd: [],
            minf: [],
            moof: [],
            moov: [],
            mp4a: [],
            mvex: [],
            mvhd: [],
            sdtp: [],
            stbl: [],
            stco: [],
            stsc: [],
            stsd: [],
            stsz: [],
            stts: [],
            styp: [],
            tfdt: [],
            tfhd: [],
            traf: [],
            trak: [],
            trun: [],
            trep: [],
            trex: [],
            tkhd: [],
            vmhd: [],
            smhd: [],
        };
        for (var type in MP4.types) {
            if (MP4.types.hasOwnProperty(type)) {
                MP4.types[type] = [
                    type.charCodeAt(0),
                    type.charCodeAt(1),
                    type.charCodeAt(2),
                    type.charCodeAt(3),
                ];
            }
        }
        var hdlr = new Uint8Array([
            0x00,
            0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x76, 0x69, 0x64, 0x65,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x56, 0x69, 0x64, 0x65,
            0x6f, 0x48, 0x61, 0x6e,
            0x64, 0x6c, 0x65, 0x72, 0x00,
        ]);
        var dref = new Uint8Array([
            0x00,
            0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x01,
            0x00, 0x00, 0x00, 0x0c,
            0x75, 0x72, 0x6c, 0x20,
            0x00,
            0x00, 0x00, 0x01,
        ]);
        var stco = new Uint8Array([
            0x00,
            0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);
        MP4.STTS = MP4.STSC = MP4.STCO = stco;
        MP4.STSZ = new Uint8Array([
            0x00,
            0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);
        MP4.VMHD = new Uint8Array([
            0x00,
            0x00, 0x00, 0x01,
            0x00, 0x00,
            0x00, 0x00,
            0x00, 0x00,
            0x00, 0x00,
        ]);
        MP4.SMHD = new Uint8Array([
            0x00,
            0x00, 0x00, 0x00,
            0x00, 0x00,
            0x00, 0x00,
        ]);
        MP4.STSD = new Uint8Array([
            0x00,
            0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x01
        ]);
        MP4.FTYP = MP4.box(MP4.types.ftyp, new Uint8Array([
            0x69, 0x73, 0x6f, 0x35,
            0x00, 0x00, 0x00, 0x01,
            0x61, 0x76, 0x63, 0x31,
            0x69, 0x73, 0x6f, 0x35,
            0x64, 0x61, 0x73, 0x68,
        ]));
        MP4.STYP = MP4.box(MP4.types.styp, new Uint8Array([
            0x6d, 0x73, 0x64, 0x68,
            0x00, 0x00, 0x00, 0x00,
            0x6d, 0x73, 0x64, 0x68,
            0x6d, 0x73, 0x69, 0x78,
        ]));
        MP4.DINF = MP4.box(MP4.types.dinf, MP4.box(MP4.types.dref, dref));
        MP4.HDLR = MP4.box(MP4.types.hdlr, hdlr);
    };
    MP4.box = function (type) {
        var payload = [];
        for (var _i = 1; _i < arguments.length; _i++) {
            payload[_i - 1] = arguments[_i];
        }
        var size = 8;
        for (var _a = 0, payload_1 = payload; _a < payload_1.length; _a++) {
            var p = payload_1[_a];
            size += p.byteLength;
        }
        var result = new Uint8Array(size);
        result[0] = (size >> 24) & 0xff;
        result[1] = (size >> 16) & 0xff;
        result[2] = (size >> 8) & 0xff;
        result[3] = size & 0xff;
        result.set(type, 4);
        size = 8;
        for (var _b = 0, payload_2 = payload; _b < payload_2.length; _b++) {
            var box = payload_2[_b];
            result.set(box, size);
            size += box.byteLength;
        }
        return result;
    };
    MP4.mdat = function (data) {
        return MP4.box(MP4.types.mdat, data);
    };
    MP4.mdhd = function (timescale) {
        return MP4.box(MP4.types.mdhd, new Uint8Array([
            0x00,
            0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x01,
            0x00, 0x00, 0x00, 0x02,
            (timescale >> 24) & 0xFF,
            (timescale >> 16) & 0xFF,
            (timescale >> 8) & 0xFF,
            timescale & 0xFF,
            0x00, 0x00, 0x00, 0x00,
            0x55, 0xc4,
            0x00, 0x00,
        ]));
    };
    MP4.mdia = function (track) {
        return MP4.box(MP4.types.mdia, MP4.mdhd(track.timescale), MP4.HDLR, MP4.minf(track));
    };
    MP4.mfhd = function (sequenceNumber) {
        return MP4.box(MP4.types.mfhd, new Uint8Array([
            0x00,
            0x00, 0x00, 0x00,
            (sequenceNumber >> 24),
            (sequenceNumber >> 16) & 0xFF,
            (sequenceNumber >> 8) & 0xFF,
            sequenceNumber & 0xFF,
        ]));
    };
    MP4.minf = function (track) {
        return MP4.box(MP4.types.minf, MP4.box(MP4.types.vmhd, MP4.VMHD), MP4.DINF, MP4.stbl(track));
    };
    MP4.moof = function (sn, baseMediaDecodeTime, track) {
        return MP4.box(MP4.types.moof, MP4.mfhd(sn), MP4.traf(track, baseMediaDecodeTime));
    };
    MP4.moov = function (tracks, duration, timescale) {
        var boxes = [];
        for (var _i = 0, tracks_1 = tracks; _i < tracks_1.length; _i++) {
            var track = tracks_1[_i];
            boxes.push(MP4.trak(track));
        }
        return MP4.box.apply(MP4, [MP4.types.moov, MP4.mvhd(timescale, duration), MP4.mvex(tracks)].concat(boxes));
    };
    MP4.mvhd = function (timescale, duration) {
        var bytes = new Uint8Array([
            0x00,
            0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x01,
            0x00, 0x00, 0x00, 0x02,
            (timescale >> 24) & 0xFF,
            (timescale >> 16) & 0xFF,
            (timescale >> 8) & 0xFF,
            timescale & 0xFF,
            (duration >> 24) & 0xFF,
            (duration >> 16) & 0xFF,
            (duration >> 8) & 0xFF,
            duration & 0xFF,
            0x00, 0x01, 0x00, 0x00,
            0x01, 0x00,
            0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x01, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x01, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x40, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x02,
        ]);
        return MP4.box(MP4.types.mvhd, bytes);
    };
    MP4.mvex = function (tracks) {
        var boxes = [];
        for (var _i = 0, tracks_2 = tracks; _i < tracks_2.length; _i++) {
            var track = tracks_2[_i];
            boxes.push(MP4.trex(track));
        }
        return MP4.box.apply(MP4, [MP4.types.mvex].concat(boxes, [MP4.trep()]));
    };
    MP4.trep = function () {
        return MP4.box(MP4.types.trep, new Uint8Array([
            0x00,
            0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x01,
