diff --git a/.ipynb_checkpoints/HAAI_1-checkpoint.ipynb b/.ipynb_checkpoints/HAAI_1-checkpoint.ipynb deleted file mode 100644 index 5e3accc84990c4a4749e728ab944c8ddfe58b14d..0000000000000000000000000000000000000000 --- a/.ipynb_checkpoints/HAAI_1-checkpoint.ipynb +++ /dev/null @@ -1,411 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Exercise 1" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "IP = \"192.168.50.126\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "with open('ilsvrc12_synset_words.txt') as f:\n", - " classes = f.read()\n", - " \n", - "class_list = [''.join(c.split(' ')[1:]) for c in classes.split('\\n')]\n", - "class_list[:10]" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "ename": "ModuleNotFoundError", - "evalue": "No module named 'jetson_inference'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mjetson_inference\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mjetson_utils\u001b[39;00m\n", - "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'jetson_inference'" - ] - } - ], - "source": [ - "import jetson_inference\n", - "import jetson_utils" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "img = jetson_utils.loadImage(\"guara_navidad.png\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "img.shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.imshow(img)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model = jetson_inference.imageNet(\"googlenet\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "cls_idx, confid = model.Classify(img)\n", - "f\"Result: {class_list[cls_idx]} ({cls_idx}), with confidence {confid*100:.0f}%\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "### Exercise 2" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Set up the path\n", - "from pathlib import Path\n", - "# Import time to calculate times\n", - "import time\n", - "\n", - "# Set directory path and extract images\n", - "directory = Path('/home/jetson/hiram/task2-images/')\n", - "images = [str(filename) for filename in directory.iterdir() if filename.name.endswith('.jpg')]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display image files\n", - "images" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# The first model\n", - "model_1 = jetson_inference.imageNet(\"googlenet\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# The second model\n", - "model_2 = jetson_inference.imageNet(\"resnet-18\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Start