diff --git a/CMakeLists.txt b/CMakeLists.txt
index 4b9c3dd6f0b6df7d24de6c1d651f7b82ed7f4940..74ae1598f81c6b6fc6708c1ba0474e34acf8a199 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -100,9 +100,9 @@ if (WIN32) # TODO(nick) Should do based upon compiler (VS)
 	set(CMAKE_CXX_FLAGS_RELEASE "/O2")
 else()
 	add_definitions(-DUNIX)
-	set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++17")
+	set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++17 -msse3")
 	set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -D_DEBUG -pg -Wall")
-	set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3 -msse3 -mfpmath=sse")
+	set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3 -mfpmath=sse")
 endif()
 
 SET(CMAKE_USE_RELATIVE_PATHS ON)
diff --git a/cv-node/CMakeLists.txt b/cv-node/CMakeLists.txt
index 392520d3466257c9546a752ccc368cb5d9aca2aa..ef5221d0fd5c7e33ec08943cdc83e619ea9b1679 100644
--- a/cv-node/CMakeLists.txt
+++ b/cv-node/CMakeLists.txt
@@ -2,6 +2,8 @@
 include_directories(${PROJECT_SOURCE_DIR}/cv-node/include)
 #include_directories(${PROJECT_BINARY_DIR})
 
+add_subdirectory(lib)
+
 # Check for optional opencv components
 set(CMAKE_REQUIRED_INCLUDES ${OpenCV_INCLUDE_DIRS})
 check_include_file_cxx("opencv2/viz.hpp" HAVE_VIZ)
diff --git a/cv-node/include/elas.h b/cv-node/include/elas.h
new file mode 100644
index 0000000000000000000000000000000000000000..a88439e6a1d0d42c37d14fda8ef13b4f6fe3ec30
--- /dev/null
+++ b/cv-node/include/elas.h
@@ -0,0 +1,236 @@
+/*
+Copyright 2011. All rights reserved.
+Institute of Measurement and Control Systems
+Karlsruhe Institute of Technology, Germany
+
+This file is part of libelas.
+Authors: Andreas Geiger
+
+libelas is free software; you can redistribute it and/or modify it under the
+terms of the GNU General Public License as published by the Free Software
+Foundation; either version 3 of the License, or any later version.
+
+libelas is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along with
+libelas; if not, write to the Free Software Foundation, Inc., 51 Franklin
+Street, Fifth Floor, Boston, MA 02110-1301, USA 
+*/
+
+// Main header file. Include this to use libelas in your code.
+
+#ifndef __ELAS_H__
+#define __ELAS_H__
+
+#include <iostream>
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+#include <vector>
+#include <emmintrin.h>
+
+// define fixed-width datatypes for Visual Studio projects
+#ifndef _MSC_VER
+  #include <stdint.h>
+#else
+  typedef __int8            int8_t;
+  typedef __int16           int16_t;
+  typedef __int32           int32_t;
+  typedef __int64           int64_t;
+  typedef unsigned __int8   uint8_t;
+  typedef unsigned __int16  uint16_t;
+  typedef unsigned __int32  uint32_t;
+  typedef unsigned __int64  uint64_t;
+#endif
+
+#ifdef PROFILE
+#include "timer.h"
+#endif
+
+class Elas {
+  
+public:
+  
+  enum setting {ROBOTICS,MIDDLEBURY};
+  
+  // parameter settings
+  struct parameters {
+    int32_t disp_min;               // min disparity
+    int32_t disp_max;               // max disparity
+    float   support_threshold;      // max. uniqueness ratio (best vs. second best support match)
+    int32_t support_texture;        // min texture for support points
+    int32_t candidate_stepsize;     // step size of regular grid on which support points are matched
+    int32_t incon_window_size;      // window size of inconsistent support point check
+    int32_t incon_threshold;        // disparity similarity threshold for support point to be considered consistent
+    int32_t incon_min_support;      // minimum number of consistent support points
+    bool    add_corners;            // add support points at image corners with nearest neighbor disparities
+    int32_t grid_size;              // size of neighborhood for additional support point extrapolation
+    float   beta;                   // image likelihood parameter
+    float   gamma;                  // prior constant
+    float   sigma;                  // prior sigma
+    float   sradius;                // prior sigma radius
+    int32_t match_texture;          // min texture for dense matching
+    int32_t lr_threshold;           // disparity threshold for left/right consistency check
+    float   speckle_sim_threshold;  // similarity threshold for speckle segmentation
+    int32_t speckle_size;           // maximal size of a speckle (small speckles get removed)
+    int32_t ipol_gap_width;         // interpolate small gaps (left<->right, top<->bottom)
+    bool    filter_median;          // optional median filter (approximated)
+    bool    filter_adaptive_mean;   // optional adaptive mean filter (approximated)
+    bool    postprocess_only_left;  // saves time by not postprocessing the right image
+    bool    subsampling;            // saves time by only computing disparities for each 2nd pixel
+                                    // note: for this option D1 and D2 must be passed with size
+                                    //       width/2 x height/2 (rounded towards zero)
+    
+    // constructor
+    parameters (setting s=ROBOTICS) {
+      
+      // default settings in a robotics environment
+      // (do not produce results in half-occluded areas
+      //  and are a bit more robust towards lighting etc.)
+      if (s==ROBOTICS) {
+        disp_min              = 0;
+        disp_max              = 255;
+        support_threshold     = 0.85;
+        support_texture       = 10;
+        candidate_stepsize    = 5;
+        incon_window_size     = 5;
+        incon_threshold       = 5;
+        incon_min_support     = 5;
+        add_corners           = 0;
+        grid_size             = 20;
+        beta                  = 0.02;
+        gamma                 = 3;
+        sigma                 = 1;
+        sradius               = 2;
+        match_texture         = 1;
+        lr_threshold          = 2;
+        speckle_sim_threshold = 1;
+        speckle_size          = 200;
+        ipol_gap_width        = 3;
+        filter_median         = 0;
+        filter_adaptive_mean  = 1;
+        postprocess_only_left = 1;
+        subsampling           = 0;
+        
+      // default settings for middlebury benchmark
+      // (interpolate all missing disparities)
+      } else {
+        disp_min              = 0;
+        disp_max              = 255;
+        support_threshold     = 0.95;
+        support_texture       = 10;
+        candidate_stepsize    = 5;
+        incon_window_size     = 5;
+        incon_threshold       = 5;
+        incon_min_support     = 5;
+        add_corners           = 1;
+        grid_size             = 20;
+        beta                  = 0.02;
+        gamma                 = 5;
+        sigma                 = 1;
+        sradius               = 3;
+        match_texture         = 0;
+        lr_threshold          = 2;
+        speckle_sim_threshold = 1;
+        speckle_size          = 200;
+        ipol_gap_width        = 5000;
+        filter_median         = 1;
+        filter_adaptive_mean  = 0;
+        postprocess_only_left = 0;
+        subsampling           = 0;
+      }
+    }
+  };
+
+  // constructor, input: parameters  
+  Elas (parameters param) : param(param) {}
+
+  // deconstructor
+  ~Elas () {}
+  
+  // matching function
+  // inputs: pointers to left (I1) and right (I2) intensity image (uint8, input)
+  //         pointers to left (D1) and right (D2) disparity image (float, output)
+  //         dims[0] = width of I1 and I2
+  //         dims[1] = height of I1 and I2
+  //         dims[2] = bytes per line (often equal to width, but allowed to differ)
+  //         note: D1 and D2 must be allocated before (bytes per line = width)
+  //               if subsampling is not active their size is width x height,
+  //               otherwise width/2 x height/2 (rounded towards zero)
+  void process (uint8_t* I1,uint8_t* I2,float* D1,float* D2,const int32_t* dims);
+  
+private:
+  
+  struct support_pt {
+    int32_t u;
+    int32_t v;
+    int32_t d;
+    support_pt(int32_t u,int32_t v,int32_t d):u(u),v(v),d(d){}
+  };
+
+  struct triangle {
+    int32_t c1,c2,c3;
+    float   t1a,t1b,t1c;
+    float   t2a,t2b,t2c;
+    triangle(int32_t c1,int32_t c2,int32_t c3):c1(c1),c2(c2),c3(c3){}
+  };
+
+  inline uint32_t getAddressOffsetImage (const int32_t& u,const int32_t& v,const int32_t& width) {
+    return v*width+u;
+  }
+
+  inline uint32_t getAddressOffsetGrid (const int32_t& x,const int32_t& y,const int32_t& d,const int32_t& width,const int32_t& disp_num) {
+    return (y*width+x)*disp_num+d;
+  }
+
+  // support point functions
+  void removeInconsistentSupportPoints (int16_t* D_can,int32_t D_can_width,int32_t D_can_height);
+  void removeRedundantSupportPoints (int16_t* D_can,int32_t D_can_width,int32_t D_can_height,
+                                     int32_t redun_max_dist, int32_t redun_threshold, bool vertical);
+  void addCornerSupportPoints (std::vector<support_pt> &p_support);
+  inline int16_t computeMatchingDisparity (const int32_t &u,const int32_t &v,uint8_t* I1_desc,uint8_t* I2_desc,const bool &right_image);
+  std::vector<support_pt> computeSupportMatches (uint8_t* I1_desc,uint8_t* I2_desc);
+
+  // triangulation & grid
+  std::vector<triangle> computeDelaunayTriangulation (std::vector<support_pt> p_support,int32_t right_image);
+  void computeDisparityPlanes (std::vector<support_pt> p_support,std::vector<triangle> &tri,int32_t right_image);
+  void createGrid (std::vector<support_pt> p_support,int32_t* disparity_grid,int32_t* grid_dims,bool right_image);
+
+  // matching
+  inline void updatePosteriorMinimum (__m128i* I2_block_addr,const int32_t &d,const int32_t &w,
+                                      const __m128i &xmm1,__m128i &xmm2,int32_t &val,int32_t &min_val,int32_t &min_d);
+  inline void updatePosteriorMinimum (__m128i* I2_block_addr,const int32_t &d,
+                                      const __m128i &xmm1,__m128i &xmm2,int32_t &val,int32_t &min_val,int32_t &min_d);
+  inline void findMatch (int32_t &u,int32_t &v,float &plane_a,float &plane_b,float &plane_c,
+                         int32_t* disparity_grid,int32_t *grid_dims,uint8_t* I1_desc,uint8_t* I2_desc,
+                         int32_t *P,int32_t &plane_radius,bool &valid,bool &right_image,float* D);
+  void computeDisparity (std::vector<support_pt> p_support,std::vector<triangle> tri,int32_t* disparity_grid,int32_t* grid_dims,
+                         uint8_t* I1_desc,uint8_t* I2_desc,bool right_image,float* D);
+
+  // L/R consistency check
+  void leftRightConsistencyCheck (float* D1,float* D2);
+  
+  // postprocessing
+  void removeSmallSegments (float* D);
+  void gapInterpolation (float* D);
+
+  // optional postprocessing
+  void adaptiveMean (float* D);
+  void median (float* D);
+  
+  // parameter set
+  parameters param;
+  
+  // memory aligned input images + dimensions
+  uint8_t *I1,*I2;
+  int32_t width,height,bpl;
+  
+  // profiling timer
+#ifdef PROFILE
+  Timer timer;
+#endif
+};
+
+#endif
diff --git a/cv-node/lib/CMakeLists.txt b/cv-node/lib/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..6525db95dddf47fafa28434674119602f8f933ff
--- /dev/null
+++ b/cv-node/lib/CMakeLists.txt
@@ -0,0 +1,13 @@
+
+### Lib ELAS ###################################################################
+
+# directories
+set (LIBELAS_SRC_DIR elas)
+# sources
+FILE(GLOB LIBELAS_SRC_FILES "elas/*.cpp")
+
+add_library(libelas ${LIBELAS_SRC_FILES})
+target_include_directories(libelas
+	PRIVATE elas)
+
+
diff --git a/cv-node/lib/elas/descriptor.cpp b/cv-node/lib/elas/descriptor.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..6420afd43f10f217205232ec0653a0a903686e1a
--- /dev/null
+++ b/cv-node/lib/elas/descriptor.cpp
@@ -0,0 +1,114 @@
+/*
+Copyright 2011. All rights reserved.
+Institute of Measurement and Control Systems
+Karlsruhe Institute of Technology, Germany
+
+This file is part of libelas.
+Authors: Andreas Geiger
+
+libelas is free software; you can redistribute it and/or modify it under the
+terms of the GNU General Public License as published by the Free Software
+Foundation; either version 3 of the License, or any later version.
+
+libelas is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along with
+libelas; if not, write to the Free Software Foundation, Inc., 51 Franklin
+Street, Fifth Floor, Boston, MA 02110-1301, USA 
+*/
+
+#include "descriptor.h"
+#include "filter.h"
+#include <emmintrin.h>
+
+using namespace std;
+
+Descriptor::Descriptor(uint8_t* I,int32_t width,int32_t height,int32_t bpl,bool half_resolution) {
+  I_desc        = (uint8_t*)_mm_malloc(16*width*height*sizeof(uint8_t),16);
+  uint8_t* I_du = (uint8_t*)_mm_malloc(bpl*height*sizeof(uint8_t),16);
+  uint8_t* I_dv = (uint8_t*)_mm_malloc(bpl*height*sizeof(uint8_t),16);
+  filter::sobel3x3(I,I_du,I_dv,bpl,height);
+  createDescriptor(I_du,I_dv,width,height,bpl,half_resolution);
+  _mm_free(I_du);
+  _mm_free(I_dv);
+}
+
+Descriptor::~Descriptor() {
+  _mm_free(I_desc);
+}
+
+void Descriptor::createDescriptor (uint8_t* I_du,uint8_t* I_dv,int32_t width,int32_t height,int32_t bpl,bool half_resolution) {
+
+  uint8_t *I_desc_curr;  
+  uint32_t addr_v0,addr_v1,addr_v2,addr_v3,addr_v4;
+  
+  // do not compute every second line
+  if (half_resolution) {
+  
+    // create filter strip
+    for (int32_t v=4; v<height-3; v+=2) {
+
+      addr_v2 = v*bpl;
+      addr_v0 = addr_v2-2*bpl;
+      addr_v1 = addr_v2-1*bpl;
+      addr_v3 = addr_v2+1*bpl;
+      addr_v4 = addr_v2+2*bpl;
+
+      for (int32_t u=3; u<width-3; u++) {
+        I_desc_curr = I_desc+(v*width+u)*16;
+        *(I_desc_curr++) = *(I_du+addr_v0+u+0);
+        *(I_desc_curr++) = *(I_du+addr_v1+u-2);
+        *(I_desc_curr++) = *(I_du+addr_v1+u+0);
+        *(I_desc_curr++) = *(I_du+addr_v1+u+2);
+        *(I_desc_curr++) = *(I_du+addr_v2+u-1);
+        *(I_desc_curr++) = *(I_du+addr_v2+u+0);
+        *(I_desc_curr++) = *(I_du+addr_v2+u+0);
+        *(I_desc_curr++) = *(I_du+addr_v2+u+1);
+        *(I_desc_curr++) = *(I_du+addr_v3+u-2);
+        *(I_desc_curr++) = *(I_du+addr_v3+u+0);
+        *(I_desc_curr++) = *(I_du+addr_v3+u+2);
+        *(I_desc_curr++) = *(I_du+addr_v4+u+0);
+        *(I_desc_curr++) = *(I_dv+addr_v1+u+0);
+        *(I_desc_curr++) = *(I_dv+addr_v2+u-1);
+        *(I_desc_curr++) = *(I_dv+addr_v2+u+1);
+        *(I_desc_curr++) = *(I_dv+addr_v3+u+0);
+      }
+    }
+    
+  // compute full descriptor images
+  } else {
+    
+    // create filter strip
+    for (int32_t v=3; v<height-3; v++) {
+
+      addr_v2 = v*bpl;
+      addr_v0 = addr_v2-2*bpl;
+      addr_v1 = addr_v2-1*bpl;
+      addr_v3 = addr_v2+1*bpl;
+      addr_v4 = addr_v2+2*bpl;
+
+      for (int32_t u=3; u<width-3; u++) {
+        I_desc_curr = I_desc+(v*width+u)*16;
+        *(I_desc_curr++) = *(I_du+addr_v0+u+0);
+        *(I_desc_curr++) = *(I_du+addr_v1+u-2);
+        *(I_desc_curr++) = *(I_du+addr_v1+u+0);
+        *(I_desc_curr++) = *(I_du+addr_v1+u+2);
+        *(I_desc_curr++) = *(I_du+addr_v2+u-1);
+        *(I_desc_curr++) = *(I_du+addr_v2+u+0);
+        *(I_desc_curr++) = *(I_du+addr_v2+u+0);
+        *(I_desc_curr++) = *(I_du+addr_v2+u+1);
+        *(I_desc_curr++) = *(I_du+addr_v3+u-2);
+        *(I_desc_curr++) = *(I_du+addr_v3+u+0);
+        *(I_desc_curr++) = *(I_du+addr_v3+u+2);
+        *(I_desc_curr++) = *(I_du+addr_v4+u+0);
+        *(I_desc_curr++) = *(I_dv+addr_v1+u+0);
+        *(I_desc_curr++) = *(I_dv+addr_v2+u-1);
+        *(I_desc_curr++) = *(I_dv+addr_v2+u+1);
+        *(I_desc_curr++) = *(I_dv+addr_v3+u+0);
+      }
+    }
+  }
+  
+}
diff --git a/cv-node/lib/elas/descriptor.h b/cv-node/lib/elas/descriptor.h
new file mode 100644
index 0000000000000000000000000000000000000000..7abb0e718de3bd5988a1075ee127ca1d689a7e63
--- /dev/null
+++ b/cv-node/lib/elas/descriptor.h
@@ -0,0 +1,69 @@
+/*
+Copyright 2011. All rights reserved.
+Institute of Measurement and Control Systems
+Karlsruhe Institute of Technology, Germany
+
+This file is part of libelas.
+Authors: Andreas Geiger
+
+libelas is free software; you can redistribute it and/or modify it under the
+terms of the GNU General Public License as published by the Free Software
+Foundation; either version 3 of the License, or any later version.
+
+libelas is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along with
+libelas; if not, write to the Free Software Foundation, Inc., 51 Franklin
+Street, Fifth Floor, Boston, MA 02110-1301, USA 
+*/
+
+// NOTE: This descripter is a sparse approximation to the 50-dimensional
+// descriptor described in the paper. It produces similar results, but
+// is faster to compute.
+
+#ifndef __DESCRIPTOR_H__
+#define __DESCRIPTOR_H__
+
+#include <iostream>
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+#include <math.h>
+
+// Define fixed-width datatypes for Visual Studio projects
+#ifndef _MSC_VER
+  #include <stdint.h>
+#else
+  typedef __int8            int8_t;
+  typedef __int16           int16_t;
+  typedef __int32           int32_t;
+  typedef __int64           int64_t;
+  typedef unsigned __int8   uint8_t;
+  typedef unsigned __int16  uint16_t;
+  typedef unsigned __int32  uint32_t;
+  typedef unsigned __int64  uint64_t;
+#endif
+
+class Descriptor {
+  
+public:
+  
+  // constructor creates filters
+  Descriptor(uint8_t* I,int32_t width,int32_t height,int32_t bpl,bool half_resolution);
+  
+  // deconstructor releases memory
+  ~Descriptor();
+  
+  // descriptors accessible from outside
+  uint8_t* I_desc;
+  
+private:
+
+  // build descriptor I_desc from I_du and I_dv
+  void createDescriptor(uint8_t* I_du,uint8_t* I_dv,int32_t width,int32_t height,int32_t bpl,bool half_resolution);
+
+};
+
+#endif
diff --git a/cv-node/lib/elas/elas.cpp b/cv-node/lib/elas/elas.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..bddf239f142929337c7ab69680585af0a3951c1a
--- /dev/null
+++ b/cv-node/lib/elas/elas.cpp
@@ -0,0 +1,1560 @@
+/*
+Copyright 2011. All rights reserved.
+Institute of Measurement and Control Systems
+Karlsruhe Institute of Technology, Germany
+
+This file is part of libelas.
+Authors: Andreas Geiger
+
+libelas is free software; you can redistribute it and/or modify it under the
+terms of the GNU General Public License as published by the Free Software
+Foundation; either version 3 of the License, or any later version.
+
+libelas is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along with
+libelas; if not, write to the Free Software Foundation, Inc., 51 Franklin
+Street, Fifth Floor, Boston, MA 02110-1301, USA 
+*/
+
+#include "elas.h"
+
+#include <algorithm>
+#include <math.h>
+#include "descriptor.h"
+#include "triangle.h"
+#include "matrix.h"
+
+using namespace std;
+
+void Elas::process (uint8_t* I1_,uint8_t* I2_,float* D1,float* D2,const int32_t* dims){
+  
+  // get width, height and bytes per line
+  width  = dims[0];
+  height = dims[1];
+  bpl    = width + 15-(width-1)%16;
+  
+  // copy images to byte aligned memory
+  I1 = (uint8_t*)_mm_malloc(bpl*height*sizeof(uint8_t),16);
+  I2 = (uint8_t*)_mm_malloc(bpl*height*sizeof(uint8_t),16);
+  memset (I1,0,bpl*height*sizeof(uint8_t));
+  memset (I2,0,bpl*height*sizeof(uint8_t));
+  if (bpl==dims[2]) {
+    memcpy(I1,I1_,bpl*height*sizeof(uint8_t));
+    memcpy(I2,I2_,bpl*height*sizeof(uint8_t));
+  } else {
+    for (int32_t v=0; v<height; v++) {
+      memcpy(I1+v*bpl,I1_+v*dims[2],width*sizeof(uint8_t));
+      memcpy(I2+v*bpl,I2_+v*dims[2],width*sizeof(uint8_t));
+    }
+  }
+
+#ifdef PROFILE
+  timer.start("Descriptor");  
+#endif
+  Descriptor desc1(I1,width,height,bpl,param.subsampling);
+  Descriptor desc2(I2,width,height,bpl,param.subsampling);
+
+#ifdef PROFILE
+  timer.start("Support Matches");
+#endif
+  vector<support_pt> p_support = computeSupportMatches(desc1.I_desc,desc2.I_desc);
+  
+  // if not enough support points for triangulation
+  if (p_support.size()<3) {
+    cout << "ERROR: Need at least 3 support points!" << endl;
+    _mm_free(I1);
+    _mm_free(I2);
+    return;
+  }
+
+#ifdef PROFILE
+  timer.start("Delaunay Triangulation");
+#endif
+  vector<triangle> tri_1 = computeDelaunayTriangulation(p_support,0);
+  vector<triangle> tri_2 = computeDelaunayTriangulation(p_support,1);
+
+#ifdef PROFILE
+  timer.start("Disparity Planes");
+#endif
+  computeDisparityPlanes(p_support,tri_1,0);
+  computeDisparityPlanes(p_support,tri_2,1);
+
+#ifdef PROFILE
+  timer.start("Grid");
+#endif
+
+  // allocate memory for disparity grid
+  int32_t grid_width   = (int32_t)ceil((float)width/(float)param.grid_size);
+  int32_t grid_height  = (int32_t)ceil((float)height/(float)param.grid_size);
+  int32_t grid_dims[3] = {param.disp_max+2,grid_width,grid_height};
+  int32_t* disparity_grid_1 = (int32_t*)calloc((param.disp_max+2)*grid_height*grid_width,sizeof(int32_t));
+  int32_t* disparity_grid_2 = (int32_t*)calloc((param.disp_max+2)*grid_height*grid_width,sizeof(int32_t));
+  
+  createGrid(p_support,disparity_grid_1,grid_dims,0);
+  createGrid(p_support,disparity_grid_2,grid_dims,1);
+
+#ifdef PROFILE
+  timer.start("Matching");
+#endif
+  computeDisparity(p_support,tri_1,disparity_grid_1,grid_dims,desc1.I_desc,desc2.I_desc,0,D1);
+  computeDisparity(p_support,tri_2,disparity_grid_2,grid_dims,desc1.I_desc,desc2.I_desc,1,D2);
+
+#ifdef PROFILE
+  timer.start("L/R Consistency Check");
+#endif
+  leftRightConsistencyCheck(D1,D2);
+
+#ifdef PROFILE
+  timer.start("Remove Small Segments");
+#endif
+  removeSmallSegments(D1);
+  if (!param.postprocess_only_left)
+    removeSmallSegments(D2);
+
+#ifdef PROFILE
+  timer.start("Gap Interpolation");
+#endif
+  gapInterpolation(D1);
+  if (!param.postprocess_only_left)
+    gapInterpolation(D2);
+
+  if (param.filter_adaptive_mean) {
+#ifdef PROFILE
+    timer.start("Adaptive Mean");
+#endif
+    adaptiveMean(D1);
+    if (!param.postprocess_only_left)
+      adaptiveMean(D2);
+  }
+
+  if (param.filter_median) {
+#ifdef PROFILE
+    timer.start("Median");
+#endif
+    median(D1);
+    if (!param.postprocess_only_left)
+      median(D2);
+  }
+
+#ifdef PROFILE
+  timer.plot();
+#endif
+
+  // release memory
+  free(disparity_grid_1);
+  free(disparity_grid_2);
+  _mm_free(I1);
+  _mm_free(I2);
+}
+
+void Elas::removeInconsistentSupportPoints (int16_t* D_can,int32_t D_can_width,int32_t D_can_height) {
+  
+  // for all valid support points do
+  for (int32_t u_can=0; u_can<D_can_width; u_can++) {
+    for (int32_t v_can=0; v_can<D_can_height; v_can++) {
+      int16_t d_can = *(D_can+getAddressOffsetImage(u_can,v_can,D_can_width));
+      if (d_can>=0) {
+        
+        // compute number of other points supporting the current point
+        int32_t support = 0;
+        for (int32_t u_can_2=u_can-param.incon_window_size; u_can_2<=u_can+param.incon_window_size; u_can_2++) {
+          for (int32_t v_can_2=v_can-param.incon_window_size; v_can_2<=v_can+param.incon_window_size; v_can_2++) {
+            if (u_can_2>=0 && v_can_2>=0 && u_can_2<D_can_width && v_can_2<D_can_height) {
+              int16_t d_can_2 = *(D_can+getAddressOffsetImage(u_can_2,v_can_2,D_can_width));
+              if (d_can_2>=0 && abs(d_can-d_can_2)<=param.incon_threshold)
+                support++;
+            }
+          }
+        }
+        
+        // invalidate support point if number of supporting points is too low
+        if (support<param.incon_min_support)
+          *(D_can+getAddressOffsetImage(u_can,v_can,D_can_width)) = -1;
+      }
+    }
+  }
+}
+
+void Elas::removeRedundantSupportPoints(int16_t* D_can,int32_t D_can_width,int32_t D_can_height,
+                                        int32_t redun_max_dist, int32_t redun_threshold, bool vertical) {
+  
+  // parameters
+  int32_t redun_dir_u[2] = {0,0};
+  int32_t redun_dir_v[2] = {0,0};
+  if (vertical) {
+    redun_dir_v[0] = -1;
+    redun_dir_v[1] = +1;
+  } else {
+    redun_dir_u[0] = -1;
+    redun_dir_u[1] = +1;
+  }
+    
+  // for all valid support points do
+  for (int32_t u_can=0; u_can<D_can_width; u_can++) {
+    for (int32_t v_can=0; v_can<D_can_height; v_can++) {
+      int16_t d_can = *(D_can+getAddressOffsetImage(u_can,v_can,D_can_width));
+      if (d_can>=0) {
+        
+        // check all directions for redundancy
+        bool redundant = true;
+        for (int32_t i=0; i<2; i++) {
+          
+          // search for support
+          int32_t u_can_2 = u_can;
+          int32_t v_can_2 = v_can;
+          int16_t d_can_2;
+          bool support = false;
+          for (int32_t j=0; j<redun_max_dist; j++) {
+            u_can_2 += redun_dir_u[i];
+            v_can_2 += redun_dir_v[i];
+            if (u_can_2<0 || v_can_2<0 || u_can_2>=D_can_width || v_can_2>=D_can_height)
+              break;
+            d_can_2 = *(D_can+getAddressOffsetImage(u_can_2,v_can_2,D_can_width));
+            if (d_can_2>=0 && abs(d_can-d_can_2)<=redun_threshold) {
+              support = true;
+              break;
+            }
+          }
+          
+          // if we have no support => point is not redundant
+          if (!support) {
+            redundant = false;
+            break;
+          }
+        }
+               
+        // invalidate support point if it is redundant
+        if (redundant)
+          *(D_can+getAddressOffsetImage(u_can,v_can,D_can_width)) = -1;
+      }
+    }
+  }
+}
+
+void Elas::addCornerSupportPoints(vector<support_pt> &p_support) {
+  
+  // list of border points
+  vector<support_pt> p_border;
+  p_border.push_back(support_pt(0,0,0));
+  p_border.push_back(support_pt(0,height-1,0));
+  p_border.push_back(support_pt(width-1,0,0));
+  p_border.push_back(support_pt(width-1,height-1,0));
+  
+  // find closest d
+  for (int32_t i=0; i<p_border.size(); i++) {
+    int32_t best_dist = 10000000;
+    for (int32_t j=0; j<p_support.size(); j++) {
+      int32_t du = p_border[i].u-p_support[j].u;
+      int32_t dv = p_border[i].v-p_support[j].v;
+      int32_t curr_dist = du*du+dv*dv;
+      if (curr_dist<best_dist) {
+        best_dist = curr_dist;
+        p_border[i].d = p_support[j].d;
+      }
+    }
+  }
+  
+  // for right image
+  p_border.push_back(support_pt(p_border[2].u+p_border[2].d,p_border[2].v,p_border[2].d));
+  p_border.push_back(support_pt(p_border[3].u+p_border[3].d,p_border[3].v,p_border[3].d));
+  
+  // add border points to support points
+  for (int32_t i=0; i<p_border.size(); i++)
+    p_support.push_back(p_border[i]);
+}
+
+inline int16_t Elas::computeMatchingDisparity (const int32_t &u,const int32_t &v,uint8_t* I1_desc,uint8_t* I2_desc,const bool &right_image) {
+  
+  const int32_t u_step      = 2;
+  const int32_t v_step      = 2;
+  const int32_t window_size = 3;
+  
+  int32_t desc_offset_1 = -16*u_step-16*width*v_step;
+  int32_t desc_offset_2 = +16*u_step-16*width*v_step;
+  int32_t desc_offset_3 = -16*u_step+16*width*v_step;
+  int32_t desc_offset_4 = +16*u_step+16*width*v_step;
+  
+  __m128i xmm1,xmm2,xmm3,xmm4,xmm5,xmm6;
+
+  // check if we are inside the image region
+  if (u>=window_size+u_step && u<=width-window_size-1-u_step && v>=window_size+v_step && v<=height-window_size-1-v_step) {
+    
+    // compute desc and start addresses
+    int32_t  line_offset = 16*width*v;
+    uint8_t *I1_line_addr,*I2_line_addr;
+    if (!right_image) {
+      I1_line_addr = I1_desc+line_offset;
+      I2_line_addr = I2_desc+line_offset;
+    } else {
+      I1_line_addr = I2_desc+line_offset;
+      I2_line_addr = I1_desc+line_offset;
+    }
+
+    // compute I1 block start addresses
+    uint8_t* I1_block_addr = I1_line_addr+16*u;
+    uint8_t* I2_block_addr;
+    
+    // we require at least some texture
+    int32_t sum = 0;
+    for (int32_t i=0; i<16; i++)
+      sum += abs((int32_t)(*(I1_block_addr+i))-128);
+    if (sum<param.support_texture)
+      return -1;
+    
+    // load first blocks to xmm registers
+    xmm1 = _mm_load_si128((__m128i*)(I1_block_addr+desc_offset_1));
+    xmm2 = _mm_load_si128((__m128i*)(I1_block_addr+desc_offset_2));
+    xmm3 = _mm_load_si128((__m128i*)(I1_block_addr+desc_offset_3));
+    xmm4 = _mm_load_si128((__m128i*)(I1_block_addr+desc_offset_4));
+    
+    // declare match energy for each disparity
+    int32_t u_warp;
+    
+    // best match
+    int16_t min_1_E = 32767;
+    int16_t min_1_d = -1;
+    int16_t min_2_E = 32767;
+    int16_t min_2_d = -1;
+
+    // get valid disparity range
+    int32_t disp_min_valid = max(param.disp_min,0);
+    int32_t disp_max_valid = param.disp_max;
+    if (!right_image) disp_max_valid = min(param.disp_max,u-window_size-u_step);
+    else              disp_max_valid = min(param.disp_max,width-u-window_size-u_step);
+    
+    // assume, that we can compute at least 10 disparities for this pixel
+    if (disp_max_valid-disp_min_valid<10)
+      return -1;
+
+    // for all disparities do
+    for (int16_t d=disp_min_valid; d<=disp_max_valid; d++) {
+
+      // warp u coordinate
+      if (!right_image) u_warp = u-d;
+      else              u_warp = u+d;
+
+      // compute I2 block start addresses
+      I2_block_addr = I2_line_addr+16*u_warp;
+
+      // compute match energy at this disparity
+      xmm6 = _mm_load_si128((__m128i*)(I2_block_addr+desc_offset_1));
+      xmm6 = _mm_sad_epu8(xmm1,xmm6);
+      xmm5 = _mm_load_si128((__m128i*)(I2_block_addr+desc_offset_2));
+      xmm6 = _mm_add_epi16(_mm_sad_epu8(xmm2,xmm5),xmm6);
+      xmm5 = _mm_load_si128((__m128i*)(I2_block_addr+desc_offset_3));
+      xmm6 = _mm_add_epi16(_mm_sad_epu8(xmm3,xmm5),xmm6);
+      xmm5 = _mm_load_si128((__m128i*)(I2_block_addr+desc_offset_4));
+      xmm6 = _mm_add_epi16(_mm_sad_epu8(xmm4,xmm5),xmm6);
+      sum  = _mm_extract_epi16(xmm6,0)+_mm_extract_epi16(xmm6,4);
+
+      // best + second best match
+      if (sum<min_1_E) {
+        min_2_E = min_1_E;   
+        min_2_d = min_1_d;
+        min_1_E = sum;
+        min_1_d = d;
+      } else if (sum<min_2_E) {
+        min_2_E = sum;
+        min_2_d = d;
+      }
+    }
+
+    // check if best and second best match are available and if matching ratio is sufficient
+    if (min_1_d>=0 && min_2_d>=0 && (float)min_1_E<param.support_threshold*(float)min_2_E)
+      return min_1_d;
+    else
+      return -1;
+    
+  } else
+    return -1;
+}
+
+vector<Elas::support_pt> Elas::computeSupportMatches (uint8_t* I1_desc,uint8_t* I2_desc) {
+  
+  // be sure that at half resolution we only need data
+  // from every second line!
+  int32_t D_candidate_stepsize = param.candidate_stepsize;
+  if (param.subsampling)
+    D_candidate_stepsize += D_candidate_stepsize%2;
+
+  // create matrix for saving disparity candidates
+  int32_t D_can_width  = 0;
+  int32_t D_can_height = 0;
+  for (int32_t u=0; u<width;  u+=D_candidate_stepsize) D_can_width++;
+  for (int32_t v=0; v<height; v+=D_candidate_stepsize) D_can_height++;
+  int16_t* D_can = (int16_t*)calloc(D_can_width*D_can_height,sizeof(int16_t));
+
+  // loop variables
+  int32_t u,v;
+  int16_t d,d2;
+   
+  // for all point candidates in image 1 do
+  for (int32_t u_can=1; u_can<D_can_width; u_can++) {
+    u = u_can*D_candidate_stepsize;
+    for (int32_t v_can=1; v_can<D_can_height; v_can++) {
+      v = v_can*D_candidate_stepsize;
+      
+      // initialize disparity candidate to invalid
+      *(D_can+getAddressOffsetImage(u_can,v_can,D_can_width)) = -1;
+      
+      // find forwards
+      d = computeMatchingDisparity(u,v,I1_desc,I2_desc,false);
+      if (d>=0) {
+        
+        // find backwards
+        d2 = computeMatchingDisparity(u-d,v,I1_desc,I2_desc,true);
+        if (d2>=0 && abs(d-d2)<=param.lr_threshold)
+          *(D_can+getAddressOffsetImage(u_can,v_can,D_can_width)) = d;
+      }
+    }
+  }
+  
+  // remove inconsistent support points
+  removeInconsistentSupportPoints(D_can,D_can_width,D_can_height);
+  
+  // remove support points on straight lines, since they are redundant
+  // this reduces the number of triangles a little bit and hence speeds up
+  // the triangulation process
+  removeRedundantSupportPoints(D_can,D_can_width,D_can_height,5,1,true);
+  removeRedundantSupportPoints(D_can,D_can_width,D_can_height,5,1,false);
+  
+  // move support points from image representation into a vector representation
+  vector<support_pt> p_support;
+  for (int32_t u_can=1; u_can<D_can_width; u_can++)
+    for (int32_t v_can=1; v_can<D_can_height; v_can++)
+      if (*(D_can+getAddressOffsetImage(u_can,v_can,D_can_width))>=0)
+        p_support.push_back(support_pt(u_can*D_candidate_stepsize,
+                                       v_can*D_candidate_stepsize,
+                                       *(D_can+getAddressOffsetImage(u_can,v_can,D_can_width))));
+  
+  // if flag is set, add support points in image corners
+  // with the same disparity as the nearest neighbor support point
+  if (param.add_corners)
+    addCornerSupportPoints(p_support);
+
+  // free memory
+  free(D_can);
+  
+  // return support point vector
+  return p_support; 
+}
+
+vector<Elas::triangle> Elas::computeDelaunayTriangulation (vector<support_pt> p_support,int32_t right_image) {
+
+  // input/output structure for triangulation
+  struct triangulateio in, out;
+  int32_t k;
+
+  // inputs
+  in.numberofpoints = p_support.size();
+  in.pointlist = (float*)malloc(in.numberofpoints*2*sizeof(float));
+  k=0;
+  if (!right_image) {
+    for (int32_t i=0; i<p_support.size(); i++) {
+      in.pointlist[k++] = p_support[i].u;
+      in.pointlist[k++] = p_support[i].v;
+    }
+  } else {
+    for (int32_t i=0; i<p_support.size(); i++) {
+      in.pointlist[k++] = p_support[i].u-p_support[i].d;
+      in.pointlist[k++] = p_support[i].v;
+    }
+  }
+  in.numberofpointattributes = 0;
+  in.pointattributelist      = NULL;
+  in.pointmarkerlist         = NULL;
+  in.numberofsegments        = 0;
+  in.numberofholes           = 0;
+  in.numberofregions         = 0;
+  in.regionlist              = NULL;
+  
+  // outputs
+  out.pointlist              = NULL;
+  out.pointattributelist     = NULL;
+  out.pointmarkerlist        = NULL;
+  out.trianglelist           = NULL;
+  out.triangleattributelist  = NULL;
+  out.neighborlist           = NULL;
+  out.segmentlist            = NULL;
+  out.segmentmarkerlist      = NULL;
+  out.edgelist               = NULL;
+  out.edgemarkerlist         = NULL;
+
+  // do triangulation (z=zero-based, n=neighbors, Q=quiet, B=no boundary markers)
+  char parameters[] = "zQB";
+  triangulate(parameters, &in, &out, NULL);
+  
+  // put resulting triangles into vector tri
+  vector<triangle> tri;
+  k=0;
+  for (int32_t i=0; i<out.numberoftriangles; i++) {
+    tri.push_back(triangle(out.trianglelist[k],out.trianglelist[k+1],out.trianglelist[k+2]));
+    k+=3;
+  }
+  
+  // free memory used for triangulation
+  free(in.pointlist);
+  free(out.pointlist);
+  free(out.trianglelist);
+  
+  // return triangles
+  return tri;
+}
+
+void Elas::computeDisparityPlanes (vector<support_pt> p_support,vector<triangle> &tri,int32_t right_image) {
+
+  // init matrices
+  Matrix A(3,3);
+  Matrix b(3,1);
+  
+  // for all triangles do
+  for (int32_t i=0; i<tri.size(); i++) {
+    
+    // get triangle corner indices
+    int32_t c1 = tri[i].c1;
+    int32_t c2 = tri[i].c2;
+    int32_t c3 = tri[i].c3;
+    
+    // compute matrix A for linear system of left triangle
+    A.val[0][0] = p_support[c1].u;
+    A.val[1][0] = p_support[c2].u;
+    A.val[2][0] = p_support[c3].u;
+    A.val[0][1] = p_support[c1].v; A.val[0][2] = 1;
+    A.val[1][1] = p_support[c2].v; A.val[1][2] = 1;
+    A.val[2][1] = p_support[c3].v; A.val[2][2] = 1;
+    
+    // compute vector b for linear system (containing the disparities)
+    b.val[0][0] = p_support[c1].d;
+    b.val[1][0] = p_support[c2].d;
+    b.val[2][0] = p_support[c3].d;
+    
+    // on success of gauss jordan elimination
+    if (b.solve(A)) {
+      
+      // grab results from b
+      tri[i].t1a = b.val[0][0];
+      tri[i].t1b = b.val[1][0];
+      tri[i].t1c = b.val[2][0];
+      
+    // otherwise: invalid
+    } else {
+      tri[i].t1a = 0;
+      tri[i].t1b = 0;
+      tri[i].t1c = 0;
+    }
+
+    // compute matrix A for linear system of right triangle
+    A.val[0][0] = p_support[c1].u-p_support[c1].d;
+    A.val[1][0] = p_support[c2].u-p_support[c2].d;
+    A.val[2][0] = p_support[c3].u-p_support[c3].d;
+    A.val[0][1] = p_support[c1].v; A.val[0][2] = 1;
+    A.val[1][1] = p_support[c2].v; A.val[1][2] = 1;
+    A.val[2][1] = p_support[c3].v; A.val[2][2] = 1;
+    
+    // compute vector b for linear system (containing the disparities)
+    b.val[0][0] = p_support[c1].d;
+    b.val[1][0] = p_support[c2].d;
+    b.val[2][0] = p_support[c3].d;
+    
+    // on success of gauss jordan elimination
+    if (b.solve(A)) {
+      
+      // grab results from b
+      tri[i].t2a = b.val[0][0];
+      tri[i].t2b = b.val[1][0];
+      tri[i].t2c = b.val[2][0];
+      
+    // otherwise: invalid
+    } else {
+      tri[i].t2a = 0;
+      tri[i].t2b = 0;
+      tri[i].t2c = 0;
+    }
+  }  
+}
+
+void Elas::createGrid(vector<support_pt> p_support,int32_t* disparity_grid,int32_t* grid_dims,bool right_image) {
+  
+  // get grid dimensions
+  int32_t grid_width  = grid_dims[1];
+  int32_t grid_height = grid_dims[2];
+  
+  // allocate temporary memory
+  int32_t* temp1 = (int32_t*)calloc((param.disp_max+1)*grid_height*grid_width,sizeof(int32_t));
+  int32_t* temp2 = (int32_t*)calloc((param.disp_max+1)*grid_height*grid_width,sizeof(int32_t));
+  
+  // for all support points do
+  for (int32_t i=0; i<p_support.size(); i++) {
+    
+    // compute disparity range to fill for this support point
+    int32_t x_curr = p_support[i].u;
+    int32_t y_curr = p_support[i].v;
+    int32_t d_curr = p_support[i].d;
+    int32_t d_min  = max(d_curr-1,0);
+    int32_t d_max  = min(d_curr+1,param.disp_max);
+    
+    // fill disparity grid helper
+    for (int32_t d=d_min; d<=d_max; d++) {
+      int32_t x;
+      if (!right_image)
+        x = floor((float)(x_curr/param.grid_size));
+      else
+        x = floor((float)(x_curr-d_curr)/(float)param.grid_size);
+      int32_t y = floor((float)y_curr/(float)param.grid_size);
+      
+      // point may potentially lay outside (corner points)
+      if (x>=0 && x<grid_width &&y>=0 && y<grid_height) {
+        int32_t addr = getAddressOffsetGrid(x,y,d,grid_width,param.disp_max+1);
+        *(temp1+addr) = 1;
+      }
+    }
+  }
+  
+  // diffusion pointers
+  const int32_t* tl = temp1 + (0*grid_width+0)*(param.disp_max+1);
+  const int32_t* tc = temp1 + (0*grid_width+1)*(param.disp_max+1);
+  const int32_t* tr = temp1 + (0*grid_width+2)*(param.disp_max+1);
+  const int32_t* cl = temp1 + (1*grid_width+0)*(param.disp_max+1);
+  const int32_t* cc = temp1 + (1*grid_width+1)*(param.disp_max+1);
+  const int32_t* cr = temp1 + (1*grid_width+2)*(param.disp_max+1);
+  const int32_t* bl = temp1 + (2*grid_width+0)*(param.disp_max+1);
+  const int32_t* bc = temp1 + (2*grid_width+1)*(param.disp_max+1);
+  const int32_t* br = temp1 + (2*grid_width+2)*(param.disp_max+1);
+  
+  int32_t* result    = temp2 + (1*grid_width+1)*(param.disp_max+1); 
+  int32_t* end_input = temp1 + grid_width*grid_height*(param.disp_max+1);
+  
+  // diffuse temporary grid
+  for( ; br != end_input; tl++, tc++, tr++, cl++, cc++, cr++, bl++, bc++, br++, result++ )
+    *result = *tl | *tc | *tr | *cl | *cc | *cr | *bl | *bc | *br;
+  
+  // for all grid positions create disparity grid
+  for (int32_t x=0; x<grid_width; x++) {
+    for (int32_t y=0; y<grid_height; y++) {
+        
+      // start with second value (first is reserved for count)
+      int32_t curr_ind = 1;
+      
+      // for all disparities do
+      for (int32_t d=0; d<=param.disp_max; d++) {
+
+        // if yes => add this disparity to current cell
+        if (*(temp2+getAddressOffsetGrid(x,y,d,grid_width,param.disp_max+1))>0) {
+          *(disparity_grid+getAddressOffsetGrid(x,y,curr_ind,grid_width,param.disp_max+2))=d;
+          curr_ind++;
+        }
+      }
+      
+      // finally set number of indices
+      *(disparity_grid+getAddressOffsetGrid(x,y,0,grid_width,param.disp_max+2))=curr_ind-1;
+    }
+  }
+  
+  // release temporary memory
+  free(temp1);
+  free(temp2);
+}
+
+inline void Elas::updatePosteriorMinimum(__m128i* I2_block_addr,const int32_t &d,const int32_t &w,
+                                         const __m128i &xmm1,__m128i &xmm2,int32_t &val,int32_t &min_val,int32_t &min_d) {
+  xmm2 = _mm_load_si128(I2_block_addr);
+  xmm2 = _mm_sad_epu8(xmm1,xmm2);
+  val  = _mm_extract_epi16(xmm2,0)+_mm_extract_epi16(xmm2,4)+w;
+  if (val<min_val) {
+    min_val = val;
+    min_d   = d;
+  }
+}
+
+inline void Elas::updatePosteriorMinimum(__m128i* I2_block_addr,const int32_t &d,
+                                         const __m128i &xmm1,__m128i &xmm2,int32_t &val,int32_t &min_val,int32_t &min_d) {
+  xmm2 = _mm_load_si128(I2_block_addr);
+  xmm2 = _mm_sad_epu8(xmm1,xmm2);
+  val  = _mm_extract_epi16(xmm2,0)+_mm_extract_epi16(xmm2,4);
+  if (val<min_val) {
+    min_val = val;
+    min_d   = d;
+  }
+}
+
+inline void Elas::findMatch(int32_t &u,int32_t &v,float &plane_a,float &plane_b,float &plane_c,
+                            int32_t* disparity_grid,int32_t *grid_dims,uint8_t* I1_desc,uint8_t* I2_desc,
+                            int32_t *P,int32_t &plane_radius,bool &valid,bool &right_image,float* D){
+  
+  // get image width and height
+  const int32_t disp_num    = grid_dims[0]-1;
+  const int32_t window_size = 2;
+
+  // address of disparity we want to compute
+  uint32_t d_addr;
+  if (param.subsampling) d_addr = getAddressOffsetImage(u/2,v/2,width/2);
+  else                   d_addr = getAddressOffsetImage(u,v,width);
+  
+  // check if u is ok
+  if (u<window_size || u>=width-window_size)
+    return;
+
+  // compute line start address
+  int32_t  line_offset = 16*width*max(min(v,height-3),2);
+  uint8_t *I1_line_addr,*I2_line_addr;
+  if (!right_image) {
+    I1_line_addr = I1_desc+line_offset;
+    I2_line_addr = I2_desc+line_offset;
+  } else {
+    I1_line_addr = I2_desc+line_offset;
+    I2_line_addr = I1_desc+line_offset;
+  }
+
+  // compute I1 block start address
+  uint8_t* I1_block_addr = I1_line_addr+16*u;
+  
+  // does this patch have enough texture?
+  int32_t sum = 0;
+  for (int32_t i=0; i<16; i++)
+    sum += abs((int32_t)(*(I1_block_addr+i))-128);
+  if (sum<param.match_texture)
+    return;
+
+  // compute disparity, min disparity and max disparity of plane prior
+  int32_t d_plane     = (int32_t)(plane_a*(float)u+plane_b*(float)v+plane_c);
+  int32_t d_plane_min = max(d_plane-plane_radius,0);
+  int32_t d_plane_max = min(d_plane+plane_radius,disp_num-1);
+
+  // get grid pointer
+  int32_t  grid_x    = (int32_t)floor((float)u/(float)param.grid_size);
+  int32_t  grid_y    = (int32_t)floor((float)v/(float)param.grid_size);
+  uint32_t grid_addr = getAddressOffsetGrid(grid_x,grid_y,0,grid_dims[1],grid_dims[0]);  
+  int32_t  num_grid  = *(disparity_grid+grid_addr);
+  int32_t* d_grid    = disparity_grid+grid_addr+1;
+  
+  // loop variables
+  int32_t d_curr, u_warp, val;
+  int32_t min_val = 10000;
+  int32_t min_d   = -1;
+  __m128i xmm1    = _mm_load_si128((__m128i*)I1_block_addr);
+  __m128i xmm2;
+
+  // left image
+  if (!right_image) { 
+    for (int32_t i=0; i<num_grid; i++) {
+      d_curr = d_grid[i];
+      if (d_curr<d_plane_min || d_curr>d_plane_max) {
+        u_warp = u-d_curr;
+        if (u_warp<window_size || u_warp>=width-window_size)
+          continue;
+        updatePosteriorMinimum((__m128i*)(I2_line_addr+16*u_warp),d_curr,xmm1,xmm2,val,min_val,min_d);
+      }
+    }
+    for (d_curr=d_plane_min; d_curr<=d_plane_max; d_curr++) {
+      u_warp = u-d_curr;
+      if (u_warp<window_size || u_warp>=width-window_size)
+        continue;
+      updatePosteriorMinimum((__m128i*)(I2_line_addr+16*u_warp),d_curr,valid?*(P+abs(d_curr-d_plane)):0,xmm1,xmm2,val,min_val,min_d);
+    }
+    
+  // right image
+  } else {
+    for (int32_t i=0; i<num_grid; i++) {
+      d_curr = d_grid[i];
+      if (d_curr<d_plane_min || d_curr>d_plane_max) {
+        u_warp = u+d_curr;
+        if (u_warp<window_size || u_warp>=width-window_size)
+          continue;
+        updatePosteriorMinimum((__m128i*)(I2_line_addr+16*u_warp),d_curr,xmm1,xmm2,val,min_val,min_d);
+      }
+    }
+    for (d_curr=d_plane_min; d_curr<=d_plane_max; d_curr++) {
+      u_warp = u+d_curr;
+      if (u_warp<window_size || u_warp>=width-window_size)
+        continue;
+      updatePosteriorMinimum((__m128i*)(I2_line_addr+16*u_warp),d_curr,valid?*(P+abs(d_curr-d_plane)):0,xmm1,xmm2,val,min_val,min_d);
+    }
+  }
+
+  // set disparity value
+  if (min_d>=0) *(D+d_addr) = min_d; // MAP value (min neg-Log probability)
+  else          *(D+d_addr) = -1;    // invalid disparity
+}
+
+// TODO: %2 => more elegantly
+void Elas::computeDisparity(vector<support_pt> p_support,vector<triangle> tri,int32_t* disparity_grid,int32_t *grid_dims,
+                            uint8_t* I1_desc,uint8_t* I2_desc,bool right_image,float* D) {
+
+  // number of disparities
+  const int32_t disp_num  = grid_dims[0]-1;
+  
+  // descriptor window_size
+  int32_t window_size = 2;
+  
+  // init disparity image to -10
+  if (param.subsampling) {
+    for (int32_t i=0; i<(width/2)*(height/2); i++)
+      *(D+i) = -10;
+  } else {
+    for (int32_t i=0; i<width*height; i++)
+      *(D+i) = -10;
+  }
+  
+  // pre-compute prior 
+  float two_sigma_squared = 2*param.sigma*param.sigma;
+  int32_t* P = new int32_t[disp_num];
+  for (int32_t delta_d=0; delta_d<disp_num; delta_d++)
+    P[delta_d] = (int32_t)((-log(param.gamma+exp(-delta_d*delta_d/two_sigma_squared))+log(param.gamma))/param.beta);
+  int32_t plane_radius = (int32_t)max((float)ceil(param.sigma*param.sradius),(float)2.0);
+
+  // loop variables
+  int32_t c1, c2, c3;
+  float plane_a,plane_b,plane_c,plane_d;
+  
+  // for all triangles do
+  for (uint32_t i=0; i<tri.size(); i++) {
+    
+    // get plane parameters
+    uint32_t p_i = i*3;
+    if (!right_image) {
+      plane_a = tri[i].t1a;
+      plane_b = tri[i].t1b;
+      plane_c = tri[i].t1c;
+      plane_d = tri[i].t2a;
+    } else {
+      plane_a = tri[i].t2a;
+      plane_b = tri[i].t2b;
+      plane_c = tri[i].t2c;
+      plane_d = tri[i].t1a;
+    }
+    
+    // triangle corners
+    c1 = tri[i].c1;
+    c2 = tri[i].c2;
+    c3 = tri[i].c3;
+
+    // sort triangle corners wrt. u (ascending)    
+    float tri_u[3];
+    if (!right_image) {
+      tri_u[0] = p_support[c1].u;
+      tri_u[1] = p_support[c2].u;
+      tri_u[2] = p_support[c3].u;
+    } else {
+      tri_u[0] = p_support[c1].u-p_support[c1].d;
+      tri_u[1] = p_support[c2].u-p_support[c2].d;
+      tri_u[2] = p_support[c3].u-p_support[c3].d;
+    }
+    float tri_v[3] = {p_support[c1].v,p_support[c2].v,p_support[c3].v};
+    
+    for (uint32_t j=0; j<3; j++) {
+      for (uint32_t k=0; k<j; k++) {
+        if (tri_u[k]>tri_u[j]) {
+          float tri_u_temp = tri_u[j]; tri_u[j] = tri_u[k]; tri_u[k] = tri_u_temp;
+          float tri_v_temp = tri_v[j]; tri_v[j] = tri_v[k]; tri_v[k] = tri_v_temp;
+        }
+      }
+    }
+    
+    // rename corners
+    float A_u = tri_u[0]; float A_v = tri_v[0];
+    float B_u = tri_u[1]; float B_v = tri_v[1];
+    float C_u = tri_u[2]; float C_v = tri_v[2];
+    
+    // compute straight lines connecting triangle corners
+    float AB_a = 0; float AC_a = 0; float BC_a = 0;
+    if ((int32_t)(A_u)!=(int32_t)(B_u)) AB_a = (A_v-B_v)/(A_u-B_u);
+    if ((int32_t)(A_u)!=(int32_t)(C_u)) AC_a = (A_v-C_v)/(A_u-C_u);
+    if ((int32_t)(B_u)!=(int32_t)(C_u)) BC_a = (B_v-C_v)/(B_u-C_u);
+    float AB_b = A_v-AB_a*A_u;
+    float AC_b = A_v-AC_a*A_u;
+    float BC_b = B_v-BC_a*B_u;
+    
+    // a plane is only valid if itself and its projection
+    // into the other image is not too much slanted
+    bool valid = fabs(plane_a)<0.7 && fabs(plane_d)<0.7;
+        
+    // first part (triangle corner A->B)
+    if ((int32_t)(A_u)!=(int32_t)(B_u)) {
+      for (int32_t u=max((int32_t)A_u,0); u<min((int32_t)B_u,width); u++){
+        if (!param.subsampling || u%2==0) {
+          int32_t v_1 = (uint32_t)(AC_a*(float)u+AC_b);
+          int32_t v_2 = (uint32_t)(AB_a*(float)u+AB_b);
+          for (int32_t v=min(v_1,v_2); v<max(v_1,v_2); v++)
+            if (!param.subsampling || v%2==0) {
+              findMatch(u,v,plane_a,plane_b,plane_c,disparity_grid,grid_dims,
+                        I1_desc,I2_desc,P,plane_radius,valid,right_image,D);
+            }
+        }
+      }
+    }
+
+    // second part (triangle corner B->C)
+    if ((int32_t)(B_u)!=(int32_t)(C_u)) {
+      for (int32_t u=max((int32_t)B_u,0); u<min((int32_t)C_u,width); u++){
+        if (!param.subsampling || u%2==0) {
+          int32_t v_1 = (uint32_t)(AC_a*(float)u+AC_b);
+          int32_t v_2 = (uint32_t)(BC_a*(float)u+BC_b);
+          for (int32_t v=min(v_1,v_2); v<max(v_1,v_2); v++)
+            if (!param.subsampling || v%2==0) {
+              findMatch(u,v,plane_a,plane_b,plane_c,disparity_grid,grid_dims,
+                        I1_desc,I2_desc,P,plane_radius,valid,right_image,D);
+            }
+        }
+      }
+    }
+    
+  }
+
+  delete[] P;
+}
+
+void Elas::leftRightConsistencyCheck(float* D1,float* D2) {
+  
+  // get disparity image dimensions
+  int32_t D_width  = width;
+  int32_t D_height = height;
+  if (param.subsampling) {
+    D_width  = width/2;
+    D_height = height/2;
+  }
+  
+  // make a copy of both images
+  float* D1_copy = (float*)malloc(D_width*D_height*sizeof(float));
+  float* D2_copy = (float*)malloc(D_width*D_height*sizeof(float));
+  memcpy(D1_copy,D1,D_width*D_height*sizeof(float));
+  memcpy(D2_copy,D2,D_width*D_height*sizeof(float));
+
+  // loop variables
+  uint32_t addr,addr_warp;
+  float    u_warp_1,u_warp_2,d1,d2;
+  
+  // for all image points do
+  for (int32_t u=0; u<D_width; u++) {
+    for (int32_t v=0; v<D_height; v++) {
+      
+      // compute address (u,v) and disparity value
+      addr     = getAddressOffsetImage(u,v,D_width);
+      d1       = *(D1_copy+addr);
+      d2       = *(D2_copy+addr);
+      if (param.subsampling) {
+        u_warp_1 = (float)u-d1/2;
+        u_warp_2 = (float)u+d2/2;
+      } else {
+        u_warp_1 = (float)u-d1;
+        u_warp_2 = (float)u+d2;
+      }
+      
+      
+      // check if left disparity is valid
+      if (d1>=0 && u_warp_1>=0 && u_warp_1<D_width) {       
+                  
+        // compute warped image address
+        addr_warp = getAddressOffsetImage((int32_t)u_warp_1,v,D_width);
+
+        // if check failed
+        if (fabs(*(D2_copy+addr_warp)-d1)>param.lr_threshold)
+          *(D1+addr) = -10;
+        
+      // set invalid
+      } else
+        *(D1+addr) = -10;
+      
+      // check if right disparity is valid
+      if (d2>=0 && u_warp_2>=0 && u_warp_2<D_width) {       
+
+        // compute warped image address
+        addr_warp = getAddressOffsetImage((int32_t)u_warp_2,v,D_width);
+
+        // if check failed
+        if (fabs(*(D1_copy+addr_warp)-d2)>param.lr_threshold)
+          *(D2+addr) = -10;
+        
+      // set invalid
+      } else
+        *(D2+addr) = -10;
+    }
+  }
+  
+  // release memory
+  free(D1_copy);
+  free(D2_copy);
+}
+
+void Elas::removeSmallSegments (float* D) {
+  
+  // get disparity image dimensions
+  int32_t D_width        = width;
+  int32_t D_height       = height;
+  int32_t D_speckle_size = param.speckle_size;
+  if (param.subsampling) {
+    D_width        = width/2;
+    D_height       = height/2;
+    D_speckle_size = sqrt((float)param.speckle_size)*2;
+  }
+  
+  // allocate memory on heap for dynamic programming arrays
+  int32_t *D_done     = (int32_t*)calloc(D_width*D_height,sizeof(int32_t));
+  int32_t *seg_list_u = (int32_t*)calloc(D_width*D_height,sizeof(int32_t));
+  int32_t *seg_list_v = (int32_t*)calloc(D_width*D_height,sizeof(int32_t));
+  int32_t seg_list_count;
+  int32_t seg_list_curr;
+  int32_t u_neighbor[4];
+  int32_t v_neighbor[4];
+  int32_t u_seg_curr;
+  int32_t v_seg_curr;
+  
+  // declare loop variables
+  int32_t addr_start, addr_curr, addr_neighbor;
+  
+  // for all pixels do
+  for (int32_t u=0; u<D_width; u++) {
+    for (int32_t v=0; v<D_height; v++) {
+      
+      // get address of first pixel in this segment
+      addr_start = getAddressOffsetImage(u,v,D_width);
+                  
+      // if this pixel has not already been processed
+      if (*(D_done+addr_start)==0) {
+                
+        // init segment list (add first element
+        // and set it to be the next element to check)
+        *(seg_list_u+0) = u;
+        *(seg_list_v+0) = v;
+        seg_list_count  = 1;
+        seg_list_curr   = 0;
+        
+        // add neighboring segments as long as there
+        // are none-processed pixels in the seg_list;
+        // none-processed means: seg_list_curr<seg_list_count
+        while (seg_list_curr<seg_list_count) {
+        
+          // get current position from seg_list
+          u_seg_curr = *(seg_list_u+seg_list_curr);
+          v_seg_curr = *(seg_list_v+seg_list_curr);
+          
+          // get address of current pixel in this segment
+          addr_curr = getAddressOffsetImage(u_seg_curr,v_seg_curr,D_width);
+          
+          // fill list with neighbor positions
+          u_neighbor[0] = u_seg_curr-1; v_neighbor[0] = v_seg_curr;
+          u_neighbor[1] = u_seg_curr+1; v_neighbor[1] = v_seg_curr;
+          u_neighbor[2] = u_seg_curr;   v_neighbor[2] = v_seg_curr-1;
+          u_neighbor[3] = u_seg_curr;   v_neighbor[3] = v_seg_curr+1;
+          
+          // for all neighbors do
+          for (int32_t i=0; i<4; i++) {
+            
+            // check if neighbor is inside image
+            if (u_neighbor[i]>=0 && v_neighbor[i]>=0 && u_neighbor[i]<D_width && v_neighbor[i]<D_height) {
+              
+              // get neighbor pixel address
+              addr_neighbor = getAddressOffsetImage(u_neighbor[i],v_neighbor[i],D_width);
+              
+              // check if neighbor has not been added yet and if it is valid
+              if (*(D_done+addr_neighbor)==0 && *(D+addr_neighbor)>=0) {
+
+                // is the neighbor similar to the current pixel
+                // (=belonging to the current segment)
+                if (fabs(*(D+addr_curr)-*(D+addr_neighbor))<=param.speckle_sim_threshold) {
+                  
+                  // add neighbor coordinates to segment list
+                  *(seg_list_u+seg_list_count) = u_neighbor[i];
+                  *(seg_list_v+seg_list_count) = v_neighbor[i];
+                  seg_list_count++;            
+                  
+                  // set neighbor pixel in I_done to "done"
+                  // (otherwise a pixel may be added 2 times to the list, as
+                  //  neighbor of one pixel and as neighbor of another pixel)
+                  *(D_done+addr_neighbor) = 1;
+                }
+              }
+              
+            } 
+          }
+          
+          // set current pixel in seg_list to "done"
+          seg_list_curr++;
+          
+          // set current pixel in I_done to "done"
+          *(D_done+addr_curr) = 1;
+
+        } // end: while (seg_list_curr<seg_list_count)
+        
+        // if segment NOT large enough => invalidate pixels
+        if (seg_list_count<D_speckle_size) {
+          
+          // for all pixels in current segment invalidate pixels
+          for (int32_t i=0; i<seg_list_count; i++) {
+            addr_curr = getAddressOffsetImage(*(seg_list_u+i),*(seg_list_v+i),D_width);
+            *(D+addr_curr) = -10;
+          }
+        }
+      } // end: if (*(I_done+addr_start)==0)
+      
+    }
+  }
+  
+  // free memory
+  free(D_done);
+  free(seg_list_u);
+  free(seg_list_v);
+}
+
+void Elas::gapInterpolation(float* D) {
+  
+  // get disparity image dimensions
+  int32_t D_width          = width;
+  int32_t D_height         = height;
+  int32_t D_ipol_gap_width = param.ipol_gap_width;
+  if (param.subsampling) {
+    D_width          = width/2;
+    D_height         = height/2;
+    D_ipol_gap_width = param.ipol_gap_width/2+1;
+  }
+  
+  // discontinuity threshold
+  float discon_threshold = 3.0;
+  
+  // declare loop variables
+  int32_t count,addr,v_first,v_last,u_first,u_last;
+  float   d1,d2,d_ipol;
+  
+  // 1. Row-wise:
+  // for each row do
+  for (int32_t v=0; v<D_height; v++) {
+    
+    // init counter
+    count = 0;
+    
+    // for each element of the row do
+    for (int32_t u=0; u<D_width; u++) {
+      
+      // get address of this location
+      addr = getAddressOffsetImage(u,v,D_width);
+      
+      // if disparity valid
+      if (*(D+addr)>=0) {
+        
+        // check if speckle is small enough
+        if (count>=1 && count<=D_ipol_gap_width) {
+          
+          // first and last value for interpolation
+          u_first = u-count;
+          u_last  = u-1;
+          
+          // if value in range
+          if (u_first>0 && u_last<D_width-1) {
+            
+            // compute mean disparity
+            d1 = *(D+getAddressOffsetImage(u_first-1,v,D_width));
+            d2 = *(D+getAddressOffsetImage(u_last+1,v,D_width));
+            if (fabs(d1-d2)<discon_threshold) d_ipol = (d1+d2)/2;
+            else                              d_ipol = min(d1,d2);
+            
+            // set all values to d_ipol
+            for (int32_t u_curr=u_first; u_curr<=u_last; u_curr++)
+              *(D+getAddressOffsetImage(u_curr,v,D_width)) = d_ipol;
+          }
+          
+        }
+        
+        // reset counter
+        count = 0;
+      
+      // otherwise increment counter
+      } else {
+        count++;
+      }
+    }
+    
+    // if full size disp map requested
+    if (param.add_corners) {
+
+      // extrapolate to the left
+      for (int32_t u=0; u<D_width; u++) {
+
+        // get address of this location
+        addr = getAddressOffsetImage(u,v,D_width);
+
+        // if disparity valid
+        if (*(D+addr)>=0) {
+          for (int32_t u2=max(u-D_ipol_gap_width,0); u2<u; u2++)
+            *(D+getAddressOffsetImage(u2,v,D_width)) = *(D+addr);
+          break;
+        }
+      }
+
+      // extrapolate to the right
+      for (int32_t u=D_width-1; u>=0; u--) {
+
+        // get address of this location
+        addr = getAddressOffsetImage(u,v,D_width);
+
+        // if disparity valid
+        if (*(D+addr)>=0) {
+          for (int32_t u2=u; u2<=min(u+D_ipol_gap_width,D_width-1); u2++)
+            *(D+getAddressOffsetImage(u2,v,D_width)) = *(D+addr);
+          break;
+        }
+      }
+    }
+  }
+
+  // 2. Column-wise:
+  // for each column do
+  for (int32_t u=0; u<D_width; u++) {
+    
+    // init counter
+    count = 0;
+    
+    // for each element of the column do
+    for (int32_t v=0; v<D_height; v++) {
+      
+      // get address of this location
+      addr = getAddressOffsetImage(u,v,D_width);
+      
+      // if disparity valid
+      if (*(D+addr)>=0) {
+        
+        // check if gap is small enough
+        if (count>=1 && count<=D_ipol_gap_width) {
+          
+          // first and last value for interpolation
+          v_first = v-count;
+          v_last  = v-1;
+          
+          // if value in range
+          if (v_first>0 && v_last<D_height-1) {
+            
+            // compute mean disparity
+            d1 = *(D+getAddressOffsetImage(u,v_first-1,D_width));
+            d2 = *(D+getAddressOffsetImage(u,v_last+1,D_width));
+            if (fabs(d1-d2)<discon_threshold) d_ipol = (d1+d2)/2;
+            else                              d_ipol = min(d1,d2);
+            
+            // set all values to d_ipol
+            for (int32_t v_curr=v_first; v_curr<=v_last; v_curr++)
+              *(D+getAddressOffsetImage(u,v_curr,D_width)) = d_ipol;
+          }
+          
+        }
+        
+        // reset counter
+        count = 0;
+      
+      // otherwise increment counter
+      } else {
+        count++;
+      }
+    }
+
+    // added extrapolation to top and bottom since bottom rows sometimes stay unlabeled...
