/* * Copyright 2019 Nicolas Pope */ #include <glog/logging.h> #include <ftl/config.h> #include <ftl/configuration.hpp> #include <iostream> #include <sstream> #include <string> #include <ctime> #include <cstdio> #include "calibrate.hpp" #include <opencv2/core.hpp> #include <opencv2/core/utility.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/calib3d.hpp> #include <opencv2/imgcodecs.hpp> #include <opencv2/videoio.hpp> #include <opencv2/highgui.hpp> using ftl::Calibrate; using cv::FileStorage; using cv::CALIB_FIX_PRINCIPAL_POINT; using cv::CALIB_ZERO_TANGENT_DIST; using cv::CALIB_FIX_ASPECT_RATIO; using cv::CALIB_FIX_K1; using cv::CALIB_FIX_K2; using cv::CALIB_FIX_K3; using cv::CALIB_FIX_K4; using cv::CALIB_FIX_K5; using cv::CALIB_ZERO_DISPARITY; using cv::CALIB_USE_INTRINSIC_GUESS; using cv::CALIB_SAME_FOCAL_LENGTH; using cv::CALIB_RATIONAL_MODEL; using cv::CALIB_CB_ADAPTIVE_THRESH; using cv::CALIB_CB_NORMALIZE_IMAGE; using cv::CALIB_CB_FAST_CHECK; using cv::CALIB_USE_LU; using cv::NORM_L2; using cv::INTER_LINEAR; using cv::COLOR_BGR2GRAY; using cv::FileNode; using cv::FileNodeIterator; using cv::Mat; using cv::Size; using cv::Point2f; using cv::Point3f; using cv::Matx33d; using cv::Scalar; using cv::Rect; using cv::TermCriteria; using cv::waitKey; using std::string; using std::vector; void Calibrate::Settings::write(FileStorage& fs) const { fs << "{" << "BoardSize_Width" << boardSize.width << "BoardSize_Height" << boardSize.height << "Square_Size" << squareSize << "Calibrate_Pattern" << patternToUse << "Calibrate_NrOfFrameToUse" << nrFrames << "Calibrate_FixAspectRatio" << aspectRatio << "Calibrate_AssumeZeroTangentialDistortion" << calibZeroTangentDist << "Calibrate_FixPrincipalPointAtTheCenter" << calibFixPrincipalPoint << "Write_DetectedFeaturePoints" << writePoints << "Write_extrinsicParameters" << writeExtrinsics << "Write_gridPoints" << writeGrid << "Input_FlipAroundHorizontalAxis" << flipVertical << "Input_Delay" << delay << "}"; } void Calibrate::Settings::read(const nlohmann::json& node) { boardSize.width = node["board_size"][0]; boardSize.height = node["board_size"][1]; squareSize = node["square_size"]; nrFrames = node["num_frames"]; aspectRatio = node["fix_aspect_ratio"]; calibZeroTangentDist = node["assume_zero_tangential_distortion"]; calibFixPrincipalPoint = node["fix_principal_point_at_center"]; useFisheye = node["use_fisheye_model"]; flipVertical = node["flip_vertical"]; delay = node["frame_delay"]; fixK1 = node["fix_k1"]; fixK2 = node["fix_k2"]; fixK3 = node["fix_k3"]; fixK4 = node["fix_k4"]; fixK5 = node["fix_k5"]; validate(); } void Calibrate::Settings::validate() { goodInput = true; if (boardSize.width <= 0 || boardSize.height <= 0) { LOG(ERROR) << "Invalid Board size: " << boardSize.width << " " << boardSize.height; goodInput = false; } if (squareSize <= 10e-6) { LOG(ERROR) << "Invalid square size " << squareSize; goodInput = false; } if (nrFrames <= 0) { LOG(ERROR) << "Invalid number of frames " << nrFrames; goodInput = false; } flag = 0; if (calibFixPrincipalPoint) flag |= CALIB_FIX_PRINCIPAL_POINT; if (calibZeroTangentDist) flag |= CALIB_ZERO_TANGENT_DIST; if (aspectRatio) flag |= CALIB_FIX_ASPECT_RATIO; if (fixK1) flag |= CALIB_FIX_K1; if (fixK2) flag |= CALIB_FIX_K2; if (fixK3) flag |= CALIB_FIX_K3; if (fixK4) flag |= CALIB_FIX_K4; if (fixK5) flag |= CALIB_FIX_K5; if (useFisheye) { // the fisheye model