timing the model\n", - "model_start_time = time.time()\n", - "\n", - "confidences_model1 = []\n", - "inferences_model1 = []\n", - "\n", - "# Iterate trough images\n", - "for image in images:\n", - " # Start timing the prediction\n", - " start = time.time()\n", - " \n", - " # Load and classify\n", - " img = jetson_utils.loadImage(image)\n", - " cls_idx, confid = model_1.Classify(img)\n", - " \n", - " confidences_model1.append(confid)\n", - " \n", - " # End timing of the prediction\n", - " end = time.time()\n", - " inferences_model2.append(end-start)\n", - " result = f\"Result: {class_list[cls_idx]} ({cls_idx}), with confidence {confid*100:.0f}%, with an inference time {end-start}s\"\n", - " print(result)\n", - "\n", - "# End timing the model\n", - "model_end_time = time.time()\n", - "model_inference_time = f\"Model inference time {model_end_time-model_start_time}s\"\n", - "print(model_inference_time)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Start timing the model\n", - "model_start_time = time.time()\n", - "\n", - "confidences_model2 = []\n", - "inferences_model2 = []\n", - "\n", - "# Iterate trough images\n", - "for image in images:\n", - " # Start timing the prediction\n", - " start = time.time()\n", - " \n", - " # Load and classify\n", - " img = jetson_utils.loadImage(image)\n", - " cls_idx, confid = model_2.Classify(img)\n", - " confidences_model2.append(confid)\n", - " \n", - " # End timing of the prediction\n", - " end = time.time()\n", - " inferences_model2.append(end-start)\n", - " result = f\"Result: {class_list[cls_idx]} ({cls_idx}), with confidence {confid*100:.0f}%, with an inference time {end-start}s\"\n", - " print(result)\n", - "\n", - "# End timing the model\n", - "model_end_time = time.time()\n", - "model_inference_time = f\"Model inference time {model_end_time-model_start_time}s\"\n", - "print(model_inference_time)\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "# Calculate the confusion matrix\n", - "def comp_confusion_matrix(actual, predicted):\n", - " # extract the different classes\n", - " classes = np.unique(predicted)\n", - " # initialize the confusion matrix\n", - " confmat = np.zeros((len(classes), len(classes)))\n", - "\n", - " # loop across the different combinations of actual / predicted classes\n", - " for i in range(len(classes)):\n", - " for j in range(len(classes)):\n", - " # count the number of instances