/* * Author: Nicolas Pope and Sebastian Hahta (2019) * Implementation of algorithm presented in article(s): * * [1] Humenberger, Engelke, Kubinger: A fast stereo matching algorithm suitable * for embedded real-time systems * [2] Humenberger, Zinner, Kubinger: Performance Evaluation of Census-Based * Stereo Matching Algorithm on Embedded and Multi-Core Hardware * * Equation numbering uses [1] unless otherwise stated * */ #include <opencv2/core/cuda/common.hpp> using namespace cv::cuda; using namespace cv; #define BLOCK_W 60 #define RADIUS 7 #define RADIUS2 2 #define ROWSperTHREAD 1 #define XHI(P1,P2) ((P1 <= P2) ? 0 : 1) namespace ftl { namespace gpu { // --- SUPPORT ----------------------------------------------------------------- /* * Sparse 16x16 census (so 8x8) creating a 64bit mask * (14) & (15), based upon (9) */ __device__ uint64_t sparse_census(cudaTextureObject_t tex, int u, int v) { uint64_t r = 0; unsigned char t = tex2D<unsigned char>(tex, u,v); for (int m=-7; m<=7; m+=2) { //auto start_ix = (v + m)*w + u; for (int n=-7; n<=7; n+=2) { r <<= 1; r |= XHI(t, tex2D<unsigned char>(tex, u+n, v+m)); } } return r; } /* * Parabolic interpolation between matched disparities either side. * Results in subpixel disparity. (20). */ __device__ float fit_parabola(size_t pi, uint16_t p, uint16_t pl, uint16_t pr) { float a = pr - pl; float b = 2 * (2 * p - pl - pr); return static_cast<float>(pi) + (a / b); } // --- KERNELS ----------------------------------------------------------------- /* * Calculate census mask for left and right images together. */ __global__ void census_kernel(cudaTextureObject_t l, cudaTextureObject_t r, int w, int h, uint64_t *censusL, uint64_t *censusR, size_t pL, size_t pR) { int u = (blockIdx.x * BLOCK_W + threadIdx.x + RADIUS); int v_start = blockIdx.y * ROWSperTHREAD + RADIUS; int v_end = v_start + ROWSperTHREAD; if (v_end+RADIUS >= h) v_end = h-RADIUS; if (u+RADIUS >= w) return; for (int v=v_start; v<v_end; v++) { //int ix = (u + v*pL); uint64_t cenL = sparse_census(l, u, v); uint64_t cenR = sparse_census(r, u, v); censusL[(u + v*pL)] = cenL; censusR[(u + v*pR)] = cenR; } } /* Convert vector uint2 (32bit x2) into a single uint64_t */ __forceinline__ __device__ uint64_t uint2asull (uint2 a) { uint64_t res; asm ("mov.b64 %0, {%1,%2};" : "=l"(res) : "r"(a.x), "r"(a.y)); return res; } /* * Generate left and right disparity images from census data. (19) */ __global__ void disp_kernel(float *disp_l, float *disp_r, size_t width, size_t height, cudaTextureObject_t censusL, cudaTextureObject_t censusR, size_t ds) { //extern __shared__ uint64_t cache[]; const int gamma = 1; int u = (blockIdx.x * BLOCK_W) + threadIdx.x + RADIUS2; int v_start = (blockIdx.y * ROWSperTHREAD) + RADIUS2; int v_end = v_start + ROWSperTHREAD; int maxdisp = ds; // Local cache uint64_t l_cache_l1[5][5]; uint64_t l_cache_l2[5][5]; // Prepare the cache load //const int cache_thread_width = (BLOCK_W+ds / BLOCK_W + RADIUS2*2 + 1)*2; //uint64_t *cache_ptr = cache + (threadIdx.x * cache_thread_width); if (v_end >= height) v_end = height; if (u+maxdisp >= width) maxdisp = width-u; for (int v=v_start; v<v_end; v++) { /*const int cache_start = v*width*2 + cache_thread_width*blockIdx.x; for (int i=0; i<cache_thread_width; i+=2) { cache_ptr[i] = census[cache_start+i]; cache_ptr[i+1] = census[cache_start+i+1]; } __syncthreads();*/ // Fill local cache for window 5x5 // TODO Use shared memory? for (int