        ]));
    };
    MP4.stbl = function (track) {
        return MP4.box(MP4.types.stbl, MP4.stsd(track), MP4.box(MP4.types.stts, MP4.STTS), MP4.box(MP4.types.stsc, MP4.STSC), MP4.box(MP4.types.stsz, MP4.STSZ), MP4.box(MP4.types.stco, MP4.STCO));
    };
    MP4.avc1 = function (track) {
        var sps = [];
        var pps = [];
        for (var _i = 0, _a = track.sps; _i < _a.length; _i++) {
            var data = _a[_i];
            var len = data.byteLength;
            sps.push((len >>> 8) & 0xFF);
            sps.push((len & 0xFF));
            sps = sps.concat(Array.prototype.slice.call(data));
        }
        for (var _b = 0, _c = track.pps; _b < _c.length; _b++) {
            var data = _c[_b];
            var len = data.byteLength;
            pps.push((len >>> 8) & 0xFF);
            pps.push((len & 0xFF));
            pps = pps.concat(Array.prototype.slice.call(data));
        }
        var avcc = MP4.box(MP4.types.avcC, new Uint8Array([
            0x01,
            sps[3],
            sps[4],
            sps[5],
            0xfc | 3,
            0xE0 | track.sps.length,
        ].concat(sps).concat([
            track.pps.length,
        ]).concat(pps)));
        var width = track.width;
        var height = track.height;
        return MP4.box(MP4.types.avc1, new Uint8Array([
            0x00, 0x00, 0x00,
            0x00, 0x00, 0x00,
            0x00, 0x01,
            0x00, 0x00,
            0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            (width >> 8) & 0xFF,
            width & 0xff,
            (height >> 8) & 0xFF,
            height & 0xff,
            0x00, 0x48, 0x00, 0x00,
            0x00, 0x48, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x01,
            0x12,
            0x62, 0x69, 0x6E, 0x65,
            0x6C, 0x70, 0x72, 0x6F,
            0x2E, 0x72, 0x75, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00,
            0x00, 0x18,
            0x11, 0x11
        ]), avcc, MP4.box(MP4.types.btrt, new Uint8Array([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x2d, 0xc6, 0xc0,
            0x00, 0x2d, 0xc6, 0xc0,
        ])));
    };
    MP4.stsd = function (track) {
        return MP4.box(MP4.types.stsd, MP4.STSD, MP4.avc1(track));
    };
    MP4.tkhd = function (track) {
        var id = track.id;
        var width = track.width;
        var height = track.height;
        return MP4.box(MP4.types.tkhd, new Uint8Array([
            0x00,
            0x00, 0x00, 0x01,
            0x00, 0x00, 0x00, 0x01,
            0x00, 0x00, 0x00, 0x02,
            (id >> 24) & 0xFF,
            (id >> 16) & 0xFF,
            (id >> 8) & 0xFF,
            id & 0xFF,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00,
            0x00, 0x00,
            (track.type === 'audio' ? 0x01 : 0x00), 0x00,
            0x00, 0x00,
            0x00, 0x01, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x01, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x40, 0x00, 0x00, 0x00,
            (width >> 8) & 0xFF,
            width & 0xFF,
            0x00, 0x00,
            (height >> 8) & 0xFF,
            height & 0xFF,
            0x00, 0x00,
        ]));
    };
    MP4.traf = function (track, baseMediaDecodeTime) {
        var id = track.id;
        return MP4.box(MP4.types.traf, MP4.box(MP4.types.tfhd, new Uint8Array([
            0x00,
            0x02, 0x00, 0x00,
            (id >> 24),
            (id >> 16) & 0XFF,
            (id >> 8) & 0XFF,
            (id & 0xFF),
        ])), MP4.box(MP4.types.tfdt, new Uint8Array([
            0x00,
            0x00, 0x00, 0x00,
            (baseMediaDecodeTime >> 24),
            (baseMediaDecodeTime >> 16) & 0XFF,
            (baseMediaDecodeTime >> 8) & 0XFF,
            (baseMediaDecodeTime & 0xFF),
        ])), MP4.trun(track, 16 +
            16 +
            8 +
            16 +
            8 +
            8));
    };
    MP4.trak = function (track) {
        track.duration = track.duration || 0xffffffff;
        return MP4.box(MP4.types.trak, MP4.tkhd(track), MP4.mdia(track));
    };
    MP4.trex = function (track) {
        var id = track.id;
        return MP4.box(MP4.types.trex, new Uint8Array([
            0x00,
            0x00, 0x00, 0x00,
            (id >> 24),
            (id >> 16) & 0XFF,
            (id >> 8) & 0XFF,
            (id & 0xFF),
            0x00, 0x00, 0x00, 0x01,
            0x00, 0x00, 0x00, 0x3c,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x01, 0x00, 0x00,
        ]));
    };
    MP4.trun = function (track, offset) {
        var samples = track.samples || [];
        var len = samples.length;
        var additionalLen = track.isKeyFrame ? 4 : 0;
        var arraylen = 12 + additionalLen + (4 * len);
        var array = new Uint8Array(arraylen);
        offset += 8 + arraylen;
        array.set([
            0x00,
            0x00, 0x02, (track.isKeyFrame ? 0x05 : 0x01),
            (len >>> 24) & 0xFF,
            (len >>> 16) & 0xFF,
            (len >>> 8) & 0xFF,
            len & 0xFF,
            (offset >>> 24) & 0xFF,
            (offset >>> 16) & 0xFF,
            (offset >>> 8) & 0xFF,
            offset & 0xFF,
        ], 0);
        if (track.isKeyFrame) {
            array.set([
                0x00, 0x00, 0x00, 0x00,
            ], 12);
        }
        for (var i = 0; i < len; i++) {
            var sample = samples[i];
            var size = sample.size;
            array.set([
                (size >>> 24) & 0xFF,
                (size >>> 16) & 0xFF,
                (size >>> 8) & 0xFF,
                size & 0xFF,
            ], 12 + additionalLen + 4 * i);
        }
        return MP4.box(MP4.types.trun, array);
    };
    MP4.initSegment = function (tracks, duration, timescale) {
        if (!MP4.initalized) {
            MP4.init();
        }
        var movie = MP4.moov(tracks, duration, timescale);
        var result = new Uint8Array(MP4.FTYP.byteLength + movie.byteLength);
        result.set(MP4.FTYP);
        result.set(movie, MP4.FTYP.byteLength);
        return result;
    };
    MP4.fragmentSegment = function (sn, baseMediaDecodeTime, track, payload) {
        var moof = MP4.moof(sn, baseMediaDecodeTime, track);
        var mdat = MP4.mdat(payload);
        var result = new Uint8Array(MP4.STYP.byteLength + moof.byteLength + mdat.byteLength);
        result.set(MP4.STYP);
        result.set(moof, MP4.STYP.byteLength);
        result.set(mdat, MP4.STYP.byteLength + moof.byteLength);
        return result;
    };
    return MP4;
}());
MP4.types = {};
MP4.initalized = false;
exports.default = MP4;