in each combination of actual / predicted classes\n", - " confmat[i, j] = np.sum((actual == classes[i]) & (predicted == classes[j]))\n", - " return confmat" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "# Visualize the confusion matrix\n", - "def plot_confusion_matrix(cm, classes, title, cmap=plt.cm.Blues):\n", - " \n", - " # Creating the visualization\n", - " plt.imshow(cm, interpolation='nearest', cmap=cmap)\n", - " plt.tight_layout()\n", - " tick_marks = np.arange(len(classes))\n", - " plt.xticks(tick_marks, classes, rotation=45)\n", - " plt.yticks(tick_marks, classes)\n", - " plt.title(title)\n", - " plt.ylabel('True class')\n", - " plt.xlabel('Predicted class')\n", - " thresh = cm.max() / 2.\n", - " for i in range(cm.shape[0]):\n", - " for j in range(cm.shape[1]):\n", - " plt.text(j, i, format(cm[i, j]),\n", - " ha=\"center\", va=\"center\",\n", - " color=\"white\" if cm[i, j] > thresh else \"black\")" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [], - "source": [ - "# googlenet results\n", - "actual = [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 0]\n", - "predicted = [0, 0, 3, 0, 1, 1, 1, 2, 3, 3, 3, 3, 2, 2, 1, 3, 1, 3, 3, 1, 0]\n", - "\n", - "# confusion matrix for googlenet\n", - "classes = ['Feline', 'Canid', 'Rodent', 'Other']\n", - "cm_googlenet = comp_confusion_matrix(actual, predicted)" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [], - "source": [ - "# resnet results\n", - "actual = [0, 1, 2, 0, 1, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 0, 1, 2, 1, 2, 0]\n", - "predicted = [0, 3, 3, 0, 1, 1, 1, 2, 0, 3, 3, 2, 1, 1, 0, 0, 1, 3, 1, 3, 0]\n", - "\n", - "# confusion matrix for resnet\n", - "cm_resnet = comp_confusion_matrix(actual, predicted)" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAAFjCAYAAACAMejZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWs0lEQVR4nO3deVxM+/8H8Ne0TVqUShuVylISFVKWG5J9yXrtsl77tUa4srtc27Unl+xr5OJaI19LUWQteym0KFpEaXn//vBrrlGo7qlpeT8fjx7MZz7nzPszy2vOnPOZMyIiIjDGGPtP5GRdAGOMlQccpowxJgAOU8YYEwCHKWOMCYDDlDHGBMBhyhhjAuAwZYwxAXCYMsaYADhMGWNMABymJezu3bsYOnQoTE1NoaysDDU1NdjZ2WH58uV4+/Ztsd52aGgonJycoKGhAZFIhDVr1gh+GyKRCPPmzRN8vaXJkiVL4OfnV6hlfHx8IBKJEBkZWSw1fSkuLg6zZs2CjY0NKleuDCUlJVSvXh09evTA33//jezs7GKvoSDmzZsHkUgk6zIkNm7cCB8fnyIvryBcKexHvL29MXbsWNSpUwfTp09H3bp1kZmZiZCQEGzevBmBgYE4evRosd3+sGHDkJaWhv3796NKlSqoUaOG4LcRGBiI6tWrC77e0mTJkiXo1asXXF1dC7xMp06dEBgYCAMDg+IrDEBQUBC6du0KIsKYMWPg4OAANTU1REVF4fjx4