has its own enum, so overwrite the flags flag = cv::fisheye::CALIB_FIX_SKEW | cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; if (fixK1) flag |= cv::fisheye::CALIB_FIX_K1; if (fixK2) flag |= cv::fisheye::CALIB_FIX_K2; if (fixK3) flag |= cv::fisheye::CALIB_FIX_K3; if (fixK4) flag |= cv::fisheye::CALIB_FIX_K4; if (calibFixPrincipalPoint) flag |= cv::fisheye::CALIB_FIX_PRINCIPAL_POINT; } atImageList = 0; } Mat Calibrate::_nextImage(size_t cam) { Mat result; if (cam == 0) { local_->left(result); } else if (cam == 1 && local_->isStereo()) { local_->right(result); } return result; } bool Calibrate::Settings::readStringList(const string& filename, vector<string>& l) { l.clear(); FileStorage fs(filename, FileStorage::READ); if ( !fs.isOpened() ) return false; FileNode n = fs.getFirstTopLevelNode(); if ( n.type() != FileNode::SEQ ) return false; FileNodeIterator it = n.begin(), it_end = n.end(); for ( ; it != it_end; ++it ) l.push_back((string)*it); return true; } bool Calibrate::Settings::isListOfImages(const string& filename) { string s(filename); // Look for file extension if ( s.find(".xml") == string::npos && s.find(".yaml") == string::npos && s.find(".yml") == string::npos ) return false; else return true; } enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 }; bool runCalibration(const Calibrate::Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs, vector<vector<Point2f> > imagePoints, float grid_width, bool release_object); Calibrate::Calibrate(ftl::LocalSource *s, nlohmann::json &config) : local_(s) { /*FileStorage fs(cal, FileStorage::READ); // Read the settings if (!fs.isOpened()) { LOG(ERROR) << "Could not open the configuration file: \"" << cal << "\""; return; }*/ // fs["Settings"] >> settings_; settings_.read(config); // fs.release(); if (!settings_.goodInput) { LOG(ERROR) << "Invalid input detected. Application stopping."; return; } map1_.resize(2); map2_.resize(2); calibrated_ = _loadCalibration(); if (calibrated_) { LOG(INFO) << "Calibration loaded from file"; } } bool Calibrate::_loadCalibration() { // Capture one frame to get size; Mat l, r; local_->get(l, r); Size img_size = l.size(); float scale = 1.0f; Rect roi1, roi2; FileStorage fs; // reading intrinsic parameters auto ifile = ftl::locateFile("intrinsics.yml"); if (ifile) { fs.open((*ifile).c_str(), FileStorage::READ); if (!fs.isOpened()) { LOG(WARNING) << "Could not open intrinsics file"; return false; } LOG(INFO) << "Intrinsics from: " << *ifile; } else { LOG(WARNING) << "Calibration intrinsics file not found"; return false; } Mat M1, D1, M2, D2; fs["M1"] >> M1; fs["D1"] >> D1; fs["M2"] >> M2; fs["D2"] >> D2; M1 *= scale; M2 *= scale; auto efile = ftl::locateFile("extrinsics.yml"); if (efile) { fs.open((*efile).c_str(), FileStorage::READ); if (!fs.isOpened()) { LOG(WARNING) << "Could not open extrinsics file"; return false; } LOG(INFO) << "Extrinsics from: " << *efile; } else { LOG(WARNING) << "Calibration extrinsics file not found"; return false; } Mat R, T, R1, P1, R2, P2; fs["R"] >> R; fs["T"] >> T; fs["R1"] >> R1; fs["R2"] >> R2; fs["P1"] >> P1; fs["P2"] >> P2; fs["Q"] >> Q_; stereoRectify(M1, D1, M2, D2, img_size, R, T, R1, R2, P1, P2, Q_, CALIB_ZERO_DISPARITY, -1, img_size, &roi1, &roi2); Mat map11, map12, map21, map22; initUndistortRectifyMap(M1, D1, R1, P1, img_size, CV_16SC2, map1_[0], map2_[0]); initUndistortRectifyMap(M2, D2, R2, P2, img_size, CV_16SC2, map1_[1], map2_[1]); // Re-distort