m=-2; m<=2; m++) { for (int n=-2; n<=2; n++) { l_cache_l2[m+2][n+2] = uint2asull(tex2D<uint2>(censusL,u+n,v+m)); l_cache_l1[m+2][n+2] = uint2asull(tex2D<uint2>(censusR,u+n,v+m)); } } uint16_t last_ham1 = 65535; uint16_t last_ham2 = 65535; uint16_t min_disp1 = 65535; uint16_t min_disp2 = 65535; uint16_t min_disp1b = 65535; uint16_t min_disp2b = 65535; uint16_t min_before1 = 0; uint16_t min_before2 = 0; uint16_t min_after1 = 0; uint16_t min_after2 = 0; int dix1 = 0; int dix2 = 0; // TODO Use prediction textures to narrow range for (int d=0; d<maxdisp; d++) { uint16_t hamming1 = 0; uint16_t hamming2 = 0; //if (u+2+ds >= width) break; for (int m=-2; m<=2; m++) { const auto v_ = (v + m); for (int n=-2; n<=2; n++) { const auto u_ = u + n; auto l1 = l_cache_l1[m+2][n+2]; auto l2 = l_cache_l2[m+2][n+2]; // TODO Somehow might use shared memory auto r1 = uint2asull(tex2D<uint2>(censusL, u_+d, v_)); auto r2 = uint2asull(tex2D<uint2>(censusR, u_-d, v_)); hamming1 += __popcll(r1^l1); hamming2 += __popcll(r2^l2); } } if (hamming1 < min_disp1) { min_before1 = last_ham1; min_disp1 = hamming1; dix1 = d; } else if (hamming1 < min_disp1b) { min_disp1b = hamming1; } if (dix1 == d) min_after1 = hamming1; last_ham1 = hamming1; if (hamming2 < min_disp2) { min_before2 = last_ham2; min_disp2 = hamming2; dix2 = d; } else if (hamming2 < min_disp2b) { min_disp2b = hamming2; } if (dix2 == d) min_after2 = hamming2; last_ham2 = hamming2; } //float d1 = (dix1 == 0 || dix1 == ds-1) ? (float)dix1 : fit_parabola(dix1, min_disp1, min_before1, min_after1); //float d2 = (dix2 == 0 || dix2 == ds-1) ? (float)dix2 : fit_parabola(dix2, min_disp2, min_before2, min_after2); // TODO Allow for discontinuities with threshold float d1 = fit_parabola(dix1, min_disp1, min_before1, min_after1); float d2 = fit_parabola(dix2, min_disp2, min_before2, min_after2); // Confidence filter (25) // TODO choice of gamma to depend on disparity variance // Variance with next option, variance with neighbours, variance with past value disp_l[v*width+u] = ((min_disp2b - min_disp2) >= gamma) ? d2 : NAN; disp_r[v*width+u] = ((min_disp1b - min_disp1) >= gamma) ? d1 : NAN; // TODO If disparity is 0.0f, perhaps // Use previous value unless it conflicts with present // Use neighbour values if texture matches } } __global__ void consistency_kernel(float *d_sub_l, float *d_sub_r, PtrStepSz<float> disp) { size_t w = disp.cols; size_t h = disp.rows; //Mat result = Mat::zeros(Size(w,h), CV_32FC1); size_t u = (blockIdx.x * BLOCK_W) + threadIdx.x + RADIUS; size_t v_start = (blockIdx.y * ROWSperTHREAD) + RADIUS; size_t v_end = v_start + ROWSperTHREAD; if (v_end >= disp.rows) v_end = disp.rows; if (u >= w) return; for (size_t v=v_start; v<v_end; v++) { int a = (int)(d_sub_l[v*w+u]); if ((int)u-a < 0) continue; auto b = d_sub_r[v*w+u-a]; if (abs(a-b) <= 1.0) disp(v,u) = abs((a+b)/2); // was 1.0 else disp(v,u) = NAN; //} } } void rtcensus_call(const PtrStepSzb &l, const PtrStepSzb &r, const PtrStepSz<float> &disp, size_t num_disp, const int &stream) { dim3 grid(1,1,1); dim3 threads(BLOCK_W, 1, 1); grid.x = cv::cuda::device::divUp(l.cols - 2 * RADIUS, BLOCK_W); grid.y = cv::cuda::device::divUp(l.rows - 2 * RADIUS, ROWSperTHREAD); // TODO, reduce allocations uint64_t *censusL; uint64_t *censusR; float *disp_l; float *disp_r; size_t pitchL; size_t pitchR; cudaSafeCall( cudaMallocPitch(&censusL, &pitchL, l.cols*sizeof(uint64_t), l.rows) ); cudaSafeCall( cudaMallocPitch(&censusR, &pitchR, r.cols*sizeof(uint64_t), r.rows) ); //cudaMemset(census, 