+jRowe8vLwwfPjwYq2jLNq4cSN0dHTg5uZWpOU5TEtIYGAgxowZAxcXF/j5+UEsFkuuc3FxwdSpU3H69OlireH+/fsYOXIkOnToUGy34eDgUGzrLos+fvwIZWVlVK1aFVWrVi3W20pKSoKrqyvU1NRw9erVPME9cOBA3L17F4mJicVaR4VFrER07tyZFBQUKCoqqkD9s7OzadmyZVSnTh1SUlKiqlWr0qBBgyg6Olqqn5OTE1lZWdGNGzeoefPmVKlSJTI1NaWlS5dSdnY2ERFt376dAOT5IyLy9PSk/J4GuctERERI2vz9/cnJyYm0tLRIWVmZjIyMqEePHpSWlibpA4A8PT2l1nXv3j3q2rUraWpqklgspgYNGpCPj49Un4sXLxIA2rt3L82aNYsMDAxIXV2dnJ2d6eHDhz+8v3LHcefOHerVqxdVrlyZqlSpQpMnT6bMzEx6+PAhtWvXjtTU1MjExISWLVsmtfzHjx9pypQp1KBBA8myDg4O5OfnJ9Uvv/vRyclJ6j47c+YMDR06lHR0dAgAffz4Mc/9+fjxY1JXV6devXpJrd/f35/k5ORozpw5Pxzz15YvX04A6NChQ4VariCPDxHRixcvaMCAAVS1alVSUlIiCwsLWrFiheR5lis6Opp69uxJampqpKGhQf3796cbN24QANq+fbuk37eee/v37ycHBwdSUVEhVVVVatu2Ld26dUuqz5AhQ0hVVZWePHlCHTp0IFVVVapevTpNmTKF0tPTpfpmZGTQwoULJa8lHR0dcnNzo/j4eEkfExOTPI+riYlJoe5HDtMSkJWVRSoqKtSkSZMCLzNq1CgCQOPHj6fTp0/T5s2bqWrVqmRkZERv3ryR9HNyciJtbW2qVasWbd68mc6dO0djx44lALRjxw4iIoqPj6fAwEACQL169aLAwEAKDAwkooKHaUREBCkrK5OLiwv5+flRQEAA7dmzhwYNGkTv3r2TLPd1mD58+JDU1dXJ3Nycdu7cSSdPnqR+/foRAKlAyw3TGjVq0IABA+jkyZO0b98+MjY2plq1alFWVtZ376/ccdSpU4cWLlxI586dI3d3d8l9aGFhQWvXrqVz587R0KFDCQD5+vpKlk9KSiI3NzfatWsXXbhwgU6fPk3Tpk0jOTk5yf1IRBQYGEiVKlWijh07Su7HBw8eSN1n1apVo1GjRtGpU6fo8OHDlJWVle+b0/79+wkA/fnnn0REFBMTQ3p6euTk5PTD8ebHxcWF5OXlpd7cfqSgj098fDxVq1aNqlatSps3b6bTp0/T+PHjCQCNGTNG0u/9+/dUs2ZN0tLSog0bNtCZM2do8uTJZGpqWqAwXbx4MYlEIho2bBidOHGCjhw5Qo6OjqSqqiq5n4k+h6mSkhJZWlrSihUr6Pz58zR37lwSiUQ0f/58Sb/s7Gxq3749qaqq0vz58+ncuXO0detWqlatGtWtW5c+fPhARES3bt0iMzMzsrW1lTyuXwf4j3CYloDY2FgCQH379i1Q//DwcAJAY8eOlWq/fv06AaBZs2ZJ2pycnAgAXb9+Xapv3bp1qV27dlJtAGjcuHFSbQUN08OHDxMAun379ndr/zpM+/btS2KxOM8WeYcOHUhFRYWSkpKI6N8w7dixo1S/gwcPEgBJ+H9L7jhWrlwp1W5jY0MA6MiRI5K2zMxMqlq1KvXo0eOb68vKyqLMzEwaPnw42draSl2nqqpKQ4YMybNM7n02ePDgb173ZZgSEY0ZM4aUlJQoMDCQWrduTbq6uvT69evvjvVbLCwsSF9fP097dnY2ZWZmSv6+3JIs6OMzc+bMfJ9nY8aMIZFIRI8ePSIiog0bNhAAOnXqlFS/X3755YdhGhUVRQoKCjRhwgSpZVNTU0lfX5/69OkjaRsyZAgBoIMHD0r17dixI9WpU0dyed++fXneOImIgoODCQBt3LhR0mZlZSX5lFEUfDS/FLp48SIA5NkRbm9vD0tLS/j7+0u16+vrw97eXqqtfv36ePHihWA12djYQElJCaNGjcKOHTvw/PnzAi134cIFODs7w8jISKrdzc0NHz58QGBgoFR7165dpS7Xr18fAAo8ls6dO0tdtrS0hEgkktpPrKCggJo1a+ZZ56FDh9CsWTOoqalBQUEBioqK+OuvvxAeHl6g287Vs2fPAvddvXo1rKys0KpVKwQEBGD37t2CH6SaMmUKFBUVJX9f3scFfXwuXLiAunXr5nmeubm5gYhw4cIFAMClS5egrq6O9u3bS/Xr16/fD+s8c+YMsrKyMHjwYGRlZUn+lJWV4eTkhICAAKn+IpEIXbp0kWr7+nl/4sQJaGpqokuXLlLrtLGxgb6+fp51/hccpiVAR0cHKioqiIiIKFD/3AME+b2oDA0N8xxA0NbWztNPLBbj48ePRag2f+bm5jh//jx0dXUxbtw4