initUndistortRectifyMap(M1, Mat(), R1.t(), P1, img_size, CV_16SC2, imap1_, imap2_); r1_ = R1.t(); return true; } bool Calibrate::recalibrate() { vector<vector<Point2f>> imagePoints[2]; Mat cameraMatrix[2], distCoeffs[2]; Size imageSize[2]; bool r = _recalibrate(imagePoints, cameraMatrix, distCoeffs, imageSize); if (r) calibrated_ = true; if (r && local_->isStereo()) { int nimages = static_cast<int>(imagePoints[0].size()); auto squareSize = settings_.squareSize; vector<vector<Point3f>> objectPoints; objectPoints.resize(nimages); for (auto i = 0; i < nimages; i++) { for (auto j = 0; j < settings_.boardSize.height; j++) for (auto k = 0; k < settings_.boardSize.width; k++) objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0)); } Mat R, T, E, F; LOG(INFO) << "Running stereo calibration..."; double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1], cameraMatrix[0], distCoeffs[0], cameraMatrix[1], distCoeffs[1], imageSize[0], R, T, E, F, CALIB_FIX_ASPECT_RATIO + CALIB_ZERO_TANGENT_DIST + CALIB_USE_INTRINSIC_GUESS + CALIB_SAME_FOCAL_LENGTH + CALIB_RATIONAL_MODEL + CALIB_FIX_K3 + CALIB_FIX_K4 + CALIB_FIX_K5, TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 100, 1e-5)); LOG(INFO) << "... done with RMS error=" << rms; // save intrinsic parameters FileStorage fs(FTL_LOCAL_CONFIG_ROOT "/intrinsics.yml", FileStorage::WRITE); if (fs.isOpened()) { fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] << "M2" << cameraMatrix[1] << "D2" << distCoeffs[1]; fs.release(); } else { LOG(ERROR) << "Error: can not save the intrinsic parameters"; } Mat R1, R2, P1, P2; Rect validRoi[2]; stereoRectify(cameraMatrix[0], distCoeffs[0], cameraMatrix[1], distCoeffs[1], imageSize[0], R, T, R1, R2, P1, P2, Q_, CALIB_ZERO_DISPARITY, 1, imageSize[0], &validRoi[0], &validRoi[1]); fs.open(FTL_LOCAL_CONFIG_ROOT "/extrinsics.yml", FileStorage::WRITE); if (fs.isOpened()) { fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q_; fs.release(); } else { LOG(ERROR) << "Error: can not save the extrinsic parameters"; } // Precompute maps for cv::remap() initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize[0], CV_16SC2, map1_[0], map2_[0]); initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize[0], CV_16SC2, map1_[1], map2_[1]); } else { int cam = 0; if (settings_.useFisheye) { Mat newCamMat; cv::fisheye::estimateNewCameraMatrixForUndistortRectify( cameraMatrix[cam], distCoeffs[cam], imageSize[cam], Matx33d::eye(), newCamMat, 1); cv::fisheye::initUndistortRectifyMap( cameraMatrix[cam], distCoeffs[cam], Matx33d::eye(), newCamMat, imageSize[cam], CV_16SC2, map1_[cam], map2_[cam]); } else { initUndistortRectifyMap( cameraMatrix[cam], distCoeffs[cam], Mat(), getOptimalNewCameraMatrix(cameraMatrix[cam], distCoeffs[cam], imageSize[cam], 1, imageSize[cam], 0), imageSize[cam], CV_16SC2, map1_[cam], map2_[cam]); } } return r; } bool Calibrate::_recalibrate(vector<vector<Point2f>> *imagePoints, Mat *cameraMatrix, Mat *distCoeffs, Size *imageSize) { int winSize = 11; // parser.get<int>("winSize"); float grid_width = settings_.squareSize * (settings_.boardSize.width - 1); bool release_object = false; double prevTimestamp = 0.0; const Scalar RED(0, 0, 255), GREEN(0, 255, 0); int chessBoardFlags = CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE; if (!settings_.useFisheye) { // fast check erroneously