+    // DS 5/12/2014
+
+    // if full size disp map requested
+    if (param.add_corners) {
+
+      // extrapolate towards top
+      for (int32_t v=0; v<D_height; v++) {
+
+        // get address of this location
+        addr = getAddressOffsetImage(u,v,D_width);
+
+        // if disparity valid
+        if (*(D+addr)>=0) {
+          for (int32_t v2=max(v-D_ipol_gap_width,0); v2<v; v2++)
+            *(D+getAddressOffsetImage(u,v2,D_width)) = *(D+addr);
+          break;
+        }
+      }
+
+      // extrapolate towards the bottom
+      for (int32_t v=D_height-1; v>=0; v--) {
+
+        // get address of this location
+        addr = getAddressOffsetImage(u,v,D_width);
+
+        // if disparity valid
+        if (*(D+addr)>=0) {
+          for (int32_t v2=v; v2<=min(v+D_ipol_gap_width,D_height-1); v2++)
+            *(D+getAddressOffsetImage(u,v2,D_width)) = *(D+addr);
+          break;
+        }
+      }
+    }
+  }
+}
+
+// implements approximation to bilateral filtering
+void Elas::adaptiveMean (float* D) {
+  
+  // get disparity image dimensions
+  int32_t D_width          = width;
+  int32_t D_height         = height;
+  if (param.subsampling) {
+    D_width          = width/2;
+    D_height         = height/2;
+  }
+  
+  // allocate temporary memory
+  float* D_copy = (float*)malloc(D_width*D_height*sizeof(float));
+  float* D_tmp  = (float*)malloc(D_width*D_height*sizeof(float));
+  memcpy(D_copy,D,D_width*D_height*sizeof(float));
+  
+  // zero input disparity maps to -10 (this makes the bilateral
+  // weights of all valid disparities to 0 in this region)
+  for (int32_t i=0; i<D_width*D_height; i++) {
+    if (*(D+i)<0) {
+      *(D_copy+i) = -10;
+      *(D_tmp+i)  = -10;
+    }
+  }
+  
+  __m128 xconst0 = _mm_set1_ps(0);
+  __m128 xconst4 = _mm_set1_ps(4);
+  __m128 xval,xweight1,xweight2,xfactor1,xfactor2;
+  
+  float *val     = (float *)_mm_malloc(8*sizeof(float),16);
+  float *weight  = (float*)_mm_malloc(4*sizeof(float),16);
+  float *factor  = (float*)_mm_malloc(4*sizeof(float),16);
+  
+  // set absolute mask
+  __m128 xabsmask = _mm_set1_ps(0x7FFFFFFF);
+  
+  // when doing subsampling: 4 pixel bilateral filter width
+  if (param.subsampling) {
+  
+    // horizontal filter
+    for (int32_t v=3; v<D_height-3; v++) {
+
+      // init
+      for (int32_t u=0; u<3; u++)
+        val[u] = *(D_copy+v*D_width+u);
+
+      // loop
+      for (int32_t u=3; u<D_width; u++) {
+
+        // set
+        float val_curr = *(D_copy+v*D_width+(u-1));
+        val[u%4] = *(D_copy+v*D_width+u);
+
+        xval     = _mm_load_ps(val);      
+        xweight1 = _mm_sub_ps(xval,_mm_set1_ps(val_curr));
+        xweight1 = _mm_and_ps(xweight1,xabsmask);
+        xweight1 = _mm_sub_ps(xconst4,xweight1);
+        xweight1 = _mm_max_ps(xconst0,xweight1);
+        xfactor1 = _mm_mul_ps(xval,xweight1);
+
+        _mm_store_ps(weight,xweight1);
+        _mm_store_ps(factor,xfactor1);
+
+        float weight_sum = weight[0]+weight[1]+weight[2]+weight[3];
+        float factor_sum = factor[0]+factor[1]+factor[2]+factor[3];
+        
+        if (weight_sum>0) {
+          float d = factor_sum/weight_sum;
+          if (d>=0) *(D_tmp+v*D_width+(u-1)) = d;
+        }
+      }
+    }
+
+    // vertical filter
+    for (int32_t u=3; u<D_width-3; u++) {
+
+      // init
+      for (int32_t v=0; v<3; v++)
+        val[v] = *(D_tmp+v*D_width+u);
+
+      // loop
+      for (int32_t v=3; v<D_height; v++) {
+
+        // set
+        float val_curr = *(D_tmp+(v-1)*D_width+u);
+        val[v%4] = *(D_tmp+v*D_width+u);
+
+        xval     = _mm_load_ps(val);      
+        xweight1 = _mm_sub_ps(xval,_mm_set1_ps(val_curr));
+        xweight1 = _mm_and_ps(xweight1,xabsmask);
+        xweight1 = _mm_sub_ps(xconst4,xweight1);
+        xweight1 = _mm_max_ps(xconst0,xweight1);
+        xfactor1 = _mm_mul_ps(xval,xweight1);
+
+        _mm_store_ps(weight,xweight1);
+        _mm_store_ps(factor,xfactor1);
+
+        float weight_sum = weight[0]+weight[1]+weight[2]+weight[3];
+        float factor_sum = factor[0]+factor[1]+factor[2]+factor[3];
+        
+        if (weight_sum>0) {
+          float d = factor_sum/weight_sum;
+          if (d>=0) *(D+(v-1)*D_width+u) = d;
+        }
+      }
+    }
+    
+  // full resolution: 8 pixel bilateral filter width
+  } else {
+    
+  
+    // horizontal filter
+    for (int32_t v=3; v<D_height-3; v++) {
+
+      // init
+      for (int32_t u=0; u<7; u++)
+        val[u] = *(D_copy+v*D_width+u);
+
+      // loop
+      for (int32_t u=7; u<D_width; u++) {
+
+        // set
+        float val_curr = *(D_copy+v*D_width+(u-3));
+        val[u%8] = *(D_copy+v*D_width+u);
+
+        xval     = _mm_load_ps(val);      
+        xweight1 = _mm_sub_ps(xval,_mm_set1_ps(val_curr));
+        xweight1 = _mm_and_ps(xweight1,xabsmask);
+        xweight1 = _mm_sub_ps(xconst4,xweight1);
+        xweight1 = _mm_max_ps(xconst0,xweight1);
+        xfactor1 = _mm_mul_ps(xval,xweight1);
+
+        xval     = _mm_load_ps(val+4);      
+        xweight2 = _mm_sub_ps(xval,_mm_set1_ps(val_curr));
+        xweight2 = _mm_and_ps(xweight2,xabsmask);
+        xweight2 = _mm_sub_ps(xconst4,xweight2);
+        xweight2 = _mm_max_ps(xconst0,xweight2);
+        xfactor2 = _mm_mul_ps(xval,xweight2);
+
+        xweight1 = _mm_add_ps(xweight1,xweight2);
+        xfactor1 = _mm_add_ps(xfactor1,xfactor2);
+
+        _mm_store_ps(weight,xweight1);
+        _mm_store_ps(factor,xfactor1);
+
+        float weight_sum = weight[0]+weight[1]+weight[2]+weight[3];
+        float factor_sum = factor[0]+factor[1]+factor[2]+factor[3];
+        
+        if (weight_sum>0) {
+          float d = factor_sum/weight_sum;
+          if (d>=0) *(D_tmp+v*D_width+(u-3)) = d;
+        }
+      }
+    }
+  
+    // vertical filter
+    for (int32_t u=3; u<D_width-3; u++) {
+
+      // init
+      for (int32_t v=0; v<7; v++)
+        val[v] = *(D_tmp+v*D_width+u);
+
+      // loop
+      for (int32_t v=7; v<D_height; v++) {
+
+        // set
+        float val_curr = *(D_tmp+(v-3)*D_width+u);
+        val[v%8] = *(D_tmp+v*D_width+u);
+
+        xval     = _mm_load_ps(val);      
+        xweight1 = _mm_sub_ps(xval,_mm_set1_ps(val_curr));
+        xweight1 = _mm_and_ps(xweight1,xabsmask);
+        xweight1 = _mm_sub_ps(xconst4,xweight1);
+        xweight1 = _mm_max_ps(xconst0,xweight1);
+        xfactor1 = _mm_mul_ps(xval,xweight1);
+
+        xval     = _mm_load_ps(val+4);      
+        xweight2 = _mm_sub_ps(xval,_mm_set1_ps(val_curr));
+        xweight2 = _mm_and_ps(xweight2,xabsmask);
+        xweight2 = _mm_sub_ps(xconst4,xweight2);
+        xweight2 = _mm_max_ps(xconst0,xweight2);
+        xfactor2 = _mm_mul_ps(xval,xweight2);
+
+        xweight1 = _mm_add_ps(xweight1,xweight2);
+        xfactor1 = _mm_add_ps(xfactor1,xfactor2);
+
+        _mm_store_ps(weight,xweight1);
+        _mm_store_ps(factor,xfactor1);
+
+        float weight_sum = weight[0]+weight[1]+weight[2]+weight[3];
+        float factor_sum = factor[0]+factor[1]+factor[2]+factor[3];
+        
+        if (weight_sum>0) {
+          float d = factor_sum/weight_sum;
+          if (d>=0) *(D+(v-3)*D_width+u) = d;
+        }
+      }
+    }
+  }
+  
+  // free memory
+  _mm_free(val);
+  _mm_free(weight);
+  _mm_free(factor);
+  free(D_copy);
+  free(D_tmp);
+}
+
+void Elas::median (float* D) {
+  
+  // get disparity image dimensions
+  int32_t D_width          = width;
+  int32_t D_height         = height;
+  if (param.subsampling) {
+    D_width          = width/2;
+    D_height         = height/2;
+  }
+
+  // temporary memory
+  float *D_temp = (float*)calloc(D_width*D_height,sizeof(float));
+  
+  int32_t window_size = 3;
+  
+  float *vals = new float[window_size*2+1];
+  int32_t i,j;
+  float temp;
+  
+  // first step: horizontal median filter
+  for (int32_t u=window_size; u<D_width-window_size; u++) {
+    for (int32_t v=window_size; v<D_height-window_size; v++) {
+      if (*(D+getAddressOffsetImage(u,v,D_width))>=0) {    
+        j = 0;
+        for (int32_t u2=u-window_size; u2<=u+window_size; u2++) {
+          temp = *(D+getAddressOffsetImage(u2,v,D_width));
+          i = j-1;
+          while (i>=0 && *(vals+i)>temp) {
+            *(vals+i+1) = *(vals+i);
+            i--;
+          }
+          *(vals+i+1) = temp;
+          j++;
+        }
+        *(D_temp+getAddressOffsetImage(u,v,D_width)) = *(vals+window_size);
+      } else {
+        *(D_temp+getAddressOffsetImage(u,v,D_width)) = *(D+getAddressOffsetImage(u,v,D_width));
+      }
+        
+    }
+  }
+  
+  // second step: vertical median filter
+  for (int32_t u=window_size; u<D_width-window_size; u++) {
+    for (int32_t v=window_size; v<D_height-window_size; v++) {
+      if (*(D+getAddressOffsetImage(u,v,D_width))>=0) {
+        j = 0;
+        for (int32_t v2=v-window_size; v2<=v+window_size; v2++) {
+          temp = *(D_temp+getAddressOffsetImage(u,v2,D_width));
+          i = j-1;
+          while (i>=0 && *(vals+i)>temp) {
+            *(vals+i+1) = *(vals+i);
+            i--;
+          }
+          *(vals+i+1) = temp;
+          j++;
+        }
+        *(D+getAddressOffsetImage(u,v,D_width)) = *(vals+window_size);
+      } else {
+        *(D+getAddressOffsetImage(u,v,D_width)) = *(D+getAddressOffsetImage(u,v,D_width));
+      }
+    }
+  }
+  
+  free(D_temp);
+  free(vals);
+}
diff --git a/cv-node/lib/elas/filter.cpp b/cv-node/lib/elas/filter.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..d4f7954181e642bf337088d439175534fd8e6763
--- /dev/null
+++ b/cv-node/lib/elas/filter.cpp
@@ -0,0 +1,468 @@
+/*
+Copyright 2011. All rights reserved.
+Institute of Measurement and Control Systems
+Karlsruhe Institute of Technology, Germany
+
+This file is part of libelas.
+Authors: Julius Ziegler, Andreas Geiger
+
+libelas is free software; you can redistribute it and/or modify it under the
+terms of the GNU General Public License as published by the Free Software
+Foundation; either version 3 of the License, or any later version.
+
+libelas is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along with
+libelas; if not, write to the Free Software Foundation, Inc., 51 Franklin
+Street, Fifth Floor, Boston, MA 02110-1301, USA 
+*/
+
+#include <stdio.h>
+#include <string.h>
+#include <cassert>
+
+#include "filter.h"
+
+// define fixed-width datatypes for Visual Studio projects
+#ifndef _MSC_VER
+  #include <stdint.h>
+#else
+  typedef __int8            int8_t;
+  typedef __int16           int16_t;
+  typedef __int32           int32_t;
+  typedef __int64           int64_t;
+  typedef unsigned __int8   uint8_t;
+  typedef unsigned __int16  uint16_t;
+  typedef unsigned __int32  uint32_t;
+  typedef unsigned __int64  uint64_t;
+#endif
+
+// fast filters: implements 3x3 and 5x5 sobel filters and 
+//               5x5 blob and corner filters based on SSE2/3 instructions
+namespace filter {
+  
+  // private namespace, public user functions at the bottom of this file
+  namespace detail {
+    void integral_image( const uint8_t* in, int32_t* out, int w, int h ) {
+      int32_t* out_top = out;
+      const uint8_t* line_end = in + w;
+      const uint8_t* in_end   = in + w*h;
+      int32_t line_sum = 0;
+      for( ; in != line_end; in++, out++ ) {
+        line_sum += *in;
+        *out = line_sum;
+      }
+      for( ; in != in_end; ) {
+        int32_t line_sum = 0;
+        const uint8_t* line_end = in + w;
+        for( ; in != line_end; in++, out++, out_top++ ) {
+          line_sum += *in;
+          *out = *out_top + line_sum;
+        }
+      }
+    }
+    
+    void unpack_8bit_to_16bit( const __m128i a, __m128i& b0, __m128i& b1 ) {
+      __m128i zero = _mm_setzero_si128();
+      b0 = _mm_unpacklo_epi8( a, zero );
+      b1 = _mm_unpackhi_epi8( a, zero );
+    }
+    
+    void pack_16bit_to_8bit_saturate( const __m128i a0, const __m128i a1, __m128i& b ) {
+      b = _mm_packus_epi16( a0, a1 );
+    }
+    
+    // convolve image with a (1,4,6,4,1) row vector. Result is accumulated into output.
+    // output is scaled by 1/128, then clamped to [-128,128], and finally shifted to [0,255].
+    void convolve_14641_row_5x5_16bit( const int16_t* in, uint8_t* out, int w, int h ) {
+      assert( w % 16 == 0 && "width must be multiple of 16!" );
+      const __m128i* i0 = (const __m128i*)(in);
+      const int16_t* i1 = in+1;
+      const int16_t* i2 = in+2;
+      const int16_t* i3 = in+3;
+      const int16_t* i4 = in+4;
+      uint8_t* result   = out + 2;
+      const int16_t* const end_input = in + w*h;
+      __m128i offs = _mm_set1_epi16( 128 );
+      for( ; i4 < end_input; i0 += 1, i1 += 8, i2 += 8, i3 += 8, i4 += 8, result += 16 ) {
+        __m128i result_register_lo;
+        __m128i result_register_hi;
+        for( int i=0; i<2; i++ ) {
+          __m128i* result_register;
+          if( i==0 ) result_register = &result_register_lo;
+          else       result_register = &result_register_hi;
+          __m128i i0_register = *i0;
+          __m128i i1_register = _mm_loadu_si128( (__m128i*)( i1 ) );
+          __m128i i2_register = _mm_loadu_si128( (__m128i*)( i2 ) );
+          __m128i i3_register = _mm_loadu_si128( (__m128i*)( i3 ) );
+          __m128i i4_register = _mm_loadu_si128( (__m128i*)( i4 ) );
+          *result_register = _mm_setzero_si128();
+          *result_register = _mm_add_epi16( i0_register, *result_register );
+          i1_register      = _mm_add_epi16( i1_register, i1_register  );
+          i1_register      = _mm_add_epi16( i1_register, i1_register  );
+          *result_register = _mm_add_epi16( i1_register, *result_register );
+          i2_register      = _mm_add_epi16( i2_register, i2_register  );
+          *result_register = _mm_add_epi16( i2_register, *result_register );
+          i2_register      = _mm_add_epi16( i2_register, i2_register  );
+          *result_register = _mm_add_epi16( i2_register, *result_register );
+          i3_register      = _mm_add_epi16( i3_register, i3_register  );
+          i3_register      = _mm_add_epi16( i3_register, i3_register  );
+          *result_register = _mm_add_epi16( i3_register, *result_register );
+          *result_register = _mm_add_epi16( i4_register, *result_register );
+          *result_register = _mm_srai_epi16( *result_register, 7 );
+          *result_register = _mm_add_epi16( *result_register, offs );
+          if( i==0 ) {
+            i0 += 1;
+            i1 += 8;
+            i2 += 8;
+            i3 += 8;
+            i4 += 8;
+          }
+        }
+        pack_16bit_to_8bit_saturate( result_register_lo, result_register_hi, result_register_lo );
+        _mm_storeu_si128( ((__m128i*)( result )), result_register_lo );
+      }
+    }
+    
+    // convolve image with a (1,2,0,-2,-1) row vector. Result is accumulated into output.
+    // This one works on 16bit input and 8bit output.
+    // output is scaled by 1/128, then clamped to [-128,128], and finally shifted to [0,255].
+    void convolve_12021_row_5x5_16bit( const int16_t* in, uint8_t* out, int w, int h ) {
+      assert( w % 16 == 0 && "width must be multiple of 16!" );
+      const __m128i*  i0 = (const __m128i*)(in);
+      const int16_t* 	i1 = in+1;
+      const int16_t* 	i3 = in+3;
+      const int16_t* 	i4 = in+4;
+      uint8_t* result    = out + 2;
+      const int16_t* const end_input = in + w*h;
+      __m128i offs = _mm_set1_epi16( 128 );
+      for( ; i4 < end_input; i0 += 1, i1 += 8, i3 += 8, i4 += 8, result += 16 ) {
+        __m128i result_register_lo;
+        __m128i result_register_hi;
+        for( int i=0; i<2; i++ ) {
+          __m128i* result_register;
+          if( i==0 ) result_register = &result_register_lo;
+          else       result_register = &result_register_hi;
+          __m128i i0_register = *i0;
+          __m128i i1_register = _mm_loadu_si128( (__m128i*)( i1 ) );
+          __m128i i3_register = _mm_loadu_si128( (__m128i*)( i3 ) );
+          __m128i i4_register = _mm_loadu_si128( (__m128i*)( i4 ) );
+          *result_register = _mm_setzero_si128();
+          *result_register = _mm_add_epi16( i0_register,   *result_register );
+          i1_register      = _mm_add_epi16( i1_register, i1_register  );
+          *result_register = _mm_add_epi16( i1_register,   *result_register );
+          i3_register      = _mm_add_epi16( i3_register, i3_register  );
+          *result_register = _mm_sub_epi16( *result_register, i3_register );
+          *result_register = _mm_sub_epi16( *result_register, i4_register );
+          *result_register = _mm_srai_epi16( *result_register, 7 );
+          *result_register = _mm_add_epi16( *result_register, offs );
+          if( i==0 ) {
+            i0 += 1;
+            i1 += 8;
+            i3 += 8;
+            i4 += 8;
+          }
+        }
+        pack_16bit_to_8bit_saturate( result_register_lo, result_register_hi, result_register_lo );
+        _mm_storeu_si128( ((__m128i*)( result )), result_register_lo );
+      }
+    }
+
+    // convolve image with a (1,2,1) row vector. Result is accumulated into output.
+    // This one works on 16bit input and 8bit output.
+    // output is scaled by 1/4, then clamped to [-128,128], and finally shifted to [0,255].
+    void convolve_121_row_3x3_16bit( const int16_t* in, uint8_t* out, int w, int h ) {
+      assert( w % 16 == 0 && "width must be multiple of 16!" );
+      const __m128i* i0 = (const __m128i*)(in);
+      const int16_t* i1 = in+1;
+      const int16_t* i2 = in+2;
+      uint8_t* result   = out + 1;
+      const int16_t* const end_input = in + w*h;
+      const size_t blocked_loops = (w*h-2)/16;
+      __m128i offs = _mm_set1_epi16( 128 );
+      for( size_t i=0; i != blocked_loops; i++ ) {
+        __m128i result_register_lo;
+        __m128i result_register_hi;
+        __m128i i1_register;
+        __m128i i2_register;
+        
+        i1_register        = _mm_loadu_si128( (__m128i*)( i1 ) );
+        i2_register        = _mm_loadu_si128( (__m128i*)( i2 ) );
+        result_register_lo = *i0;
+        i1_register        = _mm_add_epi16( i1_register, i1_register );
+        result_register_lo = _mm_add_epi16( i1_register, result_register_lo );
+        result_register_lo = _mm_add_epi16( i2_register, result_register_lo );
+        result_register_lo = _mm_srai_epi16( result_register_lo, 2 );
+        result_register_lo = _mm_add_epi16( result_register_lo, offs );
+
+        i0++;
+        i1+=8;
+        i2+=8;
+
+        i1_register        = _mm_loadu_si128( (__m128i*)( i1 ) );
+        i2_register        = _mm_loadu_si128( (__m128i*)( i2 ) );
+        result_register_hi = *i0;
+        i1_register        = _mm_add_epi16( i1_register, i1_register );
+        result_register_hi = _mm_add_epi16( i1_register, result_register_hi );
+        result_register_hi = _mm_add_epi16( i2_register, result_register_hi );
+        result_register_hi = _mm_srai_epi16( result_register_hi, 2 );
+        result_register_hi = _mm_add_epi16( result_register_hi, offs );
+
+        i0++;
+        i1+=8;
+        i2+=8;
+
+        pack_16bit_to_8bit_saturate( result_register_lo, result_register_hi, result_register_lo );
+        _mm_storeu_si128( ((__m128i*)( result )), result_register_lo );
+      
+        result += 16;
+      }
+    }
+    
+    // convolve image with a (1,0,-1) row vector. Result is accumulated into output.
+    // This one works on 16bit input and 8bit output.
+    // output is scaled by 1/4, then clamped to [-128,128], and finally shifted to [0,255].
+    void convolve_101_row_3x3_16bit( const int16_t* in, uint8_t* out, int w, int h ) {
+      assert( w % 16 == 0 && "width must be multiple of 16!" );
+      const __m128i*  i0 = (const __m128i*)(in);
+      const int16_t* 	i2 = in+2;
+      uint8_t* result    = out + 1;
+      const int16_t* const end_input = in + w*h;
+      const size_t blocked_loops = (w*h-2)/16;
+      __m128i offs = _mm_set1_epi16( 128 );
+      for( size_t i=0; i != blocked_loops; i++ ) {
+        __m128i result_register_lo;
+        __m128i result_register_hi;
+        __m128i i2_register;
+
+        i2_register = _mm_loadu_si128( (__m128i*)( i2 ) );
+        result_register_lo  = *i0;
+        result_register_lo  = _mm_sub_epi16( result_register_lo, i2_register );
+        result_register_lo  = _mm_srai_epi16( result_register_lo, 2 );
+        result_register_lo  = _mm_add_epi16( result_register_lo, offs );
+ 
+        i0 += 1;
+        i2 += 8;
+        
+        i2_register = _mm_loadu_si128( (__m128i*)( i2 ) );
+        result_register_hi  = *i0;
+        result_register_hi  = _mm_sub_epi16( result_register_hi, i2_register );
+        result_register_hi  = _mm_srai_epi16( result_register_hi, 2 );
+        result_register_hi  = _mm_add_epi16( result_register_hi, offs );
+
+        i0 += 1;
+        i2 += 8;
+        
+        pack_16bit_to_8bit_saturate( result_register_lo, result_register_hi, result_register_lo );
+        _mm_storeu_si128( ((__m128i*)( result )), result_register_lo );
+
+        result += 16;
+      }
+
+      for( ; i2 < end_input; i2++, result++) {
+        *result = ((*(i2-2) - *i2)>>2)+128;
+      }
+    }
+    
+    void convolve_cols_5x5( const unsigned char* in, int16_t* out_v, int16_t* out_h, int w, int h ) {
+      using namespace std;
+      memset( out_h, 0, w*h*sizeof(int16_t) );
+      memset( out_v, 0, w*h*sizeof(int16_t) );
+      assert( w % 16 == 0 && "width must be multiple of 16!" );
+      const int w_chunk  = w/16;
+      __m128i* 	i0       = (__m128i*)( in );
+      __m128i* 	i1       = (__m128i*)( in ) + w_chunk*1;
+      __m128i* 	i2       = (__m128i*)( in ) + w_chunk*2;
+      __m128i* 	i3       = (__m128i*)( in ) + w_chunk*3;
+      __m128i* 	i4       = (__m128i*)( in ) + w_chunk*4;
+      __m128i* result_h  = (__m128i*)( out_h ) + 4*w_chunk;
+      __m128i* result_v  = (__m128i*)( out_v ) + 4*w_chunk;
+      __m128i* end_input = (__m128i*)( in ) + w_chunk*h;
+      __m128i sixes      = _mm_set1_epi16( 6 );
+      __m128i fours      = _mm_set1_epi16( 4 );
+      for( ; i4 != end_input; i0++, i1++, i2++, i3++, i4++, result_v+=2, result_h+=2 ) {      
+        __m128i ilo, ihi;
+        unpack_8bit_to_16bit( *i0, ihi, ilo );
+        *result_h     = _mm_add_epi16( ihi, *result_h );
+        *(result_h+1) = _mm_add_epi16( ilo, *(result_h+1) );
+        *result_v     = _mm_add_epi16( *result_v, ihi );
+        *(result_v+1) = _mm_add_epi16( *(result_v+1), ilo );
+        unpack_8bit_to_16bit( *i1, ihi, ilo );
+        *result_h     = _mm_add_epi16( ihi, *result_h );
+        *result_h     = _mm_add_epi16( ihi, *result_h );
+        *(result_h+1) = _mm_add_epi16( ilo, *(result_h+1) );
+        *(result_h+1) = _mm_add_epi16( ilo, *(result_h+1) );
+        ihi = _mm_mullo_epi16( ihi, fours );
+        ilo = _mm_mullo_epi16( ilo, fours );
+        *result_v     = _mm_add_epi16( *result_v, ihi );
+        *(result_v+1) = _mm_add_epi16( *(result_v+1), ilo );
+        unpack_8bit_to_16bit( *i2, ihi, ilo );
+        ihi = _mm_mullo_epi16( ihi, sixes );
+        ilo = _mm_mullo_epi16( ilo, sixes );
+        *result_v     = _mm_add_epi16( *result_v, ihi );
+        *(result_v+1) = _mm_add_epi16( *(result_v+1), ilo );
+        unpack_8bit_to_16bit( *i3, ihi, ilo );
+        *result_h     = _mm_sub_epi16( *result_h, ihi );
+        *result_h     = _mm_sub_epi16( *result_h, ihi );
+        *(result_h+1) = _mm_sub_epi16( *(result_h+1), ilo );
+        *(result_h+1) = _mm_sub_epi16( *(result_h+1), ilo );
+        ihi = _mm_mullo_epi16( ihi, fours );
+        ilo = _mm_mullo_epi16( ilo, fours );
+        *result_v     = _mm_add_epi16( *result_v, ihi );
+        *(result_v+1) = _mm_add_epi16( *(result_v+1), ilo );          
+        unpack_8bit_to_16bit( *i4, ihi, ilo );
+        *result_h     = _mm_sub_epi16( *result_h, ihi );
+        *(result_h+1) = _mm_sub_epi16( *(result_h+1), ilo );
+        *result_v     = _mm_add_epi16( *result_v, ihi );
+        *(result_v+1) = _mm_add_epi16( *(result_v+1), ilo );
+      }
+    }
+    
+    void convolve_col_p1p1p0m1m1_5x5( const unsigned char* in, int16_t* out, int w, int h ) {
+      memset( out, 0, w*h*sizeof(int16_t) );
+      using namespace std;
+      assert( w % 16 == 0 && "width must be multiple of 16!" );
+      const int w_chunk  = w/16;
+      __m128i* 	i0       = (__m128i*)( in );
+      __m128i* 	i1       = (__m128i*)( in ) + w_chunk*1;
+      __m128i* 	i3       = (__m128i*)( in ) + w_chunk*3;
+      __m128i* 	i4       = (__m128i*)( in ) + w_chunk*4;
+      __m128i* result    = (__m128i*)( out ) + 4*w_chunk;
+      __m128i* end_input = (__m128i*)( in ) + w_chunk*h;
+      for( ; i4 != end_input; i0++, i1++, i3++, i4++, result+=2 ) {
+        __m128i ilo0, ihi0;
+        unpack_8bit_to_16bit( *i0, ihi0, ilo0 );
+        __m128i ilo1, ihi1;
+        unpack_8bit_to_16bit( *i1, ihi1, ilo1 );
+        *result     = _mm_add_epi16( ihi0, ihi1 );
+        *(result+1) = _mm_add_epi16( ilo0, ilo1 );
+        __m128i ilo, ihi;
+        unpack_8bit_to_16bit( *i3, ihi, ilo );
+        *result     = _mm_sub_epi16( *result, ihi );
+        *(result+1) = _mm_sub_epi16( *(result+1), ilo );
+        unpack_8bit_to_16bit( *i4, ihi, ilo );
+        *result     = _mm_sub_epi16( *result, ihi );
+        *(result+1) = _mm_sub_epi16( *(result+1), ilo );
+      }
+    }
+    
+    void convolve_row_p1p1p0m1m1_5x5( const int16_t* in, int16_t* out, int w, int h ) {
+      assert( w % 16 == 0 && "width must be multiple of 16!" );
+      const __m128i*  i0 = (const __m128i*)(in);
+      const int16_t* 	i1 = in+1;
+      const int16_t* 	i3 = in+3;
+      const int16_t* 	i4 = in+4;
+      int16_t* result    = out + 2;
+      const int16_t* const end_input = in + w*h;
+      for( ; i4+8 < end_input; i0 += 1, i1 += 8, i3 += 8, i4 += 8, result += 8 ) {
+        __m128i result_register;
+        __m128i i0_register = *i0;
+        __m128i i1_register = _mm_loadu_si128( (__m128i*)( i1 ) );
+        __m128i i3_register = _mm_loadu_si128( (__m128i*)( i3 ) );
+        __m128i i4_register = _mm_loadu_si128( (__m128i*)( i4 ) );
+        result_register     = _mm_add_epi16( i0_register,     i1_register );
+        result_register     = _mm_sub_epi16( result_register, i3_register );
+        result_register     = _mm_sub_epi16( result_register, i4_register );
+        _mm_storeu_si128( ((__m128i*)( result )), result_register );
+      }
+    }
+    
+    void convolve_cols_3x3( const unsigned char* in, int16_t* out_v, int16_t* out_h, int w, int h ) {
+      using namespace std;
+      assert( w % 16 == 0 && "width must be multiple of 16!" );
+      const int w_chunk  = w/16;
+      __m128i* 	i0       = (__m128i*)( in );
+      __m128i* 	i1       = (__m128i*)( in ) + w_chunk*1;
+      __m128i* 	i2       = (__m128i*)( in ) + w_chunk*2;
+      __m128i* result_h  = (__m128i*)( out_h ) + 2*w_chunk;
+      __m128i* result_v  = (__m128i*)( out_v ) + 2*w_chunk;
+      __m128i* end_input = (__m128i*)( in ) + w_chunk*h;
+      for( ; i2 != end_input; i0++, i1++, i2++, result_v+=2, result_h+=2 ) {
+        *result_h     = _mm_setzero_si128();
+        *(result_h+1) = _mm_setzero_si128();
+        *result_v     = _mm_setzero_si128();
+        *(result_v+1) = _mm_setzero_si128();
+        __m128i ilo, ihi;
+        unpack_8bit_to_16bit( *i0, ihi, ilo ); 
+        unpack_8bit_to_16bit( *i0, ihi, ilo );
+        *result_h     = _mm_add_epi16( ihi, *result_h );
+        *(result_h+1) = _mm_add_epi16( ilo, *(result_h+1) );
+        *result_v     = _mm_add_epi16( *result_v, ihi );
+        *(result_v+1) = _mm_add_epi16( *(result_v+1), ilo );
+        unpack_8bit_to_16bit( *i1, ihi, ilo );
+        *result_v     = _mm_add_epi16( *result_v, ihi );
+        *(result_v+1) = _mm_add_epi16( *(result_v+1), ilo );
+        *result_v     = _mm_add_epi16( *result_v, ihi );
+        *(result_v+1) = _mm_add_epi16( *(result_v+1), ilo );
+        unpack_8bit_to_16bit( *i2, ihi, ilo );
+        *result_h     = _mm_sub_epi16( *result_h, ihi );
+        *(result_h+1) = _mm_sub_epi16( *(result_h+1), ilo );
+        *result_v     = _mm_add_epi16( *result_v, ihi );
+        *(result_v+1) = _mm_add_epi16( *(result_v+1), ilo );
+      }
+    }
+  };
+  
+  void sobel3x3( const uint8_t* in, uint8_t* out_v, uint8_t* out_h, int w, int h ) {
+    int16_t* temp_h = (int16_t*)( _mm_malloc( w*h*sizeof( int16_t ), 16 ) );
+    int16_t* temp_v = (int16_t*)( _mm_malloc( w*h*sizeof( int16_t ), 16 ) );    
+    detail::convolve_cols_3x3( in, temp_v, temp_h, w, h );
+    detail::convolve_101_row_3x3_16bit( temp_v, out_v, w, h );
+    detail::convolve_121_row_3x3_16bit( temp_h, out_h, w, h );
+    _mm_free( temp_h );
+    _mm_free( temp_v );
+  }
+  
+  void sobel5x5( const uint8_t* in, uint8_t* out_v, uint8_t* out_h, int w, int h ) {
+    int16_t* temp_h = (int16_t*)( _mm_malloc( w*h*sizeof( int16_t ), 16 ) );
+    int16_t* temp_v = (int16_t*)( _mm_malloc( w*h*sizeof( int16_t ), 16 ) );
+    detail::convolve_cols_5x5( in, temp_v, temp_h, w, h );
+    detail::convolve_12021_row_5x5_16bit( temp_v, out_v, w, h );
+    detail::convolve_14641_row_5x5_16bit( temp_h, out_h, w, h );
+    _mm_free( temp_h );
+    _mm_free( temp_v );
+  }
+  
+  // -1 -1  0  1  1
+  // -1 -1  0  1  1
+  //  0  0  0  0  0
+  //  1  1  0 -1 -1
+  //  1  1  0 -1 -1
+  void checkerboard5x5( const uint8_t* in, int16_t* out, int w, int h ) {
+    int16_t* temp = (int16_t*)( _mm_malloc( w*h*sizeof( int16_t ), 16 ) );
+    detail::convolve_col_p1p1p0m1m1_5x5( in, temp, w, h );
+    detail::convolve_row_p1p1p0m1m1_5x5( temp, out, w, h );
+    _mm_free( temp );
+  }
+  
+  // -1 -1 -1 -1 -1
+  // -1  1  1  1 -1
+  // -1  1  8  1 -1
+  // -1  1  1  1 -1
+  // -1 -1 -1 -1 -1
+  void blob5x5( const uint8_t* in, int16_t* out, int w, int h ) {
+    int32_t* integral = (int32_t*)( _mm_malloc( w*h*sizeof( int32_t ), 16 ) );
+    detail::integral_image( in, integral, w, h );
+    int16_t* out_ptr   = out + 3 + 3*w;
+    int16_t* out_end   = out + w * h - 2 - 2*w;
+    const int32_t* i00 = integral;
+    const int32_t* i50 = integral + 5;
+    const int32_t* i05 = integral + 5*w;
+    const int32_t* i55 = integral + 5 + 5*w;
+    const int32_t* i11 = integral + 1 + 1*w;
+    const int32_t* i41 = integral + 4 + 1*w;
+    const int32_t* i14 = integral + 1 + 4*w;
+    const int32_t* i44 = integral + 4 + 4*w;    
+    const uint8_t* im22 = in + 3 + 3*w;
+    for( ; out_ptr != out_end; out_ptr++, i00++, i50++, i05++, i55++, i11++, i41++, i14++, i44++, im22++ ) {
+      int32_t result = 0;
+      result = -( *i55 - *i50 - *i05 + *i00 );
+      result += 2*( *i44 - *i41 - *i14 + *i11 );
+      result += 7* *im22;
+      *out_ptr = result;
+    }
+    _mm_free( integral );
+  }
+};
diff --git a/cv-node/lib/elas/filter.h b/cv-node/lib/elas/filter.h
new file mode 100644
index 0000000000000000000000000000000000000000..59af83ef06067dd9d4a3ee22184b2abf33938f17
--- /dev/null
+++ b/cv-node/lib/elas/filter.h
@@ -0,0 +1,99 @@
+/*
+Copyright 2011. All rights reserved.
+Institute of Measurement and Control Systems
+Karlsruhe Institute of Technology, Germany
+
+This file is part of libelas.
+Authors: Julius Ziegler, Andreas Geiger
+
+libelas is free software; you can redistribute it and/or modify it under the
+terms of the GNU General Public License as published by the Free Software
+Foundation; either version 3 of the License, or any later version.
+
+libelas is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along with
+libelas; if not, write to the Free Software Foundation, Inc., 51 Franklin
+Street, Fifth Floor, Boston, MA 02110-1301, USA 
+*/
+
+#ifndef __FILTER_H__
+#define __FILTER_H__
+
+#include <emmintrin.h>
+#include <pmmintrin.h>
+
+// define fixed-width datatypes for Visual Studio projects
+#ifndef _MSC_VER
+  #include <stdint.h>
+#else
+  typedef __int8            int8_t;
+  typedef __int16           int16_t;
+  typedef __int32           int32_t;
+  typedef __int64           int64_t;
+  typedef unsigned __int8   uint8_t;
+  typedef unsigned __int16  uint16_t;
+  typedef unsigned __int32  uint32_t;
+  typedef unsigned __int64  uint64_t;
+#endif
+
+// fast filters: implements 3x3 and 5x5 sobel filters and 
+//               5x5 blob and corner filters based on SSE2/3 instructions
+namespace filter {
+  
+  // private namespace, public user functions at the bottom of this file
+  namespace detail {
+    void integral_image( const uint8_t* in, int32_t* out, int w, int h );
+    void unpack_8bit_to_16bit( const __m128i a, __m128i& b0, __m128i& b1 );
+    void pack_16bit_to_8bit_saturate( const __m128i a0, const __m128i a1, __m128i& b );
+    
+    // convolve image with a (1,4,6,4,1) row vector. Result is accumulated into output.
+    // output is scaled by 1/128, then clamped to [-128,128], and finally shifted to [0,255].
+    void convolve_14641_row_5x5_16bit( const int16_t* in, uint8_t* out, int w, int h );
+    
+    // convolve image with a (1,2,0,-2,-1) row vector. Result is accumulated into output.
+    // This one works on 16bit input and 8bit output.
+    // output is scaled by 1/128, then clamped to [-128,128], and finally shifted to [0,255].
+    void convolve_12021_row_5x5_16bit( const int16_t* in, uint8_t* out, int w, int h );
+
+    // convolve image with a (1,2,1) row vector. Result is accumulated into output.
+    // This one works on 16bit input and 8bit output.
+    // output is scaled by 1/4, then clamped to [-128,128], and finally shifted to [0,255].
+    void convolve_121_row_3x3_16bit( const int16_t* in, uint8_t* out, int w, int h );
+    
+    // convolve image with a (1,0,-1) row vector. Result is accumulated into output.
+    // This one works on 16bit input and 8bit output.
+    // output is scaled by 1/4, then clamped to [-128,128], and finally shifted to [0,255].
+    void convolve_101_row_3x3_16bit( const int16_t* in, uint8_t* out, int w, int h );
+    
+    void convolve_cols_5x5( const unsigned char* in, int16_t* out_v, int16_t* out_h, int w, int h );
+    
+    void convolve_col_p1p1p0m1m1_5x5( const unsigned char* in, int16_t* out, int w, int h );
+    
+    void convolve_row_p1p1p0m1m1_5x5( const int16_t* in, int16_t* out, int w, int h );
+    
+    void convolve_cols_3x3( const unsigned char* in, int16_t* out_v, int16_t* out_h, int w, int h );
+  }
+  
+  void sobel3x3( const uint8_t* in, uint8_t* out_v, uint8_t* out_h, int w, int h );
+  
+  void sobel5x5( const uint8_t* in, uint8_t* out_v, uint8_t* out_h, int w, int h );
+  
+  // -1 -1  0  1  1
+  // -1 -1  0  1  1
+  //  0  0  0  0  0
+  //  1  1  0 -1 -1
+  //  1  1  0 -1 -1
+  void checkerboard5x5( const uint8_t* in, int16_t* out, int w, int h );
+  
+  // -1 -1 -1 -1 -1
+  // -1  1  1  1 -1
+  // -1  1  8  1 -1
+  // -1  1  1  1 -1
+  // -1 -1 -1 -1 -1
+  void blob5x5( const uint8_t* in, int16_t* out, int w, int h );
+};
+
+#endif
diff --git a/cv-node/lib/elas/matrix.cpp b/cv-node/lib/elas/matrix.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..3201dd5b5ecd74eafcbb155eabc426d247120e77
--- /dev/null
+++ b/cv-node/lib/elas/matrix.cpp
@@ -0,0 +1,851 @@
+/*
+Copyright 2011. All rights reserved.
+Institute of Measurement and Control Systems
+Karlsruhe Institute of Technology, Germany
+
+This file is part of libviso2.
+Authors: Andreas Geiger
+
+libviso2 is free software; you can redistribute it and/or modify it under the
+terms of the GNU General Public License as published by the Free Software
+Foundation; either version 2 of the License, or any later version.
+
+libviso2 is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along with
+libviso2; if not, write to the Free Software Foundation, Inc., 51 Franklin
+Street, Fifth Floor, Boston, MA 02110-1301, USA 
+*/
+
+#include "matrix.h"
+#include <algorithm>
+#include <math.h>
+
+#define SWAP(a,b) {temp=a;a=b;b=temp;}
+#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
+static FLOAT sqrarg;
+#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 : sqrarg*sqrarg)
+static FLOAT maxarg1,maxarg2;
+#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1) > (maxarg2) ? (maxarg1) : (maxarg2))
+static int32_t iminarg1,iminarg2;
+#define IMIN(a,b) (iminarg1=(a),iminarg2=(b),(iminarg1) < (iminarg2) ? (iminarg1) : (iminarg2))
+
+
+using namespace std;
+
+Matrix::Matrix () {
+  m   = 0;
+  n   = 0;
+  val = 0;
+}
+
+Matrix::Matrix (const int32_t m_,const int32_t n_) {
+  allocateMemory(m_,n_);
+}
+
+Matrix::Matrix (const int32_t m_,const int32_t n_,const FLOAT* val_) {
+  allocateMemory(m_,n_);
+  int32_t k=0;
+  for (int32_t i=0; i<m_; i++)
+    for (int32_t j=0; j<n_; j++)
+      val[i][j] = val_[k++];
+}
+
+Matrix::Matrix (const Matrix &M) {
+  allocateMemory(M.m,M.n);
+  for (int32_t i=0; i<M.m; i++)
+    memcpy(val[i],M.val[i],M.n*sizeof(FLOAT));
+}
+
+Matrix::~Matrix () {
+  releaseMemory();
+}
+
+Matrix& Matrix::operator= (const Matrix &M) {
+  if (this!=&M) {
+    if (M.m!=m || M.n!=n) {
+      releaseMemory();
+      allocateMemory(M.m,M.n);
+    }
+    if (M.n>0)
+      for (int32_t i=0; i<M.m; i++)
+        memcpy(val[i],M.val[i],M.n*sizeof(FLOAT));
+  }
+  return *this;
+}
+
+void Matrix::getData(FLOAT* val_,int32_t i1,int32_t j1,int32_t i2,int32_t j2) {
+  if (i2==-1) i2 = m-1;
+  if (j2==-1) j2 = n-1;
+  int32_t k=0;
+  for (int32_t i=i1; i<=i2; i++)
+    for (int32_t j=j1; j<=j2; j++)
+      val_[k++] = val[i][j];
+}
+
+Matrix Matrix::getMat(int32_t i1,int32_t j1,int32_t i2,int32_t j2) {
+  if (i2==-1) i2 = m-1;
+  if (j2==-1) j2 = n-1;
+  if (i1<0 || i2>=m || j1<0 || j2>=n || i2<i1 || j2<j1) {
+    cerr << "ERROR: Cannot get submatrix [" << i1 << ".." << i2 <<
+        "] x [" << j1 << ".." << j2 << "]" <<
+        " of a (" << m << "x" << n << ") matrix." << endl;
+    exit(0);
+  }
+  Matrix M(i2-i1+1,j2-j1+1);
+  for (int32_t i=0; i<M.m; i++)
+    for (int32_t j=0; j<M.n; j++)
+      M.val[i][j] = val[i1+i][j1+j];
+  return M;
+}
+
+void Matrix::setMat(const Matrix &M,const int32_t i1,const int32_t j1) {
+  if (i1<0 || j1<0 || i1+M.m>m || j1+M.n>n) {
+    cerr << "ERROR: Cannot set submatrix [" << i1 << ".." << i1+M.m-1 <<
+        "] x [" << j1 << ".." << j1+M.n-1 << "]" <<
+        " of a (" << m << "x" << n << ") matrix." << endl;
+    exit(0);
+  }
+  for (int32_t i=0; i<M.m; i++)
+    for (int32_t j=0; j<M.n; j++)
+      val[i1+i][j1+j] = M.val[i][j];
+}
+
+void Matrix::setVal(FLOAT s,int32_t i1,int32_t j1,int32_t i2,int32_t j2) {
+  if (i2==-1) i2 = m-1;
+  if (j2==-1) j2 = n-1;
+  if (i2<i1 || j2<j1) {
+    cerr << "ERROR in setVal: Indices must be ordered (i1<=i2, j1<=j2)." << endl;
+    exit(0);
+  }
+  for (int32_t i=i1; i<=i2; i++)
+    for (int32_t j=j1; j<=j2; j++)
+      val[i][j] = s;
+}
+
+void Matrix::setDiag(FLOAT s,int32_t i1,int32_t i2) {
+  if (i2==-1) i2 = min(m-1,n-1);
+  for (int32_t i=i1; i<=i2; i++)
+    val[i][i] = s;
+}
+
+void Matrix::zero() {
+  setVal(0);
+}
+
+Matrix Matrix::extractCols (vector<int> idx) {
+  Matrix M(m,idx.size());
+  for (int32_t j=0; j<M.n; j++)
+    if (idx[j]<n)
+      for (int32_t i=0; i<m; i++)
+        M.val[i][j] = val[i][idx[j]];
+  return M;
+}
+
+Matrix Matrix::eye (const int32_t m) {
+  Matrix M(m,m);
+  for (int32_t i=0; i<m; i++)
+    M.val[i][i] = 1;
+  return M;
+}
+
+void Matrix::eye () {
+  for (int32_t i=0; i<m; i++)
+    for (int32_t j=0; j<n; j++)
+      val[i][j] = 0;
+  for (int32_t i=0; i<min(m,n); i++)
+    val[i][i] = 1;
+}
+
+Matrix Matrix::diag (const Matrix &M) {
+  if (M.m>1 && M.n==1) {
+    Matrix D(M.m,M.m);
+    for (int32_t i=0; i<M.m; i++)
+      D.val[i][i] = M.val[i][0];
+    return D;
+  } else if (M.m==1 && M.n>1) {
+    Matrix D(M.n,M.n);
+    for (int32_t i=0; i<M.n; i++)
+      D.val[i][i] = M.val[0][i];
+    return D;
+  }
+  cout << "ERROR: Trying to create diagonal matrix from vector of size (" << M.m << "x" << M.n << ")" << endl;
+  exit(0);
+}
+
+Matrix Matrix::reshape(const Matrix &M,int32_t m_,int32_t n_) {
+  if (M.m*M.n != m_*n_) {
+    cerr << "ERROR: Trying to reshape a matrix of size (" << M.m << "x" << M.n <<
+            ") to size (" << m_ << "x" << n_ << ")" << endl;
+    exit(0);
+  }
+  Matrix M2(m_,n_);
+  for (int32_t k=0; k<m_*n_; k++) {
+    int32_t i1 = k/M.n;
+    int32_t j1 = k%M.n;
+    int32_t i2 = k/n_;
+    int32_t j2 = k%n_;
+    M2.val[i2][j2] = M.val[i1][j1];
+  }
+  return M2;
+}
+
+Matrix Matrix::rotMatX (const FLOAT &angle) {
+  FLOAT s = sin(angle);
+  FLOAT c = cos(angle);
+  Matrix R(3,3);
+  R.val[0][0] = +1;
+  R.val[1][1] = +c;
+  R.val[1][2] = -s;
+  R.val[2][1] = +s;
+  R.val[2][2] = +c;
+  return R;
+}
+
+Matrix Matrix::rotMatY (const FLOAT &angle) {
+  FLOAT s = sin(angle);
+  FLOAT c = cos(angle);
+  Matrix R(3,3);
+  R.val[0][0] = +c;
+  R.val[0][2] = +s;
+  R.val[1][1] = +1;
+  R.val[2][0] = -s;
+  R.val[2][2] = +c;
+  return R;
+}
+
+Matrix Matrix::rotMatZ (const FLOAT &angle) {
+  FLOAT s = sin(angle);
+  FLOAT c = cos(angle);
+  Matrix R(3,3);
+  R.val[0][0] = +c;
+  R.val[0][1] = -s;
+  R.val[1][0] = +s;
+  R.val[1][1] = +c;
+  R.val[2][2] = +1;
+  return R;
+}
+
+Matrix Matrix::operator+ (const Matrix &M) {
+  const Matrix &A = *this;
+  const Matrix &B = M;
+  if (A.m!=B.m || A.n!=B.n) {
+    cerr << "ERROR: Trying to add matrices of size (" << A.m << "x" << A.n <<
+        ") and (" << B.m << "x" << B.n << ")" << endl;
+    exit(0);
+  }
+  Matrix C(A.m,A.n);
+  for (int32_t i=0; i<m; i++)
+    for (int32_t j=0; j<n; j++)
+      C.val[i][j] = A.val[i][j]+B.val[i][j];
+  return C;
+}
+
+Matrix Matrix::operator- (const Matrix &M) {
+  const Matrix &A = *this;
+  const Matrix &B = M;
+  if (A.m!=B.m || A.n!=B.n) {
+    cerr << "ERROR: Trying to subtract matrices of size (" << A.m << "x" << A.n <<
+        ") and (" << B.m << "x" << B.n << ")" << endl;
+    exit(0);
+  }
+  Matrix C(A.m,A.n);
+  for (int32_t i=0; i<m; i++)
+    for (int32_t j=0; j<n; j++)
+      C.val[i][j] = A.val[i][j]-B.val[i][j];
+  return C;
+}
+
+Matrix Matrix::operator* (const Matrix &M) {
+  const Matrix &A = *this;
+  const Matrix &B = M;
+  if (A.n!=B.m) {
+    cerr << "ERROR: Trying to multiply matrices of size (" << A.m << "x" << A.n <<
+        ") and (" << B.m << "x" << B.n << ")" << endl;
+    exit(0);
+  }
+  Matrix C(A.m,B.n);
+  for (int32_t i=0; i<A.m; i++)
+    for (int32_t j=0; j<B.n; j++)
+      for (int32_t k=0; k<A.n; k++)
+        C.val[i][j] += A.val[i][k]*B.val[k][j];
+  return C;
+}
+
+Matrix Matrix::operator* (const FLOAT &s) {
+  Matrix C(m,n);
+  for (int32_t i=0; i<m; i++)
+    for (int32_t j=0; j<n; j++)
+      C.val[i][j] = val[i][j]*s;
+  return C;
+}
+
+Matrix Matrix::operator/ (const Matrix &M) {
+  const Matrix &A = *this;
+  const Matrix &B = M;
+  
+  if (A.m==B.m && A.n==B.n) {
+    Matrix C(A.m,A.n);
+    for (int32_t i=0; i<A.m; i++)
+      for (int32_t j=0; j<A.n; j++)
+        if (B.val[i][j]!=0)
+          C.val[i][j] = A.val[i][j]/B.val[i][j];
+    return C;
+    
+  } else if (A.m==B.m && B.n==1) {
+    Matrix C(A.m,A.n);
+    for (int32_t i=0; i<A.m; i++)
+      for (int32_t j=0; j<A.n; j++)
+        if (B.val[i][0]!=0)
+          C.val[i][j] = A.val[i][j]/B.val[i][0];
+    return C;
+    
+  } else if (A.n==B.n && B.m==1) {
+    Matrix C(A.m,A.n);
+    for (int32_t i=0; i<A.m; i++)
+      for (int32_t j=0; j<A.n; j++)
+        if (B.val[0][j]!=0)
+          C.val[i][j] = A.val[i][j]/B.val[0][j];
+    return C;
+    
+  } else {
+    cerr << "ERROR: Trying to divide matrices of size (" << A.m << "x" << A.n <<
+        ") and (" << B.m << "x" << B.n << ")" << endl;
+    exit(0);
+  } 
+}
+
+Matrix Matrix::operator/ (const FLOAT &s) {
+  if (fabs(s)<1e-20) {
+    cerr << "ERROR: Trying to divide by zero!" << endl;
+    exit(0);
+  }
+  Matrix C(m,n);
+  for (int32_t i=0; i<m; i++)
+    for (int32_t j=0; j<n; j++)
+      C.val[i][j] = val[i][j]/s;
+  return C;
+}
+
+Matrix Matrix::operator- () {
+  Matrix C(m,n);
+  for (int32_t i=0; i<m; i++)
+    for (int32_t j=0; j<n; j++)
+      C.val[i][j] = -val[i][j];
+  return C;
+}
+
+Matrix Matrix::operator~ () {
+  Matrix C(n,m);
+  for (int32_t i=0; i<m; i++)
+    for (int32_t j=0; j<n; j++)
+      C.val[j][i] = val[i][j];
+  return C;
+}
+
+FLOAT Matrix::l2norm () {
+  FLOAT norm = 0;
+  for (int32_t i=0; i<m; i++)
+    for (int32_t j=0; j<n; j++)
+      norm += val[i][j]*val[i][j];
+  return sqrt(norm);
+}
+
+FLOAT Matrix::mean () {
+  FLOAT mean = 0;
+  for (int32_t i=0; i<m; i++)
+    for (int32_t j=0; j<n; j++)
+      mean += val[i][j];
+  return mean/(FLOAT)(m*n);
+}
+
+Matrix Matrix::cross (const Matrix &a, const Matrix &b) {
+  if (a.m!=3 || a.n!=1 || b.m!=3 || b.n!=1) {
+    cerr << "ERROR: Cross product vectors must be of size (3x1)" << endl;
+    exit(0);
+  }
+  Matrix c(3,1);
+  c.val[0][0] = a.val[1][0]*b.val[2][0]-a.val[2][0]*b.val[1][0];
+  c.val[1][0] = a.val[2][0]*b.val[0][0]-a.val[0][0]*b.val[2][0];
+  c.val[2][0] = a.val[0][0]*b.val[1][0]-a.val[1][0]*b.val[0][0];
+  return c;
+}
+
+Matrix Matrix::inv (const Matrix &M) {
+  if (M.m!=M.n) {
+    cerr << "ERROR: Trying to invert matrix of size (" << M.m << "x" << M.n << ")" << endl;
+    exit(0);
+  }
+  Matrix A(M);
+  Matrix B = eye(M.m);
+  B.solve(A);
+  return B;
+}
+
+bool Matrix::inv () {
+  if (m!=n) {
+    cerr << "ERROR: Trying to invert matrix of size (" << m << "x" << n << ")" << endl;
+    exit(0);
+  }
+  Matrix A(*this);
+  eye();
+  solve(A);
+  return true;
+}
+
+FLOAT Matrix::det () {
+  
+  if (m != n) {
+    cerr << "ERROR: Trying to compute determinant of a matrix of size (" << m << "x" << n << ")" << endl;
+    exit(0);
+  }
+    
+  Matrix A(*this);
+  int32_t *idx = (int32_t*)malloc(m*sizeof(int32_t));
+  FLOAT d;
+  A.lu(idx,d);
+  for( int32_t i=0; i<m; i++)
+    d *= A.val[i][i];
+  free(idx);
+}
+
+bool Matrix::solve (const Matrix &M, FLOAT eps) {
+  
+  // substitutes
+  const Matrix &A = M;
+  Matrix &B       = *this;
+  
+  if (A.m != A.n || A.m != B.m || A.m<1 || B.n<1) {
+    cerr << "ERROR: Trying to eliminate matrices of size (" << A.m << "x" << A.n <<
+            ") and (" << B.m << "x" << B.n << ")" << endl;
+    exit(0);
+  }
+  
+  // index vectors for bookkeeping on the pivoting
+  int32_t* indxc = new int32_t[m];
+  int32_t* indxr = new int32_t[m];
+  int32_t* ipiv  = new int32_t[m];
+  
+  // loop variables
+  int32_t i, icol, irow, j, k, l, ll;
+  FLOAT big, dum, pivinv, temp;
+  
+  // initialize pivots to zero
+  for (j=0;j<m;j++) ipiv[j]=0;
+  
+  // main loop over the columns to be reduced
+  for (i=0;i<m;i++) {
+    
+    big=0.0;
+    
+    // search for a pivot element
+    for (j=0;j<m;j++)
+      if (ipiv[j]!=1)
+        for (k=0;k<m;k++)
+          if (ipiv[k]==0)
+            if (fabs(A.val[j][k])>=big) {
+      big=fabs(A.val[j][k]);
+      irow=j;
+      icol=k;
+            }
+    ++(ipiv[icol]);
+    
+    // We now have the pivot element, so we interchange rows, if needed, to put the pivot
+    // element on the diagonal. The columns are not physically interchanged, only relabeled.