},{}],48:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var NALU = (function () {
    function NALU(data) {
        this.data = data;
        this.nri = (data[0] & 0x60) >> 5;
        this.ntype = data[0] & 0x1f;
    }
    Object.defineProperty(NALU, "NDR", {
        get: function () { return 1; },
        enumerable: true,
        configurable: true
    });
    Object.defineProperty(NALU, "IDR", {
        get: function () { return 5; },
        enumerable: true,
        configurable: true
    });
    Object.defineProperty(NALU, "SEI", {
        get: function () { return 6; },
        enumerable: true,
        configurable: true
    });
    Object.defineProperty(NALU, "SPS", {
        get: function () { return 7; },
        enumerable: true,
        configurable: true
    });
    Object.defineProperty(NALU, "PPS", {
        get: function () { return 8; },
        enumerable: true,
        configurable: true
    });
    Object.defineProperty(NALU, "TYPES", {
        get: function () {
            return _a = {},
                _a[NALU.IDR] = 'IDR',
                _a[NALU.SEI] = 'SEI',
                _a[NALU.SPS] = 'SPS',
                _a[NALU.PPS] = 'PPS',
                _a[NALU.NDR] = 'NDR',
                _a;
            var _a;
        },
        enumerable: true,
        configurable: true
    });
    NALU.type = function (nalu) {
        if (nalu.ntype in NALU.TYPES) {
            return NALU.TYPES[nalu.ntype];
        }
        else {
            return 'UNKNOWN';
        }
    };
    NALU.prototype.type = function () {
        return this.ntype;
    };
    NALU.prototype.isKeyframe = function () {
        return this.ntype === NALU.IDR;
    };
    NALU.prototype.getSize = function () {
        return 4 + this.data.byteLength;
    };
    NALU.prototype.getData = function () {
        var result = new Uint8Array(this.getSize());
        var view = new DataView(result.buffer);
        view.setUint32(0, this.getSize() - 4);
        result.set(this.data, 4);
        return result;
    };
    return NALU;
}());
exports.default = NALU;