mJubw9zcHH/++ed3l0tMTPzmOHKv/9LXY8k9UFfQsWhpaUldVlJSgoqKCpSVlfO0p6enSy4fOXIEffr0QbVq1bB7924EBgYiODgYw4YNk+pXEIUJQ7FYjP79+yM9PR02NjZwcXEp1G19ydjYGG/evMGHDx+k2qdOnYrg4GAEBwfnqa2gj09h+unp6eXpl1/b1+Li4gAAjRs3lgp/RUVFHDhwAAkJCVL983tcxWKx1OMVFxeHpKQkKCkp5VlnbGxsnnX+F3w0vwTIy8vD2dkZp06dwsuXL384dSg3UGJiYvL0ff36NXR0dASrLffJmJGRITXDIL8nWYsWLdCiRQtkZ2cjJCQE69atw6RJk6Cnp4e+ffvmu35tbW3ExMTkaX/9+jUACDqW/2L37t0wNTXFgQMHpOY+ZmRkFHpdhZk7ef/+fcydOxeNGzdGcHAwVq1ahSlTphT6NoHPs0LOnj2Lf/75B7169ZK0GxkZSbY8lZSUpJYp6ONTmH43btzI0y82NvaH9eeu4/DhwzAxMflh/4LQ0dGBtrb2N2fKqKurC3I7AG+ZlhgPDw8QEUaOHIlPnz7luT4zMxPHjx8HALRu3RrA5xf4l4KDgxEeHg5nZ2fB6sqda3r37l2p9txa8iMvL48mTZpgw4YNAIBbt259s6+zszMuXLggedHl2rlzJ1RUVErNVCqRSAQlJSWpIIyNjcWxY8fy9BVqqz8tLQ29e/dGjRo1cPHiRYwfPx4zZ87E9evXi7S+ESNGQE9PD+7u7vkGX34K+vg4OzsjLCwsz2O9c+dOiEQitGrVCgDg5OSE1NRUnDp1Sqrf/v37f1hLu3btoKCggGfPnqFRo0b5/hVW586dkZiYiOzs7HzXV6dOHUnf//q48pZpCXF0dMSmTZswduxYNGzYEGPGjIGVlRUyMzMRGhqKLVu2oF69eujSpQvq1KmDUaNGYd26dZCTk0OHDh0QGRmJ3377DUZGRpg8ebJgdXXs2BFaWloYPnw4FixYAAUFBfj4+CA6Olqq3+bNm3HhwgV06tQJxsbGSE9Px7Zt2wAAbdq0+eb6PT09ceLECbRq1Qpz586FlpYW9uzZg5MnT2L58uXQ0NAQbCz/RefOnXHkyBGMHTsWvXr1QnR0NBYuXAgDAwM8efJEqq+1tTUCAgJw/PhxGBgYQF1dXepFWVCjR49GVFQUbty4AVVVVaxcuRKBgYHo27cvQkNDoampCeDzt6eGDh2K7du3f3dCuaamJvz8/NClSxc0aNBAatJ+YmIi/ve//yE2NhZNmzaVLFPQx2fy5MnYuXMnOnXqhAULFsDExAQnT57Exo0bMWbMGNSuXRsAMGTIEKxevRoDBw7EokWLULNmTZw6dQpnzpwBAMjJfXv7rUaNGliwYAFmz56N58+fo3379qhSpQri4uIk99H8+fMLdR/37dsXe/bsQceOHfHrr7/C3t4eioqKePnyJS5evIhu3bqhe/fuAD4/rvv378eBAwdgZmYGZWVlWFtbF/zGinzoihXJ7du3aciQIWRsbExKSkqkqqpKtra2NHfuXKl5b7nzTGvXrk2Kioqko6NDAwcO/OY8068NGTIkzzw55HM0n4joxo0b1LRpU1JVVaVq1aqRp6cnbd26Veroc2BgIHXv3p1MTExILBaTtrY2OTk50d9//53nNvKbZ9qlSxfS0NAgJSUlatCggdRRXaJ/j+Z/PUcyIiIiz1Hg/OQeGf5y2lju/aCqqpqnf3732++//041atQgsVhMlpaW5O3tne9sh9u3b1OzZs1IRUUl33mmwcHBeW7v66P53t7e+Y7r6dOnVLlyZXJ1dZW0rVu3jgDQ6dOnv3sf5IqNjSUPDw+qX78+qaqqkqKiIhkaGlKXLl1o586dlJmZKdW/II8P0ed5pv379ydtbW1SVFSkOnXq0B9//JFnnmlUVBT16NGD1NTUSF1dnXr27En//PMPAaBjx45J+n1rJomfnx+1atWKKleuTGKxmExMTKhXr150/vx5SZ9vPa75rTMzM5NWrFhBDRo0IGVlZVJTUyMLCwv65Zdf6MmTJ5J+kZGR1LZtW1JXVy/SPFMREf86KWOlWZ8+fRAREYHg4GBZl1JkS5YswZw5cxAVFVVuv27MH/MZK8WISDJlqqxYv349AMDCwgKZmZm4cOEC1q5di4EDB5bbIAU4TBkr1UQiEeLj42VdRqGoqKhg9erViIyMREZGBoyNjTFjxgzMmTNH1qUVK/6YzxhjAuCpUYwxJgAOU8YYEwCHKWOMCYAPQBWznJwcvH79Gurq6qXqJxoYYz9GREhNTYWhoeF3v3AAcJgWu9evX+c5Iw9jrGyJjo7+4bQuDtNilnsiBZuZhyAvVpFxNSXjn4nNZV0CK2Yv3qTJuoQS8f59Klo3qlOgE6JwmBaz3I/28mIVKCiryriaklG