+    if (irow != icol) {
+      for (l=0;l<m;l++) SWAP(A.val[irow][l], A.val[icol][l])
+      for (l=0;l<n;l++) SWAP(B.val[irow][l], B.val[icol][l])
+    }
+    
+    indxr[i]=irow; // We are now ready to divide the pivot row by the
+    indxc[i]=icol; // pivot element, located at irow and icol.
+    
+    // check for singularity
+    if (fabs(A.val[icol][icol]) < eps) {
+      delete[] indxc;
+      delete[] indxr;
+      delete[] ipiv;
+      return false;
+    }
+    
+    pivinv=1.0/A.val[icol][icol];
+    A.val[icol][icol]=1.0;
+    for (l=0;l<m;l++) A.val[icol][l] *= pivinv;
+    for (l=0;l<n;l++) B.val[icol][l] *= pivinv;
+    
+    // Next, we reduce the rows except for the pivot one
+    for (ll=0;ll<m;ll++)
+      if (ll!=icol) {
+      dum = A.val[ll][icol];
+      A.val[ll][icol] = 0.0;
+      for (l=0;l<m;l++) A.val[ll][l] -= A.val[icol][l]*dum;
+      for (l=0;l<n;l++) B.val[ll][l] -= B.val[icol][l]*dum;
+      }
+  }
+  
+  // This is the end of the main loop over columns of the reduction. It only remains to unscramble
+  // the solution in view of the column interchanges. We do this by interchanging pairs of
+  // columns in the reverse order that the permutation was built up.
+  for (l=m-1;l>=0;l--) {
+    if (indxr[l]!=indxc[l])
+      for (k=0;k<m;k++)
+        SWAP(A.val[k][indxr[l]], A.val[k][indxc[l]])
+  }
+  
+  // success
+  delete[] indxc;
+  delete[] indxr;
+  delete[] ipiv;
+  return true;
+}
+
+// Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a rowwise
+// permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above;
+// indx[1..n] is an output vector that records the row permutation effected by the partial
+// pivoting; d is output as ±1 depending on whether the number of row interchanges was even
+// or odd, respectively. This routine is used in combination with lubksb to solve linear equations
+// or invert a matrix.
+
+bool Matrix::lu(int32_t *idx, FLOAT &d, FLOAT eps) {
+  
+  if (m != n) {
+    cerr << "ERROR: Trying to LU decompose a matrix of size (" << m << "x" << n << ")" << endl;
+    exit(0);
+  }
+  
+  int32_t i,imax,j,k;
+  FLOAT   big,dum,sum,temp;
+  FLOAT* vv = (FLOAT*)malloc(n*sizeof(FLOAT)); // vv stores the implicit scaling of each row.
+  d = 1.0;
+  for (i=0; i<n; i++) { // Loop over rows to get the implicit scaling information.
+    big = 0.0;
+    for (j=0; j<n; j++)
+      if ((temp=fabs(val[i][j]))>big)
+        big = temp;
+    if (big == 0.0) { // No nonzero largest element.
+      free(vv);
+      return false;
+    }
+    vv[i] = 1.0/big; // Save the scaling.
+  }
+  for (j=0; j<n; j++) { // This is the loop over columns of Crout’s method.
+    for (i=0; i<j; i++) { // This is equation (2.3.12) except for i = j.
+      sum = val[i][j];
+      for (k=0; k<i; k++)
+        sum -= val[i][k]*val[k][j];
+      val[i][j] = sum;
+    }
+    big = 0.0; // Initialize the search for largest pivot element.
+    for (i=j; i<n; i++) {
+      sum = val[i][j];
+      for (k=0; k<j; k++)
+        sum -= val[i][k]*val[k][j];
+      val[i][j] = sum;
+      if ( (dum=vv[i]*fabs(sum))>=big) {
+        big  = dum;
+        imax = i;
+      }
+    }
+    if (j!=imax) { // Do we need to interchange rows?
+      for (k=0; k<n; k++) { // Yes, do so...
+        dum          = val[imax][k];
+        val[imax][k] = val[j][k];
+        val[j][k]    = dum;
+      }
+      d = -d;     // ...and change the parity of d.
+      vv[imax]=vv[j]; // Also interchange the scale factor.
+    }
+    idx[j] = imax;
+    if (j!=n-1) { // Now, finally, divide by the pivot element.
+      dum = 1.0/val[j][j];
+      for (i=j+1; i<n; i++)
+        val[i][j] *= dum;
+    }
+  } // Go back for the next column in the reduction.
+  
+  // success
+  free(vv);
+  return true;
+}
+
+// Given a matrix M/A[1..m][1..n], this routine computes its singular value decomposition, M/A =
+// U·W·V T. Thematrix U replaces a on output. The diagonal matrix of singular values W is output
+// as a vector w[1..n]. Thematrix V (not the transpose V T ) is output as v[1..n][1..n].
+void Matrix::svd(Matrix &U2,Matrix &W,Matrix &V) {
+
+  Matrix U = Matrix(*this);
+  U2 = Matrix(m,m);
+  V  = Matrix(n,n);
+
+  FLOAT* w   = (FLOAT*)malloc(n*sizeof(FLOAT));
+  FLOAT* rv1 = (FLOAT*)malloc(n*sizeof(FLOAT));
+
+  int32_t flag,i,its,j,jj,k,l,nm;
+  FLOAT   anorm,c,f,g,h,s,scale,x,y,z;
+
+  g = scale = anorm = 0.0; // Householder reduction to bidiagonal form.
+  for (i=0;i<n;i++) {
+    l = i+1;
+    rv1[i] = scale*g;
+    g = s = scale = 0.0;
+    if (i < m) {
+      for (k=i;k<m;k++) scale += fabs(U.val[k][i]);
+      if (scale) {
+        for (k=i;k<m;k++) {
+          U.val[k][i] /= scale;
+          s += U.val[k][i]*U.val[k][i];
+        }
+        f = U.val[i][i];
+        g = -SIGN(sqrt(s),f);
+        h = f*g-s;
+        U.val[i][i] = f-g;
+        for (j=l;j<n;j++) {
+          for (s=0.0,k=i;k<m;k++) s += U.val[k][i]*U.val[k][j];
+          f = s/h;
+          for (k=i;k<m;k++) U.val[k][j] += f*U.val[k][i];
+        }
+        for (k=i;k<m;k++) U.val[k][i] *= scale;
+      }
+    }
+    w[i] = scale*g;
+    g = s = scale = 0.0;
+    if (i<m && i!=n-1) {
+      for (k=l;k<n;k++) scale += fabs(U.val[i][k]);
+      if (scale) {
+        for (k=l;k<n;k++) {
+          U.val[i][k] /= scale;
+          s += U.val[i][k]*U.val[i][k];
+        }
+        f = U.val[i][l];
+        g = -SIGN(sqrt(s),f);
+        h = f*g-s;
+        U.val[i][l] = f-g;
+        for (k=l;k<n;k++) rv1[k] = U.val[i][k]/h;
+        for (j=l;j<m;j++) {
+          for (s=0.0,k=l;k<n;k++) s += U.val[j][k]*U.val[i][k];
+          for (k=l;k<n;k++) U.val[j][k] += s*rv1[k];
+        }
+        for (k=l;k<n;k++) U.val[i][k] *= scale;
+      }
+    }
+    anorm = FMAX(anorm,(fabs(w[i])+fabs(rv1[i])));
+  }
+  for (i=n-1;i>=0;i--) { // Accumulation of right-hand transformations.
+    if (i<n-1) {
+      if (g) {
+        for (j=l;j<n;j++) // Double division to avoid possible underflow.
+          V.val[j][i]=(U.val[i][j]/U.val[i][l])/g;
+        for (j=l;j<n;j++) {
+          for (s=0.0,k=l;k<n;k++) s += U.val[i][k]*V.val[k][j];
+          for (k=l;k<n;k++) V.val[k][j] += s*V.val[k][i];
+        }
+      }
+      for (j=l;j<n;j++) V.val[i][j] = V.val[j][i] = 0.0;
+    }
+    V.val[i][i] = 1.0;
+    g = rv1[i];
+    l = i;
+  }
+  for (i=IMIN(m,n)-1;i>=0;i--) { // Accumulation of left-hand transformations.
+    l = i+1;
+    g = w[i];
+    for (j=l;j<n;j++) U.val[i][j] = 0.0;
+    if (g) {
+      g = 1.0/g;
+      for (j=l;j<n;j++) {
+        for (s=0.0,k=l;k<m;k++) s += U.val[k][i]*U.val[k][j];
+        f = (s/U.val[i][i])*g;
+        for (k=i;k<m;k++) U.val[k][j] += f*U.val[k][i];
+      }
+      for (j=i;j<m;j++) U.val[j][i] *= g;
+    } else for (j=i;j<m;j++) U.val[j][i]=0.0;
+    ++U.val[i][i];
+  }
+  for (k=n-1;k>=0;k--) { // Diagonalization of the bidiagonal form: Loop over singular values,
+    for (its=0;its<30;its++) { // and over allowed iterations.
+      flag = 1;
+      for (l=k;l>=0;l--) { // Test for splitting.
+        nm = l-1;
+        if ((FLOAT)(fabs(rv1[l])+anorm) == anorm) { flag = 0; break; }
+        if ((FLOAT)(fabs( w[nm])+anorm) == anorm) { break; }
+      }
+      if (flag) {
+        c = 0.0; // Cancellation of rv1[l], if l > 1.
+        s = 1.0;
+        for (i=l;i<=k;i++) {
+          f = s*rv1[i];
+          rv1[i] = c*rv1[i];
+          if ((FLOAT)(fabs(f)+anorm) == anorm) break;
+          g = w[i];
+          h = pythag(f,g);
+          w[i] = h;
+          h = 1.0/h;
+          c = g*h;
+          s = -f*h;
+          for (j=0;j<m;j++) {
+            y = U.val[j][nm];
+            z = U.val[j][i];
+            U.val[j][nm] = y*c+z*s;
+            U.val[j][i]  = z*c-y*s;
+          }
+        }
+      }
+      z = w[k];
+      if (l==k) { // Convergence.
+        if (z<0.0) { // Singular value is made nonnegative.
+          w[k] = -z;
+          for (j=0;j<n;j++) V.val[j][k] = -V.val[j][k];
+        }
+        break;
+      }
+      if (its == 29)
+        cerr << "ERROR in SVD: No convergence in 30 iterations" << endl;
+      x = w[l]; // Shift from bottom 2-by-2 minor.
+      nm = k-1;
+      y = w[nm];
+      g = rv1[nm];
+      h = rv1[k];
+      f = ((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y);
+      g = pythag(f,1.0);
+      f = ((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x;
+      c = s = 1.0; // Next QR transformation:
+      for (j=l;j<=nm;j++) {
+        i = j+1;
+        g = rv1[i];
+        y = w[i];
+        h = s*g;
+        g = c*g;
+        z = pythag(f,h);
+        rv1[j] = z;
+        c = f/z;
+        s = h/z;
+        f = x*c+g*s;
+        g = g*c-x*s;
+        h = y*s;
+        y *= c;
+        for (jj=0;jj<n;jj++) {
+          x = V.val[jj][j];
+          z = V.val[jj][i];
+          V.val[jj][j] = x*c+z*s;
+          V.val[jj][i] = z*c-x*s;
+        }
+        z = pythag(f,h);
+        w[j] = z; // Rotation can be arbitrary if z = 0.
+        if (z) {
+          z = 1.0/z;
+          c = f*z;
+          s = h*z;
+        }
+        f = c*g+s*y;
+        x = c*y-s*g;
+        for (jj=0;jj<m;jj++) {
+          y = U.val[jj][j];
+          z = U.val[jj][i];
+          U.val[jj][j] = y*c+z*s;
+          U.val[jj][i] = z*c-y*s;
+        }
+      }
+      rv1[l] = 0.0;
+      rv1[k] = f;
+      w[k] = x;
+    }
+  }
+  
+  // sort singular values and corresponding columns of u and v
+  // by decreasing magnitude. Also, signs of corresponding columns are
+  // flipped so as to maximize the number of positive elements.
+  int32_t s2,inc=1;
+  FLOAT   sw;
+  FLOAT* su = (FLOAT*)malloc(m*sizeof(FLOAT));
+  FLOAT* sv = (FLOAT*)malloc(n*sizeof(FLOAT));
+  do { inc *= 3; inc++; } while (inc <= n);
+  do {
+    inc /= 3;
+    for (i=inc;i<n;i++) {
+      sw = w[i];
+      for (k=0;k<m;k++) su[k] = U.val[k][i];
+      for (k=0;k<n;k++) sv[k] = V.val[k][i];
+      j = i;
+      while (w[j-inc] < sw) {
+        w[j] = w[j-inc];
+        for (k=0;k<m;k++) U.val[k][j] = U.val[k][j-inc];
+        for (k=0;k<n;k++) V.val[k][j] = V.val[k][j-inc];
+        j -= inc;
+        if (j < inc) break;
+      }
+      w[j] = sw;
+      for (k=0;k<m;k++) U.val[k][j] = su[k];
+      for (k=0;k<n;k++) V.val[k][j] = sv[k];
+    }
+  } while (inc > 1);
+  for (k=0;k<n;k++) { // flip signs
+    s2=0;
+    for (i=0;i<m;i++) if (U.val[i][k] < 0.0) s2++;
+    for (j=0;j<n;j++) if (V.val[j][k] < 0.0) s2++;
+    if (s2 > (m+n)/2) {
+      for (i=0;i<m;i++) U.val[i][k] = -U.val[i][k];
+      for (j=0;j<n;j++) V.val[j][k] = -V.val[j][k];
+    }
+  }
+
+  // create vector and copy singular values
+  W = Matrix(min(m,n),1,w);
+  
+  // extract mxm submatrix U
+  U2.setMat(U.getMat(0,0,m-1,min(m-1,n-1)),0,0);
+
+  // release temporary memory
+  free(w);
+  free(rv1);
+  free(su);
+  free(sv);
+}
+
+ostream& operator<< (ostream& out,const Matrix& M) {
+  if (M.m==0 || M.n==0) {
+    out << "[empty matrix]";
+  } else {
+    char buffer[1024];
+    for (int32_t i=0; i<M.m; i++) {
+      for (int32_t j=0; j<M.n; j++) {
+        sprintf(buffer,"%12.7f ",M.val[i][j]);
+        out << buffer;
+      }
+      if (i<M.m-1)
+        out << endl;
+    }
+  }
+  return out;
+}
+
+void Matrix::allocateMemory (const int32_t m_,const int32_t n_) {
+  m = abs(m_); n = abs(n_);
+  if (m==0 || n==0) {
+    val = 0;
+    return;
+  }
+  val    = (FLOAT**)malloc(m*sizeof(FLOAT*));
+  val[0] = (FLOAT*)calloc(m*n,sizeof(FLOAT));
+  for(int32_t i=1; i<m; i++)
+    val[i] = val[i-1]+n;
+}
+
+void Matrix::releaseMemory () {
+  if (val!=0) {
+    free(val[0]);
+    free(val);
+  }
+}
+
+FLOAT Matrix::pythag(FLOAT a,FLOAT b) {
+  FLOAT absa,absb;
+  absa = fabs(a);
+  absb = fabs(b);
+  if (absa > absb)
+    return absa*sqrt(1.0+SQR(absb/absa));
+  else
+    return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+SQR(absa/absb)));
+}
+
diff --git a/cv-node/lib/elas/matrix.h b/cv-node/lib/elas/matrix.h
new file mode 100644
index 0000000000000000000000000000000000000000..5ec306cf193450fc14d03ead87d6ec444a3d8f3e
--- /dev/null
+++ b/cv-node/lib/elas/matrix.h
@@ -0,0 +1,133 @@
+/*
+Copyright 2011. All rights reserved.
+Institute of Measurement and Control Systems
+Karlsruhe Institute of Technology, Germany
+
+This file is part of libviso2.
+Authors: Andreas Geiger
+
+libviso2 is free software; you can redistribute it and/or modify it under the
+terms of the GNU General Public License as published by the Free Software
+Foundation; either version 2 of the License, or any later version.
+
+libviso2 is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along with
+libviso2; if not, write to the Free Software Foundation, Inc., 51 Franklin
+Street, Fifth Floor, Boston, MA 02110-1301, USA 
+*/
+
+#ifndef MATRIX_H
+#define MATRIX_H
+
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+#include <iostream>
+#include <vector>
+
+#ifndef _MSC_VER
+  #include <stdint.h>
+#else
+  typedef __int8            int8_t;
+  typedef __int16           int16_t;
+  typedef __int32           int32_t;
+  typedef __int64           int64_t;
+  typedef unsigned __int8   uint8_t;
+  typedef unsigned __int16  uint16_t;
+  typedef unsigned __int32  uint32_t;
+  typedef unsigned __int64  uint64_t;
+#endif
+
+#define endll endl << endl // double end line definition
+
+typedef double FLOAT;      // double precision
+//typedef float  FLOAT;    // single precision
+
+class Matrix {
+
+public:
+
+  // constructor / deconstructor
+  Matrix ();                                                  // init empty 0x0 matrix
+  Matrix (const int32_t m,const int32_t n);                   // init empty mxn matrix
+  Matrix (const int32_t m,const int32_t n,const FLOAT* val_); // init mxn matrix with values from array 'val'
+  Matrix (const Matrix &M);                                   // creates deepcopy of M
+  ~Matrix ();
+
+  // assignment operator, copies contents of M
+  Matrix& operator= (const Matrix &M);
+
+  // copies submatrix of M into array 'val', default values copy whole row/column/matrix
+  void getData(FLOAT* val_,int32_t i1=0,int32_t j1=0,int32_t i2=-1,int32_t j2=-1);
+
+  // set or get submatrices of current matrix
+  Matrix getMat(int32_t i1,int32_t j1,int32_t i2=-1,int32_t j2=-1);
+  void   setMat(const Matrix &M,const int32_t i,const int32_t j);
+
+  // set sub-matrix to scalar (default 0), -1 as end replaces whole row/column/matrix
+  void setVal(FLOAT s,int32_t i1=0,int32_t j1=0,int32_t i2=-1,int32_t j2=-1);
+
+  // set (part of) diagonal to scalar, -1 as end replaces whole diagonal
+  void setDiag(FLOAT s,int32_t i1=0,int32_t i2=-1);
+
+  // clear matrix
+  void zero();
+  
+  // extract columns with given index
+  Matrix extractCols (std::vector<int> idx);
+
+  // create identity matrix
+  static Matrix eye (const int32_t m);
+  void          eye ();
+
+  // create diagonal matrix with nx1 or 1xn matrix M as elements
+  static Matrix diag(const Matrix &M);
+  
+  // returns the m-by-n matrix whose elements are taken column-wise from M
+  static Matrix reshape(const Matrix &M,int32_t m,int32_t n);
+
+  // create 3x3 rotation matrices (convention: http://en.wikipedia.org/wiki/Rotation_matrix)
+  static Matrix rotMatX(const FLOAT &angle);
+  static Matrix rotMatY(const FLOAT &angle);
+  static Matrix rotMatZ(const FLOAT &angle);
+
+  // simple arithmetic operations
+  Matrix  operator+ (const Matrix &M); // add matrix
+  Matrix  operator- (const Matrix &M); // subtract matrix
+  Matrix  operator* (const Matrix &M); // multiply with matrix
+  Matrix  operator* (const FLOAT &s);  // multiply with scalar
+  Matrix  operator/ (const Matrix &M); // divide elementwise by matrix (or vector)
+  Matrix  operator/ (const FLOAT &s);  // divide by scalar
+  Matrix  operator- ();                // negative matrix
+  Matrix  operator~ ();                // transpose
+  FLOAT   l2norm ();                   // euclidean norm (vectors) / frobenius norm (matrices)
+  FLOAT   mean ();                     // mean of all elements in matrix
+
+  // complex arithmetic operations
+  static Matrix cross (const Matrix &a, const Matrix &b);    // cross product of two vectors
+  static Matrix inv (const Matrix &M);                       // invert matrix M
+  bool   inv ();                                             // invert this matrix
+  FLOAT  det ();                                             // returns determinant of matrix
+  bool   solve (const Matrix &M,FLOAT eps=1e-20);            // solve linear system M*x=B, replaces *this and M
+  bool   lu(int32_t *idx, FLOAT &d, FLOAT eps=1e-20);        // replace *this by lower upper decomposition
+  void   svd(Matrix &U,Matrix &W,Matrix &V);                 // singular value decomposition *this = U*diag(W)*V^T
+
+  // print matrix to stream
+  friend std::ostream& operator<< (std::ostream& out,const Matrix& M);
+
+  // direct data access
+  FLOAT   **val;
+  int32_t   m,n;
+
+private:
+
+  void allocateMemory (const int32_t m_,const int32_t n_);
+  void releaseMemory ();
+  inline FLOAT pythag(FLOAT a,FLOAT b);
+
+};
+
+#endif // MATRIX_H
diff --git a/cv-node/lib/elas/triangle.cpp b/cv-node/lib/elas/triangle.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..8de1557bc5c7192530d4594c03d0ef9e90eef72c
--- /dev/null
+++ b/cv-node/lib/elas/triangle.cpp
@@ -0,0 +1,8635 @@
+/*****************************************************************************/
+/*                                                                           */
+/*      888888888        ,o,                          / 888                  */
+/*         888    88o88o  "    o8888o  88o8888o o88888o 888  o88888o         */
+/*         888    888    888       88b 888  888 888 888 888 d888  88b        */
+/*         888    888    888  o88^o888 888  888 "88888" 888 8888oo888        */
+/*         888    888    888 C888  888 888  888  /      888 q888             */
+/*         888    888    888  "88o^888 888  888 Cb      888  "88oooo"        */
+/*                                              "8oo8D                       */
+/*                                                                           */
+/*  A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.      */
+/*  (triangle.c)                                                             */
+/*                                                                           */
+/*  Version 1.6                                                              */
+/*  July 28, 2005                                                            */
+/*                                                                           */
+/*  Copyright 1993, 1995, 1997, 1998, 2002, 2005                             */
+/*  Jonathan Richard Shewchuk                                                */
+/*  2360 Woolsey #H                                                          */
+/*  Berkeley, California  94705-1927                                         */
+/*  jrs@cs.berkeley.edu                                                      */
+/*                                                                           */
+/*  Modified by Andreas Geiger, 2011                                         */
+/*                                                                           */
+/*  This program may be freely redistributed under the condition that the    */
+/*    copyright notices (including this entire header and the copyright      */
+/*    notice printed when the `-h' switch is selected) are not removed, and  */
+/*    no compensation is received.  Private, research, and institutional     */
+/*    use is free.  You may distribute modified versions of this code UNDER  */
+/*    THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE   */
+/*    SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE   */
+/*    AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR    */
+/*    NOTICE IS GIVEN OF THE MODIFICATIONS.  Distribution of this code as    */
+/*    part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT  */
+/*    WITH THE AUTHOR.  (If you are not directly supplying this code to a    */
+/*    customer, and you are instead telling them how they can obtain it for  */
+/*    free, then you are not required to make any arrangement with me.)      */
+/*                                                                           */
+/*  Hypertext instructions for Triangle are available on the Web at          */
+/*                                                                           */
+/*      http://www.cs.cmu.edu/~quake/triangle.html                           */
+/*                                                                           */
+/*  Disclaimer:  Neither I nor Carnegie Mellon warrant this code in any way  */
+/*    whatsoever.  This code is provided "as-is".  Use at your own risk.     */
+/*                                                                           */
+/*  Some of the references listed below are marked with an asterisk.  [*]    */
+/*    These references are available for downloading from the Web page       */
+/*                                                                           */
+/*      http://www.cs.cmu.edu/~quake/triangle.research.html                  */
+/*                                                                           */
+/*  Three papers discussing aspects of Triangle are available.  A short      */
+/*    overview appears in "Triangle:  Engineering a 2D Quality Mesh          */
+/*    Generator and Delaunay Triangulator," in Applied Computational         */
+/*    Geometry:  Towards Geometric Engineering, Ming C. Lin and Dinesh       */
+/*    Manocha, editors, Lecture Notes in Computer Science volume 1148,       */
+/*    pages 203-222, Springer-Verlag, Berlin, May 1996 (from the First ACM   */
+/*    Workshop on Applied Computational Geometry).  [*]                      */
+/*                                                                           */
+/*    The algorithms are discussed in the greatest detail in "Delaunay       */
+/*    Refinement Algorithms for Triangular Mesh Generation," Computational   */
+/*    Geometry:  Theory and Applications 22(1-3):21-74, May 2002.  [*]       */
+/*                                                                           */
+/*    More detail about the data structures may be found in my dissertation: */
+/*    "Delaunay Refinement Mesh Generation," Ph.D. thesis, Technical Report  */
+/*    CMU-CS-97-137, School of Computer Science, Carnegie Mellon University, */
+/*    Pittsburgh, Pennsylvania, 18 May 1997.  [*]                            */
+/*                                                                           */
+/*  Triangle was created as part of the Quake Project in the School of       */
+/*    Computer Science at Carnegie Mellon University.  For further           */
+/*    information, see Hesheng Bao, Jacobo Bielak, Omar Ghattas, Loukas F.   */
+/*    Kallivokas, David R. O'Hallaron, Jonathan R. Shewchuk, and Jifeng Xu,  */
+/*    "Large-scale Simulation of Elastic Wave Propagation in Heterogeneous   */
+/*    Media on Parallel Computers," Computer Methods in Applied Mechanics    */
+/*    and Engineering 152(1-2):85-102, 22 January 1998.                      */
+/*                                                                           */
+/*  Triangle's Delaunay refinement algorithm for quality mesh generation is  */
+/*    a hybrid of one due to Jim Ruppert, "A Delaunay Refinement Algorithm   */
+/*    for Quality 2-Dimensional Mesh Generation," Journal of Algorithms      */
+/*    18(3):548-585, May 1995 [*], and one due to L. Paul Chew, "Guaranteed- */
+/*    Quality Mesh Generation for Curved Surfaces," Proceedings of the Ninth */
+/*    Annual Symposium on Computational Geometry (San Diego, California),    */
+/*    pages 274-280, Association for Computing Machinery, May 1993,          */
+/*    http://portal.acm.org/citation.cfm?id=161150 .                         */
+/*                                                                           */
+/*  The Delaunay refinement algorithm has been modified so that it meshes    */
+/*    domains with small input angles well, as described in Gary L. Miller,  */
+/*    Steven E. Pav, and Noel J. Walkington, "When and Why Ruppert's         */
+/*    Algorithm Works," Twelfth International Meshing Roundtable, pages      */
+/*    91-102, Sandia National Laboratories, September 2003.  [*]             */
+/*                                                                           */
+/*  My implementation of the divide-and-conquer and incremental Delaunay     */
+/*    triangulation algorithms follows closely the presentation of Guibas    */
+/*    and Stolfi, even though I use a triangle-based data structure instead  */
+/*    of their quad-edge data structure.  (In fact, I originally implemented */
+/*    Triangle using the quad-edge data structure, but the switch to a       */
+/*    triangle-based data structure sped Triangle by a factor of two.)  The  */
+/*    mesh manipulation primitives and the two aforementioned Delaunay       */
+/*    triangulation algorithms are described by Leonidas J. Guibas and Jorge */
+/*    Stolfi, "Primitives for the Manipulation of General Subdivisions and   */
+/*    the Computation of Voronoi Diagrams," ACM Transactions on Graphics     */
+/*    4(2):74-123, April 1985, http://portal.acm.org/citation.cfm?id=282923 .*/
+/*                                                                           */
+/*  Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai   */
+/*    Lee and Bruce J. Schachter, "Two Algorithms for Constructing the       */
+/*    Delaunay Triangulation," International Journal of Computer and         */
+/*    Information Science 9(3):219-242, 1980.  Triangle's improvement of the */
+/*    divide-and-conquer algorithm by alternating between vertical and       */
+/*    horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and-  */
+/*    Conquer Algorithm for Constructing Delaunay Triangulations,"           */
+/*    Algorithmica 2(2):137-151, 1987.                                       */
+/*                                                                           */
+/*  The incremental insertion algorithm was first proposed by C. L. Lawson,  */
+/*    "Software for C1 Surface Interpolation," in Mathematical Software III, */
+/*    John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977.     */
+/*    For point location, I use the algorithm of Ernst P. Mucke, Isaac       */
+/*    Saias, and Binhai Zhu, "Fast Randomized Point Location Without         */
+/*    Preprocessing in Two- and Three-Dimensional Delaunay Triangulations,"  */
+/*    Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
+/*    ACM, May 1996.  [*]  If I were to randomize the order of vertex        */
+/*    insertion (I currently don't bother), their result combined with the   */
+/*    result of Kenneth L. Clarkson and Peter W. Shor, "Applications of      */
+/*    Random Sampling in Computational Geometry II," Discrete &              */
+/*    Computational Geometry 4(1):387-421, 1989, would yield an expected     */
+/*    O(n^{4/3}) bound on running time.                                      */
+/*                                                                           */
+/*  The O(n log n) sweepline Delaunay triangulation algorithm is taken from  */
+/*    Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams",          */
+/*    Algorithmica 2(2):153-174, 1987.  A random sample of edges on the      */
+/*    boundary of the triangulation are maintained in a splay tree for the   */
+/*    purpose of point location.  Splay trees are described by Daniel        */
+/*    Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
+/*    Trees," Journal of the ACM 32(3):652-686, July 1985,                   */
+/*    http://portal.acm.org/citation.cfm?id=3835 .                           */
+/*                                                                           */
+/*  The algorithms for exact computation of the signs of determinants are    */
+/*    described in Jonathan Richard Shewchuk, "Adaptive Precision Floating-  */
+/*    Point Arithmetic and Fast Robust Geometric Predicates," Discrete &     */
+/*    Computational Geometry 18(3):305-363, October 1997.  (Also available   */
+/*    as Technical Report CMU-CS-96-140, School of Computer Science,         */
+/*    Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996.)  [*]  */
+/*    An abbreviated version appears as Jonathan Richard Shewchuk, "Robust   */
+/*    Adaptive Floating-Point Geometric Predicates," Proceedings of the      */
+/*    Twelfth Annual Symposium on Computational Geometry, ACM, May 1996. [*] */
+/*    Many of the ideas for my exact arithmetic routines originate with      */
+/*    Douglas M. Priest, "Algorithms for Arbitrary Precision Floating Point  */
+/*    Arithmetic," Tenth Symposium on Computer Arithmetic, pp. 132-143, IEEE */
+/*    Computer Society Press, 1991.  [*]  Many of the ideas for the correct  */
+/*    evaluation of the signs of determinants are taken from Steven Fortune  */
+/*    and Christopher J. Van Wyk, "Efficient Exact Arithmetic for Computa-   */
+/*    tional Geometry," Proceedings of the Ninth Annual Symposium on         */
+/*    Computational Geometry, ACM, pp. 163-172, May 1993, and from Steven    */
+/*    Fortune, "Numerical Stability of Algorithms for 2D Delaunay Triangu-   */
+/*    lations," International Journal of Computational Geometry & Applica-   */
+/*    tions 5(1-2):193-213, March-June 1995.                                 */
+/*                                                                           */
+/*  The method of inserting new vertices off-center (not precisely at the    */
+/*    circumcenter of every poor-quality triangle) is from Alper Ungor,      */
+/*    "Off-centers:  A New Type of Steiner Points for Computing Size-Optimal */
+/*    Quality-Guaranteed Delaunay Triangulations," Proceedings of LATIN      */
+/*    2004 (Buenos Aires, Argentina), April 2004.                            */
+/*                                                                           */
+/*  For definitions of and results involving Delaunay triangulations,        */
+/*    constrained and conforming versions thereof, and other aspects of      */
+/*    triangular mesh generation, see the excellent survey by Marshall Bern  */
+/*    and David Eppstein, "Mesh Generation and Optimal Triangulation," in    */
+/*    Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang,         */
+/*    editors, World Scientific, Singapore, pp. 23-90, 1992.  [*]            */
+/*                                                                           */
+/*  The time for incrementally adding PSLG (planar straight line graph)      */
+/*    segments to create a constrained Delaunay triangulation is probably    */
+/*    O(t^2) per segment in the worst case and O(t) per segment in the       */
+/*    common case, where t is the number of triangles that intersect the     */
+/*    segment before it is inserted.  This doesn't count point location,     */
+/*    which can be much more expensive.  I could improve this to O(d log d)  */
+/*    time, but d is usually quite small, so it's not worth the bother.      */
+/*    (This note does not apply when the -s switch is used, invoking a       */
+/*    different method is used to insert segments.)                          */
+/*                                                                           */
+/*  The time for deleting a vertex from a Delaunay triangulation is O(d^2)   */
+/*    in the worst case and O(d) in the common case, where d is the degree   */
+/*    of the vertex being deleted.  I could improve this to O(d log d) time, */
+/*    but d is usually quite small, so it's not worth the bother.            */
+/*                                                                           */
+/*  Ruppert's Delaunay refinement algorithm typically generates triangles    */
+/*    at a linear rate (constant time per triangle) after the initial        */
+/*    triangulation is formed.  There may be pathological cases where        */
+/*    quadratic time is required, but these never arise in practice.         */
+/*                                                                           */
+/*  The geometric predicates (circumcenter calculations, segment             */
+/*    intersection formulae, etc.) appear in my "Lecture Notes on Geometric  */
+/*    Robustness" at http://www.cs.berkeley.edu/~jrs/mesh .                  */
+/*                                                                           */
+/*  If you make any improvements to this code, please please please let me   */
+/*    know, so that I may obtain the improvements.  Even if you don't change */
+/*    the code, I'd still love to hear what it's being used for.             */
+/*                                                                           */
+/*****************************************************************************/
+
+/* Maximum number of characters in a file name (including the null).         */
+
+#define FILENAMESIZE 2048
+
+/* Maximum number of characters in a line read from a file (including the    */
+/*   null).                                                                  */
+
+#define INPUTLINESIZE 1024
+
+/* For efficiency, a variety of data structures are allocated in bulk.  The  */
+/*   following constants determine how many of each structure is allocated   */
+/*   at once.                                                                */
+
+#define TRIPERBLOCK 4092           /* Number of triangles allocated at once. */
+#define SUBSEGPERBLOCK 508       /* Number of subsegments allocated at once. */
+#define VERTEXPERBLOCK 4092         /* Number of vertices allocated at once. */
+#define VIRUSPERBLOCK 1020   /* Number of virus triangles allocated at once. */
+#define BADSUBSEGPERBLOCK 252 /* Number of encroached subsegments allocated at once. */
+#define BADTRIPERBLOCK 4092 /* Number of skinny triangles allocated at once. */
+#define FLIPSTACKERPERBLOCK 252 /* Number of flipped triangles allocated at once. */
+#define SPLAYNODEPERBLOCK 508 /* Number of splay tree nodes allocated at once. */
+
+/* The vertex types.   A DEADVERTEX has been deleted entirely.  An           */
+/*   UNDEADVERTEX is not part of the mesh, but is written to the output      */
+/*   .node file and affects the node indexing in the other output files.     */
+
+#define INPUTVERTEX 0
+#define SEGMENTVERTEX 1
+#define FREEVERTEX 2
+#define DEADVERTEX -32768
+#define UNDEADVERTEX -32767
+
+/* Two constants for algorithms based on random sampling.  Both constants    */
+/*   have been chosen empirically to optimize their respective algorithms.   */
+
+/* Used for the point location scheme of Mucke, Saias, and Zhu, to decide    */
+/*   how large a random sample of triangles to inspect.                      */
+
+#define SAMPLEFACTOR 11
+
+/* Used in Fortune's sweepline Delaunay algorithm to determine what fraction */
+/*   of boundary edges should be maintained in the splay tree for point      */
+/*   location on the front.                                                  */
+
+#define SAMPLERATE 10
+
+/* A number that speaks for itself, every kissable digit.                    */
+
+#define PI 3.141592653589793238462643383279502884197169399375105820974944592308
+
+/* Another fave.                                                             */
+
+#define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732
+
+/* And here's one for those of you who are intimidated by math.              */
+
+#define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+
+#include "triangle.h"
+
+/* Labels that signify the result of point location.  The result of a        */
+/*   search indicates that the point falls in the interior of a triangle, on */
+/*   an edge, on a vertex, or outside the mesh.                              */
+
+enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE};
+
+/* Labels that signify the result of vertex insertion.  The result indicates */
+/*   that the vertex was inserted with complete success, was inserted but    */
+/*   encroaches upon a subsegment, was not inserted because it lies on a     */
+/*   segment, or was not inserted because another vertex occupies the same   */
+/*   location.                                                               */
+
+enum insertvertexresult {SUCCESSFULVERTEX, ENCROACHINGVERTEX, VIOLATINGVERTEX,
+                         DUPLICATEVERTEX};
+
+/* Labels that signify the result of direction finding.  The result          */
+/*   indicates that a segment connecting the two query points falls within   */
+/*   the direction triangle, along the left edge of the direction triangle,  */
+/*   or along the right edge of the direction triangle.                      */
+
+enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR};
+
+/*****************************************************************************/
+/*                                                                           */
+/*  The basic mesh data structures                                           */
+/*                                                                           */
+/*  There are three:  vertices, triangles, and subsegments (abbreviated      */
+/*  `subseg').  These three data structures, linked by pointers, comprise    */
+/*  the mesh.  A vertex simply represents a mesh vertex and its properties.  */
+/*  A triangle is a triangle.  A subsegment is a special data structure used */
+/*  to represent an impenetrable edge of the mesh (perhaps on the outer      */
+/*  boundary, on the boundary of a hole, or part of an internal boundary     */
+/*  separating two triangulated regions).  Subsegments represent boundaries, */
+/*  defined by the user, that triangles may not lie across.                  */
+/*                                                                           */
+/*  A triangle consists of a list of three vertices, a list of three         */
+/*  adjoining triangles, a list of three adjoining subsegments (when         */
+/*  segments exist), an arbitrary number of optional user-defined            */
+/*  floating-point attributes, and an optional area constraint.  The latter  */
+/*  is an upper bound on the permissible area of each triangle in a region,  */
+/*  used for mesh refinement.                                                */
+/*                                                                           */
+/*  For a triangle on a boundary of the mesh, some or all of the neighboring */
+/*  triangles may not be present.  For a triangle in the interior of the     */
+/*  mesh, often no neighboring subsegments are present.  Such absent         */
+/*  triangles and subsegments are never represented by NULL pointers; they   */
+/*  are represented by two special records:  `dummytri', the triangle that   */
+/*  fills "outer space", and `dummysub', the omnipresent subsegment.         */
+/*  `dummytri' and `dummysub' are used for several reasons; for instance,    */
+/*  they can be dereferenced and their contents examined without violating   */
+/*  protected memory.                                                        */
+/*                                                                           */
+/*  However, it is important to understand that a triangle includes other    */
+/*  information as well.  The pointers to adjoining vertices, triangles, and */
+/*  subsegments are ordered in a way that indicates their geometric relation */
+/*  to each other.  Furthermore, each of these pointers contains orientation */
+/*  information.  Each pointer to an adjoining triangle indicates which face */
+/*  of that triangle is contacted.  Similarly, each pointer to an adjoining  */
+/*  subsegment indicates which side of that subsegment is contacted, and how */
+/*  the subsegment is oriented relative to the triangle.                     */
+/*                                                                           */
+/*  The data structure representing a subsegment may be thought to be        */
+/*  abutting the edge of one or two triangle data structures:  either        */
+/*  sandwiched between two triangles, or resting against one triangle on an  */
+/*  exterior boundary or hole boundary.                                      */
+/*                                                                           */
+/*  A subsegment consists of a list of four vertices--the vertices of the    */
+/*  subsegment, and the vertices of the segment it is a part of--a list of   */
+/*  two adjoining subsegments, and a list of two adjoining triangles.  One   */
+/*  of the two adjoining triangles may not be present (though there should   */
+/*  always be one), and neighboring subsegments might not be present.        */
+/*  Subsegments also store a user-defined integer "boundary marker".         */
+/*  Typically, this integer is used to indicate what boundary conditions are */
+/*  to be applied at that location in a finite element simulation.           */
+/*                                                                           */
+/*  Like triangles, subsegments maintain information about the relative      */
+/*  orientation of neighboring objects.                                      */
+/*                                                                           */
+/*  Vertices are relatively simple.  A vertex is a list of floating-point    */
+/*  numbers, starting with the x, and y coordinates, followed by an          */
+/*  arbitrary number of optional user-defined floating-point attributes,     */
+/*  followed by an integer boundary marker.  During the segment insertion    */
+/*  phase, there is also a pointer from each vertex to a triangle that may   */
+/*  contain it.  Each pointer is not always correct, but when one is, it     */
+/*  speeds up segment insertion.  These pointers are assigned values once    */
+/*  at the beginning of the segment insertion phase, and are not used or     */
+/*  updated except during this phase.  Edge flipping during segment          */
+/*  insertion will render some of them incorrect.  Hence, don't rely upon    */
+/*  them for anything.                                                       */
+/*                                                                           */
+/*  Other than the exception mentioned above, vertices have no information   */
+/*  about what triangles, subfacets, or subsegments they are linked to.      */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  Handles                                                                  */
+/*                                                                           */
+/*  The oriented triangle (`otri') and oriented subsegment (`osub') data     */
+/*  structures defined below do not themselves store any part of the mesh.   */
+/*  The mesh itself is made of `triangle's, `subseg's, and `vertex's.        */
+/*                                                                           */
+/*  Oriented triangles and oriented subsegments will usually be referred to  */
+/*  as "handles."  A handle is essentially a pointer into the mesh; it       */
+/*  allows you to "hold" one particular part of the mesh.  Handles are used  */
+/*  to specify the regions in which one is traversing and modifying the mesh.*/
+/*  A single `triangle' may be held by many handles, or none at all.  (The   */
+/*  latter case is not a memory leak, because the triangle is still          */
+/*  connected to other triangles in the mesh.)                               */
+/*                                                                           */
+/*  An `otri' is a handle that holds a triangle.  It holds a specific edge   */
+/*  of the triangle.  An `osub' is a handle that holds a subsegment.  It     */
+/*  holds either the left or right side of the subsegment.                   */
+/*                                                                           */
+/*  Navigation about the mesh is accomplished through a set of mesh          */
+/*  manipulation primitives, further below.  Many of these primitives take   */
+/*  a handle and produce a new handle that holds the mesh near the first     */
+/*  handle.  Other primitives take two handles and glue the corresponding    */
+/*  parts of the mesh together.  The orientation of the handles is           */
+/*  important.  For instance, when two triangles are glued together by the   */
+/*  bond() primitive, they are glued at the edges on which the handles lie.  */
+/*                                                                           */
+/*  Because vertices have no information about which triangles they are      */
+/*  attached to, I commonly represent a vertex by use of a handle whose      */
+/*  origin is the vertex.  A single handle can simultaneously represent a    */
+/*  triangle, an edge, and a vertex.                                         */
+/*                                                                           */
+/*****************************************************************************/
+
+/* The triangle data structure.  Each triangle contains three pointers to    */
+/*   adjoining triangles, plus three pointers to vertices, plus three        */
+/*   pointers to subsegments (declared below; these pointers are usually     */
+/*   `dummysub').  It may or may not also contain user-defined attributes    */
+/*   and/or a floating-point "area constraint."  It may also contain extra   */
+/*   pointers for nodes, when the user asks for high-order elements.         */
+/*   Because the size and structure of a `triangle' is not decided until     */
+/*   runtime, I haven't simply declared the type `triangle' as a struct.     */
+
+typedef float **triangle;            /* Really:  typedef triangle *triangle   */
+
+/* An oriented triangle:  includes a pointer to a triangle and orientation.  */
+/*   The orientation denotes an edge of the triangle.  Hence, there are      */
+/*   three possible orientations.  By convention, each edge always points    */
+/*   counterclockwise about the corresponding triangle.                      */
+
+struct otri {
+  triangle *tri;
+  int orient;                                         /* Ranges from 0 to 2. */
+};
+
+/* The subsegment data structure.  Each subsegment contains two pointers to  */
+/*   adjoining subsegments, plus four pointers to vertices, plus two         */
+/*   pointers to adjoining triangles, plus one boundary marker, plus one     */
+/*   segment number.                                                         */
+
+typedef float **subseg;                  /* Really:  typedef subseg *subseg   */
+
+/* An oriented subsegment:  includes a pointer to a subsegment and an        */
+/*   orientation.  The orientation denotes a side of the edge.  Hence, there */
+/*   are two possible orientations.  By convention, the edge is always       */
+/*   directed so that the "side" denoted is the right side of the edge.      */
+
+struct osub {
+  subseg *ss;
+  int ssorient;                                       /* Ranges from 0 to 1. */
+};
+
+/* The vertex data structure.  Each vertex is actually an array of floats.    */
+/*   The number of floats is unknown until runtime.  An integer boundary      */
+/*   marker, and sometimes a pointer to a triangle, is appended after the    */
+/*   floats.                                                                  */
+
+typedef float *vertex;
+
+/* A queue used to store encroached subsegments.  Each subsegment's vertices */
+/*   are stored so that we can check whether a subsegment is still the same. */
+
+struct badsubseg {
+  subseg encsubseg;                             /* An encroached subsegment. */
+  vertex subsegorg, subsegdest;                         /* Its two vertices. */
+};
+
+/* A queue used to store bad triangles.  The key is the square of the cosine */
+/*   of the smallest angle of the triangle.  Each triangle's vertices are    */
+/*   stored so that one can check whether a triangle is still the same.      */
+
+struct badtriang {
+  triangle poortri;                       /* A skinny or too-large triangle. */
+  float key;                             /* cos^2 of smallest (apical) angle. */
+  vertex triangorg, triangdest, triangapex;           /* Its three vertices. */
+  struct badtriang *nexttriang;             /* Pointer to next bad triangle. */
+};
+
+/* A stack of triangles flipped during the most recent vertex insertion.     */
+/*   The stack is used to undo the vertex insertion if the vertex encroaches */
+/*   upon a subsegment.                                                      */
+
+struct flipstacker {
+  triangle flippedtri;                       /* A recently flipped triangle. */
+  struct flipstacker *prevflip;               /* Previous flip in the stack. */
+};
+
+/* A node in a heap used to store events for the sweepline Delaunay          */
+/*   algorithm.  Nodes do not point directly to their parents or children in */
+/*   the heap.  Instead, each node knows its position in the heap, and can   */
+/*   look up its parent and children in a separate array.  The `eventptr'    */
+/*   points either to a `vertex' or to a triangle (in encoded format, so     */
+/*   that an orientation is included).  In the latter case, the origin of    */
+/*   the oriented triangle is the apex of a "circle event" of the sweepline  */
+/*   algorithm.  To distinguish site events from circle events, all circle   */
+/*   events are given an invalid (smaller than `xmin') x-coordinate `xkey'.  */
+
+struct event {
+  float xkey, ykey;                              /* Coordinates of the event. */
+  int *eventptr;      /* Can be a vertex or the location of a circle event. */
+  int heapposition;              /* Marks this event's position in the heap. */
+};
+
+/* A node in the splay tree.  Each node holds an oriented ghost triangle     */
+/*   that represents a boundary edge of the growing triangulation.  When a   */
+/*   circle event covers two boundary edges with a triangle, so that they    */
+/*   are no longer boundary edges, those edges are not immediately deleted   */
+/*   from the tree; rather, they are lazily deleted when they are next       */
+/*   encountered.  (Since only a random sample of boundary edges are kept    */
+/*   in the tree, lazy deletion is faster.)  `keydest' is used to verify     */
+/*   that a triangle is still the same as when it entered the splay tree; if */
+/*   it has been rotated (due to a circle event), it no longer represents a  */
+/*   boundary edge and should be deleted.                                    */
+
+struct splaynode {
+  struct otri keyedge;                     /* Lprev of an edge on the front. */
+  vertex keydest;           /* Used to verify that splay node is still live. */
+  struct splaynode *lchild, *rchild;              /* Children in splay tree. */
+};
+
+/* A type used to allocate memory.  firstblock is the first block of items.  */
+/*   nowblock is the block from which items are currently being allocated.   */
+/*   nextitem points to the next slab of free memory for an item.            */
+/*   deaditemstack is the head of a linked list (stack) of deallocated items */
+/*   that can be recycled.  unallocateditems is the number of items that     */
+/*   remain to be allocated from nowblock.                                   */
+/*                                                                           */
+/* Traversal is the process of walking through the entire list of items, and */
+/*   is separate from allocation.  Note that a traversal will visit items on */
+/*   the "deaditemstack" stack as well as live items.  pathblock points to   */
+/*   the block currently being traversed.  pathitem points to the next item  */
+/*   to be traversed.  pathitemsleft is the number of items that remain to   */
+/*   be traversed in pathblock.                                              */
+/*                                                                           */
+/* alignbytes determines how new records should be aligned in memory.        */
+/*   itembytes is the length of a record in bytes (after rounding up).       */
+/*   itemsperblock is the number of items allocated at once in a single      */
+/*   block.  itemsfirstblock is the number of items in the first block,      */
+/*   which can vary from the others.  items is the number of currently       */
+/*   allocated items.  maxitems is the maximum number of items that have     */
+/*   been allocated at once; it is the current number of items plus the      */
+/*   number of records kept on deaditemstack.                                */
+
+struct memorypool {
+  int **firstblock, **nowblock;
+  int *nextitem;
+  int *deaditemstack;
+  int **pathblock;
+  int *pathitem;
+  int alignbytes;
+  int itembytes;
+  int itemsperblock;
+  int itemsfirstblock;
+  long items, maxitems;
+  int unallocateditems;
+  int pathitemsleft;
+};
+
+
+/* Global constants.                                                         */
+
+float splitter;       /* Used to split float factors for exact multiplication. */
+float epsilon;                             /* Floating-point machine epsilon. */
+float resulterrbound;
+float ccwerrboundA, ccwerrboundB, ccwerrboundC;
+float iccerrboundA, iccerrboundB, iccerrboundC;
+float o3derrboundA, o3derrboundB, o3derrboundC;
+
+/* Random number seed is not constant, but I've made it global anyway.       */
+
+unsigned long long randomseed;                     /* Current random number seed. */
+
+
+/* Mesh data structure.  Triangle operates on only one mesh, but the mesh    */
+/*   structure is used (instead of global variables) to allow reentrancy.    */
+
+struct mesh {
+
+/* Variables used to allocate memory for triangles, subsegments, vertices,   */
+/*   viri (triangles being eaten), encroached segments, bad (skinny or too   */
+/*   large) triangles, and splay tree nodes.                                 */
+
+  struct memorypool triangles;
+  struct memorypool subsegs;
+  struct memorypool vertices;
+  struct memorypool viri;
+  struct memorypool badsubsegs;
+  struct memorypool badtriangles;
+  struct memorypool flipstackers;
+  struct memorypool splaynodes;
+
+/* Variables that maintain the bad triangle queues.  The queues are          */
+/*   ordered from 4095 (highest priority) to 0 (lowest priority).            */
+
+  struct badtriang *queuefront[4096];
+  struct badtriang *queuetail[4096];
+  int nextnonemptyq[4096];
+  int firstnonemptyq;
+
+/* Variable that maintains the stack of recently flipped triangles.          */
+
+  struct flipstacker *lastflip;
+
+/* Other variables. */
+
+  float xmin, xmax, ymin, ymax;                            /* x and y bounds. */
+  float xminextreme;      /* Nonexistent x value used as a flag in sweepline. */
+  int invertices;                               /* Number of input vertices. */
+  int inelements;                              /* Number of input triangles. */
+  int insegments;                               /* Number of input segments. */
+  int holes;                                       /* Number of input holes. */
+  int regions;                                   /* Number of input regions. */
+  int undeads;    /* Number of input vertices that don't appear in the mesh. */
+  long edges;                                     /* Number of output edges. */
+  int mesh_dim;                                /* Dimension (ought to be 2). */
+  int nextras;                           /* Number of attributes per vertex. */
+  int eextras;                         /* Number of attributes per triangle. */
+  long hullsize;                          /* Number of edges in convex hull. */
+  int steinerleft;                 /* Number of Steiner points not yet used. */
+  int vertexmarkindex;         /* Index to find boundary marker of a vertex. */
+  int vertex2triindex;     /* Index to find a triangle adjacent to a vertex. */
+  int highorderindex;  /* Index to find extra nodes for high-order elements. */
+  int elemattribindex;            /* Index to find attributes of a triangle. */
+  int areaboundindex;             /* Index to find area bound of a triangle. */
+  int checksegments;         /* Are there segments in the triangulation yet? */
+  int checkquality;                  /* Has quality triangulation begun yet? */
+  int readnodefile;                           /* Has a .node file been read? */
+  long samples;              /* Number of random samples for point location. */
+
+  long incirclecount;                 /* Number of incircle tests performed. */
+  long counterclockcount;     /* Number of counterclockwise tests performed. */
+  long orient3dcount;           /* Number of 3D orientation tests performed. */
+  long hyperbolacount;      /* Number of right-of-hyperbola tests performed. */
+  long circumcentercount;  /* Number of circumcenter calculations performed. */
+  long circletopcount;       /* Number of circle top calculations performed. */
+
+/* Triangular bounding box vertices.                                         */
+
+  vertex infvertex1, infvertex2, infvertex3;
+
+/* Pointer to the `triangle' that occupies all of "outer space."             */
+
+  triangle *dummytri;
+  triangle *dummytribase;    /* Keep base address so we can free() it later. */
+
+/* Pointer to the omnipresent subsegment.  Referenced by any triangle or     */
+/*   subsegment that isn't really connected to a subsegment at that          */
+/*   location.                                                               */
+
+  subseg *dummysub;
+  subseg *dummysubbase;      /* Keep base address so we can free() it later. */
+
+/* Pointer to a recently visited triangle.  Improves point location if       */
+/*   proximate vertices are inserted sequentially.                           */
+
+  struct otri recenttri;
+
+};                                                  /* End of `struct mesh'. */
+
+
+/* Data structure for command line switches and file names.  This structure  */
+/*   is used (instead of global variables) to allow reentrancy.              */
+
+struct behavior {
+
+/* Switches for the triangulator.                                            */
+/*   poly: -p switch.  refine: -r switch.                                    */
+/*   quality: -q switch.                                                     */
+/*     minangle: minimum angle bound, specified after -q switch.             */
+/*     goodangle: cosine squared of minangle.                                */
+/*     offconstant: constant used to place off-center Steiner points.        */
+/*   vararea: -a switch without number.                                      */
+/*   fixedarea: -a switch with number.                                       */
+/*     maxarea: maximum area bound, specified after -a switch.               */
+/*   usertest: -u switch.                                                    */
+/*   regionattrib: -A switch.  convex: -c switch.                            */
+/*   weighted: 1 for -w switch, 2 for -W switch.  jettison: -j switch        */
+/*   firstnumber: inverse of -z switch.  All items are numbered starting     */
+/*     from `firstnumber'.                                                   */
+/*   edgesout: -e switch.  voronoi: -v switch.                               */
+/*   neighbors: -n switch.  geomview: -g switch.                             */
+/*   nobound: -B switch.  nopolywritten: -P switch.                          */
+/*   nonodewritten: -N switch.  noelewritten: -E switch.                     */
+/*   noiterationnum: -I switch.  noholes: -O switch.                         */
+/*   noexact: -X switch.                                                     */
+/*   order: element order, specified after -o switch.                        */
+/*   nobisect: count of how often -Y switch is selected.                     */
+/*   steiner: maximum number of Steiner points, specified after -S switch.   */
+/*   incremental: -i switch.  sweepline: -F switch.                          */
+/*   dwyer: inverse of -l switch.                                            */
+/*   splitseg: -s switch.                                                    */
+/*   conformdel: -D switch.  docheck: -C switch.                             */
+/*   quiet: -Q switch.  verbose: count of how often -V switch is selected.   */
+/*   usesegments: -p, -r, -q, or -c switch; determines whether segments are  */
+/*     used at all.                                                          */
+/*                                                                           */
+/* Read the instructions to find out the meaning of these switches.          */
+
+  int poly, refine, quality, vararea, fixedarea, usertest;
+  int regionattrib, convex, weighted, jettison;
+  int firstnumber;
+  int edgesout, voronoi, neighbors, geomview;
+  int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum;
+  int noholes, noexact, conformdel;
+  int incremental, sweepline, dwyer;
+  int splitseg;
+  int docheck;
+  int quiet, verbose;
+  int usesegments;
+  int order;
+  int nobisect;
+  int steiner;
+  float minangle, goodangle, offconstant;
+  float maxarea;
+
+/* Variables for file names.                                                 */
+
+};                                              /* End of `struct behavior'. */
+
+
+/*****************************************************************************/
+/*                                                                           */
+/*  Mesh manipulation primitives.  Each triangle contains three pointers to  */
+/*  other triangles, with orientations.  Each pointer points not to the      */
+/*  first byte of a triangle, but to one of the first three bytes of a       */
+/*  triangle.  It is necessary to extract both the triangle itself and the   */
+/*  orientation.  To save memory, I keep both pieces of information in one   */
+/*  pointer.  To make this possible, I assume that all triangles are aligned */
+/*  to four-byte boundaries.  The decode() routine below decodes a pointer,  */
+/*  extracting an orientation (in the range 0 to 2) and a pointer to the     */
+/*  beginning of a triangle.  The encode() routine compresses a pointer to a */
+/*  triangle and an orientation into a single pointer.  My assumptions that  */
+/*  triangles are four-byte-aligned and that the `unsigned long' type is     */
+/*  long enough to hold a pointer are two of the few kludges in this program.*/
+/*                                                                           */
+/*  Subsegments are manipulated similarly.  A pointer to a subsegment        */
+/*  carries both an address and an orientation in the range 0 to 1.          */
+/*                                                                           */
+/*  The other primitives take an oriented triangle or oriented subsegment,   */
+/*  and return an oriented triangle or oriented subsegment or vertex; or     */
+/*  they change the connections in the data structure.                       */
+/*                                                                           */
+/*  Below, triangles and subsegments are denoted by their vertices.  The     */
+/*  triangle abc has origin (org) a, destination (dest) b, and apex (apex)   */
+/*  c.  These vertices occur in counterclockwise order about the triangle.   */
+/*  The handle abc may simultaneously denote vertex a, edge ab, and triangle */
+/*  abc.                                                                     */
+/*                                                                           */
+/*  Similarly, the subsegment ab has origin (sorg) a and destination (sdest) */
+/*  b.  If ab is thought to be directed upward (with b directly above a),    */
+/*  then the handle ab is thought to grasp the right side of ab, and may     */
+/*  simultaneously denote vertex a and edge ab.                              */
+/*                                                                           */
+/*  An asterisk (*) denotes a vertex whose identity is unknown.              */
+/*                                                                           */
+/*  Given this notation, a partial list of mesh manipulation primitives      */
+/*  follows.                                                                 */
+/*                                                                           */
+/*                                                                           */
+/*  For triangles:                                                           */
+/*                                                                           */
+/*  sym:  Find the abutting triangle; same edge.                             */
+/*  sym(abc) -> ba*                                                          */
+/*                                                                           */
+/*  lnext:  Find the next edge (counterclockwise) of a triangle.             */
+/*  lnext(abc) -> bca                                                        */
+/*                                                                           */
+/*  lprev:  Find the previous edge (clockwise) of a triangle.                */
+/*  lprev(abc) -> cab                                                        */
+/*                                                                           */
+/*  onext:  Find the next edge counterclockwise with the same origin.        */
+/*  onext(abc) -> ac*                                                        */
+/*                                                                           */
+/*  oprev:  Find the next edge clockwise with the same origin.               */
+/*  oprev(abc) -> a*b                                                        */
+/*                                                                           */
+/*  dnext:  Find the next edge counterclockwise with the same destination.   */
+/*  dnext(abc) -> *ba                                                        */
+/*                                                                           */
+/*  dprev:  Find the next edge clockwise with the same destination.          */
+/*  dprev(abc) -> cb*                                                        */
+/*                                                                           */
+/*  rnext:  Find the next edge (counterclockwise) of the adjacent triangle.  */
+/*  rnext(abc) -> *a*                                                        */
+/*                                                                           */
+/*  rprev:  Find the previous edge (clockwise) of the adjacent triangle.     */
+/*  rprev(abc) -> b**                                                        */
+/*                                                                           */
+/*  org:  Origin          dest:  Destination          apex:  Apex            */
+/*  org(abc) -> a         dest(abc) -> b              apex(abc) -> c         */