},{}],49:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var BitStream = (function () {
    function BitStream(data) {
        this.data = data;
        this.index = 0;
        this.bitLength = data.byteLength * 8;
    }
    Object.defineProperty(BitStream.prototype, "bitsAvailable", {
        get: function () {
            return this.bitLength - this.index;
        },
        enumerable: true,
        configurable: true
    });
    BitStream.prototype.skipBits = function (size) {
        if (this.bitsAvailable < size) {
            throw new Error('no bytes available');
        }
        this.index += size;
    };
    BitStream.prototype.readBits = function (size) {
        var result = this.getBits(size, this.index);
        return result;
    };
    BitStream.prototype.getBits = function (size, offsetBits, moveIndex) {
        if (moveIndex === void 0) { moveIndex = true; }
        if (this.bitsAvailable < size) {
            throw new Error('no bytes available');
        }
        var offset = offsetBits % 8;
        var byte = this.data[(offsetBits / 8) | 0] & (0xff >>> offset);
        var bits = 8 - offset;
        if (bits >= size) {
            if (moveIndex) {
                this.index += size;
            }
            return byte >> (bits - size);
        }
        else {
            if (moveIndex) {
                this.index += bits;
            }
            var nextSize = size - bits;
            return (byte << nextSize) | this.getBits(nextSize, offsetBits + bits, moveIndex);
        }
    };
    BitStream.prototype.skipLZ = function () {
        var leadingZeroCount;
        for (leadingZeroCount = 0; leadingZeroCount < this.bitLength - this.index; ++leadingZeroCount) {
            if (0 !== this.getBits(1, this.index + leadingZeroCount, false)) {
                this.index += leadingZeroCount;
                return leadingZeroCount;
            }
        }
        return leadingZeroCount;
    };
    BitStream.prototype.skipUEG = function () {
        this.skipBits(1 + this.skipLZ());
    };
    BitStream.prototype.skipEG = function () {
        this.skipBits(1 + this.skipLZ());
    };
    BitStream.prototype.readUEG = function () {
        var prefix = this.skipLZ();
        return this.readBits(prefix + 1) - 1;
    };
    BitStream.prototype.readEG = function () {
        var value = this.readUEG();
        if (0x01 & value) {
            return (1 + value) >>> 1;
        }
        else {
            return -1 * (value >>> 1);
        }
    };
    BitStream.prototype.readBoolean = function () {
        return 1 === this.readBits(1);
    };
    BitStream.prototype.readUByte = function () {
        return this.readBits(8);
    };
    BitStream.prototype.readUShort = function () {
        return this.readBits(16);
    };
    BitStream.prototype.readUInt = function () {
        return this.readBits(32);
    };
    return BitStream;
}());
exports.default = BitStream;