0, sizeof(uint64_t)*l.cols*l.rows*2); cudaMalloc(&disp_l, sizeof(float)*l.cols*l.rows); cudaMalloc(&disp_r, sizeof(float)*l.cols*l.rows); // Make textures cudaResourceDesc resDescL; memset(&resDescL, 0, sizeof(resDescL)); resDescL.resType = cudaResourceTypePitch2D; resDescL.res.pitch2D.devPtr = l.data; resDescL.res.pitch2D.pitchInBytes = l.step; resDescL.res.pitch2D.desc = cudaCreateChannelDesc<unsigned char>(); resDescL.res.pitch2D.width = l.cols; resDescL.res.pitch2D.height = l.rows; cudaResourceDesc resDescR; memset(&resDescR, 0, sizeof(resDescR)); resDescR.resType = cudaResourceTypePitch2D; resDescR.res.pitch2D.devPtr = r.data; resDescR.res.pitch2D.pitchInBytes = r.step; resDescR.res.pitch2D.desc = cudaCreateChannelDesc<unsigned char>(); resDescR.res.pitch2D.width = r.cols; resDescR.res.pitch2D.height = r.rows; cudaTextureDesc texDesc; memset(&texDesc, 0, sizeof(texDesc)); texDesc.readMode = cudaReadModeElementType; cudaTextureObject_t texLeft = 0; cudaCreateTextureObject(&texLeft, &resDescL, &texDesc, NULL); cudaTextureObject_t texRight = 0; cudaCreateTextureObject(&texRight, &resDescR, &texDesc, NULL); //size_t smem_size = (2 * l.cols * l.rows) * sizeof(uint64_t); census_kernel<<<grid, threads>>>(texLeft, texRight, l.cols, l.rows, censusL, censusR, pitchL/sizeof(uint64_t), pitchR/sizeof(uint64_t)); cudaSafeCall( cudaGetLastError() ); //cudaSafeCall( cudaDeviceSynchronize() ); // Make textures cudaResourceDesc censusLDesc; memset(&censusLDesc, 0, sizeof(censusLDesc)); censusLDesc.resType = cudaResourceTypePitch2D; censusLDesc.res.pitch2D.devPtr = censusL; censusLDesc.res.pitch2D.pitchInBytes = pitchL; censusLDesc.res.pitch2D.desc = cudaCreateChannelDesc<uint2>(); //censusLDesc.res.pitch2D.desc.filterMode = cudaFilterModePoint; censusLDesc.res.pitch2D.width = l.cols; censusLDesc.res.pitch2D.height = l.rows; cudaResourceDesc censusRDesc; memset(&censusRDesc, 0, sizeof(censusRDesc)); censusRDesc.resType = cudaResourceTypePitch2D; censusRDesc.res.pitch2D.devPtr = censusR; censusRDesc.res.pitch2D.pitchInBytes = pitchR; censusRDesc.res.pitch2D.desc = cudaCreateChannelDesc<uint2>(); //censusRDesc.res.pitch2D.desc.filterMode = cudaFilterModePoint; censusRDesc.res.pitch2D.width = r.cols; censusRDesc.res.pitch2D.height = r.rows; cudaTextureObject_t censusTexLeft = 0; cudaSafeCall( cudaCreateTextureObject(&censusTexLeft, &censusLDesc, &texDesc, NULL) ); cudaTextureObject_t censusTexRight = 0; cudaSafeCall( cudaCreateTextureObject(&censusTexRight, &censusRDesc, &texDesc, NULL) ); grid.x = cv::cuda::device::divUp(l.cols - 2 * RADIUS2, BLOCK_W); grid.y = cv::cuda::device::divUp(l.rows - 2 * RADIUS2, ROWSperTHREAD); //grid.x = cv::cuda::device::divUp(l.cols - 2 * RADIUS - num_disp, BLOCK_W) - 1; disp_kernel<<<grid, threads>>>(disp_l, disp_r, l.cols, l.rows, censusTexLeft, censusTexRight, num_disp); cudaSafeCall( cudaGetLastError() ); consistency_kernel<<<grid, threads>>>(disp_l, disp_r, disp); cudaSafeCall( cudaGetLastError() ); //if (&stream == Stream::Null()) cudaSafeCall( cudaDeviceSynchronize() ); cudaSafeCall( cudaDestroyTextureObject (texLeft) ); cudaSafeCall( cudaDestroyTextureObject (texRight) ); cudaSafeCall( cudaDestroyTextureObject (censusTexLeft) ); cudaSafeCall( cudaDestroyTextureObject (censusTexRight) ); cudaFree(disp_r); cudaFree(disp_l); cudaFree(censusL); cudaFree(censusR); } }; };