+/*                                                                           */
+/*  bond:  Bond two triangles together at the resepective handles.           */
+/*  bond(abc, bad)                                                           */
+/*                                                                           */
+/*                                                                           */
+/*  For subsegments:                                                         */
+/*                                                                           */
+/*  ssym:  Reverse the orientation of a subsegment.                          */
+/*  ssym(ab) -> ba                                                           */
+/*                                                                           */
+/*  spivot:  Find adjoining subsegment with the same origin.                 */
+/*  spivot(ab) -> a*                                                         */
+/*                                                                           */
+/*  snext:  Find next subsegment in sequence.                                */
+/*  snext(ab) -> b*                                                          */
+/*                                                                           */
+/*  sorg:  Origin                      sdest:  Destination                   */
+/*  sorg(ab) -> a                      sdest(ab) -> b                        */
+/*                                                                           */
+/*  sbond:  Bond two subsegments together at the respective origins.         */
+/*  sbond(ab, ac)                                                            */
+/*                                                                           */
+/*                                                                           */
+/*  For interacting tetrahedra and subfacets:                                */
+/*                                                                           */
+/*  tspivot:  Find a subsegment abutting a triangle.                         */
+/*  tspivot(abc) -> ba                                                       */
+/*                                                                           */
+/*  stpivot:  Find a triangle abutting a subsegment.                         */
+/*  stpivot(ab) -> ba*                                                       */
+/*                                                                           */
+/*  tsbond:  Bond a triangle to a subsegment.                                */
+/*  tsbond(abc, ba)                                                          */
+/*                                                                           */
+/*****************************************************************************/
+
+/********* Mesh manipulation primitives begin here                   *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/* Fast lookup arrays to speed some of the mesh manipulation primitives.     */
+
+int plus1mod3[3] = {1, 2, 0};
+int minus1mod3[3] = {2, 0, 1};
+
+/********* Primitives for triangles                                  *********/
+/*                                                                           */
+/*                                                                           */
+
+/* decode() converts a pointer to an oriented triangle.  The orientation is  */
+/*   extracted from the two least significant bits of the pointer.           */
+
+#define decode(ptr, otri)                                                     \
+  (otri).orient = (int) ((unsigned long long) (ptr) & (unsigned long long) 3l);         \
+  (otri).tri = (triangle *)                                                   \
+                  ((unsigned long long) (ptr) ^ (unsigned long long) (otri).orient)
+
+/* encode() compresses an oriented triangle into a single pointer.  It       */
+/*   relies on the assumption that all triangles are aligned to four-byte    */
+/*   boundaries, so the two least significant bits of (otri).tri are zero.   */
+
+#define encode(otri)                                                          \
+  (triangle) ((unsigned long long) (otri).tri | (unsigned long long) (otri).orient)
+
+/* The following handle manipulation primitives are all described by Guibas  */
+/*   and Stolfi.  However, Guibas and Stolfi use an edge-based data          */
+/*   structure, whereas I use a triangle-based data structure.               */
+
+/* sym() finds the abutting triangle, on the same edge.  Note that the edge  */
+/*   direction is necessarily reversed, because the handle specified by an   */
+/*   oriented triangle is directed counterclockwise around the triangle.     */
+
+#define sym(otri1, otri2)                                                     \
+  ptr = (otri1).tri[(otri1).orient];                                          \
+  decode(ptr, otri2);
+
+#define symself(otri)                                                         \
+  ptr = (otri).tri[(otri).orient];                                            \
+  decode(ptr, otri);
+
+/* lnext() finds the next edge (counterclockwise) of a triangle.             */
+
+#define lnext(otri1, otri2)                                                   \
+  (otri2).tri = (otri1).tri;                                                  \
+  (otri2).orient = plus1mod3[(otri1).orient]
+
+#define lnextself(otri)                                                       \
+  (otri).orient = plus1mod3[(otri).orient]
+
+/* lprev() finds the previous edge (clockwise) of a triangle.                */
+
+#define lprev(otri1, otri2)                                                   \
+  (otri2).tri = (otri1).tri;                                                  \
+  (otri2).orient = minus1mod3[(otri1).orient]
+
+#define lprevself(otri)                                                       \
+  (otri).orient = minus1mod3[(otri).orient]
+
+/* onext() spins counterclockwise around a vertex; that is, it finds the     */
+/*   next edge with the same origin in the counterclockwise direction.  This */
+/*   edge is part of a different triangle.                                   */
+
+#define onext(otri1, otri2)                                                   \
+  lprev(otri1, otri2);                                                        \
+  symself(otri2);
+
+#define onextself(otri)                                                       \
+  lprevself(otri);                                                            \
+  symself(otri);
+
+/* oprev() spins clockwise around a vertex; that is, it finds the next edge  */
+/*   with the same origin in the clockwise direction.  This edge is part of  */
+/*   a different triangle.                                                   */
+
+#define oprev(otri1, otri2)                                                   \
+  sym(otri1, otri2);                                                          \
+  lnextself(otri2);
+
+#define oprevself(otri)                                                       \
+  symself(otri);                                                              \
+  lnextself(otri);
+
+/* dnext() spins counterclockwise around a vertex; that is, it finds the     */
+/*   next edge with the same destination in the counterclockwise direction.  */
+/*   This edge is part of a different triangle.                              */
+
+#define dnext(otri1, otri2)                                                   \
+  sym(otri1, otri2);                                                          \
+  lprevself(otri2);
+
+#define dnextself(otri)                                                       \
+  symself(otri);                                                              \
+  lprevself(otri);
+
+/* dprev() spins clockwise around a vertex; that is, it finds the next edge  */
+/*   with the same destination in the clockwise direction.  This edge is     */
+/*   part of a different triangle.                                           */
+
+#define dprev(otri1, otri2)                                                   \
+  lnext(otri1, otri2);                                                        \
+  symself(otri2);
+
+#define dprevself(otri)                                                       \
+  lnextself(otri);                                                            \
+  symself(otri);
+
+/* rnext() moves one edge counterclockwise about the adjacent triangle.      */
+/*   (It's best understood by reading Guibas and Stolfi.  It involves        */
+/*   changing triangles twice.)                                              */
+
+#define rnext(otri1, otri2)                                                   \
+  sym(otri1, otri2);                                                          \
+  lnextself(otri2);                                                           \
+  symself(otri2);
+
+#define rnextself(otri)                                                       \
+  symself(otri);                                                              \
+  lnextself(otri);                                                            \
+  symself(otri);
+
+/* rprev() moves one edge clockwise about the adjacent triangle.             */
+/*   (It's best understood by reading Guibas and Stolfi.  It involves        */
+/*   changing triangles twice.)                                              */
+
+#define rprev(otri1, otri2)                                                   \
+  sym(otri1, otri2);                                                          \
+  lprevself(otri2);                                                           \
+  symself(otri2);
+
+#define rprevself(otri)                                                       \
+  symself(otri);                                                              \
+  lprevself(otri);                                                            \
+  symself(otri);
+
+/* These primitives determine or set the origin, destination, or apex of a   */
+/* triangle.                                                                 */
+
+#define org(otri, vertexptr)                                                  \
+  vertexptr = (vertex) (otri).tri[plus1mod3[(otri).orient] + 3]
+
+#define dest(otri, vertexptr)                                                 \
+  vertexptr = (vertex) (otri).tri[minus1mod3[(otri).orient] + 3]
+
+#define apex(otri, vertexptr)                                                 \
+  vertexptr = (vertex) (otri).tri[(otri).orient + 3]
+
+#define setorg(otri, vertexptr)                                               \
+  (otri).tri[plus1mod3[(otri).orient] + 3] = (triangle) vertexptr
+
+#define setdest(otri, vertexptr)                                              \
+  (otri).tri[minus1mod3[(otri).orient] + 3] = (triangle) vertexptr
+
+#define setapex(otri, vertexptr)                                              \
+  (otri).tri[(otri).orient + 3] = (triangle) vertexptr
+
+/* Bond two triangles together.                                              */
+
+#define bond(otri1, otri2)                                                    \
+  (otri1).tri[(otri1).orient] = encode(otri2);                                \
+  (otri2).tri[(otri2).orient] = encode(otri1)
+
+/* Dissolve a bond (from one side).  Note that the other triangle will still */
+/*   think it's connected to this triangle.  Usually, however, the other     */
+/*   triangle is being deleted entirely, or bonded to another triangle, so   */
+/*   it doesn't matter.                                                      */
+
+#define dissolve(otri)                                                        \
+  (otri).tri[(otri).orient] = (triangle) m->dummytri
+
+/* Copy an oriented triangle.                                                */
+
+#define otricopy(otri1, otri2)                                                \
+  (otri2).tri = (otri1).tri;                                                  \
+  (otri2).orient = (otri1).orient
+
+/* Test for equality of oriented triangles.                                  */
+
+#define otriequal(otri1, otri2)                                               \
+  (((otri1).tri == (otri2).tri) &&                                            \
+   ((otri1).orient == (otri2).orient))
+
+/* Primitives to infect or cure a triangle with the virus.  These rely on    */
+/*   the assumption that all subsegments are aligned to four-byte boundaries.*/
+
+#define infect(otri)                                                          \
+  (otri).tri[6] = (triangle)                                                  \
+                    ((unsigned long long) (otri).tri[6] | (unsigned long long) 2l)
+
+#define uninfect(otri)                                                        \
+  (otri).tri[6] = (triangle)                                                  \
+                    ((unsigned long long) (otri).tri[6] & ~ (unsigned long long) 2l)
+
+/* Test a triangle for viral infection.                                      */
+
+#define infected(otri)                                                        \
+  (((unsigned long long) (otri).tri[6] & (unsigned long long) 2l) != 0l)
+
+/* Check or set a triangle's attributes.                                     */
+
+#define elemattribute(otri, attnum)                                           \
+  ((float *) (otri).tri)[m->elemattribindex + (attnum)]
+
+#define setelemattribute(otri, attnum, value)                                 \
+  ((float *) (otri).tri)[m->elemattribindex + (attnum)] = value
+
+/* Check or set a triangle's maximum area bound.                             */
+
+#define areabound(otri)  ((float *) (otri).tri)[m->areaboundindex]
+
+#define setareabound(otri, value)                                             \
+  ((float *) (otri).tri)[m->areaboundindex] = value
+
+/* Check or set a triangle's deallocation.  Its second pointer is set to     */
+/*   NULL to indicate that it is not allocated.  (Its first pointer is used  */
+/*   for the stack of dead items.)  Its fourth pointer (its first vertex)    */
+/*   is set to NULL in case a `badtriang' structure points to it.            */
+
+#define deadtri(tria)  ((tria)[1] == (triangle) NULL)
+
+#define killtri(tria)                                                         \
+  (tria)[1] = (triangle) NULL;                                                \
+  (tria)[3] = (triangle) NULL
+
+/********* Primitives for subsegments                                *********/
+/*                                                                           */
+/*                                                                           */
+
+/* sdecode() converts a pointer to an oriented subsegment.  The orientation  */
+/*   is extracted from the least significant bit of the pointer.  The two    */
+/*   least significant bits (one for orientation, one for viral infection)   */
+/*   are masked out to produce the real pointer.                             */
+
+#define sdecode(sptr, osub)                                                   \
+  (osub).ssorient = (int) ((unsigned long long) (sptr) & (unsigned long long) 1l);      \
+  (osub).ss = (subseg *)                                                      \
+              ((unsigned long long) (sptr) & ~ (unsigned long long) 3l)
+
+/* sencode() compresses an oriented subsegment into a single pointer.  It    */
+/*   relies on the assumption that all subsegments are aligned to two-byte   */
+/*   boundaries, so the least significant bit of (osub).ss is zero.          */
+
+#define sencode(osub)                                                         \
+  (subseg) ((unsigned long long) (osub).ss | (unsigned long long) (osub).ssorient)
+
+/* ssym() toggles the orientation of a subsegment.                           */
+
+#define ssym(osub1, osub2)                                                    \
+  (osub2).ss = (osub1).ss;                                                    \
+  (osub2).ssorient = 1 - (osub1).ssorient
+
+#define ssymself(osub)                                                        \
+  (osub).ssorient = 1 - (osub).ssorient
+
+/* spivot() finds the other subsegment (from the same segment) that shares   */
+/*   the same origin.                                                        */
+
+#define spivot(osub1, osub2)                                                  \
+  sptr = (osub1).ss[(osub1).ssorient];                                        \
+  sdecode(sptr, osub2)
+
+#define spivotself(osub)                                                      \
+  sptr = (osub).ss[(osub).ssorient];                                          \
+  sdecode(sptr, osub)
+
+/* snext() finds the next subsegment (from the same segment) in sequence;    */
+/*   one whose origin is the input subsegment's destination.                 */
+
+#define snext(osub1, osub2)                                                   \
+  sptr = (osub1).ss[1 - (osub1).ssorient];                                    \
+  sdecode(sptr, osub2)
+
+#define snextself(osub)                                                       \
+  sptr = (osub).ss[1 - (osub).ssorient];                                      \
+  sdecode(sptr, osub)
+
+/* These primitives determine or set the origin or destination of a          */
+/*   subsegment or the segment that includes it.                             */
+
+#define sorg(osub, vertexptr)                                                 \
+  vertexptr = (vertex) (osub).ss[2 + (osub).ssorient]
+
+#define sdest(osub, vertexptr)                                                \
+  vertexptr = (vertex) (osub).ss[3 - (osub).ssorient]
+
+#define setsorg(osub, vertexptr)                                              \
+  (osub).ss[2 + (osub).ssorient] = (subseg) vertexptr
+
+#define setsdest(osub, vertexptr)                                             \
+  (osub).ss[3 - (osub).ssorient] = (subseg) vertexptr
+
+#define segorg(osub, vertexptr)                                               \
+  vertexptr = (vertex) (osub).ss[4 + (osub).ssorient]
+
+#define segdest(osub, vertexptr)                                              \
+  vertexptr = (vertex) (osub).ss[5 - (osub).ssorient]
+
+#define setsegorg(osub, vertexptr)                                            \
+  (osub).ss[4 + (osub).ssorient] = (subseg) vertexptr
+
+#define setsegdest(osub, vertexptr)                                           \
+  (osub).ss[5 - (osub).ssorient] = (subseg) vertexptr
+
+/* These primitives read or set a boundary marker.  Boundary markers are     */
+/*   used to hold user-defined tags for setting boundary conditions in       */
+/*   finite element solvers.                                                 */
+
+#define mark(osub)  (* (int *) ((osub).ss + 8))
+
+#define setmark(osub, value)                                                  \
+  * (int *) ((osub).ss + 8) = value
+
+/* Bond two subsegments together.                                            */
+
+#define sbond(osub1, osub2)                                                   \
+  (osub1).ss[(osub1).ssorient] = sencode(osub2);                              \
+  (osub2).ss[(osub2).ssorient] = sencode(osub1)
+
+/* Dissolve a subsegment bond (from one side).  Note that the other          */
+/*   subsegment will still think it's connected to this subsegment.          */
+
+#define sdissolve(osub)                                                       \
+  (osub).ss[(osub).ssorient] = (subseg) m->dummysub
+
+/* Copy a subsegment.                                                        */
+
+#define subsegcopy(osub1, osub2)                                              \
+  (osub2).ss = (osub1).ss;                                                    \
+  (osub2).ssorient = (osub1).ssorient
+
+/* Test for equality of subsegments.                                         */
+
+#define subsegequal(osub1, osub2)                                             \
+  (((osub1).ss == (osub2).ss) &&                                              \
+   ((osub1).ssorient == (osub2).ssorient))
+
+/* Check or set a subsegment's deallocation.  Its second pointer is set to   */
+/*   NULL to indicate that it is not allocated.  (Its first pointer is used  */
+/*   for the stack of dead items.)  Its third pointer (its first vertex)     */
+/*   is set to NULL in case a `badsubseg' structure points to it.            */
+
+#define deadsubseg(sub)  ((sub)[1] == (subseg) NULL)
+
+#define killsubseg(sub)                                                       \
+  (sub)[1] = (subseg) NULL;                                                   \
+  (sub)[2] = (subseg) NULL
+
+/********* Primitives for interacting triangles and subsegments      *********/
+/*                                                                           */
+/*                                                                           */
+
+/* tspivot() finds a subsegment abutting a triangle.                         */
+
+#define tspivot(otri, osub)                                                   \
+  sptr = (subseg) (otri).tri[6 + (otri).orient];                              \
+  sdecode(sptr, osub)
+
+/* stpivot() finds a triangle abutting a subsegment.  It requires that the   */
+/*   variable `ptr' of type `triangle' be defined.                           */
+
+#define stpivot(osub, otri)                                                   \
+  ptr = (triangle) (osub).ss[6 + (osub).ssorient];                            \
+  decode(ptr, otri)
+
+/* Bond a triangle to a subsegment.                                          */
+
+#define tsbond(otri, osub)                                                    \
+  (otri).tri[6 + (otri).orient] = (triangle) sencode(osub);                   \
+  (osub).ss[6 + (osub).ssorient] = (subseg) encode(otri)
+
+/* Dissolve a bond (from the triangle side).                                 */
+
+#define tsdissolve(otri)                                                      \
+  (otri).tri[6 + (otri).orient] = (triangle) m->dummysub
+
+/* Dissolve a bond (from the subsegment side).                               */
+
+#define stdissolve(osub)                                                      \
+  (osub).ss[6 + (osub).ssorient] = (subseg) m->dummytri
+
+/********* Primitives for vertices                                   *********/
+/*                                                                           */
+/*                                                                           */
+
+#define vertexmark(vx)  ((int *) (vx))[m->vertexmarkindex]
+
+#define setvertexmark(vx, value)                                              \
+  ((int *) (vx))[m->vertexmarkindex] = value
+
+#define vertextype(vx)  ((int *) (vx))[m->vertexmarkindex + 1]
+
+#define setvertextype(vx, value)                                              \
+  ((int *) (vx))[m->vertexmarkindex + 1] = value
+
+#define vertex2tri(vx)  ((triangle *) (vx))[m->vertex2triindex]
+
+#define setvertex2tri(vx, value)                                              \
+  ((triangle *) (vx))[m->vertex2triindex] = value
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Mesh manipulation primitives end here                     *********/
+
+/********* Memory allocation and program exit wrappers begin here    *********/
+/**                                                                         **/
+/**                                                                         **/
+
+void triexit(int status)
+{
+  exit(status);
+}
+
+int *trimalloc(int size)
+{
+  int *memptr;
+
+  memptr = (int *) malloc((unsigned int) size);
+  if (memptr == (int *) NULL) {
+    printf("Error:  Out of memory.\n");
+    triexit(1);
+  }
+  return(memptr);
+}
+
+void trifree(int *memptr)
+{
+  free(memptr);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Memory allocation and program exit wrappers end here      *********/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  internalerror()   Ask the user to send me the defective product.  Exit.  */
+/*                                                                           */
+/*****************************************************************************/
+
+void internalerror()
+{
+  printf("  Please report this bug to jrs@cs.berkeley.edu\n");
+  printf("  Include the message above, your input data set, and the exact\n");
+  printf("    command line you used to run Triangle.\n");
+  triexit(1);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  parsecommandline()   Read the command line, identify switches, and set   */
+/*                       up options and file names.                          */
+/*                                                                           */
+/*****************************************************************************/
+
+void parsecommandline(int argc, char **argv, struct behavior *b) {
+  int i, j, k;
+  char workstring[FILENAMESIZE];
+
+  b->poly = b->refine = b->quality = 0;
+  b->vararea = b->fixedarea = b->usertest = 0;
+  b->regionattrib = b->convex = b->weighted = b->jettison = 0;
+  b->firstnumber = 1;
+  b->edgesout = b->voronoi = b->neighbors = b->geomview = 0;
+  b->nobound = b->nopolywritten = b->nonodewritten = b->noelewritten = 0;
+  b->noiterationnum = 0;
+  b->noholes = b->noexact = 0;
+  b->incremental = b->sweepline = 0;
+  b->dwyer = 1;
+  b->splitseg = 0;
+  b->docheck = 0;
+  b->nobisect = 0;
+  b->conformdel = 0;
+  b->steiner = -1;
+  b->order = 1;
+  b->minangle = 0.0;
+  b->maxarea = -1.0;
+  b->quiet = b->verbose = 0;
+
+  for (i = 0; i < argc; i++) {
+    for (j = 0; argv[i][j] != '\0'; j++) {
+      if (argv[i][j] == 'p') {
+        b->poly = 1;
+      }
+      if (argv[i][j] == 'A') {
+        b->regionattrib = 1;
+      }
+      if (argv[i][j] == 'c') {
+        b->convex = 1;
+      }
+      if (argv[i][j] == 'w') {
+        b->weighted = 1;
+      }
+      if (argv[i][j] == 'W') {
+        b->weighted = 2;
+      }
+      if (argv[i][j] == 'j') {
+        b->jettison = 1;
+      }
+      if (argv[i][j] == 'z') {
+        b->firstnumber = 0;
+      }
+      if (argv[i][j] == 'e') {
+        b->edgesout = 1;
+      }
+      if (argv[i][j] == 'v') {
+        b->voronoi = 1;
+      }
+      if (argv[i][j] == 'n') {
+        b->neighbors = 1;
+      }
+      if (argv[i][j] == 'g') {
+        b->geomview = 1;
+      }
+      if (argv[i][j] == 'B') {
+        b->nobound = 1;
+      }
+      if (argv[i][j] == 'P') {
+        b->nopolywritten = 1;
+      }
+      if (argv[i][j] == 'N') {
+        b->nonodewritten = 1;
+      }
+      if (argv[i][j] == 'E') {
+        b->noelewritten = 1;
+      }
+      if (argv[i][j] == 'O') {
+        b->noholes = 1;
+      }
+      if (argv[i][j] == 'X') {
+        b->noexact = 1;
+      }
+      if (argv[i][j] == 'o') {
+        if (argv[i][j + 1] == '2') {
+          j++;
+          b->order = 2;
+        }
+      }
+      if (argv[i][j] == 'l') {
+        b->dwyer = 0;
+      }
+      if (argv[i][j] == 'Q') {
+        b->quiet = 1;
+      }
+      if (argv[i][j] == 'V') {
+        b->verbose++;
+      }
+    }
+  }
+  b->usesegments = b->poly || b->refine || b->quality || b->convex;
+  b->goodangle = cos(b->minangle * PI / 180.0);
+  if (b->goodangle == 1.0) {
+    b->offconstant = 0.0;
+  } else {
+    b->offconstant = 0.475 * sqrt((1.0 + b->goodangle) / (1.0 - b->goodangle));
+  }
+  b->goodangle *= b->goodangle;
+  if (b->refine && b->noiterationnum) {
+    printf(
+      "Error:  You cannot use the -I switch when refining a triangulation.\n");
+    triexit(1);
+  }
+  /* Be careful not to allocate space for element area constraints that */
+  /*   will never be assigned any value (other than the default -1.0).  */
+  if (!b->refine && !b->poly) {
+    b->vararea = 0;
+  }
+  /* Be careful not to add an extra attribute to each element unless the */
+  /*   input supports it (PSLG in, but not refining a preexisting mesh). */
+  if (b->refine || !b->poly) {
+    b->regionattrib = 0;
+  }
+  /* Regular/weighted triangulations are incompatible with PSLGs */
+  /*   and meshing.                                              */
+  if (b->weighted && (b->poly || b->quality)) {
+    b->weighted = 0;
+    if (!b->quiet) {
+      printf("Warning:  weighted triangulations (-w, -W) are incompatible\n");
+      printf("  with PSLGs (-p) and meshing (-q, -a, -u).  Weights ignored.\n"
+             );
+    }
+  }
+  if (b->jettison && b->nonodewritten && !b->quiet) {
+    printf("Warning:  -j and -N switches are somewhat incompatible.\n");
+    printf("  If any vertices are jettisoned, you will need the output\n");
+    printf("  .node file to reconstruct the new node indices.");
+  }
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* User interaction routines begin here                      *********/
+
+/********* Debugging routines begin here                             *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  printtriangle()   Print out the details of an oriented triangle.         */
+/*                                                                           */
+/*  I originally wrote this procedure to simplify debugging; it can be       */
+/*  called directly from the debugger, and presents information about an     */
+/*  oriented triangle in digestible form.  It's also used when the           */
+/*  highest level of verbosity (`-VVV') is specified.                        */
+/*                                                                           */
+/*****************************************************************************/
+
+void printtriangle(struct mesh *m, struct behavior *b, struct otri *t)
+{
+  struct otri printtri;
+  struct osub printsh;
+  vertex printvertex;
+
+  printf("triangle x%lx with orientation %d:\n", (unsigned long long) t->tri,
+         t->orient);
+  decode(t->tri[0], printtri);
+  if (printtri.tri == m->dummytri) {
+    printf("    [0] = Outer space\n");
+  } else {
+    printf("    [0] = x%lx  %d\n", (unsigned long long) printtri.tri,
+           printtri.orient);
+  }
+  decode(t->tri[1], printtri);
+  if (printtri.tri == m->dummytri) {
+    printf("    [1] = Outer space\n");
+  } else {
+    printf("    [1] = x%lx  %d\n", (unsigned long long) printtri.tri,
+           printtri.orient);
+  }
+  decode(t->tri[2], printtri);
+  if (printtri.tri == m->dummytri) {
+    printf("    [2] = Outer space\n");
+  } else {
+    printf("    [2] = x%lx  %d\n", (unsigned long long) printtri.tri,
+           printtri.orient);
+  }
+
+  org(*t, printvertex);
+  if (printvertex == (vertex) NULL)
+    printf("    Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3);
+  else
+    printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
+           (t->orient + 1) % 3 + 3, (unsigned long long) printvertex,
+           printvertex[0], printvertex[1]);
+  dest(*t, printvertex);
+  if (printvertex == (vertex) NULL)
+    printf("    Dest  [%d] = NULL\n", (t->orient + 2) % 3 + 3);
+  else
+    printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
+           (t->orient + 2) % 3 + 3, (unsigned long long) printvertex,
+           printvertex[0], printvertex[1]);
+  apex(*t, printvertex);
+  if (printvertex == (vertex) NULL)
+    printf("    Apex  [%d] = NULL\n", t->orient + 3);
+  else
+    printf("    Apex  [%d] = x%lx  (%.12g, %.12g)\n",
+           t->orient + 3, (unsigned long long) printvertex,
+           printvertex[0], printvertex[1]);
+
+  if (b->usesegments) {
+    sdecode(t->tri[6], printsh);
+    if (printsh.ss != m->dummysub) {
+      printf("    [6] = x%lx  %d\n", (unsigned long long) printsh.ss,
+             printsh.ssorient);
+    }
+    sdecode(t->tri[7], printsh);
+    if (printsh.ss != m->dummysub) {
+      printf("    [7] = x%lx  %d\n", (unsigned long long) printsh.ss,
+             printsh.ssorient);
+    }
+    sdecode(t->tri[8], printsh);
+    if (printsh.ss != m->dummysub) {
+      printf("    [8] = x%lx  %d\n", (unsigned long long) printsh.ss,
+             printsh.ssorient);
+    }
+  }
+
+  if (b->vararea) {
+    printf("    Area constraint:  %.4g\n", areabound(*t));
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  printsubseg()   Print out the details of an oriented subsegment.         */
+/*                                                                           */
+/*  I originally wrote this procedure to simplify debugging; it can be       */
+/*  called directly from the debugger, and presents information about an     */
+/*  oriented subsegment in digestible form.  It's also used when the highest */
+/*  level of verbosity (`-VVV') is specified.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+void printsubseg(struct mesh *m, struct behavior *b, struct osub *s)
+{
+  struct osub printsh;
+  struct otri printtri;
+  vertex printvertex;
+
+  printf("subsegment x%lx with orientation %d and mark %d:\n",
+         (unsigned long long) s->ss, s->ssorient, mark(*s));
+  sdecode(s->ss[0], printsh);
+  if (printsh.ss == m->dummysub) {
+    printf("    [0] = No subsegment\n");
+  } else {
+    printf("    [0] = x%lx  %d\n", (unsigned long long) printsh.ss,
+           printsh.ssorient);
+  }
+  sdecode(s->ss[1], printsh);
+  if (printsh.ss == m->dummysub) {
+    printf("    [1] = No subsegment\n");
+  } else {
+    printf("    [1] = x%lx  %d\n", (unsigned long long) printsh.ss,
+           printsh.ssorient);
+  }
+
+  sorg(*s, printvertex);
+  if (printvertex == (vertex) NULL)
+    printf("    Origin[%d] = NULL\n", 2 + s->ssorient);
+  else
+    printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
+           2 + s->ssorient, (unsigned long long) printvertex,
+           printvertex[0], printvertex[1]);
+  sdest(*s, printvertex);
+  if (printvertex == (vertex) NULL)
+    printf("    Dest  [%d] = NULL\n", 3 - s->ssorient);
+  else
+    printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
+           3 - s->ssorient, (unsigned long long) printvertex,
+           printvertex[0], printvertex[1]);
+
+  decode(s->ss[6], printtri);
+  if (printtri.tri == m->dummytri) {
+    printf("    [6] = Outer space\n");
+  } else {
+    printf("    [6] = x%lx  %d\n", (unsigned long long) printtri.tri,
+           printtri.orient);
+  }
+  decode(s->ss[7], printtri);
+  if (printtri.tri == m->dummytri) {
+    printf("    [7] = Outer space\n");
+  } else {
+    printf("    [7] = x%lx  %d\n", (unsigned long long) printtri.tri,
+           printtri.orient);
+  }
+
+  segorg(*s, printvertex);
+  if (printvertex == (vertex) NULL)
+    printf("    Segment origin[%d] = NULL\n", 4 + s->ssorient);
+  else
+    printf("    Segment origin[%d] = x%lx  (%.12g, %.12g)\n",
+           4 + s->ssorient, (unsigned long long) printvertex,
+           printvertex[0], printvertex[1]);
+  segdest(*s, printvertex);
+  if (printvertex == (vertex) NULL)
+    printf("    Segment dest  [%d] = NULL\n", 5 - s->ssorient);
+  else
+    printf("    Segment dest  [%d] = x%lx  (%.12g, %.12g)\n",
+           5 - s->ssorient, (unsigned long long) printvertex,
+           printvertex[0], printvertex[1]);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Debugging routines end here                               *********/
+
+/********* Memory management routines begin here                     *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  poolzero()   Set all of a pool's fields to zero.                         */
+/*                                                                           */
+/*  This procedure should never be called on a pool that has any memory      */
+/*  allocated to it, as that memory would leak.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+void poolzero(struct memorypool *pool)
+{
+  pool->firstblock = (int **) NULL;
+  pool->nowblock = (int **) NULL;
+  pool->nextitem = (int *) NULL;
+  pool->deaditemstack = (int *) NULL;
+  pool->pathblock = (int **) NULL;
+  pool->pathitem = (int *) NULL;
+  pool->alignbytes = 0;
+  pool->itembytes = 0;
+  pool->itemsperblock = 0;
+  pool->itemsfirstblock = 0;
+  pool->items = 0;
+  pool->maxitems = 0;
+  pool->unallocateditems = 0;
+  pool->pathitemsleft = 0;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  poolrestart()   Deallocate all items in a pool.                          */
+/*                                                                           */
+/*  The pool is returned to its starting state, except that no memory is     */
+/*  freed to the operating system.  Rather, the previously allocated blocks  */
+/*  are ready to be reused.                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+void poolrestart(struct memorypool *pool)
+{
+  unsigned long long alignptr;
+
+  pool->items = 0;
+  pool->maxitems = 0;
+
+  /* Set the currently active block. */
+  pool->nowblock = pool->firstblock;
+  /* Find the first item in the pool.  Increment by the size of (int *). */
+  alignptr = (unsigned long long) (pool->nowblock + 1);
+  /* Align the item on an `alignbytes'-byte boundary. */
+  pool->nextitem = (int *)
+    (alignptr + (unsigned long long) pool->alignbytes -
+     (alignptr % (unsigned long long) pool->alignbytes));
+  /* There are lots of unallocated items left in this block. */
+  pool->unallocateditems = pool->itemsfirstblock;
+  /* The stack of deallocated items is empty. */
+  pool->deaditemstack = (int *) NULL;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  poolinit()   Initialize a pool of memory for allocation of items.        */
+/*                                                                           */
+/*  This routine initializes the machinery for allocating items.  A `pool'   */
+/*  is created whose records have size at least `bytecount'.  Items will be  */
+/*  allocated in `itemcount'-item blocks.  Each item is assumed to be a      */
+/*  collection of words, and either pointers or floating-point values are    */
+/*  assumed to be the "primary" word type.  (The "primary" word type is used */
+/*  to determine alignment of items.)  If `alignment' isn't zero, all items  */
+/*  will be `alignment'-byte aligned in memory.  `alignment' must be either  */
+/*  a multiple or a factor of the primary word size; powers of two are safe. */
+/*  `alignment' is normally used to create a few unused bits at the bottom   */
+/*  of each item's pointer, in which information may be stored.              */
+/*                                                                           */
+/*  Don't change this routine unless you understand it.                      */
+/*                                                                           */
+/*****************************************************************************/
+
+void poolinit(struct memorypool *pool, int bytecount, int itemcount,
+              int firstitemcount, int alignment)
+{
+  /* Find the proper alignment, which must be at least as large as:   */
+  /*   - The parameter `alignment'.                                   */
+  /*   - sizeof(int *), so the stack of dead items can be maintained */
+  /*       without unaligned accesses.                                */
+  if (alignment > sizeof(int *)) {
+    pool->alignbytes = alignment;
+  } else {
+    pool->alignbytes = sizeof(int *);
+  }
+  pool->itembytes = ((bytecount - 1) / pool->alignbytes + 1) *
+                    pool->alignbytes;
+  pool->itemsperblock = itemcount;
+  if (firstitemcount == 0) {
+    pool->itemsfirstblock = itemcount;
+  } else {
+    pool->itemsfirstblock = firstitemcount;
+  }
+
+  /* Allocate a block of items.  Space for `itemsfirstblock' items and one  */
+  /*   pointer (to point to the next block) are allocated, as well as space */
+  /*   to ensure alignment of the items.                                    */
+  pool->firstblock = (int **)
+    trimalloc(pool->itemsfirstblock * pool->itembytes + (int) sizeof(int *) +
+              pool->alignbytes);
+  /* Set the next block pointer to NULL. */
+  *(pool->firstblock) = (int *) NULL;
+  poolrestart(pool);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  pooldeinit()   Free to the operating system all memory taken by a pool.  */
+/*                                                                           */
+/*****************************************************************************/
+
+void pooldeinit(struct memorypool *pool)
+{
+  while (pool->firstblock != (int **) NULL) {
+    pool->nowblock = (int **) *(pool->firstblock);
+    trifree((int *) pool->firstblock);
+    pool->firstblock = pool->nowblock;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  poolalloc()   Allocate space for an item.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+int *poolalloc(struct memorypool *pool)
+{
+  int *newitem;
+  int **newblock;
+  unsigned long long alignptr;
+
+  /* First check the linked list of dead items.  If the list is not   */
+  /*   empty, allocate an item from the list rather than a fresh one. */
+  if (pool->deaditemstack != (int *) NULL) {
+    newitem = pool->deaditemstack;               /* Take first item in list. */
+    pool->deaditemstack = * (int **) pool->deaditemstack;
+  } else {
+    /* Check if there are any free items left in the current block. */
+    if (pool->unallocateditems == 0) {
+      /* Check if another block must be allocated. */
+      if (*(pool->nowblock) == (int *) NULL) {
+        /* Allocate a new block of items, pointed to by the previous block. */
+        newblock = (int **) trimalloc(pool->itemsperblock * pool->itembytes +
+                                       (int) sizeof(int *) +
+                                       pool->alignbytes);
+        *(pool->nowblock) = (int *) newblock;
+        /* The next block pointer is NULL. */
+        *newblock = (int *) NULL;
+      }
+
+      /* Move to the new block. */
+      pool->nowblock = (int **) *(pool->nowblock);
+      /* Find the first item in the block.    */
+      /*   Increment by the size of (int *). */
+      alignptr = (unsigned long long) (pool->nowblock + 1);
+      /* Align the item on an `alignbytes'-byte boundary. */
+      pool->nextitem = (int *)
+        (alignptr + (unsigned long long) pool->alignbytes -
+         (alignptr % (unsigned long long) pool->alignbytes));
+      /* There are lots of unallocated items left in this block. */
+      pool->unallocateditems = pool->itemsperblock;
+    }
+
+    /* Allocate a new item. */
+    newitem = pool->nextitem;
+    /* Advance `nextitem' pointer to next free item in block. */
+    pool->nextitem = (int *) ((char *) pool->nextitem + pool->itembytes);
+    pool->unallocateditems--;
+    pool->maxitems++;
+  }
+  pool->items++;
+  return newitem;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  pooldealloc()   Deallocate space for an item.                            */
+/*                                                                           */
+/*  The deallocated space is stored in a queue for later reuse.              */
+/*                                                                           */
+/*****************************************************************************/
+
+void pooldealloc(struct memorypool *pool, int *dyingitem)
+{
+  /* Push freshly killed item onto stack. */
+  *((int **) dyingitem) = pool->deaditemstack;
+  pool->deaditemstack = dyingitem;
+  pool->items--;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  traversalinit()   Prepare to traverse the entire list of items.          */
+/*                                                                           */
+/*  This routine is used in conjunction with traverse().                     */
+/*                                                                           */
+/*****************************************************************************/
+
+void traversalinit(struct memorypool *pool)
+{
+  unsigned long long alignptr;
+
+  /* Begin the traversal in the first block. */
+  pool->pathblock = pool->firstblock;
+  /* Find the first item in the block.  Increment by the size of (int *). */
+  alignptr = (unsigned long long) (pool->pathblock + 1);
+  /* Align with item on an `alignbytes'-byte boundary. */
+  pool->pathitem = (int *)
+    (alignptr + (unsigned long long) pool->alignbytes -
+     (alignptr % (unsigned long long) pool->alignbytes));
+  /* Set the number of items left in the current block. */
+  pool->pathitemsleft = pool->itemsfirstblock;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  traverse()   Find the next item in the list.                             */
+/*                                                                           */
+/*  This routine is used in conjunction with traversalinit().  Be forewarned */
+/*  that this routine successively returns all items in the list, including  */
+/*  deallocated ones on the deaditemqueue.  It's up to you to figure out     */
+/*  which ones are actually dead.  Why?  I don't want to allocate extra      */
+/*  space just to demarcate dead items.  It can usually be done more         */
+/*  space-efficiently by a routine that knows something about the structure  */
+/*  of the item.                                                             */
+/*                                                                           */
+/*****************************************************************************/
+
+int *traverse(struct memorypool *pool)
+{
+  int *newitem;
+  unsigned long long alignptr;
+
+  /* Stop upon exhausting the list of items. */
+  if (pool->pathitem == pool->nextitem) {
+    return (int *) NULL;
+  }
+
+  /* Check whether any untraversed items remain in the current block. */
+  if (pool->pathitemsleft == 0) {
+    /* Find the next block. */
+    pool->pathblock = (int **) *(pool->pathblock);
+    /* Find the first item in the block.  Increment by the size of (int *). */
+    alignptr = (unsigned long long) (pool->pathblock + 1);
+    /* Align with item on an `alignbytes'-byte boundary. */
+    pool->pathitem = (int *)
+      (alignptr + (unsigned long long) pool->alignbytes -
+       (alignptr % (unsigned long long) pool->alignbytes));
+    /* Set the number of items left in the current block. */
+    pool->pathitemsleft = pool->itemsperblock;
+  }
+
+  newitem = pool->pathitem;
+  /* Find the next item in the block. */
+  pool->pathitem = (int *) ((char *) pool->pathitem + pool->itembytes);
+  pool->pathitemsleft--;
+  return newitem;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  dummyinit()   Initialize the triangle that fills "outer space" and the   */
+/*                omnipresent subsegment.                                    */
+/*                                                                           */
+/*  The triangle that fills "outer space," called `dummytri', is pointed to  */
+/*  by every triangle and subsegment on a boundary (be it outer or inner) of */
+/*  the triangulation.  Also, `dummytri' points to one of the triangles on   */
+/*  the convex hull (until the holes and concavities are carved), making it  */
+/*  possible to find a starting triangle for point location.                 */
+/*                                                                           */
+/*  The omnipresent subsegment, `dummysub', is pointed to by every triangle  */
+/*  or subsegment that doesn't have a full complement of real subsegments    */
+/*  to point to.                                                             */
+/*                                                                           */
+/*  `dummytri' and `dummysub' are generally required to fulfill only a few   */
+/*  invariants:  their vertices must remain NULL and `dummytri' must always  */
+/*  be bonded (at offset zero) to some triangle on the convex hull of the    */
+/*  mesh, via a boundary edge.  Otherwise, the connections of `dummytri' and */
+/*  `dummysub' may change willy-nilly.  This makes it possible to avoid      */
+/*  writing a good deal of special-case code (in the edge flip, for example) */
+/*  for dealing with the boundary of the mesh, places where no subsegment is */
+/*  present, and so forth.  Other entities are frequently bonded to          */
+/*  `dummytri' and `dummysub' as if they were real mesh entities, with no    */
+/*  harm done.                                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+void dummyinit(struct mesh *m, struct behavior *b, int trianglebytes,
+               int subsegbytes)
+{
+  unsigned long long alignptr;
+
+  /* Set up `dummytri', the `triangle' that occupies "outer space." */
+  m->dummytribase = (triangle *) trimalloc(trianglebytes +
+                                           m->triangles.alignbytes);
+  /* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
+  alignptr = (unsigned long long) m->dummytribase;
+  m->dummytri = (triangle *)
+    (alignptr + (unsigned long long) m->triangles.alignbytes -
+     (alignptr % (unsigned long long) m->triangles.alignbytes));
+  /* Initialize the three adjoining triangles to be "outer space."  These  */
+  /*   will eventually be changed by various bonding operations, but their */
+  /*   values don't really matter, as long as they can legally be          */
+  /*   dereferenced.                                                       */
+  m->dummytri[0] = (triangle) m->dummytri;
+  m->dummytri[1] = (triangle) m->dummytri;
+  m->dummytri[2] = (triangle) m->dummytri;
+  /* Three NULL vertices. */
+  m->dummytri[3] = (triangle) NULL;
+  m->dummytri[4] = (triangle) NULL;
+  m->dummytri[5] = (triangle) NULL;
+
+  if (b->usesegments) {
+    /* Set up `dummysub', the omnipresent subsegment pointed to by any */
+    /*   triangle side or subsegment end that isn't attached to a real */
+    /*   subsegment.                                                   */
+    m->dummysubbase = (subseg *) trimalloc(subsegbytes +
+                                           m->subsegs.alignbytes);
+    /* Align `dummysub' on a `subsegs.alignbytes'-byte boundary. */
+    alignptr = (unsigned long long) m->dummysubbase;
+    m->dummysub = (subseg *)
+      (alignptr + (unsigned long long) m->subsegs.alignbytes -
+       (alignptr % (unsigned long long) m->subsegs.alignbytes));
+    /* Initialize the two adjoining subsegments to be the omnipresent      */
+    /*   subsegment.  These will eventually be changed by various bonding  */
+    /*   operations, but their values don't really matter, as long as they */
+    /*   can legally be dereferenced.                                      */
+    m->dummysub[0] = (subseg) m->dummysub;
+    m->dummysub[1] = (subseg) m->dummysub;
+    /* Four NULL vertices. */
+    m->dummysub[2] = (subseg) NULL;
+    m->dummysub[3] = (subseg) NULL;
+    m->dummysub[4] = (subseg) NULL;
+    m->dummysub[5] = (subseg) NULL;
+    /* Initialize the two adjoining triangles to be "outer space." */
+    m->dummysub[6] = (subseg) m->dummytri;
+    m->dummysub[7] = (subseg) m->dummytri;
+    /* Set the boundary marker to zero. */
+    * (int *) (m->dummysub + 8) = 0;
+
+    /* Initialize the three adjoining subsegments of `dummytri' to be */
+    /*   the omnipresent subsegment.                                  */
+    m->dummytri[6] = (triangle) m->dummysub;
+    m->dummytri[7] = (triangle) m->dummysub;
+    m->dummytri[8] = (triangle) m->dummysub;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  initializevertexpool()   Calculate the size of the vertex data structure */
+/*                           and initialize its memory pool.                 */
+/*                                                                           */
+/*  This routine also computes the `vertexmarkindex' and `vertex2triindex'   */
+/*  indices used to find values within each vertex.                          */
+/*                                                                           */
+/*****************************************************************************/
+
+void initializevertexpool(struct mesh *m, struct behavior *b)
+{
+  int vertexsize;
+
+  /* The index within each vertex at which the boundary marker is found,    */
+  /*   followed by the vertex type.  Ensure the vertex marker is aligned to */
+  /*   a sizeof(int)-byte address.                                          */
+  m->vertexmarkindex = ((m->mesh_dim + m->nextras) * sizeof(float) +
+                        sizeof(int) - 1) /
+                       sizeof(int);
+  vertexsize = (m->vertexmarkindex + 2) * sizeof(int);
+  if (b->poly) {
+    /* The index within each vertex at which a triangle pointer is found.  */
+    /*   Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
+    m->vertex2triindex = (vertexsize + sizeof(triangle) - 1) /
+                         sizeof(triangle);
+    vertexsize = (m->vertex2triindex + 1) * sizeof(triangle);
+  }
+
+  /* Initialize the pool of vertices. */
+  poolinit(&m->vertices, vertexsize, VERTEXPERBLOCK,
+           m->invertices > VERTEXPERBLOCK ? m->invertices : VERTEXPERBLOCK,
+           sizeof(float));
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  initializetrisubpools()   Calculate the sizes of the triangle and        */
+/*                            subsegment data structures and initialize      */
+/*                            their memory pools.                            */
+/*                                                                           */
+/*  This routine also computes the `highorderindex', `elemattribindex', and  */
+/*  `areaboundindex' indices used to find values within each triangle.       */
+/*                                                                           */
+/*****************************************************************************/
+
+void initializetrisubpools(struct mesh *m, struct behavior *b)
+{
+  int trisize;
+
+  /* The index within each triangle at which the extra nodes (above three)  */
+  /*   associated with high order elements are found.  There are three      */
+  /*   pointers to other triangles, three pointers to corners, and possibly */
+  /*   three pointers to subsegments before the extra nodes.                */
+  m->highorderindex = 6 + (b->usesegments * 3);
+  /* The number of bytes occupied by a triangle. */
+  trisize = ((b->order + 1) * (b->order + 2) / 2 + (m->highorderindex - 3)) *
+            sizeof(triangle);
+  /* The index within each triangle at which its attributes are found, */
+  /*   where the index is measured in floats.                           */
+  m->elemattribindex = (trisize + sizeof(float) - 1) / sizeof(float);
+  /* The index within each triangle at which the maximum area constraint  */
+  /*   is found, where the index is measured in floats.  Note that if the  */
+  /*   `regionattrib' flag is set, an additional attribute will be added. */
+  m->areaboundindex = m->elemattribindex + m->eextras + b->regionattrib;
+  /* If triangle attributes or an area bound are needed, increase the number */
+  /*   of bytes occupied by a triangle.                                      */
+  if (b->vararea) {
+    trisize = (m->areaboundindex + 1) * sizeof(float);
+  } else if (m->eextras + b->regionattrib > 0) {
+    trisize = m->areaboundindex * sizeof(float);
+  }
+  /* If a Voronoi diagram or triangle neighbor graph is requested, make    */
+  /*   sure there's room to store an integer index in each triangle.  This */
+  /*   integer index can occupy the same space as the subsegment pointers  */
+  /*   or attributes or area constraint or extra nodes.                    */
+  if ((b->voronoi || b->neighbors) &&
+      (trisize < 6 * sizeof(triangle) + sizeof(int))) {
+    trisize = 6 * sizeof(triangle) + sizeof(int);
+  }
+
+  /* Having determined the memory size of a triangle, initialize the pool. */
+  poolinit(&m->triangles, trisize, TRIPERBLOCK,
+           (2 * m->invertices - 2) > TRIPERBLOCK ? (2 * m->invertices - 2) :
+           TRIPERBLOCK, 4);
+
+  if (b->usesegments) {
+    /* Initialize the pool of subsegments.  Take into account all eight */
+    /*   pointers and one boundary marker.                              */
+    poolinit(&m->subsegs, 8 * sizeof(triangle) + sizeof(int),
+             SUBSEGPERBLOCK, SUBSEGPERBLOCK, 4);
+
+    /* Initialize the "outer space" triangle and omnipresent subsegment. */
+    dummyinit(m, b, m->triangles.itembytes, m->subsegs.itembytes);
+  } else {
+    /* Initialize the "outer space" triangle. */
+    dummyinit(m, b, m->triangles.itembytes, 0);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangledealloc()   Deallocate space for a triangle, marking it dead.    */
+/*                                                                           */
+/*****************************************************************************/
+
+void triangledealloc(struct mesh *m, triangle *dyingtriangle)
+{
+  /* Mark the triangle as dead.  This makes it possible to detect dead */
+  /*   triangles when traversing the list of all triangles.            */
+  killtri(dyingtriangle);
+  pooldealloc(&m->triangles, (int *) dyingtriangle);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangletraverse()   Traverse the triangles, skipping dead ones.         */
+/*                                                                           */
+/*****************************************************************************/
+
+triangle *triangletraverse(struct mesh *m)
+{
+  triangle *newtriangle;
+
+  do {
+    newtriangle = (triangle *) traverse(&m->triangles);
+    if (newtriangle == (triangle *) NULL) {
+      return (triangle *) NULL;
+    }
+  } while (deadtri(newtriangle));                         /* Skip dead ones. */
+  return newtriangle;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  subsegdealloc()   Deallocate space for a subsegment, marking it dead.    */
+/*                                                                           */
+/*****************************************************************************/
+
+void subsegdealloc(struct mesh *m, subseg *dyingsubseg)
+{
+  /* Mark the subsegment as dead.  This makes it possible to detect dead */
+  /*   subsegments when traversing the list of all subsegments.          */
+  killsubseg(dyingsubseg);
+  pooldealloc(&m->subsegs, (int *) dyingsubseg);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  subsegtraverse()   Traverse the subsegments, skipping dead ones.         */
+/*                                                                           */
+/*****************************************************************************/
+
+subseg *subsegtraverse(struct mesh *m)
+{
+  subseg *newsubseg;
+
+  do {
+    newsubseg = (subseg *) traverse(&m->subsegs);
+    if (newsubseg == (subseg *) NULL) {
+      return (subseg *) NULL;
+    }
+  } while (deadsubseg(newsubseg));                        /* Skip dead ones. */
+  return newsubseg;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  vertexdealloc()   Deallocate space for a vertex, marking it dead.        */
+/*                                                                           */
+/*****************************************************************************/
+
+void vertexdealloc(struct mesh *m, vertex dyingvertex)
+{
+  /* Mark the vertex as dead.  This makes it possible to detect dead */
+  /*   vertices when traversing the list of all vertices.            */
+  setvertextype(dyingvertex, DEADVERTEX);
+  pooldealloc(&m->vertices, (int *) dyingvertex);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  vertextraverse()   Traverse the vertices, skipping dead ones.            */
+/*                                                                           */
+/*****************************************************************************/
+
+vertex vertextraverse(struct mesh *m)
+{
+  vertex newvertex;
+
+  do {
+    newvertex = (vertex) traverse(&m->vertices);
+    if (newvertex == (vertex) NULL) {
+      return (vertex) NULL;
+    }
+  } while (vertextype(newvertex) == DEADVERTEX);          /* Skip dead ones. */
+  return newvertex;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  getvertex()   Get a specific vertex, by number, from the list.           */
+/*                                                                           */
+/*  The first vertex is number 'firstnumber'.                                */
+/*                                                                           */
+/*  Note that this takes O(n) time (with a small constant, if VERTEXPERBLOCK */
+/*  is large).  I don't care to take the trouble to make it work in constant */
+/*  time.                                                                    */
+/*                                                                           */
+/*****************************************************************************/
+
+vertex getvertex(struct mesh *m, struct behavior *b, int number)
+{
+  int **getblock;
+  char *foundvertex;
+  unsigned long long alignptr;
+  int current;
+
+  getblock = m->vertices.firstblock;
+  current = b->firstnumber;
+
+  /* Find the right block. */
+  if (current + m->vertices.itemsfirstblock <= number) {
+    getblock = (int **) *getblock;
+    current += m->vertices.itemsfirstblock;
+    while (current + m->vertices.itemsperblock <= number) {
+      getblock = (int **) *getblock;
+      current += m->vertices.itemsperblock;
+    }
+  }
+
+  /* Now find the right vertex. */
+  alignptr = (unsigned long long) (getblock + 1);
+  foundvertex = (char *) (alignptr + (unsigned long long) m->vertices.alignbytes -
+                          (alignptr % (unsigned long long) m->vertices.alignbytes));
+  return (vertex) (foundvertex + m->vertices.itembytes * (number - current));
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangledeinit()   Free all remaining allocated memory.                  */
+/*                                                                           */
+/*****************************************************************************/
+
+void triangledeinit(struct mesh *m, struct behavior *b)
+{
+  pooldeinit(&m->triangles);
+  trifree((int *) m->dummytribase);
+  if (b->usesegments) {
+    pooldeinit(&m->subsegs);
+    trifree((int *) m->dummysubbase);
+  }
+  pooldeinit(&m->vertices);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Memory management routines end here                       *********/
+
+/********* Constructors begin here                                   *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  maketriangle()   Create a new triangle with orientation zero.            */
+/*                                                                           */
+/*****************************************************************************/
+
+void maketriangle(struct mesh *m, struct behavior *b, struct otri *newotri)
+{
+  int i;
+
+  newotri->tri = (triangle *) poolalloc(&m->triangles);
+  /* Initialize the three adjoining triangles to be "outer space". */
+  newotri->tri[0] = (triangle) m->dummytri;
+  newotri->tri[1] = (triangle) m->dummytri;
+  newotri->tri[2] = (triangle) m->dummytri;
+  /* Three NULL vertices. */
+  newotri->tri[3] = (triangle) NULL;
+  newotri->tri[4] = (triangle) NULL;
+  newotri->tri[5] = (triangle) NULL;
+  if (b->usesegments) {
+    /* Initialize the three adjoining subsegments to be the omnipresent */
+    /*   subsegment.                                                    */
+    newotri->tri[6] = (triangle) m->dummysub;
+    newotri->tri[7] = (triangle) m->dummysub;
+    newotri->tri[8] = (triangle) m->dummysub;
+  }
+  for (i = 0; i < m->eextras; i++) {
+    setelemattribute(*newotri, i, 0.0);
+  }
+  if (b->vararea) {
+    setareabound(*newotri, -1.0);
+  }
+
+  newotri->orient = 0;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  makesubseg()   Create a new subsegment with orientation zero.            */
+/*                                                                           */
+/*****************************************************************************/
+
+void makesubseg(struct mesh *m, struct osub *newsubseg)
+{
+  newsubseg->ss = (subseg *) poolalloc(&m->subsegs);
+  /* Initialize the two adjoining subsegments to be the omnipresent */
+  /*   subsegment.                                                  */
+  newsubseg->ss[0] = (subseg) m->dummysub;
+  newsubseg->ss[1] = (subseg) m->dummysub;
+  /* Four NULL vertices. */
+  newsubseg->ss[2] = (subseg) NULL;
+  newsubseg->ss[3] = (subseg) NULL;
+  newsubseg->ss[4] = (subseg) NULL;
+  newsubseg->ss[5] = (subseg) NULL;
+  /* Initialize the two adjoining triangles to be "outer space." */
+  newsubseg->ss[6] = (subseg) m->dummytri;
+  newsubseg->ss[7] = (subseg) m->dummytri;
+  /* Set the boundary marker to zero. */
+  setmark(*newsubseg, 0);
+
+  newsubseg->ssorient = 0;
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Constructors end here                                     *********/
+
+/********* Geometric primitives begin here                           *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/* The adaptive exact arithmetic geometric predicates implemented herein are */
+/*   described in detail in my paper, "Adaptive Precision Floating-Point     */
+/*   Arithmetic and Fast Robust Geometric Predicates."  See the header for a */
+/*   full citation.                                                          */
+
+/* Which of the following two methods of finding the absolute values is      */
+/*   fastest is compiler-dependent.  A few compilers can inline and optimize */
+/*   the fabs() call; but most will incur the overhead of a function call,   */
+/*   which is disastrously slow.  A faster way on IEEE machines might be to  */
+/*   mask the appropriate bit, but that's difficult to do in C without       */
+/*   forcing the value to be stored to memory (rather than be kept in the    */
+/*   register to which the optimizer assigned it).                           */
+
+#define Absolute(a)  ((a) >= 0.0 ? (a) : -(a))
+/* #define Absolute(a)  fabs(a) */
+
+/* Many of the operations are broken up into two pieces, a main part that    */
+/*   performs an approximate operation, and a "tail" that computes the       */
+/*   roundoff error of that operation.                                       */
+/*                                                                           */
+/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(),    */
+/*   Split(), and Two_Product() are all implemented as described in the      */
+/*   reference.  Each of these macros requires certain variables to be       */
+/*   defined in the calling routine.  The variables `bvirt', `c', `abig',    */
+/*   `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because   */
+/*   they store the result of an operation that may incur roundoff error.    */
+/*   The input parameter `x' (or the highest numbered `x_' parameter) must   */
+/*   also be declared `INEXACT'.                                             */
+
+#define Fast_Two_Sum_Tail(a, b, x, y) \
+  bvirt = x - a; \
+  y = b - bvirt
+
+#define Fast_Two_Sum(a, b, x, y) \
+  x = (float) (a + b); \
+  Fast_Two_Sum_Tail(a, b, x, y)
+
+#define Two_Sum_Tail(a, b, x, y) \
+  bvirt = (float) (x - a); \
+  avirt = x - bvirt; \
+  bround = b - bvirt; \
+  around = a - avirt; \
+  y = around + bround
+
+#define Two_Sum(a, b, x, y) \