},{}],50:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var logger;
var errorLogger;
function setLogger(log, error) {
    logger = log;
    errorLogger = error != null ? error : log;
}
exports.setLogger = setLogger;
function isEnable() {
    return logger != null;
}
exports.isEnable = isEnable;
function log(message) {
    var optionalParams = [];
    for (var _i = 1; _i < arguments.length; _i++) {
        optionalParams[_i - 1] = arguments[_i];
    }
    if (logger) {
        logger.apply(void 0, [message].concat(optionalParams));
    }
}
exports.log = log;
function error(message) {
    var optionalParams = [];
    for (var _i = 1; _i < arguments.length; _i++) {
        optionalParams[_i - 1] = arguments[_i];
    }
    if (errorLogger) {
        errorLogger.apply(void 0, [message].concat(optionalParams));
    }
}
exports.error = error;

},{}],51:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var NALU_1 = require("./NALU");
var VideoStreamBuffer = (function () {
    function VideoStreamBuffer() {
    }
    VideoStreamBuffer.prototype.clear = function () {
        this.buffer = undefined;
    };
    VideoStreamBuffer.prototype.append = function (value) {
        var nextNalHeader = function (b) {
            var i = 3;
            return function () {
                var count = 0;
                for (; i < b.length; i++) {
                    switch (b[i]) {
                        case 0:
                            count++;
                            break;
                        case 1:
                            if (count === 3) {
                                return i - 3;
                            }
                        default:
                            count = 0;
                    }
                }
                return;
            };
        };
        var result = [];
        var buffer;
        if (this.buffer) {
            if (value[3] === 1 && value[2] === 0 && value[1] === 0 && value[0] === 0) {
                result.push(new NALU_1.default(this.buffer.subarray(4)));
                buffer = Uint8Array.from(value);
            }
        }
        if (buffer == null) {
            buffer = this.mergeBuffer(value);
        }
        var lastIndex = 0;
        var f = nextNalHeader(buffer);
        for (var index = f(); index != null; index = f()) {
            result.push(new NALU_1.default(buffer.subarray(lastIndex + 4, index)));
            lastIndex = index;
        }
        this.buffer = buffer.subarray(lastIndex);
        return result;
    };
    VideoStreamBuffer.prototype.mergeBuffer = function (value) {
        if (this.buffer == null) {
            return Uint8Array.from(value);
        }
        else {
            var newBuffer = new Uint8Array(this.buffer.byteLength + value.length);
            if (this.buffer.byteLength > 0) {
                newBuffer.set(this.buffer, 0);
            }
            newBuffer.set(value, this.buffer.byteLength);
            return newBuffer;
        }
    };
    return VideoStreamBuffer;
}());
exports.default = VideoStreamBuffer;