fails with high distortions like fisheye chessBoardFlags |= CALIB_CB_FAST_CHECK; } for (;;) { Mat view[2]; local_->get(view[0], view[1]); LOG(INFO) << "Grabbing calibration image..."; if (view[0].empty() || (local_->isStereo() && view[1].empty()) || imagePoints[0].size() >= (size_t)settings_.nrFrames) { settings_.outputFileName = FTL_LOCAL_CONFIG_ROOT "/cam0.xml"; bool r = runCalibration(settings_, imageSize[0], cameraMatrix[0], distCoeffs[0], imagePoints[0], grid_width, release_object); if (local_->isStereo()) { settings_.outputFileName = FTL_LOCAL_CONFIG_ROOT "/cam1.xml"; r &= runCalibration(settings_, imageSize[1], cameraMatrix[1], distCoeffs[1], imagePoints[1], grid_width, release_object); } if (!r && view[0].empty()) { LOG(ERROR) << "Not enough frames to calibrate"; return false; } else if (r) { LOG(INFO) << "Calibration successful"; break; } } imageSize[0] = view[0].size(); // Format input image. imageSize[1] = view[1].size(); // if( settings_.flipVertical ) flip( view[cam], view[cam], 0 ); vector<Point2f> pointBuf[2]; bool found1, found2; found1 = findChessboardCorners(view[0], settings_.boardSize, pointBuf[0], chessBoardFlags); found2 = !local_->isStereo() || findChessboardCorners(view[1], settings_.boardSize, pointBuf[1], chessBoardFlags); if (found1 && found2 && local_->getTimestamp()-prevTimestamp > settings_.delay) { prevTimestamp = local_->getTimestamp(); // improve the found corners' coordinate accuracy for chessboard Mat viewGray; cvtColor(view[0], viewGray, COLOR_BGR2GRAY); cornerSubPix(viewGray, pointBuf[0], Size(winSize, winSize), Size(-1, -1), TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 30, 0.0001)); imagePoints[0].push_back(pointBuf[0]); if (local_->isStereo()) { cvtColor(view[1], viewGray, COLOR_BGR2GRAY); cornerSubPix(viewGray, pointBuf[1], Size(winSize, winSize), Size(-1, -1), TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 30, 0.0001)); imagePoints[1].push_back(pointBuf[1]); } // Draw the corners. drawChessboardCorners(view[0], settings_.boardSize, Mat(pointBuf[0]), found1); if (local_->isStereo()) drawChessboardCorners(view[1], settings_.boardSize, Mat(pointBuf[1]), found2); } else { LOG(WARNING) << "No calibration pattern found"; } imshow("Left", view[0]); if (local_->isStereo()) imshow("Right", view[1]); char key = static_cast<char>(waitKey(50)); if (key == 27) break; } return true; } bool Calibrate::undistort(cv::Mat &l, cv::Mat &r) { local_->get(l, r); if (!calibrated_) return false; if (l.empty()) return false; remap(l, l, map1_[0], map2_[0], INTER_LINEAR); if (local_->isStereo()) remap(r, r, map1_[1], map2_[1], INTER_LINEAR); return true; } void Calibrate::distort(cv::Mat &rgb, cv::Mat &depth) { remap(rgb, rgb, imap1_, imap2_, INTER_LINEAR); remap(depth, depth, imap1_, imap2_, INTER_LINEAR); } bool Calibrate::rectified(cv::Mat &l, cv::Mat &r) { return undistort(l, r); } bool Calibrate::isCalibrated() { return calibrated_; } //! [compute_errors] static double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints, const vector<vector<Point2f> >& imagePoints, const vector<Mat>& rvecs, const vector<Mat>& tvecs, const Mat& cameraMatrix , const Mat& distCoeffs, vector<float>& perViewErrors, bool fisheye) { vector<Point2f> imagePoints2; size_t totalPoints = 0; double totalErr = 0; perViewErrors.resize(objectPoints.size()); for (size_t i = 0; i < objectPoints.size(); ++i) { if (fisheye) { cv::fisheye::projectPoints(objectPoints[i], imagePoints2, rvecs[i], tvecs[i], cameraMatrix, distCoeffs); } else { projectPoints(objectPoints[i], rvecs[i], tvecs[i], cameraMatrix, distCoeffs, imagePoints2); } double err = norm(imagePoints[i], imagePoints2, NORM_L2); size_t n = objectPoints[i].size(); perViewErrors[i] = static_cast<float>(std::sqrt(err*err/n)); totalErr += err*err; totalPoints += n; } return std::sqrt(totalErr/totalPoints); } //! [compute_errors] //! [board_corners] static void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners, Calibrate::Settings::Pattern patternType) { corners.clear(); switch (patternType) { case Calibrate::Settings::CHESSBOARD: case Calibrate::Settings::CIRCLES_GRID: for (int i = 0; i < boardSize.height; ++i) for (int j = 0; j < boardSize.width; ++j) corners.push_back(Point3f(j*squareSize, i*squareSize, 0)); break; case Calibrate::Settings::ASYMMETRIC_CIRCLES_GRID: for (int i = 0; i < boardSize.height; i++) for (int j = 0; j < boardSize.width; j++) corners.push_back(Point3f((2*j + i % 2)*squareSize, i*squareSize, 0)); break; default: break; } } //! [board_corners] static bool _runCalibration(const Calibrate::Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs, vector<vector<Point2f> > imagePoints, vector<Mat>& rvecs, vector<Mat>& tvecs, vector<float>& reprojErrs, double& totalAvgErr, vector<Point3f>& newObjPoints, float grid_width, bool release_object) { cameraMatrix = Mat::eye(3, 3, CV_64F); if (s.flag & CALIB_FIX_ASPECT_RATIO) cameraMatrix.at<double>(0, 0) = s.aspectRatio; if (s.useFisheye) { distCoeffs = Mat::zeros(4, 1, CV_64F); } else { distCoeffs = Mat::zeros(8, 1, CV_64F); } vector<vector<Point3f> > objectPoints(1); calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], Calibrate::Settings::CHESSBOARD); objectPoints[0][s.boardSize.width - 1].x = objectPoints[0][0].x + grid_width; newObjPoints = objectPoints[0]; objectPoints.resize(imagePoints.size(), objectPoints[0]); // Find intrinsic and extrinsic camera parameters double rms; if (s.useFisheye) { Mat _rvecs, _tvecs; rms = cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, _rvecs, _tvecs, s.flag); rvecs.reserve(_rvecs.rows); tvecs.reserve(_tvecs.rows); for (int i = 0; i < static_cast<int>(objectPoints.size()); i++) { rvecs.push_back(_rvecs.row(i)); tvecs.push_back(_tvecs.row(i)); } } else { rms = calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, s.flag | CALIB_USE_LU); } LOG(INFO) << "Re-projection error reported by calibrateCamera: "<< rms; bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs); objectPoints.clear(); objectPoints.resize(imagePoints.size(), newObjPoints); totalAvgErr = computeReprojectionErrors(objectPoints, imagePoints, rvecs, tvecs, cameraMatrix, distCoeffs, reprojErrs, s.useFisheye); return ok; } //! [run_and_save] bool runCalibration(const Calibrate::Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs, vector<vector<Point2f> > imagePoints, float grid_width, bool release_object) { vector<Mat> rvecs, tvecs; vector<float> reprojErrs; double totalAvgErr = 0; vector<Point3f> newObjPoints; bool ok = _runCalibration(s, imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs, reprojErrs, totalAvgErr, newObjPoints, grid_width, release_object); LOG(INFO) << (ok ? "Calibration succeeded" : "Calibration failed") << ". avg re projection error = " << totalAvgErr; return ok; } //! [run_and_save]