+  x = (float) (a + b); \
+  Two_Sum_Tail(a, b, x, y)
+
+#define Two_Diff_Tail(a, b, x, y) \
+  bvirt = (float) (a - x); \
+  avirt = x + bvirt; \
+  bround = bvirt - b; \
+  around = a - avirt; \
+  y = around + bround
+
+#define Two_Diff(a, b, x, y) \
+  x = (float) (a - b); \
+  Two_Diff_Tail(a, b, x, y)
+
+#define Split(a, ahi, alo) \
+  c = (float) (splitter * a); \
+  abig = (float) (c - a); \
+  ahi = c - abig; \
+  alo = a - ahi
+
+#define Two_Product_Tail(a, b, x, y) \
+  Split(a, ahi, alo); \
+  Split(b, bhi, blo); \
+  err1 = x - (ahi * bhi); \
+  err2 = err1 - (alo * bhi); \
+  err3 = err2 - (ahi * blo); \
+  y = (alo * blo) - err3
+
+#define Two_Product(a, b, x, y) \
+  x = (float) (a * b); \
+  Two_Product_Tail(a, b, x, y)
+
+/* Two_Product_Presplit() is Two_Product() where one of the inputs has       */
+/*   already been split.  Avoids redundant splitting.                        */
+
+#define Two_Product_Presplit(a, b, bhi, blo, x, y) \
+  x = (float) (a * b); \
+  Split(a, ahi, alo); \
+  err1 = x - (ahi * bhi); \
+  err2 = err1 - (alo * bhi); \
+  err3 = err2 - (ahi * blo); \
+  y = (alo * blo) - err3
+
+/* Square() can be done more quickly than Two_Product().                     */
+
+#define Square_Tail(a, x, y) \
+  Split(a, ahi, alo); \
+  err1 = x - (ahi * ahi); \
+  err3 = err1 - ((ahi + ahi) * alo); \
+  y = (alo * alo) - err3
+
+#define Square(a, x, y) \
+  x = (float) (a * a); \
+  Square_Tail(a, x, y)
+
+/* Macros for summing expansions of various fixed lengths.  These are all    */
+/*   unrolled versions of Expansion_Sum().                                   */
+
+#define Two_One_Sum(a1, a0, b, x2, x1, x0) \
+  Two_Sum(a0, b , _i, x0); \
+  Two_Sum(a1, _i, x2, x1)
+
+#define Two_One_Diff(a1, a0, b, x2, x1, x0) \
+  Two_Diff(a0, b , _i, x0); \
+  Two_Sum( a1, _i, x2, x1)
+
+#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
+  Two_One_Sum(a1, a0, b0, _j, _0, x0); \
+  Two_One_Sum(_j, _0, b1, x3, x2, x1)
+
+#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
+  Two_One_Diff(a1, a0, b0, _j, _0, x0); \
+  Two_One_Diff(_j, _0, b1, x3, x2, x1)
+
+/* Macro for multiplying a two-component expansion by a single component.    */
+
+#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \
+  Split(b, bhi, blo); \
+  Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
+  Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
+  Two_Sum(_i, _0, _k, x1); \
+  Fast_Two_Sum(_j, _k, x3, x2)
+
+/*****************************************************************************/
+/*                                                                           */
+/*  exactinit()   Initialize the variables used for exact arithmetic.        */
+/*                                                                           */
+/*  `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in   */
+/*  floating-point arithmetic.  `epsilon' bounds the relative roundoff       */
+/*  error.  It is used for floating-point error analysis.                    */
+/*                                                                           */
+/*  `splitter' is used to split floating-point numbers into two half-        */
+/*  length significands for exact multiplication.                            */
+/*                                                                           */
+/*  I imagine that a highly optimizing compiler might be too smart for its   */
+/*  own good, and somehow cause this routine to fail, if it pretends that    */
+/*  floating-point arithmetic is too much like real arithmetic.              */
+/*                                                                           */
+/*  Don't change this routine unless you fully understand it.                */
+/*                                                                           */
+/*****************************************************************************/
+
+void exactinit()
+{
+  float half;
+  float check, lastcheck;
+  int every_other;
+  every_other = 1;
+  half = 0.5;
+  epsilon = 1.0;
+  splitter = 1.0;
+  check = 1.0;
+  /* Repeatedly divide `epsilon' by two until it is too small to add to      */
+  /*   one without causing roundoff.  (Also check if the sum is equal to     */
+  /*   the previous sum, for machines that round up instead of using exact   */
+  /*   rounding.  Not that these routines will work on such machines.)       */
+  do {
+    lastcheck = check;
+    epsilon *= half;
+    if (every_other) {
+      splitter *= 2.0;
+    }
+    every_other = !every_other;
+    check = 1.0 + epsilon;
+  } while ((check != 1.0) && (check != lastcheck));
+  splitter += 1.0;
+  /* Error bounds for orientation and incircle tests. */
+  resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
+  ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
+  ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
+  ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
+  iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
+  iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
+  iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
+  o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon;
+  o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon;
+  o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  fast_expansion_sum_zeroelim()   Sum two expansions, eliminating zero     */
+/*                                  components from the output expansion.    */
+/*                                                                           */
+/*  Sets h = e + f.  See my Robust Predicates paper for details.             */
+/*                                                                           */
+/*  If round-to-even is used (as with IEEE 754), maintains the strongly      */
+/*  nonoverlapping property.  (That is, if e is strongly nonoverlapping, h   */
+/*  will be also.)  Does NOT maintain the nonoverlapping or nonadjacent      */
+/*  properties.                                                              */
+/*                                                                           */
+/*****************************************************************************/
+
+int fast_expansion_sum_zeroelim(int elen, float *e, int flen, float *f, float *h)
+{
+  float Q;
+  float Qnew;
+  float hh;
+  float bvirt;
+  float avirt, bround, around;
+  int eindex, findex, hindex;
+  float enow, fnow;
+
+  enow = e[0];
+  fnow = f[0];
+  eindex = findex = 0;
+  if ((fnow > enow) == (fnow > -enow)) {
+    Q = enow;
+    enow = e[++eindex];
+  } else {
+    Q = fnow;
+    fnow = f[++findex];
+  }
+  hindex = 0;
+  if ((eindex < elen) && (findex < flen)) {
+    if ((fnow > enow) == (fnow > -enow)) {
+      Fast_Two_Sum(enow, Q, Qnew, hh);
+      enow = e[++eindex];
+    } else {
+      Fast_Two_Sum(fnow, Q, Qnew, hh);
+      fnow = f[++findex];
+    }
+    Q = Qnew;
+    if (hh != 0.0) {
+      h[hindex++] = hh;
+    }
+    while ((eindex < elen) && (findex < flen)) {
+      if ((fnow > enow) == (fnow > -enow)) {
+        Two_Sum(Q, enow, Qnew, hh);
+        enow = e[++eindex];
+      } else {
+        Two_Sum(Q, fnow, Qnew, hh);
+        fnow = f[++findex];
+      }
+      Q = Qnew;
+      if (hh != 0.0) {
+        h[hindex++] = hh;
+      }
+    }
+  }
+  while (eindex < elen) {
+    Two_Sum(Q, enow, Qnew, hh);
+    enow = e[++eindex];
+    Q = Qnew;
+    if (hh != 0.0) {
+      h[hindex++] = hh;
+    }
+  }
+  while (findex < flen) {
+    Two_Sum(Q, fnow, Qnew, hh);
+    fnow = f[++findex];
+    Q = Qnew;
+    if (hh != 0.0) {
+      h[hindex++] = hh;
+    }
+  }
+  if ((Q != 0.0) || (hindex == 0)) {
+    h[hindex++] = Q;
+  }
+  return hindex;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  scale_expansion_zeroelim()   Multiply an expansion by a scalar,          */
+/*                               eliminating zero components from the        */
+/*                               output expansion.                           */
+/*                                                                           */
+/*  Sets h = be.  See my Robust Predicates paper for details.                */
+/*                                                                           */
+/*  Maintains the nonoverlapping property.  If round-to-even is used (as     */
+/*  with IEEE 754), maintains the strongly nonoverlapping and nonadjacent    */
+/*  properties as well.  (That is, if e has one of these properties, so      */
+/*  will h.)                                                                 */
+/*                                                                           */
+/*****************************************************************************/
+
+int scale_expansion_zeroelim(int elen, float *e, float b, float *h)
+{
+  float Q, sum;
+  float hh;
+  float product1;
+  float product0;
+  int eindex, hindex;
+  float enow;
+  float bvirt;
+  float avirt, bround, around;
+  float c;
+  float abig;
+  float ahi, alo, bhi, blo;
+  float err1, err2, err3;
+
+  Split(b, bhi, blo);
+  Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
+  hindex = 0;
+  if (hh != 0) {
+    h[hindex++] = hh;
+  }
+  for (eindex = 1; eindex < elen; eindex++) {
+    enow = e[eindex];
+    Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
+    Two_Sum(Q, product0, sum, hh);
+    if (hh != 0) {
+      h[hindex++] = hh;
+    }
+    Fast_Two_Sum(product1, sum, Q, hh);
+    if (hh != 0) {
+      h[hindex++] = hh;
+    }
+  }
+  if ((Q != 0.0) || (hindex == 0)) {
+    h[hindex++] = Q;
+  }
+  return hindex;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  estimate()   Produce a one-word estimate of an expansion's value.        */
+/*                                                                           */
+/*  See my Robust Predicates paper for details.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+float estimate(int elen, float *e)
+{
+  float Q;
+  int eindex;
+  Q = e[0];
+  for (eindex = 1; eindex < elen; eindex++) {
+    Q += e[eindex];
+  }
+  return Q;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  counterclockwise()   Return a positive value if the points pa, pb, and   */
+/*                       pc occur in counterclockwise order; a negative      */
+/*                       value if they occur in clockwise order; and zero    */
+/*                       if they are collinear.  The result is also a rough  */
+/*                       approximation of twice the signed area of the       */
+/*                       triangle defined by the three points.               */
+/*                                                                           */
+/*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
+/*  result returned is the determinant of a matrix.  This determinant is     */
+/*  computed adaptively, in the sense that exact arithmetic is used only to  */
+/*  the degree it is needed to ensure that the returned value has the        */
+/*  correct sign.  Hence, this function is usually quite fast, but will run  */
+/*  more slowly when the input points are collinear or nearly so.            */
+/*                                                                           */
+/*  See my Robust Predicates paper for details.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+float counterclockwiseadapt(vertex pa, vertex pb, vertex pc, float detsum)
+{
+  float acx, acy, bcx, bcy;
+  float acxtail, acytail, bcxtail, bcytail;
+  float detleft, detright;
+  float detlefttail, detrighttail;
+  float det, errbound;
+  float B[4], C1[8], C2[12], D[16];
+  float B3;
+  int C1length, C2length, Dlength;
+  float u[4];
+  float u3;
+  float s1, t1;
+  float s0, t0;
+
+  float bvirt;
+  float avirt, bround, around;
+  float c;
+  float abig;
+  float ahi, alo, bhi, blo;
+  float err1, err2, err3;
+  float _i, _j;
+  float _0;
+
+  acx = (float) (pa[0] - pc[0]);
+  bcx = (float) (pb[0] - pc[0]);
+  acy = (float) (pa[1] - pc[1]);
+  bcy = (float) (pb[1] - pc[1]);
+
+  Two_Product(acx, bcy, detleft, detlefttail);
+  Two_Product(acy, bcx, detright, detrighttail);
+
+  Two_Two_Diff(detleft, detlefttail, detright, detrighttail,
+               B3, B[2], B[1], B[0]);
+  B[3] = B3;
+
+  det = estimate(4, B);
+  errbound = ccwerrboundB * detsum;
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
+  Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
+  Two_Diff_Tail(pa[1], pc[1], acy, acytail);
+  Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
+
+  if ((acxtail == 0.0) && (acytail == 0.0)
+      && (bcxtail == 0.0) && (bcytail == 0.0)) {
+    return det;
+  }
+
+  errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
+  det += (acx * bcytail + bcy * acxtail)
+       - (acy * bcxtail + bcx * acytail);
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  Two_Product(acxtail, bcy, s1, s0);
+  Two_Product(acytail, bcx, t1, t0);
+  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
+  u[3] = u3;
+  C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
+
+  Two_Product(acx, bcytail, s1, s0);
+  Two_Product(acy, bcxtail, t1, t0);
+  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
+  u[3] = u3;
+  C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
+
+  Two_Product(acxtail, bcytail, s1, s0);
+  Two_Product(acytail, bcxtail, t1, t0);
+  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
+  u[3] = u3;
+  Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
+
+  return(D[Dlength - 1]);
+}
+
+float counterclockwise(struct mesh *m, struct behavior *b,
+                      vertex pa, vertex pb, vertex pc)
+{
+  float detleft, detright, det;
+  float detsum, errbound;
+
+  m->counterclockcount++;
+
+  detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
+  detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
+  det = detleft - detright;
+
+  if (b->noexact) {
+    return det;
+  }
+
+  if (detleft > 0.0) {
+    if (detright <= 0.0) {
+      return det;
+    } else {
+      detsum = detleft + detright;
+    }
+  } else if (detleft < 0.0) {
+    if (detright >= 0.0) {
+      return det;
+    } else {
+      detsum = -detleft - detright;
+    }
+  } else {
+    return det;
+  }
+
+  errbound = ccwerrboundA * detsum;
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  return counterclockwiseadapt(pa, pb, pc, detsum);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  incircle()   Return a positive value if the point pd lies inside the     */
+/*               circle passing through pa, pb, and pc; a negative value if  */
+/*               it lies outside; and zero if the four points are cocircular.*/
+/*               The points pa, pb, and pc must be in counterclockwise       */
+/*               order, or the sign of the result will be reversed.          */
+/*                                                                           */
+/*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
+/*  result returned is the determinant of a matrix.  This determinant is     */
+/*  computed adaptively, in the sense that exact arithmetic is used only to  */
+/*  the degree it is needed to ensure that the returned value has the        */
+/*  correct sign.  Hence, this function is usually quite fast, but will run  */
+/*  more slowly when the input points are cocircular or nearly so.           */
+/*                                                                           */
+/*  See my Robust Predicates paper for details.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+float incircleadapt(vertex pa, vertex pb, vertex pc, vertex pd, float permanent)
+{
+  float adx, bdx, cdx, ady, bdy, cdy;
+  float det, errbound;
+
+  float bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
+  float bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
+  float bc[4], ca[4], ab[4];
+  float bc3, ca3, ab3;
+  float axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
+  int axbclen, axxbclen, aybclen, ayybclen, alen;
+  float bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
+  int bxcalen, bxxcalen, bycalen, byycalen, blen;
+  float cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
+  int cxablen, cxxablen, cyablen, cyyablen, clen;
+  float abdet[64];
+  int ablen;
+  float fin1[1152], fin2[1152];
+  float *finnow, *finother, *finswap;
+  int finlength;
+
+  float adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
+  float adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
+  float adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
+  float aa[4], bb[4], cc[4];
+  float aa3, bb3, cc3;
+  float ti1, tj1;
+  float ti0, tj0;
+  float u[4], v[4];
+  float u3, v3;
+  float temp8[8], temp16a[16], temp16b[16], temp16c[16];
+  float temp32a[32], temp32b[32], temp48[48], temp64[64];
+  int temp8len, temp16alen, temp16blen, temp16clen;
+  int temp32alen, temp32blen, temp48len, temp64len;
+  float axtbb[8], axtcc[8], aytbb[8], aytcc[8];
+  int axtbblen, axtcclen, aytbblen, aytcclen;
+  float bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
+  int bxtaalen, bxtcclen, bytaalen, bytcclen;
+  float cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
+  int cxtaalen, cxtbblen, cytaalen, cytbblen;
+  float axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
+  int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
+  float axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
+  int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
+  float axtbctt[8], aytbctt[8], bxtcatt[8];
+  float bytcatt[8], cxtabtt[8], cytabtt[8];
+  int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
+  float abt[8], bct[8], cat[8];
+  int abtlen, bctlen, catlen;
+  float abtt[4], bctt[4], catt[4];
+  int abttlen, bcttlen, cattlen;
+  float abtt3, bctt3, catt3;
+  float negate;
+
+  float bvirt;
+  float avirt, bround, around;
+  float c;
+  float abig;
+  float ahi, alo, bhi, blo;
+  float err1, err2, err3;
+  float _i, _j;
+  float _0;
+
+  adx = (float) (pa[0] - pd[0]);
+  bdx = (float) (pb[0] - pd[0]);
+  cdx = (float) (pc[0] - pd[0]);
+  ady = (float) (pa[1] - pd[1]);
+  bdy = (float) (pb[1] - pd[1]);
+  cdy = (float) (pc[1] - pd[1]);
+
+  Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
+  Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
+  Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
+  bc[3] = bc3;
+  axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
+  axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
+  aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
+  ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
+  alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
+
+  Two_Product(cdx, ady, cdxady1, cdxady0);
+  Two_Product(adx, cdy, adxcdy1, adxcdy0);
+  Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
+  ca[3] = ca3;
+  bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
+  bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
+  bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
+  byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
+  blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
+
+  Two_Product(adx, bdy, adxbdy1, adxbdy0);
+  Two_Product(bdx, ady, bdxady1, bdxady0);
+  Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
+  ab[3] = ab3;
+  cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
+  cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
+  cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
+  cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
+  clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
+
+  ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
+  finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
+
+  det = estimate(finlength, fin1);
+  errbound = iccerrboundB * permanent;
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
+  Two_Diff_Tail(pa[1], pd[1], ady, adytail);
+  Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
+  Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
+  Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
+  Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
+  if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
+      && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {
+    return det;
+  }
+
+  errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
+  det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)
+                                     - (bdy * cdxtail + cdx * bdytail))
+          + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
+       + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)
+                                     - (cdy * adxtail + adx * cdytail))
+          + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
+       + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)
+                                     - (ady * bdxtail + bdx * adytail))
+          + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  finnow = fin1;
+  finother = fin2;
+
+  if ((bdxtail != 0.0) || (bdytail != 0.0)
+      || (cdxtail != 0.0) || (cdytail != 0.0)) {
+    Square(adx, adxadx1, adxadx0);
+    Square(ady, adyady1, adyady0);
+    Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
+    aa[3] = aa3;
+  }
+  if ((cdxtail != 0.0) || (cdytail != 0.0)
+      || (adxtail != 0.0) || (adytail != 0.0)) {
+    Square(bdx, bdxbdx1, bdxbdx0);
+    Square(bdy, bdybdy1, bdybdy0);
+    Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
+    bb[3] = bb3;
+  }
+  if ((adxtail != 0.0) || (adytail != 0.0)
+      || (bdxtail != 0.0) || (bdytail != 0.0)) {
+    Square(cdx, cdxcdx1, cdxcdx0);
+    Square(cdy, cdycdy1, cdycdy0);
+    Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
+    cc[3] = cc3;
+  }
+
+  if (adxtail != 0.0) {
+    axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
+    temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx,
+                                          temp16a);
+
+    axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
+    temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
+
+    axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
+    temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (adytail != 0.0) {
+    aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
+    temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady,
+                                          temp16a);
+
+    aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
+    temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
+
+    aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
+    temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (bdxtail != 0.0) {
+    bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
+    temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx,
+                                          temp16a);
+
+    bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
+    temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
+
+    bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
+    temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (bdytail != 0.0) {
+    bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
+    temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy,
+                                          temp16a);
+
+    bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
+    temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
+
+    bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
+    temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (cdxtail != 0.0) {
+    cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
+    temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx,
+                                          temp16a);
+
+    cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
+    temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
+
+    cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
+    temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (cdytail != 0.0) {
+    cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
+    temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy,
+                                          temp16a);
+
+    cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
+    temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
+
+    cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
+    temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+
+  if ((adxtail != 0.0) || (adytail != 0.0)) {
+    if ((bdxtail != 0.0) || (bdytail != 0.0)
+        || (cdxtail != 0.0) || (cdytail != 0.0)) {
+      Two_Product(bdxtail, cdy, ti1, ti0);
+      Two_Product(bdx, cdytail, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      negate = -bdy;
+      Two_Product(cdxtail, negate, ti1, ti0);
+      negate = -bdytail;
+      Two_Product(cdx, negate, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
+      v[3] = v3;
+      bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
+
+      Two_Product(bdxtail, cdytail, ti1, ti0);
+      Two_Product(cdxtail, bdytail, tj1, tj0);
+      Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
+      bctt[3] = bctt3;
+      bcttlen = 4;
+    } else {
+      bct[0] = 0.0;
+      bctlen = 1;
+      bctt[0] = 0.0;
+      bcttlen = 1;
+    }
+
+    if (adxtail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
+      axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
+      temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (bdytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+      if (cdytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+
+      temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail,
+                                            temp32a);
+      axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
+      temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+    if (adytail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
+      aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
+      temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+
+
+      temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail,
+                                            temp32a);
+      aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
+      temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+  }
+  if ((bdxtail != 0.0) || (bdytail != 0.0)) {
+    if ((cdxtail != 0.0) || (cdytail != 0.0)
+        || (adxtail != 0.0) || (adytail != 0.0)) {
+      Two_Product(cdxtail, ady, ti1, ti0);
+      Two_Product(cdx, adytail, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      negate = -cdy;
+      Two_Product(adxtail, negate, ti1, ti0);
+      negate = -cdytail;
+      Two_Product(adx, negate, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
+      v[3] = v3;
+      catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
+
+      Two_Product(cdxtail, adytail, ti1, ti0);
+      Two_Product(adxtail, cdytail, tj1, tj0);
+      Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
+      catt[3] = catt3;
+      cattlen = 4;
+    } else {
+      cat[0] = 0.0;
+      catlen = 1;
+      catt[0] = 0.0;
+      cattlen = 1;
+    }
+
+    if (bdxtail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
+      bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
+      temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (cdytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+      if (adytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+
+      temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail,
+                                            temp32a);
+      bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
+      temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+    if (bdytail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
+      bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
+      temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+
+
+      temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail,
+                                            temp32a);
+      bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
+      temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+  }
+  if ((cdxtail != 0.0) || (cdytail != 0.0)) {
+    if ((adxtail != 0.0) || (adytail != 0.0)
+        || (bdxtail != 0.0) || (bdytail != 0.0)) {
+      Two_Product(adxtail, bdy, ti1, ti0);
+      Two_Product(adx, bdytail, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      negate = -ady;
+      Two_Product(bdxtail, negate, ti1, ti0);
+      negate = -adytail;
+      Two_Product(bdx, negate, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
+      v[3] = v3;
+      abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
+
+      Two_Product(adxtail, bdytail, ti1, ti0);
+      Two_Product(bdxtail, adytail, tj1, tj0);
+      Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
+      abtt[3] = abtt3;
+      abttlen = 4;
+    } else {
+      abt[0] = 0.0;
+      abtlen = 1;
+      abtt[0] = 0.0;
+      abttlen = 1;
+    }
+
+    if (cdxtail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
+      cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
+      temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (adytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+      if (bdytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+
+      temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail,
+                                            temp32a);
+      cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
+      temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+    if (cdytail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
+      cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
+      temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+
+
+      temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail,
+                                            temp32a);
+      cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
+      temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+  }
+
+  return finnow[finlength - 1];
+}
+
+float incircle(struct mesh *m, struct behavior *b,
+              vertex pa, vertex pb, vertex pc, vertex pd)
+{
+  float adx, bdx, cdx, ady, bdy, cdy;
+  float bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
+  float alift, blift, clift;
+  float det;
+  float permanent, errbound;
+
+  m->incirclecount++;
+
+  adx = pa[0] - pd[0];
+  bdx = pb[0] - pd[0];
+  cdx = pc[0] - pd[0];
+  ady = pa[1] - pd[1];
+  bdy = pb[1] - pd[1];
+  cdy = pc[1] - pd[1];
+
+  bdxcdy = bdx * cdy;
+  cdxbdy = cdx * bdy;
+  alift = adx * adx + ady * ady;
+
+  cdxady = cdx * ady;
+  adxcdy = adx * cdy;
+  blift = bdx * bdx + bdy * bdy;
+
+  adxbdy = adx * bdy;
+  bdxady = bdx * ady;
+  clift = cdx * cdx + cdy * cdy;
+
+  det = alift * (bdxcdy - cdxbdy)
+      + blift * (cdxady - adxcdy)
+      + clift * (adxbdy - bdxady);
+
+  if (b->noexact) {
+    return det;
+  }
+
+  permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
+            + (Absolute(cdxady) + Absolute(adxcdy)) * blift
+            + (Absolute(adxbdy) + Absolute(bdxady)) * clift;
+  errbound = iccerrboundA * permanent;
+  if ((det > errbound) || (-det > errbound)) {
+    return det;
+  }
+
+  return incircleadapt(pa, pb, pc, pd, permanent);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  orient3d()   Return a positive value if the point pd lies below the      */
+/*               plane passing through pa, pb, and pc; "below" is defined so */
+/*               that pa, pb, and pc appear in counterclockwise order when   */
+/*               viewed from above the plane.  Returns a negative value if   */
+/*               pd lies above the plane.  Returns zero if the points are    */
+/*               coplanar.  The result is also a rough approximation of six  */
+/*               times the signed volume of the tetrahedron defined by the   */
+/*               four points.                                                */
+/*                                                                           */
+/*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
+/*  result returned is the determinant of a matrix.  This determinant is     */
+/*  computed adaptively, in the sense that exact arithmetic is used only to  */
+/*  the degree it is needed to ensure that the returned value has the        */
+/*  correct sign.  Hence, this function is usually quite fast, but will run  */
+/*  more slowly when the input points are coplanar or nearly so.             */
+/*                                                                           */
+/*  See my Robust Predicates paper for details.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+float orient3dadapt(vertex pa, vertex pb, vertex pc, vertex pd,
+                   float aheight, float bheight, float cheight, float dheight,
+                   float permanent)
+{
+  float adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
+  float det, errbound;
+
+  float bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
+  float bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
+  float bc[4], ca[4], ab[4];
+  float bc3, ca3, ab3;
+  float adet[8], bdet[8], cdet[8];
+  int alen, blen, clen;
+  float abdet[16];
+  int ablen;
+  float *finnow, *finother, *finswap;
+  float fin1[192], fin2[192];
+  int finlength;
+
+  float adxtail, bdxtail, cdxtail;
+  float adytail, bdytail, cdytail;
+  float adheighttail, bdheighttail, cdheighttail;
+  float at_blarge, at_clarge;
+  float bt_clarge, bt_alarge;
+  float ct_alarge, ct_blarge;
+  float at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4];
+  int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen;
+  float bdxt_cdy1, cdxt_bdy1, cdxt_ady1;
+  float adxt_cdy1, adxt_bdy1, bdxt_ady1;
+  float bdxt_cdy0, cdxt_bdy0, cdxt_ady0;
+  float adxt_cdy0, adxt_bdy0, bdxt_ady0;
+  float bdyt_cdx1, cdyt_bdx1, cdyt_adx1;
+  float adyt_cdx1, adyt_bdx1, bdyt_adx1;
+  float bdyt_cdx0, cdyt_bdx0, cdyt_adx0;
+  float adyt_cdx0, adyt_bdx0, bdyt_adx0;
+  float bct[8], cat[8], abt[8];
+  int bctlen, catlen, abtlen;
+  float bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1;
+  float adxt_cdyt1, adxt_bdyt1, bdxt_adyt1;
+  float bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0;
+  float adxt_cdyt0, adxt_bdyt0, bdxt_adyt0;
+  float u[4], v[12], w[16];
+  float u3;
+  int vlength, wlength;
+  float negate;
+
+  float bvirt;
+  float avirt, bround, around;
+  float c;
+  float abig;
+  float ahi, alo, bhi, blo;
+  float err1, err2, err3;
+  float _i, _j, _k;
+  float _0;
+
+  adx = (float) (pa[0] - pd[0]);
+  bdx = (float) (pb[0] - pd[0]);
+  cdx = (float) (pc[0] - pd[0]);
+  ady = (float) (pa[1] - pd[1]);
+  bdy = (float) (pb[1] - pd[1]);
+  cdy = (float) (pc[1] - pd[1]);
+  adheight = (float) (aheight - dheight);
+  bdheight = (float) (bheight - dheight);
+  cdheight = (float) (cheight - dheight);
+
+  Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
+  Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
+  Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
+  bc[3] = bc3;
+  alen = scale_expansion_zeroelim(4, bc, adheight, adet);
+
+  Two_Product(cdx, ady, cdxady1, cdxady0);
+  Two_Product(adx, cdy, adxcdy1, adxcdy0);
+  Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
+  ca[3] = ca3;
+  blen = scale_expansion_zeroelim(4, ca, bdheight, bdet);
+
+  Two_Product(adx, bdy, adxbdy1, adxbdy0);
+  Two_Product(bdx, ady, bdxady1, bdxady0);
+  Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
+  ab[3] = ab3;
+  clen = scale_expansion_zeroelim(4, ab, cdheight, cdet);
+
+  ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
+  finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
+
+  det = estimate(finlength, fin1);
+  errbound = o3derrboundB * permanent;
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
+  Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
+  Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
+  Two_Diff_Tail(pa[1], pd[1], ady, adytail);
+  Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
+  Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
+  Two_Diff_Tail(aheight, dheight, adheight, adheighttail);
+  Two_Diff_Tail(bheight, dheight, bdheight, bdheighttail);
+  Two_Diff_Tail(cheight, dheight, cdheight, cdheighttail);
+
+  if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) &&
+      (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0) &&
+      (adheighttail == 0.0) &&
+      (bdheighttail == 0.0) &&
+      (cdheighttail == 0.0)) {
+    return det;
+  }
+
+  errbound = o3derrboundC * permanent + resulterrbound * Absolute(det);
+  det += (adheight * ((bdx * cdytail + cdy * bdxtail) -
+                      (bdy * cdxtail + cdx * bdytail)) +
+          adheighttail * (bdx * cdy - bdy * cdx)) +
+         (bdheight * ((cdx * adytail + ady * cdxtail) -
+                      (cdy * adxtail + adx * cdytail)) +
+          bdheighttail * (cdx * ady - cdy * adx)) +
+         (cdheight * ((adx * bdytail + bdy * adxtail) -
+                      (ady * bdxtail + bdx * adytail)) +
+          cdheighttail * (adx * bdy - ady * bdx));
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  finnow = fin1;
+  finother = fin2;
+
+  if (adxtail == 0.0) {
+    if (adytail == 0.0) {
+      at_b[0] = 0.0;
+      at_blen = 1;
+      at_c[0] = 0.0;
+      at_clen = 1;
+    } else {
+      negate = -adytail;
+      Two_Product(negate, bdx, at_blarge, at_b[0]);
+      at_b[1] = at_blarge;
+      at_blen = 2;
+      Two_Product(adytail, cdx, at_clarge, at_c[0]);
+      at_c[1] = at_clarge;
+      at_clen = 2;
+    }
+  } else {
+    if (adytail == 0.0) {
+      Two_Product(adxtail, bdy, at_blarge, at_b[0]);
+      at_b[1] = at_blarge;
+      at_blen = 2;
+      negate = -adxtail;
+      Two_Product(negate, cdy, at_clarge, at_c[0]);
+      at_c[1] = at_clarge;
+      at_clen = 2;
+    } else {
+      Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0);
+      Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0);
+      Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0,
+                   at_blarge, at_b[2], at_b[1], at_b[0]);
+      at_b[3] = at_blarge;
+      at_blen = 4;
+      Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0);
+      Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0);
+      Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0,
+                   at_clarge, at_c[2], at_c[1], at_c[0]);
+      at_c[3] = at_clarge;
+      at_clen = 4;
+    }
+  }
+  if (bdxtail == 0.0) {
+    if (bdytail == 0.0) {
+      bt_c[0] = 0.0;
+      bt_clen = 1;
+      bt_a[0] = 0.0;
+      bt_alen = 1;
+    } else {
+      negate = -bdytail;
+      Two_Product(negate, cdx, bt_clarge, bt_c[0]);
+      bt_c[1] = bt_clarge;
+      bt_clen = 2;
+      Two_Product(bdytail, adx, bt_alarge, bt_a[0]);
+      bt_a[1] = bt_alarge;
+      bt_alen = 2;
+    }
+  } else {
+    if (bdytail == 0.0) {
+      Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]);
+      bt_c[1] = bt_clarge;
+      bt_clen = 2;
+      negate = -bdxtail;
+      Two_Product(negate, ady, bt_alarge, bt_a[0]);
+      bt_a[1] = bt_alarge;
+      bt_alen = 2;
+    } else {
+      Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0);
+      Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0);
+      Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0,
+                   bt_clarge, bt_c[2], bt_c[1], bt_c[0]);
+      bt_c[3] = bt_clarge;
+      bt_clen = 4;
+      Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0);
+      Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0);
+      Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0,
+                  bt_alarge, bt_a[2], bt_a[1], bt_a[0]);
+      bt_a[3] = bt_alarge;
+      bt_alen = 4;
+    }
+  }
+  if (cdxtail == 0.0) {
+    if (cdytail == 0.0) {
+      ct_a[0] = 0.0;
+      ct_alen = 1;
+      ct_b[0] = 0.0;
+      ct_blen = 1;
+    } else {
+      negate = -cdytail;
+      Two_Product(negate, adx, ct_alarge, ct_a[0]);
+      ct_a[1] = ct_alarge;
+      ct_alen = 2;
+      Two_Product(cdytail, bdx, ct_blarge, ct_b[0]);
+      ct_b[1] = ct_blarge;
+      ct_blen = 2;
+    }
+  } else {
+    if (cdytail == 0.0) {
+      Two_Product(cdxtail, ady, ct_alarge, ct_a[0]);
+      ct_a[1] = ct_alarge;
+      ct_alen = 2;
+      negate = -cdxtail;
+      Two_Product(negate, bdy, ct_blarge, ct_b[0]);
+      ct_b[1] = ct_blarge;
+      ct_blen = 2;
+    } else {
+      Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0);
+      Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0);
+      Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0,
+                   ct_alarge, ct_a[2], ct_a[1], ct_a[0]);
+      ct_a[3] = ct_alarge;
+      ct_alen = 4;
+      Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0);
+      Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0);
+      Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0,
+                   ct_blarge, ct_b[2], ct_b[1], ct_b[0]);
+      ct_b[3] = ct_blarge;
+      ct_blen = 4;
+    }
+  }
+
+  bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct);
+  wlength = scale_expansion_zeroelim(bctlen, bct, adheight, w);
+  finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
+                                          finother);
+  finswap = finnow; finnow = finother; finother = finswap;
+
+  catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat);
+  wlength = scale_expansion_zeroelim(catlen, cat, bdheight, w);
+  finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
+                                          finother);
+  finswap = finnow; finnow = finother; finother = finswap;
+
+  abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt);
+  wlength = scale_expansion_zeroelim(abtlen, abt, cdheight, w);
+  finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
+                                          finother);
+  finswap = finnow; finnow = finother; finother = finswap;
+
+  if (adheighttail != 0.0) {
+    vlength = scale_expansion_zeroelim(4, bc, adheighttail, v);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
+                                            finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (bdheighttail != 0.0) {
+    vlength = scale_expansion_zeroelim(4, ca, bdheighttail, v);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
+                                            finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (cdheighttail != 0.0) {
+    vlength = scale_expansion_zeroelim(4, ab, cdheighttail, v);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
+                                            finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+
+  if (adxtail != 0.0) {
+    if (bdytail != 0.0) {
+      Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0);
+      Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheight, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                              finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (cdheighttail != 0.0) {
+        Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheighttail,
+                        u3, u[2], u[1], u[0]);
+        u[3] = u3;
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                                finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+    }
+    if (cdytail != 0.0) {
+      negate = -adxtail;
+      Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0);
+      Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheight, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                              finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (bdheighttail != 0.0) {
+        Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheighttail,
+                        u3, u[2], u[1], u[0]);
+        u[3] = u3;
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                                finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+    }
+  }
+  if (bdxtail != 0.0) {
+    if (cdytail != 0.0) {
+      Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0);
+      Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheight, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                              finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (adheighttail != 0.0) {
+        Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheighttail,
+                        u3, u[2], u[1], u[0]);
+        u[3] = u3;
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                                finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+    }
+    if (adytail != 0.0) {
+      negate = -bdxtail;
+      Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0);
+      Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheight, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                              finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (cdheighttail != 0.0) {
+        Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheighttail,
+                        u3, u[2], u[1], u[0]);
+        u[3] = u3;
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                                finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+    }
+  }
+  if (cdxtail != 0.0) {
+    if (adytail != 0.0) {
+      Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0);
+      Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheight, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                              finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (bdheighttail != 0.0) {
+        Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheighttail,
+                        u3, u[2], u[1], u[0]);
+        u[3] = u3;
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                                finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+    }
+    if (bdytail != 0.0) {
+      negate = -cdxtail;
+      Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0);
+      Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheight, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                              finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (adheighttail != 0.0) {
+        Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheighttail,
+                        u3, u[2], u[1], u[0]);
+        u[3] = u3;
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                                finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+    }
+  }
+
+  if (adheighttail != 0.0) {
+    wlength = scale_expansion_zeroelim(bctlen, bct, adheighttail, w);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
+                                            finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (bdheighttail != 0.0) {
+    wlength = scale_expansion_zeroelim(catlen, cat, bdheighttail, w);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
+                                            finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (cdheighttail != 0.0) {
+    wlength = scale_expansion_zeroelim(abtlen, abt, cdheighttail, w);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
+                                            finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+
+  return finnow[finlength - 1];
+}
+
+float orient3d(struct mesh *m, struct behavior *b,
+              vertex pa, vertex pb, vertex pc, vertex pd,
+              float aheight, float bheight, float cheight, float dheight)
+{
+  float adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
+  float bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
+  float det;
+  float permanent, errbound;
+
+  m->orient3dcount++;
+
+  adx = pa[0] - pd[0];
+  bdx = pb[0] - pd[0];
+  cdx = pc[0] - pd[0];
+  ady = pa[1] - pd[1];
+  bdy = pb[1] - pd[1];
+  cdy = pc[1] - pd[1];
+  adheight = aheight - dheight;
+  bdheight = bheight - dheight;
+  cdheight = cheight - dheight;
+
+  bdxcdy = bdx * cdy;
+  cdxbdy = cdx * bdy;
+
+  cdxady = cdx * ady;
+  adxcdy = adx * cdy;
+
+  adxbdy = adx * bdy;
+  bdxady = bdx * ady;
+
+  det = adheight * (bdxcdy - cdxbdy) 
+      + bdheight * (cdxady - adxcdy)
+      + cdheight * (adxbdy - bdxady);
+
+  if (b->noexact) {
+    return det;
+  }
+
+  permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adheight)
+            + (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdheight)
+            + (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdheight);
+  errbound = o3derrboundA * permanent;
+  if ((det > errbound) || (-det > errbound)) {
+    return det;
+  }
+
+  return orient3dadapt(pa, pb, pc, pd, aheight, bheight, cheight, dheight,
+                       permanent);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  nonregular()   Return a positive value if the point pd is incompatible   */
+/*                 with the circle or plane passing through pa, pb, and pc   */
+/*                 (meaning that pd is inside the circle or below the        */
+/*                 plane); a negative value if it is compatible; and zero if */
+/*                 the four points are cocircular/coplanar.  The points pa,  */
+/*                 pb, and pc must be in counterclockwise order, or the sign */
+/*                 of the result will be reversed.                           */
+/*                                                                           */
+/*  If the -w switch is used, the points are lifted onto the parabolic       */
+/*  lifting map, then they are dropped according to their weights, then the  */
+/*  3D orientation test is applied.  If the -W switch is used, the points'   */
+/*  heights are already provided, so the 3D orientation test is applied      */
+/*  directly.  If neither switch is used, the incircle test is applied.      */
+/*                                                                           */
+/*****************************************************************************/
+
+float nonregular(struct mesh *m, struct behavior *b,
+                vertex pa, vertex pb, vertex pc, vertex pd)
+{
+  if (b->weighted == 0) {
+    return incircle(m, b, pa, pb, pc, pd);
+  } else if (b->weighted == 1) {
+    return orient3d(m, b, pa, pb, pc, pd,
+                    pa[0] * pa[0] + pa[1] * pa[1] - pa[2],
+                    pb[0] * pb[0] + pb[1] * pb[1] - pb[2],
+                    pc[0] * pc[0] + pc[1] * pc[1] - pc[2],
+                    pd[0] * pd[0] + pd[1] * pd[1] - pd[2]);
+  } else {
+    return orient3d(m, b, pa, pb, pc, pd, pa[2], pb[2], pc[2], pd[2]);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  findcircumcenter()   Find the circumcenter of a triangle.                */
+/*                                                                           */
+/*  The result is returned both in terms of x-y coordinates and xi-eta       */
+/*  (barycentric) coordinates.  The xi-eta coordinate system is defined in   */
+/*  terms of the triangle:  the origin of the triangle is the origin of the  */
+/*  coordinate system; the destination of the triangle is one unit along the */
+/*  xi axis; and the apex of the triangle is one unit along the eta axis.    */
+/*  This procedure also returns the square of the length of the triangle's   */
+/*  shortest edge.                                                           */
+/*                                                                           */
+/*****************************************************************************/
+
+void findcircumcenter(struct mesh *m, struct behavior *b,
+                      vertex torg, vertex tdest, vertex tapex,
+                      vertex circumcenter, float *xi, float *eta, int offcenter)
+{
+  float xdo, ydo, xao, yao;
+  float dodist, aodist, dadist;
+  float denominator;
+  float dx, dy, dxoff, dyoff;
+
+  m->circumcentercount++;
+
+  /* Compute the circumcenter of the triangle. */
+  xdo = tdest[0] - torg[0];
+  ydo = tdest[1] - torg[1];
+  xao = tapex[0] - torg[0];
+  yao = tapex[1] - torg[1];
+  dodist = xdo * xdo + ydo * ydo;
+  aodist = xao * xao + yao * yao;
+  dadist = (tdest[0] - tapex[0]) * (tdest[0] - tapex[0]) +
+           (tdest[1] - tapex[1]) * (tdest[1] - tapex[1]);
+  if (b->noexact) {
+    denominator = 0.5 / (xdo * yao - xao * ydo);
+  } else {
+    /* Use the counterclockwise() routine to ensure a positive (and */
+    /*   reasonably accurate) result, avoiding any possibility of   */
+    /*   division by zero.                                          */
+    denominator = 0.5 / counterclockwise(m, b, tdest, tapex, torg);
+    /* Don't count the above as an orientation test. */
+    m->counterclockcount--;
+  }
+  dx = (yao * dodist - ydo * aodist) * denominator;
+  dy = (xdo * aodist - xao * dodist) * denominator;
+
+  /* Find the (squared) length of the triangle's shortest edge.  This   */
+  /*   serves as a conservative estimate of the insertion radius of the */
+  /*   circumcenter's parent.  The estimate is used to ensure that      */
+  /*   the algorithm terminates even if very small angles appear in     */
+  /*   the input PSLG.                                                  */
+  if ((dodist < aodist) && (dodist < dadist)) {
+    if (offcenter && (b->offconstant > 0.0)) {
+      /* Find the position of the off-center, as described by Alper Ungor. */
+      dxoff = 0.5 * xdo - b->offconstant * ydo;
+      dyoff = 0.5 * ydo + b->offconstant * xdo;
+      /* If the off-center is closer to the origin than the */
+      /*   circumcenter, use the off-center instead.        */
+      if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
+        dx = dxoff;
+        dy = dyoff;
+      }
+    }
+  } else if (aodist < dadist) {
+    if (offcenter && (b->offconstant > 0.0)) {
+      dxoff = 0.5 * xao + b->offconstant * yao;
+      dyoff = 0.5 * yao - b->offconstant * xao;
+      /* If the off-center is closer to the origin than the */
+      /*   circumcenter, use the off-center instead.        */
+      if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
+        dx = dxoff;
+        dy = dyoff;
+      }
+    }
+  } else {
+    if (offcenter && (b->offconstant > 0.0)) {
+      dxoff = 0.5 * (tapex[0] - tdest[0]) -
+              b->offconstant * (tapex[1] - tdest[1]);
+      dyoff = 0.5 * (tapex[1] - tdest[1]) +
+              b->offconstant * (tapex[0] - tdest[0]);
+      /* If the off-center is closer to the destination than the */
+      /*   circumcenter, use the off-center instead.             */
+      if (dxoff * dxoff + dyoff * dyoff <
+          (dx - xdo) * (dx - xdo) + (dy - ydo) * (dy - ydo)) {
+        dx = xdo + dxoff;
+        dy = ydo + dyoff;
+      }
+    }
+  }
+
+  circumcenter[0] = torg[0] + dx;
+  circumcenter[1] = torg[1] + dy;
+
+  /* To interpolate vertex attributes for the new vertex inserted at */
+  /*   the circumcenter, define a coordinate system with a xi-axis,  */
+  /*   directed from the triangle's origin to its destination, and   */
+  /*   an eta-axis, directed from its origin to its apex.            */
+  /*   Calculate the xi and eta coordinates of the circumcenter.     */
+  *xi = (yao * dx - xao * dy) * (2.0 * denominator);
+  *eta = (xdo * dy - ydo * dx) * (2.0 * denominator);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Geometric primitives end here                             *********/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangleinit()   Initialize some variables.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+void triangleinit(struct mesh *m)
+{
+  poolzero(&m->vertices);
+  poolzero(&m->triangles);
+  poolzero(&m->subsegs);
+  poolzero(&m->viri);
+  poolzero(&m->badsubsegs);
+  poolzero(&m->badtriangles);
+  poolzero(&m->flipstackers);
+  poolzero(&m->splaynodes);
+
+  m->recenttri.tri = (triangle *) NULL; /* No triangle has been visited yet. */
+  m->undeads = 0;                       /* No eliminated input vertices yet. */
+  m->samples = 1;         /* Point location should take at least one sample. */
+  m->checksegments = 0;   /* There are no segments in the triangulation yet. */
+  m->checkquality = 0;     /* The quality triangulation stage has not begun. */
+  m->incirclecount = m->counterclockcount = m->orient3dcount = 0;
+  m->hyperbolacount = m->circletopcount = m->circumcentercount = 0;
+  randomseed = 1;
+
+  exactinit();                     /* Initialize exact arithmetic constants. */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  randomnation()   Generate a random number between 0 and `choices' - 1.   */
+/*                                                                           */
+/*  This is a simple linear congruential random number generator.  Hence, it */
+/*  is a bad random number generator, but good enough for most randomized    */
+/*  geometric algorithms.                                                    */
+/*                                                                           */
+/*****************************************************************************/
+
+unsigned long long randomnation(unsigned int choices)
+{
+  randomseed = (randomseed * 1366l + 150889l) % 714025l;
+  return randomseed / (714025l / choices + 1);
+}
+
+/********* Point location routines begin here                        *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  makevertexmap()   Construct a mapping from vertices to triangles to      */
+/*                    improve the speed of point location for segment        */
+/*                    insertion.                                             */
+/*                                                                           */
+/*  Traverses all the triangles, and provides each corner of each triangle   */
+/*  with a pointer to that triangle.  Of course, pointers will be            */
+/*  overwritten by other pointers because (almost) each vertex is a corner   */
+/*  of several triangles, but in the end every vertex will point to some     */
+/*  triangle that contains it.                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+void makevertexmap(struct mesh *m, struct behavior *b)
+{
+  struct otri triangleloop;
+  vertex triorg;
+
+  if (b->verbose) {
+    printf("    Constructing mapping from vertices to triangles.\n");
+  }
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  while (triangleloop.tri != (triangle *) NULL) {
+    /* Check all three vertices of the triangle. */
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      org(triangleloop, triorg);
+      setvertex2tri(triorg, encode(triangleloop));
+    }
+    triangleloop.tri = triangletraverse(m);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  preciselocate()   Find a triangle or edge containing a given point.      */
+/*                                                                           */
+/*  Begins its search from `searchtri'.  It is important that `searchtri'    */
+/*  be a handle with the property that `searchpoint' is strictly to the left */
+/*  of the edge denoted by `searchtri', or is collinear with that edge and   */
+/*  does not intersect that edge.  (In particular, `searchpoint' should not  */
+/*  be the origin or destination of that edge.)                              */
+/*                                                                           */
+/*  These conditions are imposed because preciselocate() is normally used in */
+/*  one of two situations:                                                   */
+/*                                                                           */
+/*  (1)  To try to find the location to insert a new point.  Normally, we    */
+/*       know an edge that the point is strictly to the left of.  In the     */
+/*       incremental Delaunay algorithm, that edge is a bounding box edge.   */
+/*       In Ruppert's Delaunay refinement algorithm for quality meshing,     */
+/*       that edge is the shortest edge of the triangle whose circumcenter   */
+/*       is being inserted.                                                  */
+/*                                                                           */
+/*  (2)  To try to find an existing point.  In this case, any edge on the    */
+/*       convex hull is a good starting edge.  You must screen out the       */
+/*       possibility that the vertex sought is an endpoint of the starting   */
+/*       edge before you call preciselocate().                               */
+/*                                                                           */
+/*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
+/*                                                                           */
+/*  This implementation differs from that given by Guibas and Stolfi.  It    */
+/*  walks from triangle to triangle, crossing an edge only if `searchpoint'  */
+/*  is on the other side of the line containing that edge.  After entering   */
+/*  a triangle, there are two edges by which one can leave that triangle.    */
+/*  If both edges are valid (`searchpoint' is on the other side of both      */
+/*  edges), one of the two is chosen by drawing a line perpendicular to      */
+/*  the entry edge (whose endpoints are `forg' and `fdest') passing through  */
+/*  `fapex'.  Depending on which side of this perpendicular `searchpoint'    */
+/*  falls on, an exit edge is chosen.                                        */
+/*                                                                           */
+/*  This implementation is empirically faster than the Guibas and Stolfi     */
+/*  point location routine (which I originally used), which tends to spiral  */
+/*  in toward its target.                                                    */
+/*                                                                           */
+/*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
+/*  is a handle whose origin is the existing vertex.                         */
+/*                                                                           */
+/*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
+/*  handle whose primary edge is the edge on which the point lies.           */
+/*                                                                           */
+/*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
+/*  `searchtri' is a handle on the triangle that contains the point.         */
+/*                                                                           */
+/*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
+/*  handle whose primary edge the point is to the right of.  This might      */
+/*  occur when the circumcenter of a triangle falls just slightly outside    */
+/*  the mesh due to floating-point roundoff error.  It also occurs when      */
+/*  seeking a hole or region point that a foolish user has placed outside    */
+/*  the mesh.                                                                */
+/*                                                                           */
+/*  If `stopatsubsegment' is nonzero, the search will stop if it tries to    */
+/*  walk through a subsegment, and will return OUTSIDE.                      */
+/*                                                                           */
+/*  WARNING:  This routine is designed for convex triangulations, and will   */
+/*  not generally work after the holes and concavities have been carved.     */
+/*  However, it can still be used to find the circumcenter of a triangle, as */
+/*  long as the search is begun from the triangle in question.               */
+/*                                                                           */
+/*****************************************************************************/
+
+enum locateresult preciselocate(struct mesh *m, struct behavior *b,
+                                vertex searchpoint, struct otri *searchtri,
+                                int stopatsubsegment)
+{
+  struct otri backtracktri;
+  struct osub checkedge;
+  vertex forg, fdest, fapex;
+  float orgorient, destorient;
+  int moveleft;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (b->verbose > 2) {
+    printf("  Searching for point (%.12g, %.12g).\n",
+           searchpoint[0], searchpoint[1]);
+  }
+  /* Where are we? */
+  org(*searchtri, forg);
+  dest(*searchtri, fdest);
+  apex(*searchtri, fapex);
+  while (1) {
+    if (b->verbose > 2) {
+      printf("    At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+             forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);
+    }
+    /* Check whether the apex is the point we seek. */
+    if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
+      lprevself(*searchtri);
+      return ONVERTEX;
+    }
+    /* Does the point lie on the other side of the line defined by the */
+    /*   triangle edge opposite the triangle's destination?            */
+    destorient = counterclockwise(m, b, forg, fapex, searchpoint);
+    /* Does the point lie on the other side of the line defined by the */
+    /*   triangle edge opposite the triangle's origin?                 */
+    orgorient = counterclockwise(m, b, fapex, fdest, searchpoint);
+    if (destorient > 0.0) {
+      if (orgorient > 0.0) {
+        /* Move left if the inner product of (fapex - searchpoint) and  */
+        /*   (fdest - forg) is positive.  This is equivalent to drawing */
+        /*   a line perpendicular to the line (forg, fdest) and passing */
+        /*   through `fapex', and determining which side of this line   */
+        /*   `searchpoint' falls on.                                    */
+        moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) +
+                   (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
+      } else {
+        moveleft = 1;
+      }
+    } else {
+      if (orgorient > 0.0) {
+        moveleft = 0;
+      } else {
+        /* The point we seek must be on the boundary of or inside this */
+        /*   triangle.                                                 */
+        if (destorient == 0.0) {
+          lprevself(*searchtri);
+          return ONEDGE;
+        }
+        if (orgorient == 0.0) {
+          lnextself(*searchtri);
+          return ONEDGE;
+        }
+        return INTRIANGLE;
+      }
+    }
+
+    /* Move to another triangle.  Leave a trace `backtracktri' in case */
+    /*   floating-point roundoff or some such bogey causes us to walk  */
+    /*   off a boundary of the triangulation.                          */
+    if (moveleft) {
+      lprev(*searchtri, backtracktri);
+      fdest = fapex;
+    } else {
+      lnext(*searchtri, backtracktri);
+      forg = fapex;
+    }
+    sym(backtracktri, *searchtri);
+
+    if (m->checksegments && stopatsubsegment) {
+      /* Check for walking through a subsegment. */
+      tspivot(backtracktri, checkedge);
+      if (checkedge.ss != m->dummysub) {
+        /* Go back to the last triangle. */
+        otricopy(backtracktri, *searchtri);
+        return OUTSIDE;
+      }
+    }
+    /* Check for walking right out of the triangulation. */
+    if (searchtri->tri == m->dummytri) {
+      /* Go back to the last triangle. */
+      otricopy(backtracktri, *searchtri);
+      return OUTSIDE;
+    }
+
+    apex(*searchtri, fapex);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  locate()   Find a triangle or edge containing a given point.             */
+/*                                                                           */
+/*  Searching begins from one of:  the input `searchtri', a recently         */