},{"./NALU":48}],52:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var h264_remuxer_1 = require("./h264-remuxer");
var mp4_generator_1 = require("./mp4-generator");
var debug = require("./util/debug");
var nalu_stream_buffer_1 = require("./util/nalu-stream-buffer");
exports.mimeType = 'video/mp4; codecs="avc1.42E01E"';
var VideoConverter = (function () {
    function VideoConverter(element, fps, fpf) {
        if (fps === void 0) { fps = 60; }
        if (fpf === void 0) { fpf = fps; }
        this.element = element;
        this.fps = fps;
        this.fpf = fpf;
        this.receiveBuffer = new nalu_stream_buffer_1.default();
        this.queue = [];
        if (!MediaSource || !MediaSource.isTypeSupported(exports.mimeType)) {
            throw new Error("Your browser is not supported: " + exports.mimeType);
        }
        this.reset();
    }
    Object.defineProperty(VideoConverter, "errorNotes", {
        get: function () {
            return _a = {},
                _a[MediaError.MEDIA_ERR_ABORTED] = 'fetching process aborted by user',
                _a[MediaError.MEDIA_ERR_NETWORK] = 'error occurred when downloading',
                _a[MediaError.MEDIA_ERR_DECODE] = 'error occurred when decoding',
                _a[MediaError.MEDIA_ERR_SRC_NOT_SUPPORTED] = 'audio/video not supported',
                _a;
            var _a;
        },
        enumerable: true,
        configurable: true
    });
    VideoConverter.prototype.setup = function () {
        var _this = this;
        this.mediaReadyPromise = new Promise(function (resolve, _reject) {
            _this.mediaSource.addEventListener('sourceopen', function () {
                debug.log("Media Source opened.");
                _this.sourceBuffer = _this.mediaSource.addSourceBuffer(exports.mimeType);
                _this.sourceBuffer.addEventListener('updateend', function () {
                    debug.log("  SourceBuffer updateend");
                    debug.log("    sourceBuffer.buffered.length=" + _this.sourceBuffer.buffered.length);
                    for (var i = 0, len = _this.sourceBuffer.buffered.length; i < len; i++) {
                        debug.log("    sourceBuffer.buffered [" + i + "]: " +
                            (_this.sourceBuffer.buffered.start(i) + ", " + _this.sourceBuffer.buffered.end(i)));
                    }
                    debug.log("  mediasource.duration=" + _this.mediaSource.duration);
                    debug.log("  mediasource.readyState=" + _this.mediaSource.readyState);
                    debug.log("  video.duration=" + _this.element.duration);
                    debug.log("    video.buffered.length=" + _this.element.buffered.length);
                    if (debug.isEnable()) {
                        for (var i = 0, len = _this.element.buffered.length; i < len; i++) {
                            debug.log("    video.buffered [" + i + "]: " + _this.element.buffered.start(i) + ", " + _this.element.buffered.end(i));
                        }
                    }
                    debug.log("  video.currentTime=" + _this.element.currentTime);
                    debug.log("  video.readyState=" + _this.element.readyState);
                    var data = _this.queue.shift();
                    if (data) {
                        _this.writeBuffer(data);
                    }
                });
                _this.sourceBuffer.addEventListener('error', function () {
                    debug.error('  SourceBuffer errored!');
                });
                _this.mediaReady = true;
                resolve();
            }, false);
            _this.mediaSource.addEventListener('sourceclose', function () {
                debug.log("Media Source closed.");
                _this.mediaReady = false;
            }, false);
            _this.element.src = URL.createObjectURL(_this.mediaSource);
        });
        return this.mediaReadyPromise;
    };
    VideoConverter.prototype.play = function () {
        var _this = this;
        if (!this.element.paused) {
            return;
        }
        if (this.mediaReady && this.element.readyState >= 2) {
            this.element.play();
        }
        else {
            var handler_1 = function () {
                _this.play();
                _this.element.removeEventListener('canplaythrough', handler_1);
            };
            this.element.addEventListener('canplaythrough', handler_1);
        }
    };
    VideoConverter.prototype.pause = function () {
        if (this.element.paused) {
            return;
        }
        this.element.pause();
    };
    VideoConverter.prototype.reset = function () {
        this.receiveBuffer.clear();
        if (this.mediaSource && this.mediaSource.readyState === 'open') {
            this.mediaSource.duration = 0;
            this.mediaSource.endOfStream();
        }
        this.mediaSource = new MediaSource();
        this.remuxer = new h264_remuxer_1.default(this.fps, this.fpf, this.fps * 60);
        this.mediaReady = false;
        this.mediaReadyPromise = undefined;
        this.queue = [];
        this.isFirstFrame = true;
        this.setup();
    };
    VideoConverter.prototype.appendRawData = function (data, dts) {
        var nalus = this.receiveBuffer.append(data);
        for (var _i = 0, nalus_1 = nalus; _i < nalus_1.length; _i++) {
            var nalu = nalus_1[_i];
            var ret = this.remuxer.remux(nalu);
            if (ret) {
				this.writeFragment(ret[0], ret[1]);  // ret[0]
            }
        }
    };
    VideoConverter.prototype.writeFragment = function (dts, pay) {
        var remuxer = this.remuxer;
        if (remuxer.mp4track.isKeyFrame) {
            this.writeBuffer(mp4_generator_1.default.initSegment([remuxer.mp4track], Infinity, remuxer.timescale));
        }
        if (pay && pay.byteLength) {
            debug.log(" Put fragment: " + remuxer.seqNum + ", frames=" + remuxer.mp4track.samples.length + ", size=" + pay.byteLength);
            var fragment = mp4_generator_1.default.fragmentSegment(remuxer.seqNum, dts, remuxer.mp4track, pay);
            this.writeBuffer(fragment);
            remuxer.flush();
        }
        else {
            debug.error("Nothing payload!");
        }
    };
    VideoConverter.prototype.writeBuffer = function (data) {
        var _this = this;
        if (this.mediaReady) {
            if (this.sourceBuffer.updating) {
                this.queue.push(data);
            }
            else {
				if (this.queue.length > 0) console.error("DATA IN QUEUE");
                this.doAppend(data);
            }
        }
        else {
            this.queue.push(data);
            if (this.mediaReadyPromise) {
                this.mediaReadyPromise.then(function () {
                    if (!_this.sourceBuffer.updating) {
                        var d = _this.queue.shift();
                        if (d) {
                            _this.writeBuffer(d);
                        }
                    }
                });
                this.mediaReadyPromise = undefined;
            }
        }
    };
    VideoConverter.prototype.doAppend = function (data) {
        var error = this.element.error;
        if (error) {
            debug.error("MSE Error Occured: " + VideoConverter.errorNotes[error.code]);
            this.element.pause();
            if (this.mediaSource.readyState === 'open') {
                this.mediaSource.endOfStream();
            }
        }
        else {
            try {
                this.sourceBuffer.appendBuffer(data);
                debug.log("  appended buffer: size=" + data.byteLength);
            }
            catch (err) {
                debug.error("MSE Error occured while appending buffer. " + err.name + ": " + err.message);
            }
        }
    };
    return VideoConverter;
}());
exports.default = VideoConverter;