5cmVZl8CKmVq6vKxLKFEF2UXHB6AYY0wAHKaMMSYADlPGGBMAhyljjAmAw5QxxgTAYcoYYwLgMGWMMQFwmDLGmAA4TBljTAAcpowxJgAOU8YYEwCHKWOMCYDDlDHGBMBhyhhjAuAwZYwxAXCYMsaYADhMGWNMABymjDEmAA5TxhgTAIcpY4wJgMOUMcYEwGFaxg12MELQTCdMcjb/bj9bIw34uNnh0rQW8B1tj+42BiVUoXC8Nm2ERS1TaKopo6l9Q1y5cvm7/S//7xKa2jeEppoyLGubwdtrcwlVKoyKNN6QoCsYO6Q3nOxqom41NZw/ffyHywQHXkav9s1hY6aNto71sH/n1hKo9NvKbZiKRCL4+fkBACIjIyESiXD79m2Z1iQ0S311uNoY4En8++/2M9BQxqre1rgdnYwh229ix7UoTHGpiVZ1dEqo0v/u0MEDmD51EmbMnI2g4FA0bd4Crp07ICoqKt/+kRERcO3SEU2bt0BQcCjcZ8zC1MkTcfSIbwlXXjQVbbwfPnxAnbr1MGfRygL1fxkVidGDeqKhfVP4nrmKUROmYcnc6Th70q94C/2OUh2mbm5uEIlEef6ePn1aqPUYGRkhJiYG9erVK6ZKS14lRTnM72qBpaceIzU967t9e9gaIC4lHWv8nyEy8QP+vhuL43dj0d/eqISq/e/WrlkFt6HDMXT4CFhYWmLFqjWobmQEb69N+fb33rIZRsbGWLFqDSwsLTF0+AgMcRuGNatWlHDlRVPRxvtT67b4dYYnXDp2K1D/A7v+gkG16vBYsBzmtSzQq78bevw8CNs3ry3mSr+tVIcpALRv3x4xMTFSf6ampoVah7y8PPT19aGgoFBMVZa8aW1r4eqztwh+kfTDvvWqVcb1yHdSbdcj3sJSXw3ycqJiqlA4nz59Quitm3B2aSvV7tymLYICr+W7zPWgQDi3ke7fpm073LoZgszMzGKrVQgVbbxFcfvmdTR1cpZqa96yDR7cvSWz8Zb6MBWLxdDX15f6k5eXx/Hjx9GwYUMoKyvDzMwM8+fPR1ZW/ltoX3/MDwgIgEgkgr+/Pxo1agQVFRU0bdoUjx49klquMLdRktpYVkUdPTVsCnheoP7aqkp4myb9BHublgkFeTloVlIsjhIFlZCQgOzsbOjq6km16+npIS4uNt9l4uJioacn3V9XVw9ZWVlISEgotlqFUNHGWxQJ8fHQ1tGVatPW0UVWVhaS3ibKpKZSH6b5OXPmDAYOHIiJEyciLCwMXl5e8PHxweLFiwu1ntmzZ2PlypUICQmBgoIChg0b9p9vIyMjAykpKVJ/QtJVF2NKm5qYd+IhPmVTgZcjku6buz1KKPg6ZE0kkt6KJqI8bT/qn197aVXRxltYecab+1yW0XhL/efeEydOQE1NTXK5Q4cOiIuLw8yZMzFkyBAAgJmZGRYuXAh3d3d4enoWeN2LFy+Gk5MTAGDmzJno1KkT0tPToaysjMWLFxfpNpYuXYr58+cXZagFYqGvBi1VJfi4NZS0KciJYGOkgV4Nq+GnP/6HnK/yMTHtE7TVlKTaqqgqIis7B8kfZb+l/SM6OjqQl5fPs1UWHx+fZ+stl56ePmJjpfu/eRMPBQUFaGtrF1utQqho4y0KHV1dJLyJk2p7m/AGCgoK0KyiJZOaSn2YtmrVCps2/bvTXVVVFTVr1kRwcLDUVmJ2djbS09Px4cMHqKioFGjd9evXl/zfwODzVKH4+HgYGxvj5s2bRboNDw8PTJkyRXI5JSUFRkbCHegJeZGE/luDpdrmdKqDF4kfsSsoKk+QAsD9VyloXlP6BdWkhhbCY98jO78FShklJSXY2jXEhfPn0M21u6T9gv85dO6S/wGLJg6O+Oek9PQa/3NnYdewERQVS/eujYo23qKwadgEF8/9I9V29ZI/rOrbyWy8pT5Mc8PzSzk5OZg/fz569OiRp7+ysnKB1/3lnZ77kSEnJ+c/3YZYLIZYLC5wDYX14VM2nid8kGpLz8xB8sdMSfsYJ1NUVVfCghOf9wEfCY1BL7tq+LW1OY7diUG9apXRpYE+5v4dXmx1Cm3ipCkY7jYIdg0boYmDI/7augXRUVEYMWo0AOC32R54/eoV/vLZCQAYOWo0Nm9cD/dpUzBs+EhcDwqEz/a/sGP3PlkOo8Aq2njT0t4jKuLfYwCvol4g/P5daFSpAsNqRli11BPxMa/x+1pvAMDPg4Zj73YvLJs3E70GuOH2zRvw3b8TKzZsl9UQSn+Y5sfOzg6PHj3KE7Jl7TaKi46aEvQr/xv4McnpmHLoHiY5m6OnnSES3mdg1bmnuPio7ByY6N3nZ7xNTMSSxQsQGxMDK6t68Dv+D0xMTAAAsTExiI7+dw5mDVNT+B3/B+5TJ8Nr0wYYGBpi5eq16N6jp6yGUCgVbbwP7tyCW++OksvL5s