+/*  encountered triangle `recenttri', or from a triangle chosen from a       */
+/*  random sample.  The choice is made by determining which triangle's       */
+/*  origin is closest to the point we are searching for.  Normally,          */
+/*  `searchtri' should be a handle on the convex hull of the triangulation.  */
+/*                                                                           */
+/*  Details on the random sampling method can be found in the Mucke, Saias,  */
+/*  and Zhu paper cited in the header of this code.                          */
+/*                                                                           */
+/*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
+/*                                                                           */
+/*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
+/*  is a handle whose origin is the existing vertex.                         */
+/*                                                                           */
+/*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
+/*  handle whose primary edge is the edge on which the point lies.           */
+/*                                                                           */
+/*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
+/*  `searchtri' is a handle on the triangle that contains the point.         */
+/*                                                                           */
+/*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
+/*  handle whose primary edge the point is to the right of.  This might      */
+/*  occur when the circumcenter of a triangle falls just slightly outside    */
+/*  the mesh due to floating-point roundoff error.  It also occurs when      */
+/*  seeking a hole or region point that a foolish user has placed outside    */
+/*  the mesh.                                                                */
+/*                                                                           */
+/*  WARNING:  This routine is designed for convex triangulations, and will   */
+/*  not generally work after the holes and concavities have been carved.     */
+/*                                                                           */
+/*****************************************************************************/
+
+enum locateresult locate(struct mesh *m, struct behavior *b,
+                         vertex searchpoint, struct otri *searchtri)
+{
+  int **sampleblock;
+  char *firsttri;
+  struct otri sampletri;
+  vertex torg, tdest;
+  unsigned long long alignptr;
+  float searchdist, dist;
+  float ahead;
+  long samplesperblock, totalsamplesleft, samplesleft;
+  long population, totalpopulation;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (b->verbose > 2) {
+    printf("  Randomly sampling for a triangle near point (%.12g, %.12g).\n",
+           searchpoint[0], searchpoint[1]);
+  }
+  /* Record the distance from the suggested starting triangle to the */
+  /*   point we seek.                                                */
+  org(*searchtri, torg);
+  searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
+               (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
+  if (b->verbose > 2) {
+    printf("    Boundary triangle has origin (%.12g, %.12g).\n",
+           torg[0], torg[1]);
+  }
+
+  /* If a recently encountered triangle has been recorded and has not been */
+  /*   deallocated, test it as a good starting point.                      */
+  if (m->recenttri.tri != (triangle *) NULL) {
+    if (!deadtri(m->recenttri.tri)) {
+      org(m->recenttri, torg);
+      if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
+        otricopy(m->recenttri, *searchtri);
+        return ONVERTEX;
+      }
+      dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
+             (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
+      if (dist < searchdist) {
+        otricopy(m->recenttri, *searchtri);
+        searchdist = dist;
+        if (b->verbose > 2) {
+          printf("    Choosing recent triangle with origin (%.12g, %.12g).\n",
+                 torg[0], torg[1]);
+        }
+      }
+    }
+  }
+
+  /* The number of random samples taken is proportional to the cube root of */
+  /*   the number of triangles in the mesh.  The next bit of code assumes   */
+  /*   that the number of triangles increases monotonically (or at least    */
+  /*   doesn't decrease enough to matter).                                  */
+  while (SAMPLEFACTOR * m->samples * m->samples * m->samples <
+         m->triangles.items) {
+    m->samples++;
+  }
+
+  /* We'll draw ceiling(samples * TRIPERBLOCK / maxitems) random samples  */
+  /*   from each block of triangles (except the first)--until we meet the */
+  /*   sample quota.  The ceiling means that blocks at the end might be   */
+  /*   neglected, but I don't care.                                       */
+  samplesperblock = (m->samples * TRIPERBLOCK - 1) / m->triangles.maxitems + 1;
+  /* We'll draw ceiling(samples * itemsfirstblock / maxitems) random samples */
+  /*   from the first block of triangles.                                    */
+  samplesleft = (m->samples * m->triangles.itemsfirstblock - 1) /
+                m->triangles.maxitems + 1;
+  totalsamplesleft = m->samples;
+  population = m->triangles.itemsfirstblock;
+  totalpopulation = m->triangles.maxitems;
+  sampleblock = m->triangles.firstblock;
+  sampletri.orient = 0;
+  while (totalsamplesleft > 0) {
+    /* If we're in the last block, `population' needs to be corrected. */
+    if (population > totalpopulation) {
+      population = totalpopulation;
+    }
+    /* Find a pointer to the first triangle in the block. */
+    alignptr = (unsigned long long) (sampleblock + 1);
+    firsttri = (char *) (alignptr +
+                         (unsigned long long) m->triangles.alignbytes -
+                         (alignptr %
+                          (unsigned long long) m->triangles.alignbytes));
+
+    /* Choose `samplesleft' randomly sampled triangles in this block. */
+    do {
+      sampletri.tri = (triangle *) (firsttri +
+                                    (randomnation((unsigned int) population) *
+                                     m->triangles.itembytes));
+      if (!deadtri(sampletri.tri)) {
+        org(sampletri, torg);
+        dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
+               (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
+        if (dist < searchdist) {
+          otricopy(sampletri, *searchtri);
+          searchdist = dist;
+          if (b->verbose > 2) {
+            printf("    Choosing triangle with origin (%.12g, %.12g).\n",
+                   torg[0], torg[1]);
+          }
+        }
+      }
+
+      samplesleft--;
+      totalsamplesleft--;
+    } while ((samplesleft > 0) && (totalsamplesleft > 0));
+
+    if (totalsamplesleft > 0) {
+      sampleblock = (int **) *sampleblock;
+      samplesleft = samplesperblock;
+      totalpopulation -= population;
+      population = TRIPERBLOCK;
+    }
+  }
+
+  /* Where are we? */
+  org(*searchtri, torg);
+  dest(*searchtri, tdest);
+  /* Check the starting triangle's vertices. */
+  if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
+    return ONVERTEX;
+  }
+  if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
+    lnextself(*searchtri);
+    return ONVERTEX;
+  }
+  /* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
+  ahead = counterclockwise(m, b, torg, tdest, searchpoint);
+  if (ahead < 0.0) {
+    /* Turn around so that `searchpoint' is to the left of the */
+    /*   edge specified by `searchtri'.                        */
+    symself(*searchtri);
+  } else if (ahead == 0.0) {
+    /* Check if `searchpoint' is between `torg' and `tdest'. */
+    if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0])) &&
+        ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
+      return ONEDGE;
+    }
+  }
+  return preciselocate(m, b, searchpoint, searchtri, 0);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Point location routines end here                          *********/
+
+/********* Mesh transformation routines begin here                   *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  insertsubseg()   Create a new subsegment and insert it between two       */
+/*                   triangles.                                              */
+/*                                                                           */
+/*  The new subsegment is inserted at the edge described by the handle       */
+/*  `tri'.  Its vertices are properly initialized.  The marker `subsegmark'  */
+/*  is applied to the subsegment and, if appropriate, its vertices.          */
+/*                                                                           */
+/*****************************************************************************/
+
+void insertsubseg(struct mesh *m, struct behavior *b, struct otri *tri,
+                  int subsegmark)
+{
+  struct otri oppotri;
+  struct osub newsubseg;
+  vertex triorg, tridest;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  org(*tri, triorg);
+  dest(*tri, tridest);
+  /* Mark vertices if possible. */
+  if (vertexmark(triorg) == 0) {
+    setvertexmark(triorg, subsegmark);
+  }
+  if (vertexmark(tridest) == 0) {
+    setvertexmark(tridest, subsegmark);
+  }
+  /* Check if there's already a subsegment here. */
+  tspivot(*tri, newsubseg);
+  if (newsubseg.ss == m->dummysub) {
+    /* Make new subsegment and initialize its vertices. */
+    makesubseg(m, &newsubseg);
+    setsorg(newsubseg, tridest);
+    setsdest(newsubseg, triorg);
+    setsegorg(newsubseg, tridest);
+    setsegdest(newsubseg, triorg);
+    /* Bond new subsegment to the two triangles it is sandwiched between. */
+    /*   Note that the facing triangle `oppotri' might be equal to        */
+    /*   `dummytri' (outer space), but the new subsegment is bonded to it */
+    /*   all the same.                                                    */
+    tsbond(*tri, newsubseg);
+    sym(*tri, oppotri);
+    ssymself(newsubseg);
+    tsbond(oppotri, newsubseg);
+    setmark(newsubseg, subsegmark);
+    if (b->verbose > 2) {
+      printf("  Inserting new ");
+      printsubseg(m, b, &newsubseg);
+    }
+  } else {
+    if (mark(newsubseg) == 0) {
+      setmark(newsubseg, subsegmark);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  Terminology                                                              */
+/*                                                                           */
+/*  A "local transformation" replaces a small set of triangles with another  */
+/*  set of triangles.  This may or may not involve inserting or deleting a   */
+/*  vertex.                                                                  */
+/*                                                                           */
+/*  The term "casing" is used to describe the set of triangles that are      */
+/*  attached to the triangles being transformed, but are not transformed     */
+/*  themselves.  Think of the casing as a fixed hollow structure inside      */
+/*  which all the action happens.  A "casing" is only defined relative to    */
+/*  a single transformation; each occurrence of a transformation will        */
+/*  involve a different casing.                                              */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  flip()   Transform two triangles to two different triangles by flipping  */
+/*           an edge counterclockwise within a quadrilateral.                */
+/*                                                                           */
+/*  Imagine the original triangles, abc and bad, oriented so that the        */
+/*  shared edge ab lies in a horizontal plane, with the vertex b on the left */
+/*  and the vertex a on the right.  The vertex c lies below the edge, and    */
+/*  the vertex d lies above the edge.  The `flipedge' handle holds the edge  */
+/*  ab of triangle abc, and is directed left, from vertex a to vertex b.     */
+/*                                                                           */
+/*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
+/*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
+/*  they are reused for dca and cdb, respectively.  Hence, any handles that  */
+/*  may have held the original triangles are still valid, although not       */
+/*  directed as they were before.                                            */
+/*                                                                           */
+/*  Upon completion of this routine, the `flipedge' handle holds the edge    */
+/*  dc of triangle dca, and is directed down, from vertex d to vertex c.     */
+/*  (Hence, the two triangles have rotated counterclockwise.)                */
+/*                                                                           */
+/*  WARNING:  This transformation is geometrically valid only if the         */
+/*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
+/*  valid only if there is not a subsegment between the triangles abc and    */
+/*  bad.  This routine does not check either of these preconditions, and     */
+/*  it is the responsibility of the calling routine to ensure that they are  */
+/*  met.  If they are not, the streets shall be filled with wailing and      */
+/*  gnashing of teeth.                                                       */
+/*                                                                           */
+/*****************************************************************************/
+
+void flip(struct mesh *m, struct behavior *b, struct otri *flipedge)
+{
+  struct otri botleft, botright;
+  struct otri topleft, topright;
+  struct otri top;
+  struct otri botlcasing, botrcasing;
+  struct otri toplcasing, toprcasing;
+  struct osub botlsubseg, botrsubseg;
+  struct osub toplsubseg, toprsubseg;
+  vertex leftvertex, rightvertex, botvertex;
+  vertex farvertex;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  /* Identify the vertices of the quadrilateral. */
+  org(*flipedge, rightvertex);
+  dest(*flipedge, leftvertex);
+  apex(*flipedge, botvertex);
+  sym(*flipedge, top);
+  apex(top, farvertex);
+
+  /* Identify the casing of the quadrilateral. */
+  lprev(top, topleft);
+  sym(topleft, toplcasing);
+  lnext(top, topright);
+  sym(topright, toprcasing);
+  lnext(*flipedge, botleft);
+  sym(botleft, botlcasing);
+  lprev(*flipedge, botright);
+  sym(botright, botrcasing);
+  /* Rotate the quadrilateral one-quarter turn counterclockwise. */
+  bond(topleft, botlcasing);
+  bond(botleft, botrcasing);
+  bond(botright, toprcasing);
+  bond(topright, toplcasing);
+
+  if (m->checksegments) {
+    /* Check for subsegments and rebond them to the quadrilateral. */
+    tspivot(topleft, toplsubseg);
+    tspivot(botleft, botlsubseg);
+    tspivot(botright, botrsubseg);
+    tspivot(topright, toprsubseg);
+    if (toplsubseg.ss == m->dummysub) {
+      tsdissolve(topright);
+    } else {
+      tsbond(topright, toplsubseg);
+    }
+    if (botlsubseg.ss == m->dummysub) {
+      tsdissolve(topleft);
+    } else {
+      tsbond(topleft, botlsubseg);
+    }
+    if (botrsubseg.ss == m->dummysub) {
+      tsdissolve(botleft);
+    } else {
+      tsbond(botleft, botrsubseg);
+    }
+    if (toprsubseg.ss == m->dummysub) {
+      tsdissolve(botright);
+    } else {
+      tsbond(botright, toprsubseg);
+    }
+  }
+
+  /* New vertex assignments for the rotated quadrilateral. */
+  setorg(*flipedge, farvertex);
+  setdest(*flipedge, botvertex);
+  setapex(*flipedge, rightvertex);
+  setorg(top, botvertex);
+  setdest(top, farvertex);
+  setapex(top, leftvertex);
+  if (b->verbose > 2) {
+    printf("  Edge flip results in left ");
+    printtriangle(m, b, &top);
+    printf("  and right ");
+    printtriangle(m, b, flipedge);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  unflip()   Transform two triangles to two different triangles by         */
+/*             flipping an edge clockwise within a quadrilateral.  Reverses  */
+/*             the flip() operation so that the data structures representing */
+/*             the triangles are back where they were before the flip().     */
+/*                                                                           */
+/*  Imagine the original triangles, abc and bad, oriented so that the        */
+/*  shared edge ab lies in a horizontal plane, with the vertex b on the left */
+/*  and the vertex a on the right.  The vertex c lies below the edge, and    */
+/*  the vertex d lies above the edge.  The `flipedge' handle holds the edge  */
+/*  ab of triangle abc, and is directed left, from vertex a to vertex b.     */
+/*                                                                           */
+/*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
+/*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
+/*  they are reused for cdb and dca, respectively.  Hence, any handles that  */
+/*  may have held the original triangles are still valid, although not       */
+/*  directed as they were before.                                            */
+/*                                                                           */
+/*  Upon completion of this routine, the `flipedge' handle holds the edge    */
+/*  cd of triangle cdb, and is directed up, from vertex c to vertex d.       */
+/*  (Hence, the two triangles have rotated clockwise.)                       */
+/*                                                                           */
+/*  WARNING:  This transformation is geometrically valid only if the         */
+/*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
+/*  valid only if there is not a subsegment between the triangles abc and    */
+/*  bad.  This routine does not check either of these preconditions, and     */
+/*  it is the responsibility of the calling routine to ensure that they are  */
+/*  met.  If they are not, the streets shall be filled with wailing and      */
+/*  gnashing of teeth.                                                       */
+/*                                                                           */
+/*****************************************************************************/
+
+void unflip(struct mesh *m, struct behavior *b, struct otri *flipedge)
+{
+  struct otri botleft, botright;
+  struct otri topleft, topright;
+  struct otri top;
+  struct otri botlcasing, botrcasing;
+  struct otri toplcasing, toprcasing;
+  struct osub botlsubseg, botrsubseg;
+  struct osub toplsubseg, toprsubseg;
+  vertex leftvertex, rightvertex, botvertex;
+  vertex farvertex;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  /* Identify the vertices of the quadrilateral. */
+  org(*flipedge, rightvertex);
+  dest(*flipedge, leftvertex);
+  apex(*flipedge, botvertex);
+  sym(*flipedge, top);
+  apex(top, farvertex);
+
+  /* Identify the casing of the quadrilateral. */
+  lprev(top, topleft);
+  sym(topleft, toplcasing);
+  lnext(top, topright);
+  sym(topright, toprcasing);
+  lnext(*flipedge, botleft);
+  sym(botleft, botlcasing);
+  lprev(*flipedge, botright);
+  sym(botright, botrcasing);
+  /* Rotate the quadrilateral one-quarter turn clockwise. */
+  bond(topleft, toprcasing);
+  bond(botleft, toplcasing);
+  bond(botright, botlcasing);
+  bond(topright, botrcasing);
+
+  if (m->checksegments) {
+    /* Check for subsegments and rebond them to the quadrilateral. */
+    tspivot(topleft, toplsubseg);
+    tspivot(botleft, botlsubseg);
+    tspivot(botright, botrsubseg);
+    tspivot(topright, toprsubseg);
+    if (toplsubseg.ss == m->dummysub) {
+      tsdissolve(botleft);
+    } else {
+      tsbond(botleft, toplsubseg);
+    }
+    if (botlsubseg.ss == m->dummysub) {
+      tsdissolve(botright);
+    } else {
+      tsbond(botright, botlsubseg);
+    }
+    if (botrsubseg.ss == m->dummysub) {
+      tsdissolve(topright);
+    } else {
+      tsbond(topright, botrsubseg);
+    }
+    if (toprsubseg.ss == m->dummysub) {
+      tsdissolve(topleft);
+    } else {
+      tsbond(topleft, toprsubseg);
+    }
+  }
+
+  /* New vertex assignments for the rotated quadrilateral. */
+  setorg(*flipedge, botvertex);
+  setdest(*flipedge, farvertex);
+  setapex(*flipedge, leftvertex);
+  setorg(top, farvertex);
+  setdest(top, botvertex);
+  setapex(top, rightvertex);
+  if (b->verbose > 2) {
+    printf("  Edge unflip results in left ");
+    printtriangle(m, b, flipedge);
+    printf("  and right ");
+    printtriangle(m, b, &top);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  insertvertex()   Insert a vertex into a Delaunay triangulation,          */
+/*                   performing flips as necessary to maintain the Delaunay  */
+/*                   property.                                               */
+/*                                                                           */
+/*  The point `insertvertex' is located.  If `searchtri.tri' is not NULL,    */
+/*  the search for the containing triangle begins from `searchtri'.  If      */
+/*  `searchtri.tri' is NULL, a full point location procedure is called.      */
+/*  If `insertvertex' is found inside a triangle, the triangle is split into */
+/*  three; if `insertvertex' lies on an edge, the edge is split in two,      */
+/*  thereby splitting the two adjacent triangles into four.  Edge flips are  */
+/*  used to restore the Delaunay property.  If `insertvertex' lies on an     */
+/*  existing vertex, no action is taken, and the value DUPLICATEVERTEX is    */
+/*  returned.  On return, `searchtri' is set to a handle whose origin is the */
+/*  existing vertex.                                                         */
+/*                                                                           */
+/*  Normally, the parameter `splitseg' is set to NULL, implying that no      */
+/*  subsegment should be split.  In this case, if `insertvertex' is found to */
+/*  lie on a segment, no action is taken, and the value VIOLATINGVERTEX is   */
+/*  returned.  On return, `searchtri' is set to a handle whose primary edge  */
+/*  is the violated subsegment.                                              */
+/*                                                                           */
+/*  If the calling routine wishes to split a subsegment by inserting a       */
+/*  vertex in it, the parameter `splitseg' should be that subsegment.  In    */
+/*  this case, `searchtri' MUST be the triangle handle reached by pivoting   */
+/*  from that subsegment; no point location is done.                         */
+/*                                                                           */
+/*  `segmentflaws' and `triflaws' are flags that indicate whether or not     */
+/*  there should be checks for the creation of encroached subsegments or bad */
+/*  quality triangles.  If a newly inserted vertex encroaches upon           */
+/*  subsegments, these subsegments are added to the list of subsegments to   */
+/*  be split if `segmentflaws' is set.  If bad triangles are created, these  */
+/*  are added to the queue if `triflaws' is set.                             */
+/*                                                                           */
+/*  If a duplicate vertex or violated segment does not prevent the vertex    */
+/*  from being inserted, the return value will be ENCROACHINGVERTEX if the   */
+/*  vertex encroaches upon a subsegment (and checking is enabled), or        */
+/*  SUCCESSFULVERTEX otherwise.  In either case, `searchtri' is set to a     */
+/*  handle whose origin is the newly inserted vertex.                        */
+/*                                                                           */
+/*  insertvertex() does not use flip() for reasons of speed; some            */
+/*  information can be reused from edge flip to edge flip, like the          */
+/*  locations of subsegments.                                                */
+/*                                                                           */
+/*****************************************************************************/
+
+enum insertvertexresult insertvertex(struct mesh *m, struct behavior *b,
+                                     vertex newvertex, struct otri *searchtri,
+                                     struct osub *splitseg,
+                                     int segmentflaws, int triflaws)
+{
+  struct otri horiz;
+  struct otri top;
+  struct otri botleft, botright;
+  struct otri topleft, topright;
+  struct otri newbotleft, newbotright;
+  struct otri newtopright;
+  struct otri botlcasing, botrcasing;
+  struct otri toplcasing, toprcasing;
+  struct otri testtri;
+  struct osub botlsubseg, botrsubseg;
+  struct osub toplsubseg, toprsubseg;
+  struct osub brokensubseg;
+  struct osub checksubseg;
+  struct osub rightsubseg;
+  struct osub newsubseg;
+  struct badsubseg *encroached;
+  struct flipstacker *newflip;
+  vertex first;
+  vertex leftvertex, rightvertex, botvertex, topvertex, farvertex;
+  vertex segmentorg, segmentdest;
+  float attrib;
+  float area;
+  enum insertvertexresult success;
+  enum locateresult intersect;
+  int doflip;
+  int mirrorflag;
+  int enq;
+  int i;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;         /* Temporary variable used by spivot() and tspivot(). */
+
+  if (b->verbose > 1) {
+    printf("  Inserting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
+  }
+
+  if (splitseg == (struct osub *) NULL) {
+    /* Find the location of the vertex to be inserted.  Check if a good */
+    /*   starting triangle has already been provided by the caller.     */
+    if (searchtri->tri == m->dummytri) {
+      /* Find a boundary triangle. */
+      horiz.tri = m->dummytri;
+      horiz.orient = 0;
+      symself(horiz);
+      /* Search for a triangle containing `newvertex'. */
+      intersect = locate(m, b, newvertex, &horiz);
+    } else {
+      /* Start searching from the triangle provided by the caller. */
+      otricopy(*searchtri, horiz);
+      intersect = preciselocate(m, b, newvertex, &horiz, 1);
+    }
+  } else {
+    /* The calling routine provides the subsegment in which */
+    /*   the vertex is inserted.                             */
+    otricopy(*searchtri, horiz);
+    intersect = ONEDGE;
+  }
+
+  if (intersect == ONVERTEX) {
+    /* There's already a vertex there.  Return in `searchtri' a triangle */
+    /*   whose origin is the existing vertex.                            */
+    otricopy(horiz, *searchtri);
+    otricopy(horiz, m->recenttri);
+    return DUPLICATEVERTEX;
+  }
+  if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
+    /* The vertex falls on an edge or boundary. */
+    if (m->checksegments && (splitseg == (struct osub *) NULL)) {
+      /* Check whether the vertex falls on a subsegment. */
+      tspivot(horiz, brokensubseg);
+      if (brokensubseg.ss != m->dummysub) {
+        /* The vertex falls on a subsegment, and hence will not be inserted. */
+        if (segmentflaws) {
+          enq = b->nobisect != 2;
+          if (enq && (b->nobisect == 1)) {
+            /* This subsegment may be split only if it is an */
+            /*   internal boundary.                          */
+            sym(horiz, testtri);
+            enq = testtri.tri != m->dummytri;
+          }
+          if (enq) {
+            /* Add the subsegment to the list of encroached subsegments. */
+            encroached = (struct badsubseg *) poolalloc(&m->badsubsegs);
+            encroached->encsubseg = sencode(brokensubseg);
+            sorg(brokensubseg, encroached->subsegorg);
+            sdest(brokensubseg, encroached->subsegdest);
+            if (b->verbose > 2) {
+              printf(
+          "  Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",
+                     encroached->subsegorg[0], encroached->subsegorg[1],
+                     encroached->subsegdest[0], encroached->subsegdest[1]);
+            }
+          }
+        }
+        /* Return a handle whose primary edge contains the vertex, */
+        /*   which has not been inserted.                          */
+        otricopy(horiz, *searchtri);
+        otricopy(horiz, m->recenttri);
+        return VIOLATINGVERTEX;
+      }
+    }
+
+    /* Insert the vertex on an edge, dividing one triangle into two (if */
+    /*   the edge lies on a boundary) or two triangles into four.       */
+    lprev(horiz, botright);
+    sym(botright, botrcasing);
+    sym(horiz, topright);
+    /* Is there a second triangle?  (Or does this edge lie on a boundary?) */
+    mirrorflag = topright.tri != m->dummytri;
+    if (mirrorflag) {
+      lnextself(topright);
+      sym(topright, toprcasing);
+      maketriangle(m, b, &newtopright);
+    } else {
+      /* Splitting a boundary edge increases the number of boundary edges. */
+      m->hullsize++;
+    }
+    maketriangle(m, b, &newbotright);
+
+    /* Set the vertices of changed and new triangles. */
+    org(horiz, rightvertex);
+    dest(horiz, leftvertex);
+    apex(horiz, botvertex);
+    setorg(newbotright, botvertex);
+    setdest(newbotright, rightvertex);
+    setapex(newbotright, newvertex);
+    setorg(horiz, newvertex);
+    for (i = 0; i < m->eextras; i++) {
+      /* Set the element attributes of a new triangle. */
+      setelemattribute(newbotright, i, elemattribute(botright, i));
+    }
+    if (b->vararea) {
+      /* Set the area constraint of a new triangle. */
+      setareabound(newbotright, areabound(botright));
+    }
+    if (mirrorflag) {
+      dest(topright, topvertex);
+      setorg(newtopright, rightvertex);
+      setdest(newtopright, topvertex);
+      setapex(newtopright, newvertex);
+      setorg(topright, newvertex);
+      for (i = 0; i < m->eextras; i++) {
+        /* Set the element attributes of another new triangle. */
+        setelemattribute(newtopright, i, elemattribute(topright, i));
+      }
+      if (b->vararea) {
+        /* Set the area constraint of another new triangle. */
+        setareabound(newtopright, areabound(topright));
+      }
+    }
+
+    /* There may be subsegments that need to be bonded */
+    /*   to the new triangle(s).                       */
+    if (m->checksegments) {
+      tspivot(botright, botrsubseg);
+      if (botrsubseg.ss != m->dummysub) {
+        tsdissolve(botright);
+        tsbond(newbotright, botrsubseg);
+      }
+      if (mirrorflag) {
+        tspivot(topright, toprsubseg);
+        if (toprsubseg.ss != m->dummysub) {
+          tsdissolve(topright);
+          tsbond(newtopright, toprsubseg);
+        }
+      }
+    }
+
+    /* Bond the new triangle(s) to the surrounding triangles. */
+    bond(newbotright, botrcasing);
+    lprevself(newbotright);
+    bond(newbotright, botright);
+    lprevself(newbotright);
+    if (mirrorflag) {
+      bond(newtopright, toprcasing);
+      lnextself(newtopright);
+      bond(newtopright, topright);
+      lnextself(newtopright);
+      bond(newtopright, newbotright);
+    }
+
+    if (splitseg != (struct osub *) NULL) {
+      /* Split the subsegment into two. */
+      setsdest(*splitseg, newvertex);
+      segorg(*splitseg, segmentorg);
+      segdest(*splitseg, segmentdest);
+      ssymself(*splitseg);
+      spivot(*splitseg, rightsubseg);
+      insertsubseg(m, b, &newbotright, mark(*splitseg));
+      tspivot(newbotright, newsubseg);
+      setsegorg(newsubseg, segmentorg);
+      setsegdest(newsubseg, segmentdest);
+      sbond(*splitseg, newsubseg);
+      ssymself(newsubseg);
+      sbond(newsubseg, rightsubseg);
+      ssymself(*splitseg);
+      /* Transfer the subsegment's boundary marker to the vertex */
+      /*   if required.                                          */
+      if (vertexmark(newvertex) == 0) {
+        setvertexmark(newvertex, mark(*splitseg));
+      }
+    }
+
+    if (m->checkquality) {
+      poolrestart(&m->flipstackers);
+      m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
+      m->lastflip->flippedtri = encode(horiz);
+      m->lastflip->prevflip = (struct flipstacker *) &insertvertex;
+    }
+    if (b->verbose > 2) {
+      printf("  Updating bottom left ");
+      printtriangle(m, b, &botright);
+      if (mirrorflag) {
+        printf("  Updating top left ");
+        printtriangle(m, b, &topright);
+        printf("  Creating top right ");
+        printtriangle(m, b, &newtopright);
+      }
+      printf("  Creating bottom right ");
+      printtriangle(m, b, &newbotright);
+    }
+
+    /* Position `horiz' on the first edge to check for */
+    /*   the Delaunay property.                        */
+    lnextself(horiz);
+  } else {
+    /* Insert the vertex in a triangle, splitting it into three. */
+    lnext(horiz, botleft);
+    lprev(horiz, botright);
+    sym(botleft, botlcasing);
+    sym(botright, botrcasing);
+    maketriangle(m, b, &newbotleft);
+    maketriangle(m, b, &newbotright);
+
+    /* Set the vertices of changed and new triangles. */
+    org(horiz, rightvertex);
+    dest(horiz, leftvertex);
+    apex(horiz, botvertex);
+    setorg(newbotleft, leftvertex);
+    setdest(newbotleft, botvertex);
+    setapex(newbotleft, newvertex);
+    setorg(newbotright, botvertex);
+    setdest(newbotright, rightvertex);
+    setapex(newbotright, newvertex);
+    setapex(horiz, newvertex);
+    for (i = 0; i < m->eextras; i++) {
+      /* Set the element attributes of the new triangles. */
+      attrib = elemattribute(horiz, i);
+      setelemattribute(newbotleft, i, attrib);
+      setelemattribute(newbotright, i, attrib);
+    }
+    if (b->vararea) {
+      /* Set the area constraint of the new triangles. */
+      area = areabound(horiz);
+      setareabound(newbotleft, area);
+      setareabound(newbotright, area);
+    }
+
+    /* There may be subsegments that need to be bonded */
+    /*   to the new triangles.                         */
+    if (m->checksegments) {
+      tspivot(botleft, botlsubseg);
+      if (botlsubseg.ss != m->dummysub) {
+        tsdissolve(botleft);
+        tsbond(newbotleft, botlsubseg);
+      }
+      tspivot(botright, botrsubseg);
+      if (botrsubseg.ss != m->dummysub) {
+        tsdissolve(botright);
+        tsbond(newbotright, botrsubseg);
+      }
+    }
+
+    /* Bond the new triangles to the surrounding triangles. */
+    bond(newbotleft, botlcasing);
+    bond(newbotright, botrcasing);
+    lnextself(newbotleft);
+    lprevself(newbotright);
+    bond(newbotleft, newbotright);
+    lnextself(newbotleft);
+    bond(botleft, newbotleft);
+    lprevself(newbotright);
+    bond(botright, newbotright);
+
+    if (m->checkquality) {
+      poolrestart(&m->flipstackers);
+      m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
+      m->lastflip->flippedtri = encode(horiz);
+      m->lastflip->prevflip = (struct flipstacker *) NULL;
+    }
+    if (b->verbose > 2) {
+      printf("  Updating top ");
+      printtriangle(m, b, &horiz);
+      printf("  Creating left ");
+      printtriangle(m, b, &newbotleft);
+      printf("  Creating right ");
+      printtriangle(m, b, &newbotright);
+    }
+  }
+
+  /* The insertion is successful by default, unless an encroached */
+  /*   subsegment is found.                                       */
+  success = SUCCESSFULVERTEX;
+  /* Circle around the newly inserted vertex, checking each edge opposite */
+  /*   it for the Delaunay property.  Non-Delaunay edges are flipped.     */
+  /*   `horiz' is always the edge being checked.  `first' marks where to  */
+  /*   stop circling.                                                     */
+  org(horiz, first);
+  rightvertex = first;
+  dest(horiz, leftvertex);
+  /* Circle until finished. */
+  while (1) {
+    /* By default, the edge will be flipped. */
+    doflip = 1;
+
+    if (m->checksegments) {
+      /* Check for a subsegment, which cannot be flipped. */
+      tspivot(horiz, checksubseg);
+      if (checksubseg.ss != m->dummysub) {
+        /* The edge is a subsegment and cannot be flipped. */
+        doflip = 0;
+      }
+    }
+
+    if (doflip) {
+      /* Check if the edge is a boundary edge. */
+      sym(horiz, top);
+      if (top.tri == m->dummytri) {
+        /* The edge is a boundary edge and cannot be flipped. */
+        doflip = 0;
+      } else {
+        /* Find the vertex on the other side of the edge. */
+        apex(top, farvertex);
+        /* In the incremental Delaunay triangulation algorithm, any of      */
+        /*   `leftvertex', `rightvertex', and `farvertex' could be vertices */
+        /*   of the triangular bounding box.  These vertices must be        */
+        /*   treated as if they are infinitely distant, even though their   */
+        /*   "coordinates" are not.                                         */
+        if ((leftvertex == m->infvertex1) || (leftvertex == m->infvertex2) ||
+            (leftvertex == m->infvertex3)) {
+          /* `leftvertex' is infinitely distant.  Check the convexity of  */
+          /*   the boundary of the triangulation.  'farvertex' might be   */
+          /*   infinite as well, but trust me, this same condition should */
+          /*   be applied.                                                */
+          doflip = counterclockwise(m, b, newvertex, rightvertex, farvertex)
+                   > 0.0;
+        } else if ((rightvertex == m->infvertex1) ||
+                   (rightvertex == m->infvertex2) ||
+                   (rightvertex == m->infvertex3)) {
+          /* `rightvertex' is infinitely distant.  Check the convexity of */
+          /*   the boundary of the triangulation.  'farvertex' might be   */
+          /*   infinite as well, but trust me, this same condition should */
+          /*   be applied.                                                */
+          doflip = counterclockwise(m, b, farvertex, leftvertex, newvertex)
+                   > 0.0;
+        } else if ((farvertex == m->infvertex1) ||
+                   (farvertex == m->infvertex2) ||
+                   (farvertex == m->infvertex3)) {
+          /* `farvertex' is infinitely distant and cannot be inside */
+          /*   the circumcircle of the triangle `horiz'.            */
+          doflip = 0;
+        } else {
+          /* Test whether the edge is locally Delaunay. */
+          doflip = incircle(m, b, leftvertex, newvertex, rightvertex,
+                            farvertex) > 0.0;
+        }
+        if (doflip) {
+          /* We made it!  Flip the edge `horiz' by rotating its containing */
+          /*   quadrilateral (the two triangles adjacent to `horiz').      */
+          /* Identify the casing of the quadrilateral. */
+          lprev(top, topleft);
+          sym(topleft, toplcasing);
+          lnext(top, topright);
+          sym(topright, toprcasing);
+          lnext(horiz, botleft);
+          sym(botleft, botlcasing);
+          lprev(horiz, botright);
+          sym(botright, botrcasing);
+          /* Rotate the quadrilateral one-quarter turn counterclockwise. */
+          bond(topleft, botlcasing);
+          bond(botleft, botrcasing);
+          bond(botright, toprcasing);
+          bond(topright, toplcasing);
+          if (m->checksegments) {
+            /* Check for subsegments and rebond them to the quadrilateral. */
+            tspivot(topleft, toplsubseg);
+            tspivot(botleft, botlsubseg);
+            tspivot(botright, botrsubseg);
+            tspivot(topright, toprsubseg);
+            if (toplsubseg.ss == m->dummysub) {
+              tsdissolve(topright);
+            } else {
+              tsbond(topright, toplsubseg);
+            }
+            if (botlsubseg.ss == m->dummysub) {
+              tsdissolve(topleft);
+            } else {
+              tsbond(topleft, botlsubseg);
+            }
+            if (botrsubseg.ss == m->dummysub) {
+              tsdissolve(botleft);
+            } else {
+              tsbond(botleft, botrsubseg);
+            }
+            if (toprsubseg.ss == m->dummysub) {
+              tsdissolve(botright);
+            } else {
+              tsbond(botright, toprsubseg);
+            }
+          }
+          /* New vertex assignments for the rotated quadrilateral. */
+          setorg(horiz, farvertex);
+          setdest(horiz, newvertex);
+          setapex(horiz, rightvertex);
+          setorg(top, newvertex);
+          setdest(top, farvertex);
+          setapex(top, leftvertex);
+          for (i = 0; i < m->eextras; i++) {
+            /* Take the average of the two triangles' attributes. */
+            attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
+            setelemattribute(top, i, attrib);
+            setelemattribute(horiz, i, attrib);
+          }
+          if (b->vararea) {
+            if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {
+              area = -1.0;
+            } else {
+              /* Take the average of the two triangles' area constraints.    */
+              /*   This prevents small area constraints from migrating a     */
+              /*   long, long way from their original location due to flips. */
+              area = 0.5 * (areabound(top) + areabound(horiz));
+            }
+            setareabound(top, area);
+            setareabound(horiz, area);
+          }
+
+          if (m->checkquality) {
+            newflip = (struct flipstacker *) poolalloc(&m->flipstackers);
+            newflip->flippedtri = encode(horiz);
+            newflip->prevflip = m->lastflip;
+            m->lastflip = newflip;
+          }
+          if (b->verbose > 2) {
+            printf("  Edge flip results in left ");
+            lnextself(topleft);
+            printtriangle(m, b, &topleft);
+            printf("  and right ");
+            printtriangle(m, b, &horiz);
+          }
+          /* On the next iterations, consider the two edges that were  */
+          /*   exposed (this is, are now visible to the newly inserted */
+          /*   vertex) by the edge flip.                               */
+          lprevself(horiz);
+          leftvertex = farvertex;
+        }
+      }
+    }
+    if (!doflip) {
+      /* The handle `horiz' is accepted as locally Delaunay. */
+      /* Look for the next edge around the newly inserted vertex. */
+      lnextself(horiz);
+      sym(horiz, testtri);
+      /* Check for finishing a complete revolution about the new vertex, or */
+      /*   falling outside  of the triangulation.  The latter will happen   */
+      /*   when a vertex is inserted at a boundary.                         */
+      if ((leftvertex == first) || (testtri.tri == m->dummytri)) {
+        /* We're done.  Return a triangle whose origin is the new vertex. */
+        lnext(horiz, *searchtri);
+        lnext(horiz, m->recenttri);
+        return success;
+      }
+      /* Finish finding the next edge around the newly inserted vertex. */
+      lnext(testtri, horiz);
+      rightvertex = leftvertex;
+      dest(horiz, leftvertex);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangulatepolygon()   Find the Delaunay triangulation of a polygon that */
+/*                         has a certain "nice" shape.  This includes the    */
+/*                         polygons that result from deletion of a vertex or */
+/*                         insertion of a segment.                           */
+/*                                                                           */
+/*  This is a conceptually difficult routine.  The starting assumption is    */
+/*  that we have a polygon with n sides.  n - 1 of these sides are currently */
+/*  represented as edges in the mesh.  One side, called the "base", need not */
+/*  be.                                                                      */
+/*                                                                           */
+/*  Inside the polygon is a structure I call a "fan", consisting of n - 1    */
+/*  triangles that share a common origin.  For each of these triangles, the  */
+/*  edge opposite the origin is one of the sides of the polygon.  The        */
+/*  primary edge of each triangle is the edge directed from the origin to    */
+/*  the destination; note that this is not the same edge that is a side of   */
+/*  the polygon.  `firstedge' is the primary edge of the first triangle.     */
+/*  From there, the triangles follow in counterclockwise order about the     */
+/*  polygon, until `lastedge', the primary edge of the last triangle.        */
+/*  `firstedge' and `lastedge' are probably connected to other triangles     */
+/*  beyond the extremes of the fan, but their identity is not important, as  */
+/*  long as the fan remains connected to them.                               */
+/*                                                                           */
+/*  Imagine the polygon oriented so that its base is at the bottom.  This    */
+/*  puts `firstedge' on the far right, and `lastedge' on the far left.       */
+/*  The right vertex of the base is the destination of `firstedge', and the  */
+/*  left vertex of the base is the apex of `lastedge'.                       */
+/*                                                                           */
+/*  The challenge now is to find the right sequence of edge flips to         */
+/*  transform the fan into a Delaunay triangulation of the polygon.  Each    */
+/*  edge flip effectively removes one triangle from the fan, committing it   */
+/*  to the polygon.  The resulting polygon has one fewer edge.  If `doflip'  */
+/*  is set, the final flip will be performed, resulting in a fan of one      */
+/*  (useless?) triangle.  If `doflip' is not set, the final flip is not      */
+/*  performed, resulting in a fan of two triangles, and an unfinished        */
+/*  triangular polygon that is not yet filled out with a single triangle.    */
+/*  On completion of the routine, `lastedge' is the last remaining triangle, */
+/*  or the leftmost of the last two.                                         */
+/*                                                                           */
+/*  Although the flips are performed in the order described above, the       */
+/*  decisions about what flips to perform are made in precisely the reverse  */
+/*  order.  The recursive triangulatepolygon() procedure makes a decision,   */
+/*  uses up to two recursive calls to triangulate the "subproblems"          */
+/*  (polygons with fewer edges), and then performs an edge flip.             */
+/*                                                                           */
+/*  The "decision" it makes is which vertex of the polygon should be         */
+/*  connected to the base.  This decision is made by testing every possible  */
+/*  vertex.  Once the best vertex is found, the two edges that connect this  */
+/*  vertex to the base become the bases for two smaller polygons.  These     */
+/*  are triangulated recursively.  Unfortunately, this approach can take     */
+/*  O(n^2) time not only in the worst case, but in many common cases.  It's  */
+/*  rarely a big deal for vertex deletion, where n is rarely larger than     */
+/*  ten, but it could be a big deal for segment insertion, especially if     */
+/*  there's a lot of long segments that each cut many triangles.  I ought to */
+/*  code a faster algorithm some day.                                        */
+/*                                                                           */
+/*  The `edgecount' parameter is the number of sides of the polygon,         */
+/*  including its base.  `triflaws' is a flag that determines whether the    */
+/*  new triangles should be tested for quality, and enqueued if they are     */
+/*  bad.                                                                     */
+/*                                                                           */
+/*****************************************************************************/
+
+void triangulatepolygon(struct mesh *m, struct behavior *b,
+                        struct otri *firstedge, struct otri *lastedge,
+                        int edgecount, int doflip, int triflaws)
+{
+  struct otri testtri;
+  struct otri besttri;
+  struct otri tempedge;
+  vertex leftbasevertex, rightbasevertex;
+  vertex testvertex;
+  vertex bestvertex;
+  int bestnumber;
+  int i;
+  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
+
+  /* Identify the base vertices. */
+  apex(*lastedge, leftbasevertex);
+  dest(*firstedge, rightbasevertex);
+  if (b->verbose > 2) {
+    printf("  Triangulating interior polygon at edge\n");
+    printf("    (%.12g, %.12g) (%.12g, %.12g)\n", leftbasevertex[0],
+           leftbasevertex[1], rightbasevertex[0], rightbasevertex[1]);
+  }
+  /* Find the best vertex to connect the base to. */
+  onext(*firstedge, besttri);
+  dest(besttri, bestvertex);
+  otricopy(besttri, testtri);
+  bestnumber = 1;
+  for (i = 2; i <= edgecount - 2; i++) {
+    onextself(testtri);
+    dest(testtri, testvertex);
+    /* Is this a better vertex? */
+    if (incircle(m, b, leftbasevertex, rightbasevertex, bestvertex,
+                 testvertex) > 0.0) {
+      otricopy(testtri, besttri);
+      bestvertex = testvertex;
+      bestnumber = i;
+    }
+  }
+  if (b->verbose > 2) {
+    printf("    Connecting edge to (%.12g, %.12g)\n", bestvertex[0],
+           bestvertex[1]);
+  }
+  if (bestnumber > 1) {
+    /* Recursively triangulate the smaller polygon on the right. */
+    oprev(besttri, tempedge);
+    triangulatepolygon(m, b, firstedge, &tempedge, bestnumber + 1, 1,
+                       triflaws);
+  }
+  if (bestnumber < edgecount - 2) {
+    /* Recursively triangulate the smaller polygon on the left. */
+    sym(besttri, tempedge);
+    triangulatepolygon(m, b, &besttri, lastedge, edgecount - bestnumber, 1,
+                       triflaws);
+    /* Find `besttri' again; it may have been lost to edge flips. */
+    sym(tempedge, besttri);
+  }
+  if (doflip) {
+    /* Do one final edge flip. */
+    flip(m, b, &besttri);
+  }
+  /* Return the base triangle. */
+  otricopy(besttri, *lastedge);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Mesh transformation routines end here                     *********/
+
+/********* Divide-and-conquer Delaunay triangulation begins here     *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  The divide-and-conquer bounding box                                      */
+/*                                                                           */
+/*  I originally implemented the divide-and-conquer and incremental Delaunay */
+/*  triangulations using the edge-based data structure presented by Guibas   */
+/*  and Stolfi.  Switching to a triangle-based data structure doubled the    */
+/*  speed.  However, I had to think of a few extra tricks to maintain the    */
+/*  elegance of the original algorithms.                                     */
+/*                                                                           */
+/*  The "bounding box" used by my variant of the divide-and-conquer          */
+/*  algorithm uses one triangle for each edge of the convex hull of the      */
+/*  triangulation.  These bounding triangles all share a common apical       */
+/*  vertex, which is represented by NULL and which represents nothing.       */
+/*  The bounding triangles are linked in a circular fan about this NULL      */
+/*  vertex, and the edges on the convex hull of the triangulation appear     */
+/*  opposite the NULL vertex.  You might find it easiest to imagine that     */
+/*  the NULL vertex is a point in 3D space behind the center of the          */
+/*  triangulation, and that the bounding triangles form a sort of cone.      */
+/*                                                                           */
+/*  This bounding box makes it easy to represent degenerate cases.  For      */
+/*  instance, the triangulation of two vertices is a single edge.  This edge */
+/*  is represented by two bounding box triangles, one on each "side" of the  */
+/*  edge.  These triangles are also linked together in a fan about the NULL  */
+/*  vertex.                                                                  */
+/*                                                                           */
+/*  The bounding box also makes it easy to traverse the convex hull, as the  */
+/*  divide-and-conquer algorithm needs to do.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  vertexsort()   Sort an array of vertices by x-coordinate, using the      */
+/*                 y-coordinate as a secondary key.                          */
+/*                                                                           */
+/*  Uses quicksort.  Randomized O(n log n) time.  No, I did not make any of  */
+/*  the usual quicksort mistakes.                                            */
+/*                                                                           */
+/*****************************************************************************/
+
+void vertexsort(vertex *sortarray, int arraysize)
+{
+  int left, right;
+  int pivot;
+  float pivotx, pivoty;
+  vertex temp;
+
+  if (arraysize == 2) {
+    /* Recursive base case. */
+    if ((sortarray[0][0] > sortarray[1][0]) ||
+        ((sortarray[0][0] == sortarray[1][0]) &&
+         (sortarray[0][1] > sortarray[1][1]))) {
+      temp = sortarray[1];
+      sortarray[1] = sortarray[0];
+      sortarray[0] = temp;
+    }
+    return;
+  }
+  /* Choose a random pivot to split the array. */
+  pivot = (int) randomnation((unsigned int) arraysize);
+  pivotx = sortarray[pivot][0];
+  pivoty = sortarray[pivot][1];
+  /* Split the array. */
+  left = -1;
+  right = arraysize;
+  while (left < right) {
+    /* Search for a vertex whose x-coordinate is too large for the left. */
+    do {
+      left++;
+    } while ((left <= right) && ((sortarray[left][0] < pivotx) ||
+                                 ((sortarray[left][0] == pivotx) &&
+                                  (sortarray[left][1] < pivoty))));
+    /* Search for a vertex whose x-coordinate is too small for the right. */
+    do {
+      right--;
+    } while ((left <= right) && ((sortarray[right][0] > pivotx) ||
+                                 ((sortarray[right][0] == pivotx) &&
+                                  (sortarray[right][1] > pivoty))));
+    if (left < right) {
+      /* Swap the left and right vertices. */
+      temp = sortarray[left];
+      sortarray[left] = sortarray[right];
+      sortarray[right] = temp;
+    }
+  }
+  if (left > 1) {
+    /* Recursively sort the left subset. */
+    vertexsort(sortarray, left);
+  }
+  if (right < arraysize - 2) {
+    /* Recursively sort the right subset. */
+    vertexsort(&sortarray[right + 1], arraysize - right - 1);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  vertexmedian()   An order statistic algorithm, almost.  Shuffles an      */
+/*                   array of vertices so that the first `median' vertices   */
+/*                   occur lexicographically before the remaining vertices.  */
+/*                                                                           */
+/*  Uses the x-coordinate as the primary key if axis == 0; the y-coordinate  */
+/*  if axis == 1.  Very similar to the vertexsort() procedure, but runs in   */
+/*  randomized linear time.                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+void vertexmedian(vertex *sortarray, int arraysize, int median, int axis)
+{
+  int left, right;
+  int pivot;
+  float pivot1, pivot2;
+  vertex temp;
+
+  if (arraysize == 2) {
+    /* Recursive base case. */
+    if ((sortarray[0][axis] > sortarray[1][axis]) ||
+        ((sortarray[0][axis] == sortarray[1][axis]) &&
+         (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
+      temp = sortarray[1];
+      sortarray[1] = sortarray[0];
+      sortarray[0] = temp;
+    }
+    return;
+  }
+  /* Choose a random pivot to split the array. */
+  pivot = (int) randomnation((unsigned int) arraysize);
+  pivot1 = sortarray[pivot][axis];
+  pivot2 = sortarray[pivot][1 - axis];
+  /* Split the array. */
+  left = -1;
+  right = arraysize;
+  while (left < right) {
+    /* Search for a vertex whose x-coordinate is too large for the left. */
+    do {
+      left++;
+    } while ((left <= right) && ((sortarray[left][axis] < pivot1) ||
+                                 ((sortarray[left][axis] == pivot1) &&
+                                  (sortarray[left][1 - axis] < pivot2))));
+    /* Search for a vertex whose x-coordinate is too small for the right. */
+    do {
+      right--;
+    } while ((left <= right) && ((sortarray[right][axis] > pivot1) ||
+                                 ((sortarray[right][axis] == pivot1) &&
+                                  (sortarray[right][1 - axis] > pivot2))));
+    if (left < right) {
+      /* Swap the left and right vertices. */
+      temp = sortarray[left];
+      sortarray[left] = sortarray[right];
+      sortarray[right] = temp;
+    }
+  }
+  /* Unlike in vertexsort(), at most one of the following */
+  /*   conditionals is true.                             */
+  if (left > median) {
+    /* Recursively shuffle the left subset. */
+    vertexmedian(sortarray, left, median, axis);
+  }
+  if (right < median - 1) {
+    /* Recursively shuffle the right subset. */
+    vertexmedian(&sortarray[right + 1], arraysize - right - 1,
+                 median - right - 1, axis);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  alternateaxes()   Sorts the vertices as appropriate for the divide-and-  */
+/*                    conquer algorithm with alternating cuts.               */
+/*                                                                           */
+/*  Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1.   */
+/*  For the base case, subsets containing only two or three vertices are     */
+/*  always sorted by x-coordinate.                                           */
+/*                                                                           */
+/*****************************************************************************/
+
+void alternateaxes(vertex *sortarray, int arraysize, int axis)
+{
+  int divider;
+
+  divider = arraysize >> 1;
+  if (arraysize <= 3) {
+    /* Recursive base case:  subsets of two or three vertices will be    */
+    /*   handled specially, and should always be sorted by x-coordinate. */
+    axis = 0;
+  }
+  /* Partition with a horizontal or vertical cut. */
+  vertexmedian(sortarray, arraysize, divider, axis);
+  /* Recursively partition the subsets with a cross cut. */
+  if (arraysize - divider >= 2) {
+    if (divider >= 2) {
+      alternateaxes(sortarray, divider, 1 - axis);
+    }
+    alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  mergehulls()   Merge two adjacent Delaunay triangulations into a         */
+/*                 single Delaunay triangulation.                            */
+/*                                                                           */
+/*  This is similar to the algorithm given by Guibas and Stolfi, but uses    */
+/*  a triangle-based, rather than edge-based, data structure.                */
+/*                                                                           */
+/*  The algorithm walks up the gap between the two triangulations, knitting  */
+/*  them together.  As they are merged, some of their bounding triangles     */
+/*  are converted into real triangles of the triangulation.  The procedure   */
+/*  pulls each hull's bounding triangles apart, then knits them together     */
+/*  like the teeth of two gears.  The Delaunay property determines, at each  */
+/*  step, whether the next "tooth" is a bounding triangle of the left hull   */
+/*  or the right.  When a bounding triangle becomes real, its apex is        */
+/*  changed from NULL to a real vertex.                                      */
+/*                                                                           */
+/*  Only two new triangles need to be allocated.  These become new bounding  */
+/*  triangles at the top and bottom of the seam.  They are used to connect   */
+/*  the remaining bounding triangles (those that have not been converted     */
+/*  into real triangles) into a single fan.                                  */
+/*                                                                           */
+/*  On entry, `farleft' and `innerleft' are bounding triangles of the left   */
+/*  triangulation.  The origin of `farleft' is the leftmost vertex, and      */
+/*  the destination of `innerleft' is the rightmost vertex of the            */
+/*  triangulation.  Similarly, `innerright' and `farright' are bounding      */
+/*  triangles of the right triangulation.  The origin of `innerright' and    */
+/*  destination of `farright' are the leftmost and rightmost vertices.       */
+/*                                                                           */
+/*  On completion, the origin of `farleft' is the leftmost vertex of the     */
+/*  merged triangulation, and the destination of `farright' is the rightmost */
+/*  vertex.                                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+void mergehulls(struct mesh *m, struct behavior *b, struct otri *farleft,
+                struct otri *innerleft, struct otri *innerright,
+                struct otri *farright, int axis)
+{
+  struct otri leftcand, rightcand;
+  struct otri baseedge;
+  struct otri nextedge;
+  struct otri sidecasing, topcasing, outercasing;
+  struct otri checkedge;
+  vertex innerleftdest;
+  vertex innerrightorg;
+  vertex innerleftapex, innerrightapex;
+  vertex farleftpt, farrightpt;
+  vertex farleftapex, farrightapex;
+  vertex lowerleft, lowerright;
+  vertex upperleft, upperright;
+  vertex nextapex;
+  vertex checkvertex;
+  int changemade;
+  int badedge;
+  int leftfinished, rightfinished;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  dest(*innerleft, innerleftdest);
+  apex(*innerleft, innerleftapex);
+  org(*innerright, innerrightorg);
+  apex(*innerright, innerrightapex);
+  /* Special treatment for horizontal cuts. */
+  if (b->dwyer && (axis == 1)) {
+    org(*farleft, farleftpt);
+    apex(*farleft, farleftapex);
+    dest(*farright, farrightpt);
+    apex(*farright, farrightapex);
+    /* The pointers to the extremal vertices are shifted to point to the */
+    /*   topmost and bottommost vertex of each hull, rather than the     */
+    /*   leftmost and rightmost vertices.                                */
+    while (farleftapex[1] < farleftpt[1]) {
+      lnextself(*farleft);
+      symself(*farleft);
+      farleftpt = farleftapex;
+      apex(*farleft, farleftapex);
+    }
+    sym(*innerleft, checkedge);
+    apex(checkedge, checkvertex);
+    while (checkvertex[1] > innerleftdest[1]) {
+      lnext(checkedge, *innerleft);
+      innerleftapex = innerleftdest;
+      innerleftdest = checkvertex;
+      sym(*innerleft, checkedge);
+      apex(checkedge, checkvertex);
+    }
+    while (innerrightapex[1] < innerrightorg[1]) {
+      lnextself(*innerright);
+      symself(*innerright);
+      innerrightorg = innerrightapex;
+      apex(*innerright, innerrightapex);
+    }
+    sym(*farright, checkedge);
+    apex(checkedge, checkvertex);
+    while (checkvertex[1] > farrightpt[1]) {
+      lnext(checkedge, *farright);
+      farrightapex = farrightpt;
+      farrightpt = checkvertex;
+      sym(*farright, checkedge);
+      apex(checkedge, checkvertex);
+    }
+  }
+  /* Find a line tangent to and below both hulls. */
+  do {
+    changemade = 0;
+    /* Make innerleftdest the "bottommost" vertex of the left hull. */
+    if (counterclockwise(m, b, innerleftdest, innerleftapex, innerrightorg) >
+        0.0) {
+      lprevself(*innerleft);
+      symself(*innerleft);
+      innerleftdest = innerleftapex;
+      apex(*innerleft, innerleftapex);
+      changemade = 1;
+    }
+    /* Make innerrightorg the "bottommost" vertex of the right hull. */
+    if (counterclockwise(m, b, innerrightapex, innerrightorg, innerleftdest) >
+        0.0) {
+      lnextself(*innerright);
+      symself(*innerright);
+      innerrightorg = innerrightapex;
+      apex(*innerright, innerrightapex);
+      changemade = 1;
+    }
+  } while (changemade);
+  /* Find the two candidates to be the next "gear tooth." */
+  sym(*innerleft, leftcand);
+  sym(*innerright, rightcand);
+  /* Create the bottom new bounding triangle. */
+  maketriangle(m, b, &baseedge);
+  /* Connect it to the bounding boxes of the left and right triangulations. */
+  bond(baseedge, *innerleft);
+  lnextself(baseedge);
+  bond(baseedge, *innerright);
+  lnextself(baseedge);
+  setorg(baseedge, innerrightorg);
+  setdest(baseedge, innerleftdest);
+  /* Apex is intentionally left NULL. */
+  if (b->verbose > 2) {
+    printf("  Creating base bounding ");
+    printtriangle(m, b, &baseedge);
+  }
+  /* Fix the extreme triangles if necessary. */
+  org(*farleft, farleftpt);
+  if (innerleftdest == farleftpt) {
+    lnext(baseedge, *farleft);
+  }
+  dest(*farright, farrightpt);
+  if (innerrightorg == farrightpt) {
+    lprev(baseedge, *farright);
+  }
+  /* The vertices of the current knitting edge. */
+  lowerleft = innerleftdest;
+  lowerright = innerrightorg;
+  /* The candidate vertices for knitting. */
+  apex(leftcand, upperleft);
+  apex(rightcand, upperright);
+  /* Walk up the gap between the two triangulations, knitting them together. */
+  while (1) {
+    /* Have we reached the top?  (This isn't quite the right question,       */
+    /*   because even though the left triangulation might seem finished now, */
+    /*   moving up on the right triangulation might reveal a new vertex of   */
+    /*   the left triangulation.  And vice-versa.)                           */
+    leftfinished = counterclockwise(m, b, upperleft, lowerleft, lowerright) <=
+                   0.0;
+    rightfinished = counterclockwise(m, b, upperright, lowerleft, lowerright)
+                 <= 0.0;
+    if (leftfinished && rightfinished) {
+      /* Create the top new bounding triangle. */
+      maketriangle(m, b, &nextedge);
+      setorg(nextedge, lowerleft);
+      setdest(nextedge, lowerright);
+      /* Apex is intentionally left NULL. */
+      /* Connect it to the bounding boxes of the two triangulations. */
+      bond(nextedge, baseedge);
+      lnextself(nextedge);
+      bond(nextedge, rightcand);
+      lnextself(nextedge);
+      bond(nextedge, leftcand);
+      if (b->verbose > 2) {
+        printf("  Creating top bounding ");
+        printtriangle(m, b, &nextedge);
+      }
+      /* Special treatment for horizontal cuts. */
+      if (b->dwyer && (axis == 1)) {
+        org(*farleft, farleftpt);
+        apex(*farleft, farleftapex);
+        dest(*farright, farrightpt);
+        apex(*farright, farrightapex);
+        sym(*farleft, checkedge);
+        apex(checkedge, checkvertex);
+        /* The pointers to the extremal vertices are restored to the  */
+        /*   leftmost and rightmost vertices (rather than topmost and */