},{"./h264-remuxer":46,"./mp4-generator":47,"./util/debug":50,"./util/nalu-stream-buffer":51}],53:[function(require,module,exports){
(function (Buffer){
const msgpack = require('msgpack5')()
  , encode  = msgpack.encode
  , decode  = msgpack.decode;
const uuidv4 = require('uuid') //Deprecated method, should use require('uuid/v4')
const uuidParser = require('./utils/uuidParser')

const kConnecting = 1;
const kConnected = 2;
const kDisconnected = 3;

// Generate a unique id for this webservice
let uuid = uuidv4();
let my_uuid = uuidParser.parse(uuid)
my_uuid = new Uint8Array(my_uuid);
// my_uuid[0] = 44;
// console.log(my_uuid)
my_uuid = Buffer.from(my_uuid);

const kMagic = 0x0009340053640912;
const kVersion = 0;


/**
 * Wrap a web socket with a MsgPack RCP protocol that works with our C++ version.
 * @param {websocket} ws Websocket object
 */
function Peer(ws) {
	this.sock = ws;
	this.status = kConnecting;
	this.id = null;
	this.string_id = "";
	this.bindings = {};
	this.proxies = {};
	this.events = {};
	this.callbacks = {};
	this.cbid = 0;

	this.uri = "unknown";
	this.name = "unknown";
	this.master = false;

	let message = (raw) => {
		//Gets right data for client
		if(this.sock.on === undefined){
			raw = raw.data;
		}
		let msg = decode(raw);
		// console.log('MSG', msg)
		if (this.status == kConnecting) {
			if (msg[1] != "__handshake__") {
				console.log("Bad handshake");
				this.close();
			}
		}
		if (msg[0] == 0) {
			// console.log("MSG...", msg[2]);
			// Notification
			if (msg.length == 3) {
				this._dispatchNotification(msg[1], msg[2]);
			// Call
			} else {
				this._dispatchCall(msg[2], msg[1], msg[3]);
			}
		} else if (msg[0] == 1) {
			this._dispatchResponse(msg[1], msg[3]);
		}
	}

	let close = () => {
		this.status = kDisconnected;
		this._notify("disconnect", this);
	}

	let error = () => {
		console.error("Socket error");
		this.sock.close();
		this.status = kDisconnected;
	}

	//if undefined, peer is being used by client
	if(this.sock.on === undefined){
		this.sock.onmessage = message;
		this.sock.onclose = close;
		this.sock.onopen = (event) => {
			this.send("__handshake__", kMagic, kVersion, [my_uuid]);
		}
	//else peer is being used by server
	}else{
		this.sock.on("message", message);
		this.sock.on("close", close);
		this.sock.on("error", error);
	}

	this.bind("__handshake__", (magic, version, id) => {
		if (magic == kMagic) {
			console.log("Handshake received");
			this.status = kConnected;
			this.id = id.buffer;
			this.string_id  = id.toString('hex');
			this._notify("connect", this);
			// if(this.sock.on === undefined){
			// 	this.send("__handshake__", kMagic, kVersion, [my_uuid]);
			// }
		} else {
			console.log("Magic does not match");
			this.close();
		}
	});
	this.send("__handshake__", kMagic, kVersion, [my_uuid]);
}		


Peer.uuid = my_uuid;

/**
 * @private
 */
Peer.prototype._dispatchNotification = function(name, args) {
	if (this.bindings.hasOwnProperty(name)) {
		//console.log("Notification for: ", name);
		this.bindings[name].apply(this, args);
	} else {
		console.log("Missing handler for: ", name);
	}
}

/**
 * @private
 */
Peer.prototype._dispatchCall = function(name, id, args) {
	console.log("DISPATCHCALL", name, id, args)
	if (this.bindings.hasOwnProperty(name)) {
		//console.log("Call for:", name, id);

		try {
			let res = this.bindings[name].apply(this, args);
			this.sock.send(encode([1,id,name,res]));
		} catch(e) {
			console.error("Could to dispatch or return call", e);
			this.close();
		}
	} else if (this.proxies.hasOwnProperty(name)) {
		//console.log("Proxy for:", name, id);
		args.unshift((res) => {
			try {
				this.sock.send(encode([1,id,name,res]));
			} catch(e) {
				console.log("ERROR")
				this.close();
			}
		});
		this.proxies[name].apply(this, args);
	} else {
		console.log("Missing handler for: ", name);
	}
}

/**
 * @private
 */
Peer.prototype._dispatchResponse = function(id, res) {
	if (this.callbacks.hasOwnProperty(id)) {
		this.callbacks[id].call(this, res);
		delete this.callbacks[id];
	} else {
		console.log("Missing callback");
	}
}