+        /*   bottommost).                                             */
+        while (checkvertex[0] < farleftpt[0]) {
+          lprev(checkedge, *farleft);
+          farleftapex = farleftpt;
+          farleftpt = checkvertex;
+          sym(*farleft, checkedge);
+          apex(checkedge, checkvertex);
+        }
+        while (farrightapex[0] > farrightpt[0]) {
+          lprevself(*farright);
+          symself(*farright);
+          farrightpt = farrightapex;
+          apex(*farright, farrightapex);
+        }
+      }
+      return;
+    }
+    /* Consider eliminating edges from the left triangulation. */
+    if (!leftfinished) {
+      /* What vertex would be exposed if an edge were deleted? */
+      lprev(leftcand, nextedge);
+      symself(nextedge);
+      apex(nextedge, nextapex);
+      /* If nextapex is NULL, then no vertex would be exposed; the */
+      /*   triangulation would have been eaten right through.      */
+      if (nextapex != (vertex) NULL) {
+        /* Check whether the edge is Delaunay. */
+        badedge = incircle(m, b, lowerleft, lowerright, upperleft, nextapex) >
+                  0.0;
+        while (badedge) {
+          /* Eliminate the edge with an edge flip.  As a result, the    */
+          /*   left triangulation will have one more boundary triangle. */
+          lnextself(nextedge);
+          sym(nextedge, topcasing);
+          lnextself(nextedge);
+          sym(nextedge, sidecasing);
+          bond(nextedge, topcasing);
+          bond(leftcand, sidecasing);
+          lnextself(leftcand);
+          sym(leftcand, outercasing);
+          lprevself(nextedge);
+          bond(nextedge, outercasing);
+          /* Correct the vertices to reflect the edge flip. */
+          setorg(leftcand, lowerleft);
+          setdest(leftcand, NULL);
+          setapex(leftcand, nextapex);
+          setorg(nextedge, NULL);
+          setdest(nextedge, upperleft);
+          setapex(nextedge, nextapex);
+          /* Consider the newly exposed vertex. */
+          upperleft = nextapex;
+          /* What vertex would be exposed if another edge were deleted? */
+          otricopy(sidecasing, nextedge);
+          apex(nextedge, nextapex);
+          if (nextapex != (vertex) NULL) {
+            /* Check whether the edge is Delaunay. */
+            badedge = incircle(m, b, lowerleft, lowerright, upperleft,
+                               nextapex) > 0.0;
+          } else {
+            /* Avoid eating right through the triangulation. */
+            badedge = 0;
+          }
+        }
+      }
+    }
+    /* Consider eliminating edges from the right triangulation. */
+    if (!rightfinished) {
+      /* What vertex would be exposed if an edge were deleted? */
+      lnext(rightcand, nextedge);
+      symself(nextedge);
+      apex(nextedge, nextapex);
+      /* If nextapex is NULL, then no vertex would be exposed; the */
+      /*   triangulation would have been eaten right through.      */
+      if (nextapex != (vertex) NULL) {
+        /* Check whether the edge is Delaunay. */
+        badedge = incircle(m, b, lowerleft, lowerright, upperright, nextapex) >
+                  0.0;
+        while (badedge) {
+          /* Eliminate the edge with an edge flip.  As a result, the     */
+          /*   right triangulation will have one more boundary triangle. */
+          lprevself(nextedge);
+          sym(nextedge, topcasing);
+          lprevself(nextedge);
+          sym(nextedge, sidecasing);
+          bond(nextedge, topcasing);
+          bond(rightcand, sidecasing);
+          lprevself(rightcand);
+          sym(rightcand, outercasing);
+          lnextself(nextedge);
+          bond(nextedge, outercasing);
+          /* Correct the vertices to reflect the edge flip. */
+          setorg(rightcand, NULL);
+          setdest(rightcand, lowerright);
+          setapex(rightcand, nextapex);
+          setorg(nextedge, upperright);
+          setdest(nextedge, NULL);
+          setapex(nextedge, nextapex);
+          /* Consider the newly exposed vertex. */
+          upperright = nextapex;
+          /* What vertex would be exposed if another edge were deleted? */
+          otricopy(sidecasing, nextedge);
+          apex(nextedge, nextapex);
+          if (nextapex != (vertex) NULL) {
+            /* Check whether the edge is Delaunay. */
+            badedge = incircle(m, b, lowerleft, lowerright, upperright,
+                               nextapex) > 0.0;
+          } else {
+            /* Avoid eating right through the triangulation. */
+            badedge = 0;
+          }
+        }
+      }
+    }
+    if (leftfinished || (!rightfinished &&
+           (incircle(m, b, upperleft, lowerleft, lowerright, upperright) >
+            0.0))) {
+      /* Knit the triangulations, adding an edge from `lowerleft' */
+      /*   to `upperright'.                                       */
+      bond(baseedge, rightcand);
+      lprev(rightcand, baseedge);
+      setdest(baseedge, lowerleft);
+      lowerright = upperright;
+      sym(baseedge, rightcand);
+      apex(rightcand, upperright);
+    } else {
+      /* Knit the triangulations, adding an edge from `upperleft' */
+      /*   to `lowerright'.                                       */
+      bond(baseedge, leftcand);
+      lnext(leftcand, baseedge);
+      setorg(baseedge, lowerright);
+      lowerleft = upperleft;
+      sym(baseedge, leftcand);
+      apex(leftcand, upperleft);
+    }
+    if (b->verbose > 2) {
+      printf("  Connecting ");
+      printtriangle(m, b, &baseedge);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  divconqrecurse()   Recursively form a Delaunay triangulation by the      */
+/*                     divide-and-conquer method.                            */
+/*                                                                           */
+/*  Recursively breaks down the problem into smaller pieces, which are       */
+/*  knitted together by mergehulls().  The base cases (problems of two or    */
+/*  three vertices) are handled specially here.                              */
+/*                                                                           */
+/*  On completion, `farleft' and `farright' are bounding triangles such that */
+/*  the origin of `farleft' is the leftmost vertex (breaking ties by         */
+/*  choosing the highest leftmost vertex), and the destination of            */
+/*  `farright' is the rightmost vertex (breaking ties by choosing the        */
+/*  lowest rightmost vertex).                                                */
+/*                                                                           */
+/*****************************************************************************/
+
+void divconqrecurse(struct mesh *m, struct behavior *b, vertex *sortarray,
+                    int vertices, int axis,
+                    struct otri *farleft, struct otri *farright)
+{
+  struct otri midtri, tri1, tri2, tri3;
+  struct otri innerleft, innerright;
+  float area;
+  int divider;
+
+  if (b->verbose > 2) {
+    printf("  Triangulating %d vertices.\n", vertices);
+  }
+  if (vertices == 2) {
+    /* The triangulation of two vertices is an edge.  An edge is */
+    /*   represented by two bounding triangles.                  */
+    maketriangle(m, b, farleft);
+    setorg(*farleft, sortarray[0]);
+    setdest(*farleft, sortarray[1]);
+    /* The apex is intentionally left NULL. */
+    maketriangle(m, b, farright);
+    setorg(*farright, sortarray[1]);
+    setdest(*farright, sortarray[0]);
+    /* The apex is intentionally left NULL. */
+    bond(*farleft, *farright);
+    lprevself(*farleft);
+    lnextself(*farright);
+    bond(*farleft, *farright);
+    lprevself(*farleft);
+    lnextself(*farright);
+    bond(*farleft, *farright);
+    if (b->verbose > 2) {
+      printf("  Creating ");
+      printtriangle(m, b, farleft);
+      printf("  Creating ");
+      printtriangle(m, b, farright);
+    }
+    /* Ensure that the origin of `farleft' is sortarray[0]. */
+    lprev(*farright, *farleft);
+    return;
+  } else if (vertices == 3) {
+    /* The triangulation of three vertices is either a triangle (with */
+    /*   three bounding triangles) or two edges (with four bounding   */
+    /*   triangles).  In either case, four triangles are created.     */
+    maketriangle(m, b, &midtri);
+    maketriangle(m, b, &tri1);
+    maketriangle(m, b, &tri2);
+    maketriangle(m, b, &tri3);
+    area = counterclockwise(m, b, sortarray[0], sortarray[1], sortarray[2]);
+    if (area == 0.0) {
+      /* Three collinear vertices; the triangulation is two edges. */
+      setorg(midtri, sortarray[0]);
+      setdest(midtri, sortarray[1]);
+      setorg(tri1, sortarray[1]);
+      setdest(tri1, sortarray[0]);
+      setorg(tri2, sortarray[2]);
+      setdest(tri2, sortarray[1]);
+      setorg(tri3, sortarray[1]);
+      setdest(tri3, sortarray[2]);
+      /* All apices are intentionally left NULL. */
+      bond(midtri, tri1);
+      bond(tri2, tri3);
+      lnextself(midtri);
+      lprevself(tri1);
+      lnextself(tri2);
+      lprevself(tri3);
+      bond(midtri, tri3);
+      bond(tri1, tri2);
+      lnextself(midtri);
+      lprevself(tri1);
+      lnextself(tri2);
+      lprevself(tri3);
+      bond(midtri, tri1);
+      bond(tri2, tri3);
+      /* Ensure that the origin of `farleft' is sortarray[0]. */
+      otricopy(tri1, *farleft);
+      /* Ensure that the destination of `farright' is sortarray[2]. */
+      otricopy(tri2, *farright);
+    } else {
+      /* The three vertices are not collinear; the triangulation is one */
+      /*   triangle, namely `midtri'.                                   */
+      setorg(midtri, sortarray[0]);
+      setdest(tri1, sortarray[0]);
+      setorg(tri3, sortarray[0]);
+      /* Apices of tri1, tri2, and tri3 are left NULL. */
+      if (area > 0.0) {
+        /* The vertices are in counterclockwise order. */
+        setdest(midtri, sortarray[1]);
+        setorg(tri1, sortarray[1]);
+        setdest(tri2, sortarray[1]);
+        setapex(midtri, sortarray[2]);
+        setorg(tri2, sortarray[2]);
+        setdest(tri3, sortarray[2]);
+      } else {
+        /* The vertices are in clockwise order. */
+        setdest(midtri, sortarray[2]);
+        setorg(tri1, sortarray[2]);
+        setdest(tri2, sortarray[2]);
+        setapex(midtri, sortarray[1]);
+        setorg(tri2, sortarray[1]);
+        setdest(tri3, sortarray[1]);
+      }
+      /* The topology does not depend on how the vertices are ordered. */
+      bond(midtri, tri1);
+      lnextself(midtri);
+      bond(midtri, tri2);
+      lnextself(midtri);
+      bond(midtri, tri3);
+      lprevself(tri1);
+      lnextself(tri2);
+      bond(tri1, tri2);
+      lprevself(tri1);
+      lprevself(tri3);
+      bond(tri1, tri3);
+      lnextself(tri2);
+      lprevself(tri3);
+      bond(tri2, tri3);
+      /* Ensure that the origin of `farleft' is sortarray[0]. */
+      otricopy(tri1, *farleft);
+      /* Ensure that the destination of `farright' is sortarray[2]. */
+      if (area > 0.0) {
+        otricopy(tri2, *farright);
+      } else {
+        lnext(*farleft, *farright);
+      }
+    }
+    if (b->verbose > 2) {
+      printf("  Creating ");
+      printtriangle(m, b, &midtri);
+      printf("  Creating ");
+      printtriangle(m, b, &tri1);
+      printf("  Creating ");
+      printtriangle(m, b, &tri2);
+      printf("  Creating ");
+      printtriangle(m, b, &tri3);
+    }
+    return;
+  } else {
+    /* Split the vertices in half. */
+    divider = vertices >> 1;
+    /* Recursively triangulate each half. */
+    divconqrecurse(m, b, sortarray, divider, 1 - axis, farleft, &innerleft);
+    divconqrecurse(m, b, &sortarray[divider], vertices - divider, 1 - axis,
+                   &innerright, farright);
+    if (b->verbose > 1) {
+      printf("  Joining triangulations with %d and %d vertices.\n", divider,
+             vertices - divider);
+    }
+    /* Merge the two triangulations into one. */
+    mergehulls(m, b, farleft, &innerleft, &innerright, farright, axis);
+  }
+}
+
+long removeghosts(struct mesh *m, struct behavior *b, struct otri *startghost)
+{
+  struct otri searchedge;
+  struct otri dissolveedge;
+  struct otri deadtriangle;
+  vertex markorg;
+  long hullsize;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (b->verbose) {
+    printf("  Removing ghost triangles.\n");
+  }
+  /* Find an edge on the convex hull to start point location from. */
+  lprev(*startghost, searchedge);
+  symself(searchedge);
+  m->dummytri[0] = encode(searchedge);
+  /* Remove the bounding box and count the convex hull edges. */
+  otricopy(*startghost, dissolveedge);
+  hullsize = 0;
+  do {
+    hullsize++;
+    lnext(dissolveedge, deadtriangle);
+    lprevself(dissolveedge);
+    symself(dissolveedge);
+    /* If no PSLG is involved, set the boundary markers of all the vertices */
+    /*   on the convex hull.  If a PSLG is used, this step is done later.   */
+    if (!b->poly) {
+      /* Watch out for the case where all the input vertices are collinear. */
+      if (dissolveedge.tri != m->dummytri) {
+        org(dissolveedge, markorg);
+        if (vertexmark(markorg) == 0) {
+          setvertexmark(markorg, 1);
+        }
+      }
+    }
+    /* Remove a bounding triangle from a convex hull triangle. */
+    dissolve(dissolveedge);
+    /* Find the next bounding triangle. */
+    sym(deadtriangle, dissolveedge);
+    /* Delete the bounding triangle. */
+    triangledealloc(m, deadtriangle.tri);
+  } while (!otriequal(dissolveedge, *startghost));
+  return hullsize;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  divconqdelaunay()   Form a Delaunay triangulation by the divide-and-     */
+/*                      conquer method.                                      */
+/*                                                                           */
+/*  Sorts the vertices, calls a recursive procedure to triangulate them, and */
+/*  removes the bounding box, setting boundary markers as appropriate.       */
+/*                                                                           */
+/*****************************************************************************/
+
+long divconqdelaunay(struct mesh *m, struct behavior *b)
+{
+  vertex *sortarray;
+  struct otri hullleft, hullright;
+  int divider;
+  int i, j;
+
+  if (b->verbose) {
+    printf("  Sorting vertices.\n");
+  }
+
+  /* Allocate an array of pointers to vertices for sorting. */
+  sortarray = (vertex *) trimalloc(m->invertices * (int) sizeof(vertex));
+  traversalinit(&m->vertices);
+  for (i = 0; i < m->invertices; i++) {
+    sortarray[i] = vertextraverse(m);
+  }
+  /* Sort the vertices. */
+  vertexsort(sortarray, m->invertices);
+  /* Discard duplicate vertices, which can really mess up the algorithm. */
+  i = 0;
+  for (j = 1; j < m->invertices; j++) {
+    if ((sortarray[i][0] == sortarray[j][0])
+        && (sortarray[i][1] == sortarray[j][1])) {
+      if (!b->quiet) {
+        printf(
+"Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
+               sortarray[j][0], sortarray[j][1]);
+      }
+      setvertextype(sortarray[j], UNDEADVERTEX);
+      m->undeads++;
+    } else {
+      i++;
+      sortarray[i] = sortarray[j];
+    }
+  }
+  i++;
+  if (b->dwyer) {
+    /* Re-sort the array of vertices to accommodate alternating cuts. */
+    divider = i >> 1;
+    if (i - divider >= 2) {
+      if (divider >= 2) {
+        alternateaxes(sortarray, divider, 1);
+      }
+      alternateaxes(&sortarray[divider], i - divider, 1);
+    }
+  }
+
+  if (b->verbose) {
+    printf("  Forming triangulation.\n");
+  }
+
+  /* Form the Delaunay triangulation. */
+  divconqrecurse(m, b, sortarray, i, 0, &hullleft, &hullright);
+  trifree((int *) sortarray);
+
+  return removeghosts(m, b, &hullleft);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Divide-and-conquer Delaunay triangulation ends here       *********/
+
+/********* General mesh construction routines begin here             *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  delaunay()   Form a Delaunay triangulation.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+long delaunay(struct mesh *m, struct behavior *b)
+{
+  long hulledges;
+
+  m->eextras = 0;
+  initializetrisubpools(m, b);
+
+  if (!b->quiet) {
+    printf(
+      "Constructing Delaunay triangulation by divide-and-conquer method.\n");
+  }
+  hulledges = divconqdelaunay(m, b);
+
+  if (m->triangles.items == 0) {
+    /* The input vertices were all collinear, so there are no triangles. */
+    return 0l;
+  } else {
+    return hulledges;
+  }
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* General mesh construction routines end here               *********/
+
+/********* Segment insertion begins here                             *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  finddirection()   Find the first triangle on the path from one point     */
+/*                    to another.                                            */
+/*                                                                           */
+/*  Finds the triangle that intersects a line segment drawn from the         */
+/*  origin of `searchtri' to the point `searchpoint', and returns the result */
+/*  in `searchtri'.  The origin of `searchtri' does not change, even though  */
+/*  the triangle returned may differ from the one passed in.  This routine   */
+/*  is used to find the direction to move in to get from one point to        */
+/*  another.                                                                 */
+/*                                                                           */
+/*  The return value notes whether the destination or apex of the found      */
+/*  triangle is collinear with the two points in question.                   */
+/*                                                                           */
+/*****************************************************************************/
+
+enum finddirectionresult finddirection(struct mesh *m, struct behavior *b,
+                                       struct otri *searchtri,
+                                       vertex searchpoint)
+{
+  struct otri checktri;
+  vertex startvertex;
+  vertex leftvertex, rightvertex;
+  float leftccw, rightccw;
+  int leftflag, rightflag;
+  triangle ptr;           /* Temporary variable used by onext() and oprev(). */
+
+  org(*searchtri, startvertex);
+  dest(*searchtri, rightvertex);
+  apex(*searchtri, leftvertex);
+  /* Is `searchpoint' to the left? */
+  leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
+  leftflag = leftccw > 0.0;
+  /* Is `searchpoint' to the right? */
+  rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
+  rightflag = rightccw > 0.0;
+  if (leftflag && rightflag) {
+    /* `searchtri' faces directly away from `searchpoint'.  We could go left */
+    /*   or right.  Ask whether it's a triangle or a boundary on the left.   */
+    onext(*searchtri, checktri);
+    if (checktri.tri == m->dummytri) {
+      leftflag = 0;
+    } else {
+      rightflag = 0;
+    }
+  }
+  while (leftflag) {
+    /* Turn left until satisfied. */
+    onextself(*searchtri);
+    if (searchtri->tri == m->dummytri) {
+      printf("Internal error in finddirection():  Unable to find a\n");
+      printf("  triangle leading from (%.12g, %.12g) to", startvertex[0],
+             startvertex[1]);
+      printf("  (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
+      internalerror();
+    }
+    apex(*searchtri, leftvertex);
+    rightccw = leftccw;
+    leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
+    leftflag = leftccw > 0.0;
+  }
+  while (rightflag) {
+    /* Turn right until satisfied. */
+    oprevself(*searchtri);
+    if (searchtri->tri == m->dummytri) {
+      printf("Internal error in finddirection():  Unable to find a\n");
+      printf("  triangle leading from (%.12g, %.12g) to", startvertex[0],
+             startvertex[1]);
+      printf("  (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
+      internalerror();
+    }
+    dest(*searchtri, rightvertex);
+    leftccw = rightccw;
+    rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
+    rightflag = rightccw > 0.0;
+  }
+  if (leftccw == 0.0) {
+    return LEFTCOLLINEAR;
+  } else if (rightccw == 0.0) {
+    return RIGHTCOLLINEAR;
+  } else {
+    return WITHIN;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  segmentintersection()   Find the intersection of an existing segment     */
+/*                          and a segment that is being inserted.  Insert    */
+/*                          a vertex at the intersection, splitting an       */
+/*                          existing subsegment.                             */
+/*                                                                           */
+/*  The segment being inserted connects the apex of splittri to endpoint2.   */
+/*  splitsubseg is the subsegment being split, and MUST adjoin splittri.     */
+/*  Hence, endpoints of the subsegment being split are the origin and        */
+/*  destination of splittri.                                                 */
+/*                                                                           */
+/*  On completion, splittri is a handle having the newly inserted            */
+/*  intersection point as its origin, and endpoint1 as its destination.      */
+/*                                                                           */
+/*****************************************************************************/
+
+void segmentintersection(struct mesh *m, struct behavior *b,
+                         struct otri *splittri, struct osub *splitsubseg,
+                         vertex endpoint2)
+{
+  struct osub opposubseg;
+  vertex endpoint1;
+  vertex torg, tdest;
+  vertex leftvertex, rightvertex;
+  vertex newvertex;
+  enum insertvertexresult success;
+  enum finddirectionresult collinear;
+  float ex, ey;
+  float tx, ty;
+  float etx, ety;
+  float split, denom;
+  int i;
+  triangle ptr;                       /* Temporary variable used by onext(). */
+  subseg sptr;                        /* Temporary variable used by snext(). */
+
+  /* Find the other three segment endpoints. */
+  apex(*splittri, endpoint1);
+  org(*splittri, torg);
+  dest(*splittri, tdest);
+  /* Segment intersection formulae; see the Antonio reference. */
+  tx = tdest[0] - torg[0];
+  ty = tdest[1] - torg[1];
+  ex = endpoint2[0] - endpoint1[0];
+  ey = endpoint2[1] - endpoint1[1];
+  etx = torg[0] - endpoint2[0];
+  ety = torg[1] - endpoint2[1];
+  denom = ty * ex - tx * ey;
+  if (denom == 0.0) {
+    printf("Internal error in segmentintersection():");
+    printf("  Attempt to find intersection of parallel segments.\n");
+    internalerror();
+  }
+  split = (ey * etx - ex * ety) / denom;
+  /* Create the new vertex. */
+  newvertex = (vertex) poolalloc(&m->vertices);
+  /* Interpolate its coordinate and attributes. */
+  for (i = 0; i < 2 + m->nextras; i++) {
+    newvertex[i] = torg[i] + split * (tdest[i] - torg[i]);
+  }
+  setvertexmark(newvertex, mark(*splitsubseg));
+  setvertextype(newvertex, INPUTVERTEX);
+  if (b->verbose > 1) {
+    printf(
+  "  Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
+           torg[0], torg[1], tdest[0], tdest[1], newvertex[0], newvertex[1]);
+  }
+  /* Insert the intersection vertex.  This should always succeed. */
+  success = insertvertex(m, b, newvertex, splittri, splitsubseg, 0, 0);
+  if (success != SUCCESSFULVERTEX) {
+    printf("Internal error in segmentintersection():\n");
+    printf("  Failure to split a segment.\n");
+    internalerror();
+  }
+  /* Record a triangle whose origin is the new vertex. */
+  setvertex2tri(newvertex, encode(*splittri));
+  if (m->steinerleft > 0) {
+    m->steinerleft--;
+  }
+
+  /* Divide the segment into two, and correct the segment endpoints. */
+  ssymself(*splitsubseg);
+  spivot(*splitsubseg, opposubseg);
+  sdissolve(*splitsubseg);
+  sdissolve(opposubseg);
+  do {
+    setsegorg(*splitsubseg, newvertex);
+    snextself(*splitsubseg);
+  } while (splitsubseg->ss != m->dummysub);
+  do {
+    setsegorg(opposubseg, newvertex);
+    snextself(opposubseg);
+  } while (opposubseg.ss != m->dummysub);
+
+  /* Inserting the vertex may have caused edge flips.  We wish to rediscover */
+  /*   the edge connecting endpoint1 to the new intersection vertex.         */
+  collinear = finddirection(m, b, splittri, endpoint1);
+  dest(*splittri, rightvertex);
+  apex(*splittri, leftvertex);
+  if ((leftvertex[0] == endpoint1[0]) && (leftvertex[1] == endpoint1[1])) {
+    onextself(*splittri);
+  } else if ((rightvertex[0] != endpoint1[0]) ||
+             (rightvertex[1] != endpoint1[1])) {
+    printf("Internal error in segmentintersection():\n");
+    printf("  Topological inconsistency after splitting a segment.\n");
+    internalerror();
+  }
+  /* `splittri' should have destination endpoint1. */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  scoutsegment()   Scout the first triangle on the path from one endpoint  */
+/*                   to another, and check for completion (reaching the      */
+/*                   second endpoint), a collinear vertex, or the            */
+/*                   intersection of two segments.                           */
+/*                                                                           */
+/*  Returns one if the entire segment is successfully inserted, and zero if  */
+/*  the job must be finished by conformingedge() or constrainededge().       */
+/*                                                                           */
+/*  If the first triangle on the path has the second endpoint as its         */
+/*  destination or apex, a subsegment is inserted and the job is done.       */
+/*                                                                           */
+/*  If the first triangle on the path has a destination or apex that lies on */
+/*  the segment, a subsegment is inserted connecting the first endpoint to   */
+/*  the collinear vertex, and the search is continued from the collinear     */
+/*  vertex.                                                                  */
+/*                                                                           */
+/*  If the first triangle on the path has a subsegment opposite its origin,  */
+/*  then there is a segment that intersects the segment being inserted.      */
+/*  Their intersection vertex is inserted, splitting the subsegment.         */
+/*                                                                           */
+/*****************************************************************************/
+
+int scoutsegment(struct mesh *m, struct behavior *b, struct otri *searchtri,
+                 vertex endpoint2, int newmark)
+{
+  struct otri crosstri;
+  struct osub crosssubseg;
+  vertex leftvertex, rightvertex;
+  enum finddirectionresult collinear;
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  collinear = finddirection(m, b, searchtri, endpoint2);
+  dest(*searchtri, rightvertex);
+  apex(*searchtri, leftvertex);
+  if (((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) ||
+      ((rightvertex[0] == endpoint2[0]) && (rightvertex[1] == endpoint2[1]))) {
+    /* The segment is already an edge in the mesh. */
+    if ((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) {
+      lprevself(*searchtri);
+    }
+    /* Insert a subsegment, if there isn't already one there. */
+    insertsubseg(m, b, searchtri, newmark);
+    return 1;
+  } else if (collinear == LEFTCOLLINEAR) {
+    /* We've collided with a vertex between the segment's endpoints. */
+    /* Make the collinear vertex be the triangle's origin. */
+    lprevself(*searchtri);
+    insertsubseg(m, b, searchtri, newmark);
+    /* Insert the remainder of the segment. */
+    return scoutsegment(m, b, searchtri, endpoint2, newmark);
+  } else if (collinear == RIGHTCOLLINEAR) {
+    /* We've collided with a vertex between the segment's endpoints. */
+    insertsubseg(m, b, searchtri, newmark);
+    /* Make the collinear vertex be the triangle's origin. */
+    lnextself(*searchtri);
+    /* Insert the remainder of the segment. */
+    return scoutsegment(m, b, searchtri, endpoint2, newmark);
+  } else {
+    lnext(*searchtri, crosstri);
+    tspivot(crosstri, crosssubseg);
+    /* Check for a crossing segment. */
+    if (crosssubseg.ss == m->dummysub) {
+      return 0;
+    } else {
+      /* Insert a vertex at the intersection. */
+      segmentintersection(m, b, &crosstri, &crosssubseg, endpoint2);
+      otricopy(crosstri, *searchtri);
+      insertsubseg(m, b, searchtri, newmark);
+      /* Insert the remainder of the segment. */
+      return scoutsegment(m, b, searchtri, endpoint2, newmark);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  delaunayfixup()   Enforce the Delaunay condition at an edge, fanning out */
+/*                    recursively from an existing vertex.  Pay special      */
+/*                    attention to stacking inverted triangles.              */
+/*                                                                           */
+/*  This is a support routine for inserting segments into a constrained      */
+/*  Delaunay triangulation.                                                  */
+/*                                                                           */
+/*  The origin of fixuptri is treated as if it has just been inserted, and   */
+/*  the local Delaunay condition needs to be enforced.  It is only enforced  */
+/*  in one sector, however, that being the angular range defined by          */
+/*  fixuptri.                                                                */
+/*                                                                           */
+/*  This routine also needs to make decisions regarding the "stacking" of    */
+/*  triangles.  (Read the description of constrainededge() below before      */
+/*  reading on here, so you understand the algorithm.)  If the position of   */
+/*  the new vertex (the origin of fixuptri) indicates that the vertex before */
+/*  it on the polygon is a reflex vertex, then "stack" the triangle by       */
+/*  doing nothing.  (fixuptri is an inverted triangle, which is how stacked  */
+/*  triangles are identified.)                                               */
+/*                                                                           */
+/*  Otherwise, check whether the vertex before that was a reflex vertex.     */
+/*  If so, perform an edge flip, thereby eliminating an inverted triangle    */
+/*  (popping it off the stack).  The edge flip may result in the creation    */
+/*  of a new inverted triangle, depending on whether or not the new vertex   */
+/*  is visible to the vertex three edges behind on the polygon.              */
+/*                                                                           */
+/*  If neither of the two vertices behind the new vertex are reflex          */
+/*  vertices, fixuptri and fartri, the triangle opposite it, are not         */
+/*  inverted; hence, ensure that the edge between them is locally Delaunay.  */
+/*                                                                           */
+/*  `leftside' indicates whether or not fixuptri is to the left of the       */
+/*  segment being inserted.  (Imagine that the segment is pointing up from   */
+/*  endpoint1 to endpoint2.)                                                 */
+/*                                                                           */
+/*****************************************************************************/
+
+void delaunayfixup(struct mesh *m, struct behavior *b,
+                   struct otri *fixuptri, int leftside)
+{
+  struct otri neartri;
+  struct otri fartri;
+  struct osub faredge;
+  vertex nearvertex, leftvertex, rightvertex, farvertex;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  lnext(*fixuptri, neartri);
+  sym(neartri, fartri);
+  /* Check if the edge opposite the origin of fixuptri can be flipped. */
+  if (fartri.tri == m->dummytri) {
+    return;
+  }
+  tspivot(neartri, faredge);
+  if (faredge.ss != m->dummysub) {
+    return;
+  }
+  /* Find all the relevant vertices. */
+  apex(neartri, nearvertex);
+  org(neartri, leftvertex);
+  dest(neartri, rightvertex);
+  apex(fartri, farvertex);
+  /* Check whether the previous polygon vertex is a reflex vertex. */
+  if (leftside) {
+    if (counterclockwise(m, b, nearvertex, leftvertex, farvertex) <= 0.0) {
+      /* leftvertex is a reflex vertex too.  Nothing can */
+      /*   be done until a convex section is found.      */
+      return;
+    }
+  } else {
+    if (counterclockwise(m, b, farvertex, rightvertex, nearvertex) <= 0.0) {
+      /* rightvertex is a reflex vertex too.  Nothing can */
+      /*   be done until a convex section is found.       */
+      return;
+    }
+  }
+  if (counterclockwise(m, b, rightvertex, leftvertex, farvertex) > 0.0) {
+    /* fartri is not an inverted triangle, and farvertex is not a reflex */
+    /*   vertex.  As there are no reflex vertices, fixuptri isn't an     */
+    /*   inverted triangle, either.  Hence, test the edge between the    */
+    /*   triangles to ensure it is locally Delaunay.                     */
+    if (incircle(m, b, leftvertex, farvertex, rightvertex, nearvertex) <=
+        0.0) {
+      return;
+    }
+    /* Not locally Delaunay; go on to an edge flip. */
+  }        /* else fartri is inverted; remove it from the stack by flipping. */
+  flip(m, b, &neartri);
+  lprevself(*fixuptri);    /* Restore the origin of fixuptri after the flip. */
+  /* Recursively process the two triangles that result from the flip. */
+  delaunayfixup(m, b, fixuptri, leftside);
+  delaunayfixup(m, b, &fartri, leftside);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  constrainededge()   Force a segment into a constrained Delaunay          */
+/*                      triangulation by deleting the triangles it           */
+/*                      intersects, and triangulating the polygons that      */
+/*                      form on each side of it.                             */
+/*                                                                           */
+/*  Generates a single subsegment connecting `endpoint1' to `endpoint2'.     */
+/*  The triangle `starttri' has `endpoint1' as its origin.  `newmark' is the */
+/*  boundary marker of the segment.                                          */
+/*                                                                           */
+/*  To insert a segment, every triangle whose interior intersects the        */
+/*  segment is deleted.  The union of these deleted triangles is a polygon   */
+/*  (which is not necessarily monotone, but is close enough), which is       */
+/*  divided into two polygons by the new segment.  This routine's task is    */
+/*  to generate the Delaunay triangulation of these two polygons.            */
+/*                                                                           */
+/*  You might think of this routine's behavior as a two-step process.  The   */
+/*  first step is to walk from endpoint1 to endpoint2, flipping each edge    */
+/*  encountered.  This step creates a fan of edges connected to endpoint1,   */
+/*  including the desired edge to endpoint2.  The second step enforces the   */
+/*  Delaunay condition on each side of the segment in an incremental manner: */
+/*  proceeding along the polygon from endpoint1 to endpoint2 (this is done   */
+/*  independently on each side of the segment), each vertex is "enforced"    */
+/*  as if it had just been inserted, but affecting only the previous         */
+/*  vertices.  The result is the same as if the vertices had been inserted   */
+/*  in the order they appear on the polygon, so the result is Delaunay.      */
+/*                                                                           */
+/*  In truth, constrainededge() interleaves these two steps.  The procedure  */
+/*  walks from endpoint1 to endpoint2, and each time an edge is encountered  */
+/*  and flipped, the newly exposed vertex (at the far end of the flipped     */
+/*  edge) is "enforced" upon the previously flipped edges, usually affecting */
+/*  only one side of the polygon (depending upon which side of the segment   */
+/*  the vertex falls on).                                                    */
+/*                                                                           */
+/*  The algorithm is complicated by the need to handle polygons that are not */
+/*  convex.  Although the polygon is not necessarily monotone, it can be     */
+/*  triangulated in a manner similar to the stack-based algorithms for       */
+/*  monotone polygons.  For each reflex vertex (local concavity) of the      */
+/*  polygon, there will be an inverted triangle formed by one of the edge    */
+/*  flips.  (An inverted triangle is one with negative area - that is, its   */
+/*  vertices are arranged in clockwise order - and is best thought of as a   */
+/*  wrinkle in the fabric of the mesh.)  Each inverted triangle can be       */
+/*  thought of as a reflex vertex pushed on the stack, waiting to be fixed   */
+/*  later.                                                                   */
+/*                                                                           */
+/*  A reflex vertex is popped from the stack when a vertex is inserted that  */
+/*  is visible to the reflex vertex.  (However, if the vertex behind the     */
+/*  reflex vertex is not visible to the reflex vertex, a new inverted        */
+/*  triangle will take its place on the stack.)  These details are handled   */
+/*  by the delaunayfixup() routine above.                                    */
+/*                                                                           */
+/*****************************************************************************/
+
+void constrainededge(struct mesh *m, struct behavior *b,
+                     struct otri *starttri, vertex endpoint2, int newmark)
+{
+  struct otri fixuptri, fixuptri2;
+  struct osub crosssubseg;
+  vertex endpoint1;
+  vertex farvertex;
+  float area;
+  int collision;
+  int done;
+  triangle ptr;             /* Temporary variable used by sym() and oprev(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  org(*starttri, endpoint1);
+  lnext(*starttri, fixuptri);
+  flip(m, b, &fixuptri);
+  /* `collision' indicates whether we have found a vertex directly */
+  /*   between endpoint1 and endpoint2.                            */
+  collision = 0;
+  done = 0;
+  do {
+    org(fixuptri, farvertex);
+    /* `farvertex' is the extreme point of the polygon we are "digging" */
+    /*   to get from endpoint1 to endpoint2.                           */
+    if ((farvertex[0] == endpoint2[0]) && (farvertex[1] == endpoint2[1])) {
+      oprev(fixuptri, fixuptri2);
+      /* Enforce the Delaunay condition around endpoint2. */
+      delaunayfixup(m, b, &fixuptri, 0);
+      delaunayfixup(m, b, &fixuptri2, 1);
+      done = 1;
+    } else {
+      /* Check whether farvertex is to the left or right of the segment */
+      /*   being inserted, to decide which edge of fixuptri to dig      */
+      /*   through next.                                                */
+      area = counterclockwise(m, b, endpoint1, endpoint2, farvertex);
+      if (area == 0.0) {
+        /* We've collided with a vertex between endpoint1 and endpoint2. */
+        collision = 1;
+        oprev(fixuptri, fixuptri2);
+        /* Enforce the Delaunay condition around farvertex. */
+        delaunayfixup(m, b, &fixuptri, 0);
+        delaunayfixup(m, b, &fixuptri2, 1);
+        done = 1;
+      } else {
+        if (area > 0.0) {        /* farvertex is to the left of the segment. */
+          oprev(fixuptri, fixuptri2);
+          /* Enforce the Delaunay condition around farvertex, on the */
+          /*   left side of the segment only.                        */
+          delaunayfixup(m, b, &fixuptri2, 1);
+          /* Flip the edge that crosses the segment.  After the edge is */
+          /*   flipped, one of its endpoints is the fan vertex, and the */
+          /*   destination of fixuptri is the fan vertex.               */
+          lprevself(fixuptri);
+        } else {                /* farvertex is to the right of the segment. */
+          delaunayfixup(m, b, &fixuptri, 0);
+          /* Flip the edge that crosses the segment.  After the edge is */
+          /*   flipped, one of its endpoints is the fan vertex, and the */
+          /*   destination of fixuptri is the fan vertex.               */
+          oprevself(fixuptri);
+        }
+        /* Check for two intersecting segments. */
+        tspivot(fixuptri, crosssubseg);
+        if (crosssubseg.ss == m->dummysub) {
+          flip(m, b, &fixuptri);    /* May create inverted triangle at left. */
+        } else {
+          /* We've collided with a segment between endpoint1 and endpoint2. */
+          collision = 1;
+          /* Insert a vertex at the intersection. */
+          segmentintersection(m, b, &fixuptri, &crosssubseg, endpoint2);
+          done = 1;
+        }
+      }
+    }
+  } while (!done);
+  /* Insert a subsegment to make the segment permanent. */
+  insertsubseg(m, b, &fixuptri, newmark);
+  /* If there was a collision with an interceding vertex, install another */
+  /*   segment connecting that vertex with endpoint2.                     */
+  if (collision) {
+    /* Insert the remainder of the segment. */
+    if (!scoutsegment(m, b, &fixuptri, endpoint2, newmark)) {
+      constrainededge(m, b, &fixuptri, endpoint2, newmark);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  insertsegment()   Insert a PSLG segment into a triangulation.            */
+/*                                                                           */
+/*****************************************************************************/
+
+void insertsegment(struct mesh *m, struct behavior *b,
+                   vertex endpoint1, vertex endpoint2, int newmark)
+{
+  struct otri searchtri1, searchtri2;
+  triangle encodedtri;
+  vertex checkvertex;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (b->verbose > 1) {
+    printf("  Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",
+           endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);
+  }
+
+  /* Find a triangle whose origin is the segment's first endpoint. */
+  checkvertex = (vertex) NULL;
+  encodedtri = vertex2tri(endpoint1);
+  if (encodedtri != (triangle) NULL) {
+    decode(encodedtri, searchtri1);
+    org(searchtri1, checkvertex);
+  }
+  if (checkvertex != endpoint1) {
+    /* Find a boundary triangle to search from. */
+    searchtri1.tri = m->dummytri;
+    searchtri1.orient = 0;
+    symself(searchtri1);
+    /* Search for the segment's first endpoint by point location. */
+    if (locate(m, b, endpoint1, &searchtri1) != ONVERTEX) {
+      printf(
+        "Internal error in insertsegment():  Unable to locate PSLG vertex\n");
+      printf("  (%.12g, %.12g) in triangulation.\n",
+             endpoint1[0], endpoint1[1]);
+      internalerror();
+    }
+  }
+  /* Remember this triangle to improve subsequent point location. */
+  otricopy(searchtri1, m->recenttri);
+  /* Scout the beginnings of a path from the first endpoint */
+  /*   toward the second.                                   */
+  if (scoutsegment(m, b, &searchtri1, endpoint2, newmark)) {
+    /* The segment was easily inserted. */
+    return;
+  }
+  /* The first endpoint may have changed if a collision with an intervening */
+  /*   vertex on the segment occurred.                                      */
+  org(searchtri1, endpoint1);
+
+  /* Find a triangle whose origin is the segment's second endpoint. */
+  checkvertex = (vertex) NULL;
+  encodedtri = vertex2tri(endpoint2);
+  if (encodedtri != (triangle) NULL) {
+    decode(encodedtri, searchtri2);
+    org(searchtri2, checkvertex);
+  }
+  if (checkvertex != endpoint2) {
+    /* Find a boundary triangle to search from. */
+    searchtri2.tri = m->dummytri;
+    searchtri2.orient = 0;
+    symself(searchtri2);
+    /* Search for the segment's second endpoint by point location. */
+    if (locate(m, b, endpoint2, &searchtri2) != ONVERTEX) {
+      printf(
+        "Internal error in insertsegment():  Unable to locate PSLG vertex\n");
+      printf("  (%.12g, %.12g) in triangulation.\n",
+             endpoint2[0], endpoint2[1]);
+      internalerror();
+    }
+  }
+  /* Remember this triangle to improve subsequent point location. */
+  otricopy(searchtri2, m->recenttri);
+  /* Scout the beginnings of a path from the second endpoint */
+  /*   toward the first.                                     */
+  if (scoutsegment(m, b, &searchtri2, endpoint1, newmark)) {
+    /* The segment was easily inserted. */
+    return;
+  }
+  /* The second endpoint may have changed if a collision with an intervening */
+  /*   vertex on the segment occurred.                                       */
+  org(searchtri2, endpoint2);
+
+    /* Insert the segment directly into the triangulation. */
+    constrainededge(m, b, &searchtri1, endpoint2, newmark);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  markhull()   Cover the convex hull of a triangulation with subsegments.  */
+/*                                                                           */
+/*****************************************************************************/
+
+void markhull(struct mesh *m, struct behavior *b)
+{
+  struct otri hulltri;
+  struct otri nexttri;
+  struct otri starttri;
+  triangle ptr;             /* Temporary variable used by sym() and oprev(). */
+
+  /* Find a triangle handle on the hull. */
+  hulltri.tri = m->dummytri;
+  hulltri.orient = 0;
+  symself(hulltri);
+  /* Remember where we started so we know when to stop. */
+  otricopy(hulltri, starttri);
+  /* Go once counterclockwise around the convex hull. */
+  do {
+    /* Create a subsegment if there isn't already one here. */
+    insertsubseg(m, b, &hulltri, 1);
+    /* To find the next hull edge, go clockwise around the next vertex. */
+    lnextself(hulltri);
+    oprev(hulltri, nexttri);
+    while (nexttri.tri != m->dummytri) {
+      otricopy(nexttri, hulltri);
+      oprev(hulltri, nexttri);
+    }
+  } while (!otriequal(hulltri, starttri));
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  formskeleton()   Create the segments of a triangulation, including PSLG  */
+/*                   segments and edges on the convex hull.                  */
+/*                                                                           */
+/*  The PSLG segments are read from a .poly file.  The return value is the   */
+/*  number of segments in the file.                                          */
+/*                                                                           */
+/*****************************************************************************/
+
+void formskeleton(struct mesh *m, struct behavior *b, int *segmentlist,
+                  int *segmentmarkerlist, int numberofsegments)
+{
+  char polyfilename[6];
+  int index;
+  vertex endpoint1, endpoint2;
+  int segmentmarkers;
+  int end1, end2;
+  int boundmarker;
+  int i;
+
+  if (b->poly) {
+    if (!b->quiet) {
+      printf("Recovering segments in Delaunay triangulation.\n");
+    }
+    strcpy(polyfilename, "input");
+    m->insegments = numberofsegments;
+    segmentmarkers = segmentmarkerlist != (int *) NULL;
+    index = 0;
+    /* If the input vertices are collinear, there is no triangulation, */
+    /*   so don't try to insert segments.                              */
+    if (m->triangles.items == 0) {
+      return;
+    }
+
+    /* If segments are to be inserted, compute a mapping */
+    /*   from vertices to triangles.                     */
+    if (m->insegments > 0) {
+      makevertexmap(m, b);
+      if (b->verbose) {
+        printf("  Recovering PSLG segments.\n");
+      }
+    }
+
+    boundmarker = 0;
+    /* Read and insert the segments. */
+    for (i = 0; i < m->insegments; i++) {
+      end1 = segmentlist[index++];
+      end2 = segmentlist[index++];
+      if (segmentmarkers) {
+        boundmarker = segmentmarkerlist[i];
+      }
+      if ((end1 < b->firstnumber) ||
+          (end1 >= b->firstnumber + m->invertices)) {
+        if (!b->quiet) {
+          printf("Warning:  Invalid first endpoint of segment %d in %s.\n",
+                 b->firstnumber + i, polyfilename);
+        }
+      } else if ((end2 < b->firstnumber) ||
+                 (end2 >= b->firstnumber + m->invertices)) {
+        if (!b->quiet) {
+          printf("Warning:  Invalid second endpoint of segment %d in %s.\n",
+                 b->firstnumber + i, polyfilename);
+        }
+      } else {
+        /* Find the vertices numbered `end1' and `end2'. */
+        endpoint1 = getvertex(m, b, end1);
+        endpoint2 = getvertex(m, b, end2);
+        if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
+          if (!b->quiet) {
+            printf("Warning:  Endpoints of segment %d are coincident in %s.\n",
+                   b->firstnumber + i, polyfilename);
+          }
+        } else {
+          insertsegment(m, b, endpoint1, endpoint2, boundmarker);
+        }
+      }
+    }
+  } else {
+    m->insegments = 0;
+  }
+  if (b->convex || !b->poly) {
+    /* Enclose the convex hull with subsegments. */
+    if (b->verbose) {
+      printf("  Enclosing convex hull with segments.\n");
+    }
+    markhull(m, b);
+  }
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Segment insertion ends here                               *********/
+
+/********* Carving out holes and concavities begins here             *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  infecthull()   Virally infect all of the triangles of the convex hull    */
+/*                 that are not protected by subsegments.  Where there are   */
+/*                 subsegments, set boundary markers as appropriate.         */
+/*                                                                           */
+/*****************************************************************************/
+
+void infecthull(struct mesh *m, struct behavior *b)
+{
+  struct otri hulltri;
+  struct otri nexttri;
+  struct otri starttri;
+  struct osub hullsubseg;
+  triangle **deadtriangle;
+  vertex horg, hdest;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (b->verbose) {
+    printf("  Marking concavities (external triangles) for elimination.\n");
+  }
+  /* Find a triangle handle on the hull. */
+  hulltri.tri = m->dummytri;
+  hulltri.orient = 0;
+  symself(hulltri);
+  /* Remember where we started so we know when to stop. */
+  otricopy(hulltri, starttri);
+  /* Go once counterclockwise around the convex hull. */
+  do {
+    /* Ignore triangles that are already infected. */
+    if (!infected(hulltri)) {
+      /* Is the triangle protected by a subsegment? */
+      tspivot(hulltri, hullsubseg);
+      if (hullsubseg.ss == m->dummysub) {
+        /* The triangle is not protected; infect it. */
+        if (!infected(hulltri)) {
+          infect(hulltri);
+          deadtriangle = (triangle **) poolalloc(&m->viri);
+          *deadtriangle = hulltri.tri;
+        }
+      } else {
+        /* The triangle is protected; set boundary markers if appropriate. */
+        if (mark(hullsubseg) == 0) {
+          setmark(hullsubseg, 1);
+          org(hulltri, horg);
+          dest(hulltri, hdest);
+          if (vertexmark(horg) == 0) {
+            setvertexmark(horg, 1);
+          }
+          if (vertexmark(hdest) == 0) {
+            setvertexmark(hdest, 1);
+          }
+        }
+      }
+    }
+    /* To find the next hull edge, go clockwise around the next vertex. */
+    lnextself(hulltri);
+    oprev(hulltri, nexttri);
+    while (nexttri.tri != m->dummytri) {
+      otricopy(nexttri, hulltri);
+      oprev(hulltri, nexttri);
+    }
+  } while (!otriequal(hulltri, starttri));
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  plague()   Spread the virus from all infected triangles to any neighbors */
+/*             not protected by subsegments.  Delete all infected triangles. */
+/*                                                                           */
+/*  This is the procedure that actually creates holes and concavities.       */
+/*                                                                           */
+/*  This procedure operates in two phases.  The first phase identifies all   */
+/*  the triangles that will die, and marks them as infected.  They are       */
+/*  marked to ensure that each triangle is added to the virus pool only      */
+/*  once, so the procedure will terminate.                                   */
+/*                                                                           */
+/*  The second phase actually eliminates the infected triangles.  It also    */
+/*  eliminates orphaned vertices.                                            */
+/*                                                                           */
+/*****************************************************************************/
+
+void plague(struct mesh *m, struct behavior *b)
+{
+  struct otri testtri;
+  struct otri neighbor;
+  triangle **virusloop;
+  triangle **deadtriangle;
+  struct osub neighborsubseg;
+  vertex testvertex;
+  vertex norg, ndest;
+  vertex deadorg, deaddest, deadapex;
+  int killorg;
+  triangle ptr;             /* Temporary variable used by sym() and onext(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (b->verbose) {
+    printf("  Marking neighbors of marked triangles.\n");
+  }
+  /* Loop through all the infected triangles, spreading the virus to */
+  /*   their neighbors, then to their neighbors' neighbors.          */
+  traversalinit(&m->viri);
+  virusloop = (triangle **) traverse(&m->viri);
+  while (virusloop != (triangle **) NULL) {
+    testtri.tri = *virusloop;
+    /* A triangle is marked as infected by messing with one of its pointers */
+    /*   to subsegments, setting it to an illegal value.  Hence, we have to */
+    /*   temporarily uninfect this triangle so that we can examine its      */
+    /*   adjacent subsegments.                                              */
+    uninfect(testtri);
+    if (b->verbose > 2) {
+      /* Assign the triangle an orientation for convenience in */
+      /*   checking its vertices.                              */
+      testtri.orient = 0;
+      org(testtri, deadorg);
+      dest(testtri, deaddest);
+      apex(testtri, deadapex);
+      printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+             deadorg[0], deadorg[1], deaddest[0], deaddest[1],
+             deadapex[0], deadapex[1]);
+    }
+    /* Check each of the triangle's three neighbors. */
+    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
+      /* Find the neighbor. */
+      sym(testtri, neighbor);
+      /* Check for a subsegment between the triangle and its neighbor. */
+      tspivot(testtri, neighborsubseg);
+      /* Check if the neighbor is nonexistent or already infected. */
+      if ((neighbor.tri == m->dummytri) || infected(neighbor)) {
+        if (neighborsubseg.ss != m->dummysub) {
+          /* There is a subsegment separating the triangle from its      */
+          /*   neighbor, but both triangles are dying, so the subsegment */
+          /*   dies too.                                                 */
+          subsegdealloc(m, neighborsubseg.ss);
+          if (neighbor.tri != m->dummytri) {
+            /* Make sure the subsegment doesn't get deallocated again */
+            /*   later when the infected neighbor is visited.         */
+            uninfect(neighbor);
+            tsdissolve(neighbor);
+            infect(neighbor);
+          }
+        }
+      } else {                   /* The neighbor exists and is not infected. */
+        if (neighborsubseg.ss == m->dummysub) {
+          /* There is no subsegment protecting the neighbor, so */
+          /*   the neighbor becomes infected.                   */
+          if (b->verbose > 2) {
+            org(neighbor, deadorg);
+            dest(neighbor, deaddest);
+            apex(neighbor, deadapex);
+            printf(
+              "    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+                   deadorg[0], deadorg[1], deaddest[0], deaddest[1],
+                   deadapex[0], deadapex[1]);
+          }
+          infect(neighbor);
+          /* Ensure that the neighbor's neighbors will be infected. */
+          deadtriangle = (triangle **) poolalloc(&m->viri);
+          *deadtriangle = neighbor.tri;
+        } else {               /* The neighbor is protected by a subsegment. */
+          /* Remove this triangle from the subsegment. */
+          stdissolve(neighborsubseg);
+          /* The subsegment becomes a boundary.  Set markers accordingly. */
+          if (mark(neighborsubseg) == 0) {
+            setmark(neighborsubseg, 1);
+          }
+          org(neighbor, norg);
+          dest(neighbor, ndest);
+          if (vertexmark(norg) == 0) {
+            setvertexmark(norg, 1);
+          }
+          if (vertexmark(ndest) == 0) {
+            setvertexmark(ndest, 1);
+          }
+        }
+      }
+    }
+    /* Remark the triangle as infected, so it doesn't get added to the */
+    /*   virus pool again.                                             */
+    infect(testtri);
+    virusloop = (triangle **) traverse(&m->viri);
+  }
+
+  if (b->verbose) {
+    printf("  Deleting marked triangles.\n");
+  }
+
+  traversalinit(&m->viri);
+  virusloop = (triangle **) traverse(&m->viri);
+  while (virusloop != (triangle **) NULL) {
+    testtri.tri = *virusloop;
+
+    /* Check each of the three corners of the triangle for elimination. */
+    /*   This is done by walking around each vertex, checking if it is  */
+    /*   still connected to at least one live triangle.                 */
+    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
+      org(testtri, testvertex);
+      /* Check if the vertex has already been tested. */
+      if (testvertex != (vertex) NULL) {
+        killorg = 1;
+        /* Mark the corner of the triangle as having been tested. */
+        setorg(testtri, NULL);
+        /* Walk counterclockwise about the vertex. */
+        onext(testtri, neighbor);
+        /* Stop upon reaching a boundary or the starting triangle. */
+        while ((neighbor.tri != m->dummytri) &&
+               (!otriequal(neighbor, testtri))) {
+          if (infected(neighbor)) {
+            /* Mark the corner of this triangle as having been tested. */
+            setorg(neighbor, NULL);
+          } else {
+            /* A live triangle.  The vertex survives. */
+            killorg = 0;
+          }
+          /* Walk counterclockwise about the vertex. */
+          onextself(neighbor);
+        }
+        /* If we reached a boundary, we must walk clockwise as well. */
+        if (neighbor.tri == m->dummytri) {
+          /* Walk clockwise about the vertex. */
+          oprev(testtri, neighbor);
+          /* Stop upon reaching a boundary. */
+          while (neighbor.tri != m->dummytri) {
+            if (infected(neighbor)) {
+            /* Mark the corner of this triangle as having been tested. */
+              setorg(neighbor, NULL);
+            } else {
+              /* A live triangle.  The vertex survives. */
+              killorg = 0;
+            }
+            /* Walk clockwise about the vertex. */
+            oprevself(neighbor);
+          }
+        }
+        if (killorg) {
+          if (b->verbose > 1) {
+            printf("    Deleting vertex (%.12g, %.12g)\n",
+                   testvertex[0], testvertex[1]);
+          }
+          setvertextype(testvertex, UNDEADVERTEX);
+          m->undeads++;
+        }
+      }
+    }
+
+    /* Record changes in the number of boundary edges, and disconnect */
+    /*   dead triangles from their neighbors.                         */
+    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
+      sym(testtri, neighbor);
+      if (neighbor.tri == m->dummytri) {
+        /* There is no neighboring triangle on this edge, so this edge    */
+        /*   is a boundary edge.  This triangle is being deleted, so this */
+        /*   boundary edge is deleted.                                    */
+        m->hullsize--;
+      } else {
+        /* Disconnect the triangle from its neighbor. */
+        dissolve(neighbor);
+        /* There is a neighboring triangle on this edge, so this edge */
+        /*   becomes a boundary edge when this triangle is deleted.   */
+        m->hullsize++;
+      }
+    }
+    /* Return the dead triangle to the pool of triangles. */
+    triangledealloc(m, testtri.tri);
+    virusloop = (triangle **) traverse(&m->viri);
+  }
+  /* Empty the virus pool. */
+  poolrestart(&m->viri);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  regionplague()   Spread regional attributes and/or area constraints      */
+/*                   (from a .poly file) throughout the mesh.                */
+/*                                                                           */
+/*  This procedure operates in two phases.  The first phase spreads an       */
+/*  attribute and/or an area constraint through a (segment-bounded) region.  */
+/*  The triangles are marked to ensure that each triangle is added to the    */
+/*  virus pool only once, so the procedure will terminate.                   */
+/*                                                                           */
+/*  The second phase uninfects all infected triangles, returning them to     */
+/*  normal.                                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+void regionplague(struct mesh *m, struct behavior *b,
+                  float attribute, float area)
+{
+  struct otri testtri;
+  struct otri neighbor;
+  triangle **virusloop;
+  triangle **regiontri;
+  struct osub neighborsubseg;
+  vertex regionorg, regiondest, regionapex;
+  triangle ptr;             /* Temporary variable used by sym() and onext(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (b->verbose > 1) {
+    printf("  Marking neighbors of marked triangles.\n");
+  }
+  /* Loop through all the infected triangles, spreading the attribute      */
+  /*   and/or area constraint to their neighbors, then to their neighbors' */
+  /*   neighbors.                                                          */
+  traversalinit(&m->viri);
+  virusloop = (triangle **) traverse(&m->viri);
+  while (virusloop != (triangle **) NULL) {
+    testtri.tri = *virusloop;
+    /* A triangle is marked as infected by messing with one of its pointers */
+    /*   to subsegments, setting it to an illegal value.  Hence, we have to */
+    /*   temporarily uninfect this triangle so that we can examine its      */
+    /*   adjacent subsegments.                                              */
+    uninfect(testtri);
+    if (b->regionattrib) {
+      /* Set an attribute. */
+      setelemattribute(testtri, m->eextras, attribute);
+    }
+    if (b->vararea) {
+      /* Set an area constraint. */
+      setareabound(testtri, area);
+    }
+    if (b->verbose > 2) {
+      /* Assign the triangle an orientation for convenience in */
+      /*   checking its vertices.                              */
+      testtri.orient = 0;
+      org(testtri, regionorg);
+      dest(testtri, regiondest);
+      apex(testtri, regionapex);
+      printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+             regionorg[0], regionorg[1], regiondest[0], regiondest[1],
+             regionapex[0], regionapex[1]);
+    }
+    /* Check each of the triangle's three neighbors. */
+    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
+      /* Find the neighbor. */
+      sym(testtri, neighbor);
+      /* Check for a subsegment between the triangle and its neighbor. */
+      tspivot(testtri, neighborsubseg);
+      /* Make sure the neighbor exists, is not already infected, and */
+      /*   isn't protected by a subsegment.                          */
+      if ((neighbor.tri != m->dummytri) && !infected(neighbor)
+          && (neighborsubseg.ss == m->dummysub)) {
+        if (b->verbose > 2) {
+          org(neighbor, regionorg);
+          dest(neighbor, regiondest);
+          apex(neighbor, regionapex);
+          printf("    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+                 regionorg[0], regionorg[1], regiondest[0], regiondest[1],
+                 regionapex[0], regionapex[1]);
+        }
+        /* Infect the neighbor. */
+        infect(neighbor);
+        /* Ensure that the neighbor's neighbors will be infected. */
+        regiontri = (triangle **) poolalloc(&m->viri);
+        *regiontri = neighbor.tri;
+      }
+    }
+    /* Remark the triangle as infected, so it doesn't get added to the */
+    /*   virus pool again.                                             */
+    infect(testtri);
+    virusloop = (triangle **) traverse(&m->viri);
+  }
+
+  /* Uninfect all triangles. */
+  if (b->verbose > 1) {
+    printf("  Unmarking marked triangles.\n");
+  }
+  traversalinit(&m->viri);
+  virusloop = (triangle **) traverse(&m->viri);
+  while (virusloop != (triangle **) NULL) {
+    testtri.tri = *virusloop;
+    uninfect(testtri);
+    virusloop = (triangle **) traverse(&m->viri);
+  }
+  /* Empty the virus pool. */
+  poolrestart(&m->viri);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  carveholes()   Find the holes and infect them.  Find the area            */
+/*                 constraints and infect them.  Infect the convex hull.     */
+/*                 Spread the infection and kill triangles.  Spread the      */
+/*                 area constraints.                                         */
+/*                                                                           */
+/*  This routine mainly calls other routines to carry out all these          */
+/*  functions.                                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+void carveholes(struct mesh *m, struct behavior *b, float *holelist, int holes,
+                float *regionlist, int regions)
+{
+  struct otri searchtri;
+  struct otri triangleloop;
+  struct otri *regiontris;
+  triangle **holetri;
+  triangle **regiontri;
+  vertex searchorg, searchdest;
+  enum locateresult intersect;
+  int i;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (!(b->quiet || (b->noholes && b->convex))) {
+    printf("Removing unwanted triangles.\n");
+    if (b->verbose && (holes > 0)) {
+      printf("  Marking holes for elimination.\n");
+    }
+  }
+
+  if (regions > 0) {
+    /* Allocate storage for the triangles in which region points fall. */
+    regiontris = (struct otri *) trimalloc(regions *