/**
 * Register an RPC handler that will be called from a remote machine. Remotely
 * passed arguments are provided to the given function as normal arguments, and
 * if the function returns a value, it will be returned over the network also.
 * 
 * @param {string} name The name of the function
 * @param {function} f A function or lambda to be callable remotely
 */
Peer.prototype.bind = function(name, f) {
	if (this.bindings.hasOwnProperty(name)) {
		//console.error("Duplicate bind to same procedure");
		this.bindings[name] = f;
	} else {
		this.bindings[name] = f;
	}
}

Peer.prototype.isBound = function(name) {
	return this.bindings.hasOwnProperty(name) || this.proxies.hasOwnProperty(name);
}

/**
 * Allow an RPC call to pass through to another machine with minimal local
 * processing.
 */
Peer.prototype.proxy = function(name, f) {
	if (this.proxies.hasOwnProperty(name)) {
		//console.error("Duplicate proxy to same procedure");
		this.proxies[name] = f;
	} else {
		this.proxies[name] = f;
	}
}

/**
 * Call a procedure on a remote machine.
 * 
 * @param {string} name Name of the procedure
 * @param {function} cb Callback to receive return value as argument
 * @param {...} args Any number of arguments to also pass to remote procedure
 */
Peer.prototype.rpc = function(name, cb, ...args) {
	let id = this.cbid++;
	this.callbacks[id] = cb;

	try {
		this.sock.send(encode([0, id, name, args]));
	} catch(e) {
		this.close();
	}
}

Peer.prototype.sendB = function(name, args) {
	try {
		this.sock.send(encode([0, name, args]));
	} catch(e) {
		this.close();
	}
}

/**
 * Call a remote procedure but with no return value expected.
 * 
 * @param {string} name Name of the procedure
 * @param {...} args Any number of arguments to also pass to remote procedure
 */
Peer.prototype.send = function(name, ...args) {
	try {
		this.sock.send(encode([0, name, args]));
	} catch(e) {
		this.close();
	}
}

/**
 * Closes the socket
 */
Peer.prototype.close = function() {
	if(this.sock.on !== undefined){
		this.sock.close();
	}
	this.status = kDisconnected;
}

/**
 * @private
 */
Peer.prototype._notify = function(evt, ...args) {
	if (this.events.hasOwnProperty(evt)) {
		for (let i=0; i<this.events[evt].length; i++) {
			let f = this.events[evt][i];
			f.apply(this, args);
		}
	}
}

/**
 * Register a callback for socket events. Events include: 'connect',
 * 'disconnect' and 'error'.
 * 
 * @param {string} evt Event name
 * @param {function} f Callback on event
 */
Peer.prototype.on = function(evt, f) {
	if (!this.events.hasOwnProperty(evt)) {
		this.events[evt] = [];
	}
	this.events[evt].push(f);
}


Peer.prototype.getUuid = function() {
	return uuid;
}

module.exports = Peer;

}).call(this,require("buffer").Buffer)
},{"./utils/uuidParser":54,"buffer":8,"msgpack5":15,"uuid":39}],54:[function(require,module,exports){
// Maps for number <-> hex string conversion
var _byteToHex = [];
var _hexToByte = {};
for (var i = 0; i < 256; i++) {
  _byteToHex[i] = (i + 0x100).toString(16).substr(1);
  _hexToByte[_byteToHex[i]] = i;
}

/** 
 * `parse()` - Parse a UUID into it's component bytes
 * 
 * Turns UUID into Buffer
 **/ 
function parse(s, buf, offset) {
  var i = (buf && offset) || 0;
  var ii = 0;

  buf = buf || [];
  s.toLowerCase().replace(/[0-9a-f]{2}/g, function(oct) {
    if (ii < 16) { // Don't overflow!
      buf[i + ii++] = _hexToByte[oct];
    }
  });

  // Zero out remaining bytes if string was short
  while (ii < 16) {
    buf[i + ii++] = 0;
  }

  return buf;
}

/**
 * `unparse()` - Convert UUID byte array (ala parse()) into a string
 * 
 * Turns Buffer into UUID
 * */
function unparse(buf, offset) {
  var i = offset || 0;
  var bth = _byteToHex;
  return  bth[buf[i++]] + bth[buf[i++]] +
          bth[buf[i++]] + bth[buf[i++]] + '-' +
          bth[buf[i++]] + bth[buf[i++]] + '-' +
          bth[buf[i++]] + bth[buf[i++]] + '-' +
          bth[buf[i++]] + bth[buf[i++]] + '-' +
          bth[buf[i++]] + bth[buf[i++]] +
          bth[buf[i++]] + bth[buf[i++]] +
          bth[buf[i++]] + bth[buf[i++]];
}

module.exports = {
  parse: parse,
  unparse: unparse
};
},{}]},{},[44]);