+                                           (int) sizeof(struct otri));
+  } else {
+    regiontris = (struct otri *) NULL;
+  }
+
+  if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
+    /* Initialize a pool of viri to be used for holes, concavities, */
+    /*   regional attributes, and/or regional area constraints.     */
+    poolinit(&m->viri, sizeof(triangle *), VIRUSPERBLOCK, VIRUSPERBLOCK, 0);
+  }
+
+  if (!b->convex) {
+    /* Mark as infected any unprotected triangles on the boundary. */
+    /*   This is one way by which concavities are created.         */
+    infecthull(m, b);
+  }
+
+  if ((holes > 0) && !b->noholes) {
+    /* Infect each triangle in which a hole lies. */
+    for (i = 0; i < 2 * holes; i += 2) {
+      /* Ignore holes that aren't within the bounds of the mesh. */
+      if ((holelist[i] >= m->xmin) && (holelist[i] <= m->xmax)
+          && (holelist[i + 1] >= m->ymin) && (holelist[i + 1] <= m->ymax)) {
+        /* Start searching from some triangle on the outer boundary. */
+        searchtri.tri = m->dummytri;
+        searchtri.orient = 0;
+        symself(searchtri);
+        /* Ensure that the hole is to the left of this boundary edge; */
+        /*   otherwise, locate() will falsely report that the hole    */
+        /*   falls within the starting triangle.                      */
+        org(searchtri, searchorg);
+        dest(searchtri, searchdest);
+        if (counterclockwise(m, b, searchorg, searchdest, &holelist[i]) >
+            0.0) {
+          /* Find a triangle that contains the hole. */
+          intersect = locate(m, b, &holelist[i], &searchtri);
+          if ((intersect != OUTSIDE) && (!infected(searchtri))) {
+            /* Infect the triangle.  This is done by marking the triangle  */
+            /*   as infected and including the triangle in the virus pool. */
+            infect(searchtri);
+            holetri = (triangle **) poolalloc(&m->viri);
+            *holetri = searchtri.tri;
+          }
+        }
+      }
+    }
+  }
+
+  /* Now, we have to find all the regions BEFORE we carve the holes, because */
+  /*   locate() won't work when the triangulation is no longer convex.       */
+  /*   (Incidentally, this is the reason why regional attributes and area    */
+  /*   constraints can't be used when refining a preexisting mesh, which     */
+  /*   might not be convex; they can only be used with a freshly             */
+  /*   triangulated PSLG.)                                                   */
+  if (regions > 0) {
+    /* Find the starting triangle for each region. */
+    for (i = 0; i < regions; i++) {
+      regiontris[i].tri = m->dummytri;
+      /* Ignore region points that aren't within the bounds of the mesh. */
+      if ((regionlist[4 * i] >= m->xmin) && (regionlist[4 * i] <= m->xmax) &&
+          (regionlist[4 * i + 1] >= m->ymin) &&
+          (regionlist[4 * i + 1] <= m->ymax)) {
+        /* Start searching from some triangle on the outer boundary. */
+        searchtri.tri = m->dummytri;
+        searchtri.orient = 0;
+        symself(searchtri);
+        /* Ensure that the region point is to the left of this boundary */
+        /*   edge; otherwise, locate() will falsely report that the     */
+        /*   region point falls within the starting triangle.           */
+        org(searchtri, searchorg);
+        dest(searchtri, searchdest);
+        if (counterclockwise(m, b, searchorg, searchdest, &regionlist[4 * i]) >
+            0.0) {
+          /* Find a triangle that contains the region point. */
+          intersect = locate(m, b, &regionlist[4 * i], &searchtri);
+          if ((intersect != OUTSIDE) && (!infected(searchtri))) {
+            /* Record the triangle for processing after the */
+            /*   holes have been carved.                    */
+            otricopy(searchtri, regiontris[i]);
+          }
+        }
+      }
+    }
+  }
+
+  if (m->viri.items > 0) {
+    /* Carve the holes and concavities. */
+    plague(m, b);
+  }
+  /* The virus pool should be empty now. */
+
+  if (regions > 0) {
+    if (!b->quiet) {
+      if (b->regionattrib) {
+        if (b->vararea) {
+          printf("Spreading regional attributes and area constraints.\n");
+        } else {
+          printf("Spreading regional attributes.\n");
+        }
+      } else { 
+        printf("Spreading regional area constraints.\n");
+      }
+    }
+    if (b->regionattrib && !b->refine) {
+      /* Assign every triangle a regional attribute of zero. */
+      traversalinit(&m->triangles);
+      triangleloop.orient = 0;
+      triangleloop.tri = triangletraverse(m);
+      while (triangleloop.tri != (triangle *) NULL) {
+        setelemattribute(triangleloop, m->eextras, 0.0);
+        triangleloop.tri = triangletraverse(m);
+      }
+    }
+    for (i = 0; i < regions; i++) {
+      if (regiontris[i].tri != m->dummytri) {
+        /* Make sure the triangle under consideration still exists. */
+        /*   It may have been eaten by the virus.                   */
+        if (!deadtri(regiontris[i].tri)) {
+          /* Put one triangle in the virus pool. */
+          infect(regiontris[i]);
+          regiontri = (triangle **) poolalloc(&m->viri);
+          *regiontri = regiontris[i].tri;
+          /* Apply one region's attribute and/or area constraint. */
+          regionplague(m, b, regionlist[4 * i + 2], regionlist[4 * i + 3]);
+          /* The virus pool should be empty now. */
+        }
+      }
+    }
+    if (b->regionattrib && !b->refine) {
+      /* Note the fact that each triangle has an additional attribute. */
+      m->eextras++;
+    }
+  }
+
+  /* Free up memory. */
+  if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
+    pooldeinit(&m->viri);
+  }
+  if (regions > 0) {
+    trifree((int *) regiontris);
+  }
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Carving out holes and concavities ends here               *********/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  highorder()   Create extra nodes for quadratic subparametric elements.   */
+/*                                                                           */
+/*****************************************************************************/
+
+void highorder(struct mesh *m, struct behavior *b)
+{
+  struct otri triangleloop, trisym;
+  struct osub checkmark;
+  vertex newvertex;
+  vertex torg, tdest;
+  int i;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (!b->quiet) {
+    printf("Adding vertices for second-order triangles.\n");
+  }
+  /* The following line ensures that dead items in the pool of nodes    */
+  /*   cannot be allocated for the extra nodes associated with high     */
+  /*   order elements.  This ensures that the primary nodes (at the     */
+  /*   corners of elements) will occur earlier in the output files, and */
+  /*   have lower indices, than the extra nodes.                        */
+  m->vertices.deaditemstack = (int *) NULL;
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  /* To loop over the set of edges, loop over all triangles, and look at   */
+  /*   the three edges of each triangle.  If there isn't another triangle  */
+  /*   adjacent to the edge, operate on the edge.  If there is another     */
+  /*   adjacent triangle, operate on the edge only if the current triangle */
+  /*   has a smaller pointer than its neighbor.  This way, each edge is    */
+  /*   considered only once.                                               */
+  while (triangleloop.tri != (triangle *) NULL) {
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      sym(triangleloop, trisym);
+      if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
+        org(triangleloop, torg);
+        dest(triangleloop, tdest);
+        /* Create a new node in the middle of the edge.  Interpolate */
+        /*   its attributes.                                         */
+        newvertex = (vertex) poolalloc(&m->vertices);
+        for (i = 0; i < 2 + m->nextras; i++) {
+          newvertex[i] = 0.5 * (torg[i] + tdest[i]);
+        }
+        /* Set the new node's marker to zero or one, depending on */
+        /*   whether it lies on a boundary.                       */
+        setvertexmark(newvertex, trisym.tri == m->dummytri);
+        setvertextype(newvertex,
+                      trisym.tri == m->dummytri ? FREEVERTEX : SEGMENTVERTEX);
+        if (b->usesegments) {
+          tspivot(triangleloop, checkmark);
+          /* If this edge is a segment, transfer the marker to the new node. */
+          if (checkmark.ss != m->dummysub) {
+            setvertexmark(newvertex, mark(checkmark));
+            setvertextype(newvertex, SEGMENTVERTEX);
+          }
+        }
+        if (b->verbose > 1) {
+          printf("  Creating (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
+        }
+        /* Record the new node in the (one or two) adjacent elements. */
+        triangleloop.tri[m->highorderindex + triangleloop.orient] =
+                (triangle) newvertex;
+        if (trisym.tri != m->dummytri) {
+          trisym.tri[m->highorderindex + trisym.orient] = (triangle) newvertex;
+        }
+      }
+    }
+    triangleloop.tri = triangletraverse(m);
+  }
+}
+
+/********* File I/O routines begin here                              *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  transfernodes()   Read the vertices from memory.                         */
+/*                                                                           */
+/*****************************************************************************/
+
+void transfernodes(struct mesh *m, struct behavior *b, float *pointlist,
+                   float *pointattriblist, int *pointmarkerlist,
+                   int numberofpoints, int numberofpointattribs)
+{
+  vertex vertexloop;
+  float x, y;
+  int i, j;
+  int coordindex;
+  int attribindex;
+
+  m->invertices = numberofpoints;
+  m->mesh_dim = 2;
+  m->nextras = numberofpointattribs;
+  m->readnodefile = 0;
+  if (m->invertices < 3) {
+    printf("Error:  Input must have at least three input vertices.\n");
+    triexit(1);
+  }
+  if (m->nextras == 0) {
+    b->weighted = 0;
+  }
+
+  initializevertexpool(m, b);
+
+  /* Read the vertices. */
+  coordindex = 0;
+  attribindex = 0;
+  for (i = 0; i < m->invertices; i++) {
+    vertexloop = (vertex) poolalloc(&m->vertices);
+    /* Read the vertex coordinates. */
+    x = vertexloop[0] = pointlist[coordindex++];
+    y = vertexloop[1] = pointlist[coordindex++];
+    /* Read the vertex attributes. */
+    for (j = 0; j < numberofpointattribs; j++) {
+      vertexloop[2 + j] = pointattriblist[attribindex++];
+    }
+    if (pointmarkerlist != (int *) NULL) {
+      /* Read a vertex marker. */
+      setvertexmark(vertexloop, pointmarkerlist[i]);
+    } else {
+      /* If no markers are specified, they default to zero. */
+      setvertexmark(vertexloop, 0);
+    }
+    setvertextype(vertexloop, INPUTVERTEX);
+    /* Determine the smallest and largest x and y coordinates. */
+    if (i == 0) {
+      m->xmin = m->xmax = x;
+      m->ymin = m->ymax = y;
+    } else {
+      m->xmin = (x < m->xmin) ? x : m->xmin;
+      m->xmax = (x > m->xmax) ? x : m->xmax;
+      m->ymin = (y < m->ymin) ? y : m->ymin;
+      m->ymax = (y > m->ymax) ? y : m->ymax;
+    }
+  }
+
+  /* Nonexistent x value used as a flag to mark circle events in sweepline */
+  /*   Delaunay algorithm.                                                 */
+  m->xminextreme = 10 * m->xmin - 9 * m->xmax;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writenodes()   Number the vertices and write them to a .node file.       */
+/*                                                                           */
+/*  To save memory, the vertex numbers are written over the boundary markers */
+/*  after the vertices are written to a file.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+void writenodes(struct mesh *m, struct behavior *b, float **pointlist,
+                float **pointattriblist, int **pointmarkerlist)
+{
+  float *plist;
+  float *palist;
+  int *pmlist;
+  int coordindex;
+  int attribindex;
+  vertex vertexloop;
+  long outvertices;
+  int vertexnumber;
+  int i;
+
+  if (b->jettison) {
+    outvertices = m->vertices.items - m->undeads;
+  } else {
+    outvertices = m->vertices.items;
+  }
+
+  if (!b->quiet) {
+    printf("Writing vertices.\n");
+  }
+  /* Allocate memory for output vertices if necessary. */
+  if (*pointlist == (float *) NULL) {
+    *pointlist = (float *) trimalloc((int) (outvertices * 2 * sizeof(float)));
+  }
+  /* Allocate memory for output vertex attributes if necessary. */
+  if ((m->nextras > 0) && (*pointattriblist == (float *) NULL)) {
+    *pointattriblist = (float *) trimalloc((int) (outvertices * m->nextras *
+                                                 sizeof(float)));
+  }
+  /* Allocate memory for output vertex markers if necessary. */
+  if (!b->nobound && (*pointmarkerlist == (int *) NULL)) {
+    *pointmarkerlist = (int *) trimalloc((int) (outvertices * sizeof(int)));
+  }
+  plist = *pointlist;
+  palist = *pointattriblist;
+  pmlist = *pointmarkerlist;
+  coordindex = 0;
+  attribindex = 0;
+  traversalinit(&m->vertices);
+  vertexnumber = b->firstnumber;
+  vertexloop = vertextraverse(m);
+  while (vertexloop != (vertex) NULL) {
+    if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
+      /* X and y coordinates. */
+      plist[coordindex++] = vertexloop[0];
+      plist[coordindex++] = vertexloop[1];
+      /* Vertex attributes. */
+      for (i = 0; i < m->nextras; i++) {
+        palist[attribindex++] = vertexloop[2 + i];
+      }
+      if (!b->nobound) {
+        /* Copy the boundary marker. */
+        pmlist[vertexnumber - b->firstnumber] = vertexmark(vertexloop);
+      }
+      setvertexmark(vertexloop, vertexnumber);
+      vertexnumber++;
+    }
+    vertexloop = vertextraverse(m);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  numbernodes()   Number the vertices.                                     */
+/*                                                                           */
+/*  Each vertex is assigned a marker equal to its number.                    */
+/*                                                                           */
+/*  Used when writenodes() is not called because no .node file is written.   */
+/*                                                                           */
+/*****************************************************************************/
+
+void numbernodes(struct mesh *m, struct behavior *b)
+{
+  vertex vertexloop;
+  int vertexnumber;
+
+  traversalinit(&m->vertices);
+  vertexnumber = b->firstnumber;
+  vertexloop = vertextraverse(m);
+  while (vertexloop != (vertex) NULL) {
+    setvertexmark(vertexloop, vertexnumber);
+    if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
+      vertexnumber++;
+    }
+    vertexloop = vertextraverse(m);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writeelements()   Write the triangles to an .ele file.                   */
+/*                                                                           */
+/*****************************************************************************/
+
+void writeelements(struct mesh *m, struct behavior *b,
+                   int **trianglelist, float **triangleattriblist)
+{
+  int *tlist;
+  float *talist;
+  int vertexindex;
+  int attribindex;
+  struct otri triangleloop;
+  vertex p1, p2, p3;
+  vertex mid1, mid2, mid3;
+  long elementnumber;
+  int i;
+
+  if (!b->quiet) {
+    printf("Writing triangles.\n");
+  }
+  /* Allocate memory for output triangles if necessary. */
+  if (*trianglelist == (int *) NULL) {
+    *trianglelist = (int *) trimalloc((int) (m->triangles.items *
+                                             ((b->order + 1) * (b->order + 2) /
+                                              2) * sizeof(int)));
+  }
+  /* Allocate memory for output triangle attributes if necessary. */
+  if ((m->eextras > 0) && (*triangleattriblist == (float *) NULL)) {
+    *triangleattriblist = (float *) trimalloc((int) (m->triangles.items *
+                                                    m->eextras *
+                                                    sizeof(float)));
+  }
+  tlist = *trianglelist;
+  talist = *triangleattriblist;
+  vertexindex = 0;
+  attribindex = 0;
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  triangleloop.orient = 0;
+  elementnumber = b->firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+    org(triangleloop, p1);
+    dest(triangleloop, p2);
+    apex(triangleloop, p3);
+    if (b->order == 1) {
+      tlist[vertexindex++] = vertexmark(p1);
+      tlist[vertexindex++] = vertexmark(p2);
+      tlist[vertexindex++] = vertexmark(p3);
+    } else {
+      mid1 = (vertex) triangleloop.tri[m->highorderindex + 1];
+      mid2 = (vertex) triangleloop.tri[m->highorderindex + 2];
+      mid3 = (vertex) triangleloop.tri[m->highorderindex];
+      tlist[vertexindex++] = vertexmark(p1);
+      tlist[vertexindex++] = vertexmark(p2);
+      tlist[vertexindex++] = vertexmark(p3);
+      tlist[vertexindex++] = vertexmark(mid1);
+      tlist[vertexindex++] = vertexmark(mid2);
+      tlist[vertexindex++] = vertexmark(mid3);
+    }
+
+    for (i = 0; i < m->eextras; i++) {
+      talist[attribindex++] = elemattribute(triangleloop, i);
+    }
+    triangleloop.tri = triangletraverse(m);
+    elementnumber++;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writepoly()   Write the segments and holes to a .poly file.              */
+/*                                                                           */
+/*****************************************************************************/
+
+void writepoly(struct mesh *m, struct behavior *b,
+               int **segmentlist, int **segmentmarkerlist)
+{
+  int *slist;
+  int *smlist;
+  int index;
+  struct osub subsegloop;
+  vertex endpoint1, endpoint2;
+  long subsegnumber;
+
+  if (!b->quiet) {
+    printf("Writing segments.\n");
+  }
+  /* Allocate memory for output segments if necessary. */
+  if (*segmentlist == (int *) NULL) {
+    *segmentlist = (int *) trimalloc((int) (m->subsegs.items * 2 *
+                                            sizeof(int)));
+  }
+  /* Allocate memory for output segment markers if necessary. */
+  if (!b->nobound && (*segmentmarkerlist == (int *) NULL)) {
+    *segmentmarkerlist = (int *) trimalloc((int) (m->subsegs.items *
+                                                  sizeof(int)));
+  }
+  slist = *segmentlist;
+  smlist = *segmentmarkerlist;
+  index = 0;
+  
+  traversalinit(&m->subsegs);
+  subsegloop.ss = subsegtraverse(m);
+  subsegloop.ssorient = 0;
+  subsegnumber = b->firstnumber;
+  while (subsegloop.ss != (subseg *) NULL) {
+    sorg(subsegloop, endpoint1);
+    sdest(subsegloop, endpoint2);
+    /* Copy indices of the segment's two endpoints. */
+    slist[index++] = vertexmark(endpoint1);
+    slist[index++] = vertexmark(endpoint2);
+    if (!b->nobound) {
+      /* Copy the boundary marker. */
+      smlist[subsegnumber - b->firstnumber] = mark(subsegloop);
+    }
+    subsegloop.ss = subsegtraverse(m);
+    subsegnumber++;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writeedges()   Write the edges to an .edge file.                         */
+/*                                                                           */
+/*****************************************************************************/
+
+void writeedges(struct mesh *m, struct behavior *b,
+                int **edgelist, int **edgemarkerlist)
+{
+  int *elist;
+  int *emlist;
+  int index;
+  struct otri triangleloop, trisym;
+  struct osub checkmark;
+  vertex p1, p2;
+  long edgenumber;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (!b->quiet) {
+    printf("Writing edges.\n");
+  }
+  /* Allocate memory for edges if necessary. */
+  if (*edgelist == (int *) NULL) {
+    *edgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
+  }
+  /* Allocate memory for edge markers if necessary. */
+  if (!b->nobound && (*edgemarkerlist == (int *) NULL)) {
+    *edgemarkerlist = (int *) trimalloc((int) (m->edges * sizeof(int)));
+  }
+  elist = *edgelist;
+  emlist = *edgemarkerlist;
+  index = 0;
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  edgenumber = b->firstnumber;
+  /* To loop over the set of edges, loop over all triangles, and look at   */
+  /*   the three edges of each triangle.  If there isn't another triangle  */
+  /*   adjacent to the edge, operate on the edge.  If there is another     */
+  /*   adjacent triangle, operate on the edge only if the current triangle */
+  /*   has a smaller pointer than its neighbor.  This way, each edge is    */
+  /*   considered only once.                                               */
+  while (triangleloop.tri != (triangle *) NULL) {
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      sym(triangleloop, trisym);
+      if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
+        org(triangleloop, p1);
+        dest(triangleloop, p2);
+        elist[index++] = vertexmark(p1);
+        elist[index++] = vertexmark(p2);
+        if (b->nobound) {
+        } else {
+          /* Edge number, indices of two endpoints, and a boundary marker. */
+          /*   If there's no subsegment, the boundary marker is zero.      */
+          if (b->usesegments) {
+            tspivot(triangleloop, checkmark);
+            if (checkmark.ss == m->dummysub) {
+              emlist[edgenumber - b->firstnumber] = 0;
+            } else {
+              emlist[edgenumber - b->firstnumber] = mark(checkmark);
+            }
+          } else {
+            emlist[edgenumber - b->firstnumber] = trisym.tri == m->dummytri;
+          }
+        }
+        edgenumber++;
+      }
+    }
+    triangleloop.tri = triangletraverse(m);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writevoronoi()   Write the Voronoi diagram to a .v.node and .v.edge      */
+/*                   file.                                                   */
+/*                                                                           */
+/*  The Voronoi diagram is the geometric dual of the Delaunay triangulation. */
+/*  Hence, the Voronoi vertices are listed by traversing the Delaunay        */
+/*  triangles, and the Voronoi edges are listed by traversing the Delaunay   */
+/*  edges.                                                                   */
+/*                                                                           */
+/*  WARNING:  In order to assign numbers to the Voronoi vertices, this       */
+/*  procedure messes up the subsegments or the extra nodes of every          */
+/*  element.  Hence, you should call this procedure last.                    */
+/*                                                                           */
+/*****************************************************************************/
+
+void writevoronoi(struct mesh *m, struct behavior *b, float **vpointlist,
+                  float **vpointattriblist, int **vpointmarkerlist,
+                  int **vedgelist, int **vedgemarkerlist, float **vnormlist)
+{
+  float *plist;
+  float *palist;
+  int *elist;
+  float *normlist;
+  int coordindex;
+  int attribindex;
+  struct otri triangleloop, trisym;
+  vertex torg, tdest, tapex;
+  float circumcenter[2];
+  float xi, eta;
+  long vnodenumber, vedgenumber;
+  int p1, p2;
+  int i;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (!b->quiet) {
+    printf("Writing Voronoi vertices.\n");
+  }
+  /* Allocate memory for Voronoi vertices if necessary. */
+  if (*vpointlist == (float *) NULL) {
+    *vpointlist = (float *) trimalloc((int) (m->triangles.items * 2 *
+                                            sizeof(float)));
+  }
+  /* Allocate memory for Voronoi vertex attributes if necessary. */
+  if (*vpointattriblist == (float *) NULL) {
+    *vpointattriblist = (float *) trimalloc((int) (m->triangles.items *
+                                                  m->nextras * sizeof(float)));
+  }
+  *vpointmarkerlist = (int *) NULL;
+  plist = *vpointlist;
+  palist = *vpointattriblist;
+  coordindex = 0;
+  attribindex = 0;
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  triangleloop.orient = 0;
+  vnodenumber = b->firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+    org(triangleloop, torg);
+    dest(triangleloop, tdest);
+    apex(triangleloop, tapex);
+    findcircumcenter(m, b, torg, tdest, tapex, circumcenter, &xi, &eta, 0);
+
+    /* X and y coordinates. */
+    plist[coordindex++] = circumcenter[0];
+    plist[coordindex++] = circumcenter[1];
+    for (i = 2; i < 2 + m->nextras; i++) {
+      /* Interpolate the vertex attributes at the circumcenter. */
+      palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i])
+                                     + eta * (tapex[i] - torg[i]);
+    }
+
+    * (int *) (triangleloop.tri + 6) = (int) vnodenumber;
+    triangleloop.tri = triangletraverse(m);
+    vnodenumber++;
+  }
+
+  if (!b->quiet) {
+    printf("Writing Voronoi edges.\n");
+  }
+  /* Allocate memory for output Voronoi edges if necessary. */
+  if (*vedgelist == (int *) NULL) {
+    *vedgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
+  }
+  *vedgemarkerlist = (int *) NULL;
+  /* Allocate memory for output Voronoi norms if necessary. */
+  if (*vnormlist == (float *) NULL) {
+    *vnormlist = (float *) trimalloc((int) (m->edges * 2 * sizeof(float)));
+  }
+  elist = *vedgelist;
+  normlist = *vnormlist;
+  coordindex = 0;
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  vedgenumber = b->firstnumber;
+  /* To loop over the set of edges, loop over all triangles, and look at   */
+  /*   the three edges of each triangle.  If there isn't another triangle  */
+  /*   adjacent to the edge, operate on the edge.  If there is another     */
+  /*   adjacent triangle, operate on the edge only if the current triangle */
+  /*   has a smaller pointer than its neighbor.  This way, each edge is    */
+  /*   considered only once.                                               */
+  while (triangleloop.tri != (triangle *) NULL) {
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      sym(triangleloop, trisym);
+      if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
+        /* Find the number of this triangle (and Voronoi vertex). */
+        p1 = * (int *) (triangleloop.tri + 6);
+        if (trisym.tri == m->dummytri) {
+          org(triangleloop, torg);
+          dest(triangleloop, tdest);
+          /* Copy an infinite ray.  Index of one endpoint, and -1. */
+          elist[coordindex] = p1;
+          normlist[coordindex++] = tdest[1] - torg[1];
+          elist[coordindex] = -1;
+          normlist[coordindex++] = torg[0] - tdest[0];
+        } else {
+          /* Find the number of the adjacent triangle (and Voronoi vertex). */
+          p2 = * (int *) (trisym.tri + 6);
+          /* Finite edge.  Write indices of two endpoints. */
+          elist[coordindex] = p1;
+          normlist[coordindex++] = 0.0;
+          elist[coordindex] = p2;
+          normlist[coordindex++] = 0.0;
+        }
+        vedgenumber++;
+      }
+    }
+    triangleloop.tri = triangletraverse(m);
+  }
+}
+
+
+void writeneighbors(struct mesh *m, struct behavior *b, int **neighborlist)
+{
+  int *nlist;
+  int index;
+  struct otri triangleloop, trisym;
+  long elementnumber;
+  int neighbor1, neighbor2, neighbor3;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (!b->quiet) {
+    printf("Writing neighbors.\n");
+  }
+  /* Allocate memory for neighbors if necessary. */
+  if (*neighborlist == (int *) NULL) {
+    *neighborlist = (int *) trimalloc((int) (m->triangles.items * 3 *
+                                             sizeof(int)));
+  }
+  nlist = *neighborlist;
+  index = 0;
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  triangleloop.orient = 0;
+  elementnumber = b->firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+    * (int *) (triangleloop.tri + 6) = (int) elementnumber;
+    triangleloop.tri = triangletraverse(m);
+    elementnumber++;
+  }
+  * (int *) (m->dummytri + 6) = -1;
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  elementnumber = b->firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+    triangleloop.orient = 1;
+    sym(triangleloop, trisym);
+    neighbor1 = * (int *) (trisym.tri + 6);
+    triangleloop.orient = 2;
+    sym(triangleloop, trisym);
+    neighbor2 = * (int *) (trisym.tri + 6);
+    triangleloop.orient = 0;
+    sym(triangleloop, trisym);
+    neighbor3 = * (int *) (trisym.tri + 6);
+    nlist[index++] = neighbor1;
+    nlist[index++] = neighbor2;
+    nlist[index++] = neighbor3;
+
+    triangleloop.tri = triangletraverse(m);
+    elementnumber++;
+  }
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* File I/O routines end here                                *********/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  quality_statistics()   Print statistics about the quality of the mesh.   */
+/*                                                                           */
+/*****************************************************************************/
+
+void quality_statistics(struct mesh *m, struct behavior *b)
+{
+  struct otri triangleloop;
+  vertex p[3];
+  float cossquaretable[8];
+  float ratiotable[16];
+  float dx[3], dy[3];
+  float edgelength[3];
+  float dotproduct;
+  float cossquare;
+  float triarea;
+  float shortest, longest;
+  float trilongest2;
+  float smallestarea, biggestarea;
+  float triminaltitude2;
+  float minaltitude;
+  float triaspect2;
+  float worstaspect;
+  float smallestangle, biggestangle;
+  float radconst, degconst;
+  int angletable[18];
+  int aspecttable[16];
+  int aspectindex;
+  int tendegree;
+  int acutebiggest;
+  int i, ii, j, k;
+
+  printf("Mesh quality statistics:\n\n");
+  radconst = PI / 18.0;
+  degconst = 180.0 / PI;
+  for (i = 0; i < 8; i++) {
+    cossquaretable[i] = cos(radconst * (float) (i + 1));
+    cossquaretable[i] = cossquaretable[i] * cossquaretable[i];
+  }
+  for (i = 0; i < 18; i++) {
+    angletable[i] = 0;
+  }
+
+  ratiotable[0]  =      1.5;      ratiotable[1]  =     2.0;
+  ratiotable[2]  =      2.5;      ratiotable[3]  =     3.0;
+  ratiotable[4]  =      4.0;      ratiotable[5]  =     6.0;
+  ratiotable[6]  =     10.0;      ratiotable[7]  =    15.0;
+  ratiotable[8]  =     25.0;      ratiotable[9]  =    50.0;
+  ratiotable[10] =    100.0;      ratiotable[11] =   300.0;
+  ratiotable[12] =   1000.0;      ratiotable[13] = 10000.0;
+  ratiotable[14] = 100000.0;      ratiotable[15] =     0.0;
+  for (i = 0; i < 16; i++) {
+    aspecttable[i] = 0;
+  }
+
+  worstaspect = 0.0;
+  minaltitude = m->xmax - m->xmin + m->ymax - m->ymin;
+  minaltitude = minaltitude * minaltitude;
+  shortest = minaltitude;
+  longest = 0.0;
+  smallestarea = minaltitude;
+  biggestarea = 0.0;
+  worstaspect = 0.0;
+  smallestangle = 0.0;
+  biggestangle = 2.0;
+  acutebiggest = 1;
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  triangleloop.orient = 0;
+  while (triangleloop.tri != (triangle *) NULL) {
+    org(triangleloop, p[0]);
+    dest(triangleloop, p[1]);
+    apex(triangleloop, p[2]);
+    trilongest2 = 0.0;
+
+    for (i = 0; i < 3; i++) {
+      j = plus1mod3[i];
+      k = minus1mod3[i];
+      dx[i] = p[j][0] - p[k][0];
+      dy[i] = p[j][1] - p[k][1];
+      edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i];
+      if (edgelength[i] > trilongest2) {
+        trilongest2 = edgelength[i];
+      }
+      if (edgelength[i] > longest) {
+        longest = edgelength[i];
+      }
+      if (edgelength[i] < shortest) {
+        shortest = edgelength[i];
+      }
+    }
+
+    triarea = counterclockwise(m, b, p[0], p[1], p[2]);
+    if (triarea < smallestarea) {
+      smallestarea = triarea;
+    }
+    if (triarea > biggestarea) {
+      biggestarea = triarea;
+    }
+    triminaltitude2 = triarea * triarea / trilongest2;
+    if (triminaltitude2 < minaltitude) {
+      minaltitude = triminaltitude2;
+    }
+    triaspect2 = trilongest2 / triminaltitude2;
+    if (triaspect2 > worstaspect) {
+      worstaspect = triaspect2;
+    }
+    aspectindex = 0;
+    while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex])
+           && (aspectindex < 15)) {
+      aspectindex++;
+    }
+    aspecttable[aspectindex]++;
+
+    for (i = 0; i < 3; i++) {
+      j = plus1mod3[i];
+      k = minus1mod3[i];
+      dotproduct = dx[j] * dx[k] + dy[j] * dy[k];
+      cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]);
+      tendegree = 8;
+      for (ii = 7; ii >= 0; ii--) {
+        if (cossquare > cossquaretable[ii]) {
+          tendegree = ii;
+        }
+      }
+      if (dotproduct <= 0.0) {
+        angletable[tendegree]++;
+        if (cossquare > smallestangle) {
+          smallestangle = cossquare;
+        }
+        if (acutebiggest && (cossquare < biggestangle)) {
+          biggestangle = cossquare;
+        }
+      } else {
+        angletable[17 - tendegree]++;
+        if (acutebiggest || (cossquare > biggestangle)) {
+          biggestangle = cossquare;
+          acutebiggest = 0;
+        }
+      }
+    }
+    triangleloop.tri = triangletraverse(m);
+  }
+
+  shortest = sqrt(shortest);
+  longest = sqrt(longest);
+  minaltitude = sqrt(minaltitude);
+  worstaspect = sqrt(worstaspect);
+  smallestarea *= 0.5;
+  biggestarea *= 0.5;
+  if (smallestangle >= 1.0) {
+    smallestangle = 0.0;
+  } else {
+    smallestangle = degconst * acos(sqrt(smallestangle));
+  }
+  if (biggestangle >= 1.0) {
+    biggestangle = 180.0;
+  } else {
+    if (acutebiggest) {
+      biggestangle = degconst * acos(sqrt(biggestangle));
+    } else {
+      biggestangle = 180.0 - degconst * acos(sqrt(biggestangle));
+    }
+  }
+
+  printf("  Smallest area: %16.5g   |  Largest area: %16.5g\n",
+         smallestarea, biggestarea);
+  printf("  Shortest edge: %16.5g   |  Longest edge: %16.5g\n",
+         shortest, longest);
+  printf("  Shortest altitude: %12.5g   |  Largest aspect ratio: %8.5g\n\n",
+         minaltitude, worstaspect);
+
+  printf("  Triangle aspect ratio histogram:\n");
+  printf("  1.1547 - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
+         ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8],
+         aspecttable[8]);
+  for (i = 1; i < 7; i++) {
+    printf("  %6.6g - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
+           ratiotable[i - 1], ratiotable[i], aspecttable[i],
+           ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]);
+  }
+  printf("  %6.6g - %-6.6g    :  %8d    | %6.6g -            :  %8d\n",
+         ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14],
+         aspecttable[15]);
+  printf("  (Aspect ratio is longest edge divided by shortest altitude)\n\n");
+
+  printf("  Smallest angle: %15.5g   |  Largest angle: %15.5g\n\n",
+         smallestangle, biggestangle);
+
+  printf("  Angle histogram:\n");
+  for (i = 0; i < 9; i++) {
+    printf("    %3d - %3d degrees:  %8d    |    %3d - %3d degrees:  %8d\n",
+           i * 10, i * 10 + 10, angletable[i],
+           i * 10 + 90, i * 10 + 100, angletable[i + 9]);
+  }
+  printf("\n");
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  statistics()   Print all sorts of cool facts.                            */
+/*                                                                           */
+/*****************************************************************************/
+
+void statistics(struct mesh *m, struct behavior *b)
+{
+  printf("\nStatistics:\n\n");
+  printf("  Input vertices: %d\n", m->invertices);
+  if (b->refine) {
+    printf("  Input triangles: %d\n", m->inelements);
+  }
+  if (b->poly) {
+    printf("  Input segments: %d\n", m->insegments);
+    if (!b->refine) {
+      printf("  Input holes: %d\n", m->holes);
+    }
+  }
+
+  printf("\n  Mesh vertices: %ld\n", m->vertices.items - m->undeads);
+  printf("  Mesh triangles: %ld\n", m->triangles.items);
+  printf("  Mesh edges: %ld\n", m->edges);
+  printf("  Mesh exterior boundary edges: %ld\n", m->hullsize);
+  if (b->poly || b->refine) {
+    printf("  Mesh interior boundary edges: %ld\n",
+           m->subsegs.items - m->hullsize);
+    printf("  Mesh subsegments (constrained edges): %ld\n",
+           m->subsegs.items);
+  }
+  printf("\n");
+
+  if (b->verbose) {
+    quality_statistics(m, b);
+    printf("Memory allocation statistics:\n\n");
+    printf("  Maximum number of vertices: %ld\n", m->vertices.maxitems);
+    printf("  Maximum number of triangles: %ld\n", m->triangles.maxitems);
+    if (m->subsegs.maxitems > 0) {
+      printf("  Maximum number of subsegments: %ld\n", m->subsegs.maxitems);
+    }
+    if (m->viri.maxitems > 0) {
+      printf("  Maximum number of viri: %ld\n", m->viri.maxitems);
+    }
+    if (m->badsubsegs.maxitems > 0) {
+      printf("  Maximum number of encroached subsegments: %ld\n",
+             m->badsubsegs.maxitems);
+    }
+    if (m->badtriangles.maxitems > 0) {
+      printf("  Maximum number of bad triangles: %ld\n",
+             m->badtriangles.maxitems);
+    }
+    if (m->flipstackers.maxitems > 0) {
+      printf("  Maximum number of stacked triangle flips: %ld\n",
+             m->flipstackers.maxitems);
+    }
+    if (m->splaynodes.maxitems > 0) {
+      printf("  Maximum number of splay tree nodes: %ld\n",
+             m->splaynodes.maxitems);
+    }
+    printf("  Approximate heap memory use (bytes): %ld\n\n",
+           m->vertices.maxitems * m->vertices.itembytes +
+           m->triangles.maxitems * m->triangles.itembytes +
+           m->subsegs.maxitems * m->subsegs.itembytes +
+           m->viri.maxitems * m->viri.itembytes +
+           m->badsubsegs.maxitems * m->badsubsegs.itembytes +
+           m->badtriangles.maxitems * m->badtriangles.itembytes +
+           m->flipstackers.maxitems * m->flipstackers.itembytes +
+           m->splaynodes.maxitems * m->splaynodes.itembytes);
+
+    printf("Algorithmic statistics:\n\n");
+    if (!b->weighted) {
+      printf("  Number of incircle tests: %ld\n", m->incirclecount);
+    } else {
+      printf("  Number of 3D orientation tests: %ld\n", m->orient3dcount);
+    }
+    printf("  Number of 2D orientation tests: %ld\n", m->counterclockcount);
+    if (m->hyperbolacount > 0) {
+      printf("  Number of right-of-hyperbola tests: %ld\n",
+             m->hyperbolacount);
+    }
+    if (m->circletopcount > 0) {
+      printf("  Number of circle top computations: %ld\n",
+             m->circletopcount);
+    }
+    if (m->circumcentercount > 0) {
+      printf("  Number of triangle circumcenter computations: %ld\n",
+             m->circumcentercount);
+    }
+    printf("\n");
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  main() or triangulate()   Gosh, do everything.                           */
+/*                                                                           */
+/*  The sequence is roughly as follows.  Many of these steps can be skipped, */
+/*  depending on the command line switches.                                  */
+/*                                                                           */
+/*  - Initialize constants and parse the command line.                       */
+/*  - Read the vertices from a file and either                               */
+/*    - triangulate them (no -r), or                                         */
+/*    - read an old mesh from files and reconstruct it (-r).                 */
+/*  - Insert the PSLG segments (-p), and possibly segments on the convex     */
+/*      hull (-c).                                                           */
+/*  - Read the holes (-p), regional attributes (-pA), and regional area      */
+/*      constraints (-pa).  Carve the holes and concavities, and spread the  */
+/*      regional attributes and area constraints.                            */
+/*  - Enforce the constraints on minimum angle (-q) and maximum area (-a).   */
+/*      Also enforce the conforming Delaunay property (-q and -a).           */
+/*  - Compute the number of edges in the resulting mesh.                     */
+/*  - Promote the mesh's linear triangles to higher order elements (-o).     */
+/*  - Write the output files and print the statistics.                       */
+/*  - Check the consistency and Delaunay property of the mesh (-C).          */
+/*                                                                           */
+/*****************************************************************************/
+
+void triangulate(char *triswitches, struct triangulateio *in,
+                 struct triangulateio *out, struct triangulateio *vorout)
+{
+  struct mesh m;
+  struct behavior b;
+  float *holearray;                                        /* Array of holes. */
+  float *regionarray;   /* Array of regional attributes and area constraints. */
+  
+  triangleinit(&m);
+  parsecommandline(1, &triswitches, &b);
+  m.steinerleft = b.steiner;
+
+  transfernodes(&m, &b, in->pointlist, in->pointattributelist,
+                in->pointmarkerlist, in->numberofpoints,
+                in->numberofpointattributes);
+
+  m.hullsize = delaunay(&m, &b);                /* Triangulate the vertices. */
+  /* Ensure that no vertex can be mistaken for a triangular bounding */
+  /*   box vertex in insertvertex().                                 */
+  m.infvertex1 = (vertex) NULL;
+  m.infvertex2 = (vertex) NULL;
+  m.infvertex3 = (vertex) NULL;
+
+  if (b.usesegments) {
+    m.checksegments = 1;                /* Segments will be introduced next. */
+    if (!b.refine) {
+      /* Insert PSLG segments and/or convex hull segments. */
+      formskeleton(&m, &b, in->segmentlist,
+                   in->segmentmarkerlist, in->numberofsegments);
+    }
+  }
+
+  if (b.poly && (m.triangles.items > 0)) {
+    holearray = in->holelist;
+    m.holes = in->numberofholes;
+    regionarray = in->regionlist;
+    m.regions = in->numberofregions;
+    if (!b.refine) {
+      /* Carve out holes and concavities. */
+      carveholes(&m, &b, holearray, m.holes, regionarray, m.regions);
+    }
+  } else {
+    /* Without a PSLG, there can be no holes or regional attributes   */
+    /*   or area constraints.  The following are set to zero to avoid */
+    /*   an accidental free() later.                                  */
+    m.holes = 0;
+    m.regions = 0;
+  }
+
+  /* Calculate the number of edges. */
+  m.edges = (3l * m.triangles.items + m.hullsize) / 2l;
+
+  if (b.order > 1) {
+    highorder(&m, &b);       /* Promote elements to higher polynomial order. */
+  }
+  if (!b.quiet) {
+    printf("\n");
+  }
+
+  if (b.jettison) {
+    out->numberofpoints = m.vertices.items - m.undeads;
+  } else {
+    out->numberofpoints = m.vertices.items;
+  }
+  out->numberofpointattributes = m.nextras;
+  out->numberoftriangles = m.triangles.items;
+  out->numberofcorners = (b.order + 1) * (b.order + 2) / 2;
+  out->numberoftriangleattributes = m.eextras;
+  out->numberofedges = m.edges;
+  if (b.usesegments) {
+    out->numberofsegments = m.subsegs.items;
+  } else {
+    out->numberofsegments = m.hullsize;
+  }
+  if (vorout != (struct triangulateio *) NULL) {
+    vorout->numberofpoints = m.triangles.items;
+    vorout->numberofpointattributes = m.nextras;
+    vorout->numberofedges = m.edges;
+  }
+  /* If not using iteration numbers, don't write a .node file if one was */
+  /*   read, because the original one would be overwritten!              */
+  if (b.nonodewritten || (b.noiterationnum && m.readnodefile)) {
+    if (!b.quiet) {
+      printf("NOT writing vertices.\n");
+    }
+    numbernodes(&m, &b);         /* We must remember to number the vertices. */
+  } else {
+    /* writenodes() numbers the vertices too. */
+    writenodes(&m, &b, &out->pointlist, &out->pointattributelist,
+               &out->pointmarkerlist);
+  }
+  if (b.noelewritten) {
+    if (!b.quiet) {
+      printf("NOT writing triangles.\n");
+    }
+  } else {
+    writeelements(&m, &b, &out->trianglelist, &out->triangleattributelist);
+  }
+  /* The -c switch (convex switch) causes a PSLG to be written */
+  /*   even if none was read.                                  */
+  if (b.poly || b.convex) {
+    /* If not using iteration numbers, don't overwrite the .poly file. */
+    if (b.nopolywritten || b.noiterationnum) {
+      if (!b.quiet) {
+        printf("NOT writing segments.\n");
+      }
+    } else {
+      writepoly(&m, &b, &out->segmentlist, &out->segmentmarkerlist);
+      out->numberofholes = m.holes;
+      out->numberofregions = m.regions;
+      if (b.poly) {
+        out->holelist = in->holelist;
+        out->regionlist = in->regionlist;
+      } else {
+        out->holelist = (float *) NULL;
+        out->regionlist = (float *) NULL;
+      }
+    }
+  }
+  if (b.edgesout) {
+    writeedges(&m, &b, &out->edgelist, &out->edgemarkerlist);
+  }
+  if (b.voronoi) {
+    writevoronoi(&m, &b, &vorout->pointlist, &vorout->pointattributelist,
+                 &vorout->pointmarkerlist, &vorout->edgelist,
+                 &vorout->edgemarkerlist, &vorout->normlist);
+  }
+  if (b.neighbors) {
+    writeneighbors(&m, &b, &out->neighborlist);
+  }
+
+  if (!b.quiet) {
+    statistics(&m, &b);
+  }
+
+  triangledeinit(&m, &b);
+}
diff --git a/cv-node/lib/elas/triangle.h b/cv-node/lib/elas/triangle.h
new file mode 100644
index 0000000000000000000000000000000000000000..654dd5c5ff289299b1cf644ea71689470b319449
--- /dev/null
+++ b/cv-node/lib/elas/triangle.h
@@ -0,0 +1,285 @@
+/*****************************************************************************/
+/*                                                                           */
+/*  (triangle.h)                                                             */
+/*                                                                           */
+/*  Include file for programs that call Triangle.                            */
+/*                                                                           */
+/*  Accompanies Triangle Version 1.6                                         */
+/*  July 28, 2005                                                            */
+/*                                                                           */
+/*  Copyright 1996, 2005                                                     */
+/*  Jonathan Richard Shewchuk                                                */
+/*  2360 Woolsey #H                                                          */
+/*  Berkeley, California  94705-1927                                         */
+/*  jrs@cs.berkeley.edu                                                      */
+/*                                                                           */
+/*  Modified by Andreas Geiger, 2011                                         */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  How to call Triangle from another program                                */
+/*                                                                           */
+/*                                                                           */
+/*  If you haven't read Triangle's instructions (run "triangle -h" to read   */
+/*  them), you won't understand what follows.                                */
+/*                                                                           */
+/*  Triangle must be compiled into an object file (triangle.o) with the      */
+/*  TRILIBRARY symbol defined (generally by using the -DTRILIBRARY compiler  */
+/*  switch).  The makefile included with Triangle will do this for you if    */
+/*  you run "make trilibrary".  The resulting object file can be called via  */
+/*  the procedure triangulate().                                             */
+/*                                                                           */
+/*  If the size of the object file is important to you, you may wish to      */
+/*  generate a reduced version of triangle.o.  The REDUCED symbol gets rid   */
+/*  of all features that are primarily of research interest.  Specifically,  */
+/*  the -DREDUCED switch eliminates Triangle's -i, -F, -s, and -C switches.  */
+/*  The CDT_ONLY symbol gets rid of all meshing algorithms above and beyond  */
+/*  constrained Delaunay triangulation.  Specifically, the -DCDT_ONLY switch */
+/*  eliminates Triangle's -r, -q, -a, -u, -D, -Y, -S, and -s switches.       */
+/*                                                                           */
+/*  IMPORTANT:  These definitions (TRILIBRARY, REDUCED, CDT_ONLY) must be    */
+/*  made in the makefile or in triangle.c itself.  Putting these definitions */
+/*  in this file (triangle.h) will not create the desired effect.            */
+/*                                                                           */
+/*                                                                           */
+/*  The calling convention for triangulate() follows.                        */
+/*                                                                           */
+/*      void triangulate(triswitches, in, out, vorout)                       */
+/*      char *triswitches;                                                   */
+/*      struct triangulateio *in;                                            */
+/*      struct triangulateio *out;                                           */
+/*      struct triangulateio *vorout;                                        */
+/*                                                                           */
+/*  `triswitches' is a string containing the command line switches you wish  */
+/*  to invoke.  No initial dash is required.  Some suggestions:              */
+/*                                                                           */
+/*  - You'll probably find it convenient to use the `z' switch so that       */
+/*    points (and other items) are numbered from zero.  This simplifies      */
+/*    indexing, because the first item of any type always starts at index    */
+/*    [0] of the corresponding array, whether that item's number is zero or  */
+/*    one.                                                                   */
+/*  - You'll probably want to use the `Q' (quiet) switch in your final code, */
+/*    but you can take advantage of Triangle's printed output (including the */
+/*    `V' switch) while debugging.                                           */
+/*  - If you are not using the `q', `a', `u', `D', `j', or `s' switches,     */
+/*    then the output points will be identical to the input points, except   */
+/*    possibly for the boundary markers.  If you don't need the boundary     */
+/*    markers, you should use the `N' (no nodes output) switch to save       */
+/*    memory.  (If you do need boundary markers, but need to save memory, a  */
+/*    good nasty trick is to set out->pointlist equal to in->pointlist       */
+/*    before calling triangulate(), so that Triangle overwrites the input    */
+/*    points with identical copies.)                                         */
+/*  - The `I' (no iteration numbers) and `g' (.off file output) switches     */
+/*    have no effect when Triangle is compiled with TRILIBRARY defined.      */
+/*                                                                           */
+/*  `in', `out', and `vorout' are descriptions of the input, the output,     */
+/*  and the Voronoi output.  If the `v' (Voronoi output) switch is not used, */
+/*  `vorout' may be NULL.  `in' and `out' may never be NULL.                 */
+/*                                                                           */
+/*  Certain fields of the input and output structures must be initialized,   */
+/*  as described below.                                                      */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  The `triangulateio' structure.                                           */
+/*                                                                           */
+/*  Used to pass data into and out of the triangulate() procedure.           */
+/*                                                                           */
+/*                                                                           */
+/*  Arrays are used to store points, triangles, markers, and so forth.  In   */
+/*  all cases, the first item in any array is stored starting at index [0].  */
+/*  However, that item is item number `1' unless the `z' switch is used, in  */
+/*  which case it is item number `0'.  Hence, you may find it easier to      */
+/*  index points (and triangles in the neighbor list) if you use the `z'     */
+/*  switch.  Unless, of course, you're calling Triangle from a Fortran       */
+/*  program.                                                                 */
+/*                                                                           */
+/*  Description of fields (except the `numberof' fields, which are obvious): */
+/*                                                                           */
+/*  `pointlist':  An array of point coordinates.  The first point's x        */
+/*    coordinate is at index [0] and its y coordinate at index [1], followed */
+/*    by the coordinates of the remaining points.  Each point occupies two   */
+/*    REALs.                                                                 */
+/*  `pointattributelist':  An array of point attributes.  Each point's       */
+/*    attributes occupy `numberofpointattributes' REALs.                     */
+/*  `pointmarkerlist':  An array of point markers; one int per point.        */
+/*                                                                           */
+/*  `trianglelist':  An array of triangle corners.  The first triangle's     */
+/*    first corner is at index [0], followed by its other two corners in     */
+/*    counterclockwise order, followed by any other nodes if the triangle    */
+/*    represents a nonlinear element.  Each triangle occupies                */
+/*    `numberofcorners' ints.                                                */
+/*  `triangleattributelist':  An array of triangle attributes.  Each         */
+/*    triangle's attributes occupy `numberoftriangleattributes' REALs.       */
+/*  `trianglearealist':  An array of triangle area constraints; one REAL per */
+/*    triangle.  Input only.                                                 */
+/*  `neighborlist':  An array of triangle neighbors; three ints per          */
+/*    triangle.  Output only.                                                */
+/*                                                                           */
+/*  `segmentlist':  An array of segment endpoints.  The first segment's      */
+/*    endpoints are at indices [0] and [1], followed by the remaining        */
+/*    segments.  Two ints per segment.                                       */
+/*  `segmentmarkerlist':  An array of segment markers; one int per segment.  */
+/*                                                                           */
+/*  `holelist':  An array of holes.  The first hole's x and y coordinates    */
+/*    are at indices [0] and [1], followed by the remaining holes.  Two      */
+/*    REALs per hole.  Input only, although the pointer is copied to the     */
+/*    output structure for your convenience.                                 */
+/*                                                                           */
+/*  `regionlist':  An array of regional attributes and area constraints.     */
+/*    The first constraint's x and y coordinates are at indices [0] and [1], */
+/*    followed by the regional attribute at index [2], followed by the       */
+/*    maximum area at index [3], followed by the remaining area constraints. */
+/*    Four REALs per area constraint.  Note that each regional attribute is  */
+/*    used only if you select the `A' switch, and each area constraint is    */
+/*    used only if you select the `a' switch (with no number following), but */
+/*    omitting one of these switches does not change the memory layout.      */
+/*    Input only, although the pointer is copied to the output structure for */
+/*    your convenience.                                                      */
+/*                                                                           */
+/*  `edgelist':  An array of edge endpoints.  The first edge's endpoints are */
+/*    at indices [0] and [1], followed by the remaining edges.  Two ints per */
+/*    edge.  Output only.                                                    */
+/*  `edgemarkerlist':  An array of edge markers; one int per edge.  Output   */
+/*    only.                                                                  */
+/*  `normlist':  An array of normal vectors, used for infinite rays in       */
+/*    Voronoi diagrams.  The first normal vector's x and y magnitudes are    */
+/*    at indices [0] and [1], followed by the remaining vectors.  For each   */
+/*    finite edge in a Voronoi diagram, the normal vector written is the     */
+/*    zero vector.  Two REALs per edge.  Output only.                        */
+/*                                                                           */
+/*                                                                           */
+/*  Any input fields that Triangle will examine must be initialized.         */
+/*  Furthermore, for each output array that Triangle will write to, you      */
+/*  must either provide space by setting the appropriate pointer to point    */
+/*  to the space you want the data written to, or you must initialize the    */
+/*  pointer to NULL, which tells Triangle to allocate space for the results. */
+/*  The latter option is preferable, because Triangle always knows exactly   */
+/*  how much space to allocate.  The former option is provided mainly for    */
+/*  people who need to call Triangle from Fortran code, though it also makes */
+/*  possible some nasty space-saving tricks, like writing the output to the  */
+/*  same arrays as the input.                                                */
+/*                                                                           */
+/*  Triangle will not free() any input or output arrays, including those it  */
+/*  allocates itself; that's up to you.  You should free arrays allocated by */
+/*  Triangle by calling the trifree() procedure defined below.  (By default, */
+/*  trifree() just calls the standard free() library procedure, but          */
+/*  applications that call triangulate() may replace trimalloc() and         */
+/*  trifree() in triangle.c to use specialized memory allocators.)           */
+/*                                                                           */
+/*  Here's a guide to help you decide which fields you must initialize       */
+/*  before you call triangulate().                                           */
+/*                                                                           */
+/*  `in':                                                                    */
+/*                                                                           */
+/*    - `pointlist' must always point to a list of points; `numberofpoints'  */
+/*      and `numberofpointattributes' must be properly set.                  */
+/*      `pointmarkerlist' must either be set to NULL (in which case all      */
+/*      markers default to zero), or must point to a list of markers.  If    */
+/*      `numberofpointattributes' is not zero, `pointattributelist' must     */
+/*      point to a list of point attributes.                                 */
+/*    - If the `r' switch is used, `trianglelist' must point to a list of    */
+/*      triangles, and `numberoftriangles', `numberofcorners', and           */
+/*      `numberoftriangleattributes' must be properly set.  If               */
+/*      `numberoftriangleattributes' is not zero, `triangleattributelist'    */
+/*      must point to a list of triangle attributes.  If the `a' switch is   */
+/*      used (with no number following), `trianglearealist' must point to a  */
+/*      list of triangle area constraints.  `neighborlist' may be ignored.   */
+/*    - If the `p' switch is used, `segmentlist' must point to a list of     */
+/*      segments, `numberofsegments' must be properly set, and               */
+/*      `segmentmarkerlist' must either be set to NULL (in which case all    */
+/*      markers default to zero), or must point to a list of markers.        */
+/*    - If the `p' switch is used without the `r' switch, then               */
+/*      `numberofholes' and `numberofregions' must be properly set.  If      */
+/*      `numberofholes' is not zero, `holelist' must point to a list of      */
+/*      holes.  If `numberofregions' is not zero, `regionlist' must point to */
+/*      a list of region constraints.                                        */
+/*    - If the `p' switch is used, `holelist', `numberofholes',              */
+/*      `regionlist', and `numberofregions' is copied to `out'.  (You can    */
+/*      nonetheless get away with not initializing them if the `r' switch is */
+/*      used.)                                                               */
+/*    - `edgelist', `edgemarkerlist', `normlist', and `numberofedges' may be */
+/*      ignored.                                                             */
+/*                                                                           */
+/*  `out':                                                                   */
+/*                                                                           */
+/*    - `pointlist' must be initialized (NULL or pointing to memory) unless  */
+/*      the `N' switch is used.  `pointmarkerlist' must be initialized       */
+/*      unless the `N' or `B' switch is used.  If `N' is not used and        */
+/*      `in->numberofpointattributes' is not zero, `pointattributelist' must */
+/*      be initialized.                                                      */
+/*    - `trianglelist' must be initialized unless the `E' switch is used.    */
+/*      `neighborlist' must be initialized if the `n' switch is used.  If    */
+/*      the `E' switch is not used and (`in->numberofelementattributes' is   */
+/*      not zero or the `A' switch is used), `elementattributelist' must be  */
+/*      initialized.  `trianglearealist' may be ignored.                     */
+/*    - `segmentlist' must be initialized if the `p' or `c' switch is used,  */
+/*      and the `P' switch is not used.  `segmentmarkerlist' must also be    */
+/*      initialized under these circumstances unless the `B' switch is used. */
+/*    - `edgelist' must be initialized if the `e' switch is used.            */
+/*      `edgemarkerlist' must be initialized if the `e' switch is used and   */
+/*      the `B' switch is not.                                               */
+/*    - `holelist', `regionlist', `normlist', and all scalars may be ignored.*/
+/*                                                                           */
+/*  `vorout' (only needed if `v' switch is used):                            */
+/*                                                                           */
+/*    - `pointlist' must be initialized.  If `in->numberofpointattributes'   */
+/*      is not zero, `pointattributelist' must be initialized.               */
+/*      `pointmarkerlist' may be ignored.                                    */
+/*    - `edgelist' and `normlist' must both be initialized.                  */
+/*      `edgemarkerlist' may be ignored.                                     */
+/*    - Everything else may be ignored.                                      */
+/*                                                                           */
+/*  After a call to triangulate(), the valid fields of `out' and `vorout'    */
+/*  will depend, in an obvious way, on the choice of switches used.  Note    */
+/*  that when the `p' switch is used, the pointers `holelist' and            */
+/*  `regionlist' are copied from `in' to `out', but no new space is          */
+/*  allocated; be careful that you don't free() the same array twice.  On    */
+/*  the other hand, Triangle will never copy the `pointlist' pointer (or any */
+/*  others); new space is allocated for `out->pointlist', or if the `N'      */
+/*  switch is used, `out->pointlist' remains uninitialized.                  */
+/*                                                                           */
+/*  All of the meaningful `numberof' fields will be properly set; for        */
+/*  instance, `numberofedges' will represent the number of edges in the      */
+/*  triangulation whether or not the edges were written.  If segments are    */
+/*  not used, `numberofsegments' will indicate the number of boundary edges. */
+/*                                                                           */
+/*****************************************************************************/
+
+struct triangulateio {
+  float *pointlist;                                               /* In / out */
+  float *pointattributelist;                                      /* In / out */
+  int *pointmarkerlist;                                          /* In / out */
+  int numberofpoints;                                            /* In / out */
+  int numberofpointattributes;                                   /* In / out */
+
+  int *trianglelist;                                             /* In / out */
+  float *triangleattributelist;                                   /* In / out */
+  float *trianglearealist;                                         /* In only */
+  int *neighborlist;                                             /* Out only */
+  int numberoftriangles;                                         /* In / out */
+  int numberofcorners;                                           /* In / out */
+  int numberoftriangleattributes;                                /* In / out */
+
+  int *segmentlist;                                              /* In / out */
+  int *segmentmarkerlist;                                        /* In / out */
+  int numberofsegments;                                          /* In / out */
+
+  float *holelist;                        /* In / pointer to array copied out */
+  int numberofholes;                                      /* In / copied out */
+
+  float *regionlist;                      /* In / pointer to array copied out */
+  int numberofregions;                                    /* In / copied out */
+
+  int *edgelist;                                                 /* Out only */
+  int *edgemarkerlist;            /* Not used with Voronoi diagram; out only */
+  float *normlist;                /* Used only with Voronoi diagram; out only */
+  int numberofedges;                                             /* Out only */
+};
+
+void triangulate(char *,triangulateio *,triangulateio *,triangulateio *);
+void trifree(int *memptr);
+