8EALj2HoAla7yQEBeLmNfRkuurG9fA5l2++H3eTOzdsQW6egaYteAPtO3kWtKlS4jo6yMTpYibmxuSkpIkk+9znTlzBp07d8bs2bPRu3dvyMnJ4e7du7h37x4WLVoE4POW5tGjR+Hq6orIyEiYmpoiNDQUNjY2CAgIQKtWrfDu3TtoamoCAG7fvg1bW1tERESgRo0aBbqNgkhJSYGGhgYaep6EgrKqUHdNqRYwzUnWJbBiFhGfJusSSsT71BTYWxgiOTkZlStX/m7fMnk0v127djhx4gTOnTuHxo0bw8HBAatWrZK8a5eV22CMlR+lesu0POAtU1Ye8ZZpXmVyy5QxxkobDlPGGBMAhyljjAmAw5QxxgTAYcoYYwLgMGWMMQFwmDLGmAA4TBljTAAcpowxJgAOU8YYEwCHKWOMCYDDlDHGBMBhyhhjAuAwZYwxAXCYMsaYADhMGWNMABymjDEmAA5TxhgTAIcpY4wJgMOUMcYEwGHKGGMC4DBljDEBcJgyxpgAFGRdQEXxz8TmP/zd7fKiSuPxsi6hRL0LXi/rElgpwFumjDEmAA5TxhgTAIcpY4wJgMOUMcYEwGHKGGMC4DBljDEBcJgyxpgAOEwZY0wAHKaMMSYADlPGGBMAhyljjAmAw5QxxgTAYcoYYwLgMGWMMQFwmDLGmAA4TBljTAAcpowxJgAOU8YYEwCHKWOMCYDDlDHGBMBhyhhjAuAwZYwxAXCYMsaYADhMGWNMABymX3Bzc4Orq+t3+7Rs2RKTJk0qkXq+x2vTRljUMoWmmjKa2jfElSuXv9v/8v8uoal9Q2iqKcOythm8vTaXUKXCMKyqgW2LBuPlxWVIvLYKQftnwtbS6LvLNG9YE1f3uONd0GqEHZ+HEb2al1C1wqhIj3FI0BWMHdIbTnY1UbeaGs6fPv7DZYIDL6NX++awMdNGW8d62L9zawlU+m1lJkxjY2MxYcIEmJmZQSwWw8jICF26dIG/v79gt/Hnn3/Cx8dHsPUVl0MHD2D61EmYMXM2goJD0bR5C7h27oCoqKh8+0dGRMC1S0c0bd4CQcGhcJ8xC1MnT8TRI74lXHnRaKpXwgWfKcjMyoHr+I2w7bkIM1cdQVLqx28uY2KoDb91Y3At9Bkc+v2O5dvOYKV7L7g625Rc4f9BRXuMP3z4gDp162HOopUF6v8yKhKjB/VEQ/um8D1zFaMmTMOSudNx9qRf8Rb6HSIiIpndegFFRkaiWbNm0NTUxPz581G/fn1kZmbizJkz2LJlCx4+fFhitbRs2RI2NjZYs2ZNgfqnpKRAQ0MDcYnJqFy5siA1tGjaBLa2dli7YZOkzcbaEl26umLh4qV5+s/2mIGTJ/7G7XvhkrYJY0fj7t07uHQlUJCavlSl8XhB17dwYlc4NjBDm+FrCrzMoond0MnJGrY9F0na1s7ui/q1q6HlkIK9YAvqXfB6QdcHlP7HOCI+TfB15qpbTQ1r/9qHNu27fLPPysW/4eLZkzhx6Zakbd6MiXgUdh/7jl8QrJb3qSmwtzBEcvKPX7+F3jK9desW7t27J7l87NgxuLq6YtasWfj06VPhqy2AsWPHQiQS4caNG+jVqxdq164NKysrTJkyBUFBQQCAVatWwdraGqqqqjAyMsLYsWPx/v17yTp8fHygqamJM2fOwNLSEmpqamjfvj1iYmIkfb7+mJ+WlobBgwdDTU0NBgYGWLlS2BdhUXz69Amht27C2aWtVLtzm7YICryW7zLXgwLh3Ea6f5u27XDrZggyMzOLrVahdHKyxq2wKOxZPgwv/JcicN8MDO3e9LvLNGlgCv+gcKm289fCYGdpDAWF0v2BrCI+xoV1++Z1NHVylmpr3rINHty9JbPxFvpZ9csvv+Dx48cAgOfPn6Nv375QUVHBoUOH4O7uLniBb9++xenTpzFu3DioqqrmuV5TUxMAICcnh7Vr1+L+/fvYsWMHLly4kKeeDx8+YMWKFdi1axf+97//ISoqCtOmTfvmbU+fPh0XL17E0aNHcfbsWQQEBODmzZuCjq+wEhISkJ2dDV1dPal2PT09xMXF5rtMXFws9PSk++vq6iErKwsJCQnFVqtQTKvpYGTvFnga9QZdx27A1sNXsNK9F/p3tv/mMnralRGXmCrVFv82FYqK8tDRVCvukv+TivgYF1ZCfDy0dXSl2rR1dJGVlYWkt4kyqUmhsAs8fvwYNjY2AIBDhw7hp59+wt69e3H16lX07du3wB9/C+rp06cgIlhYWHy335cHhUxNTbFw4UKMGTMGGzdulLRnZmZi8+bNMDc3BwCMHz8eCxYsyHd979+/x19//YWdO3fCxcUFALBjxw5Ur179u3VkZGQgIyNDcjklJeW7/YtKJBJJXSaiPG0/6p9fe2kkJyfCrbAoeK7/fFDizqOXqGtugFG9W2DviRvfXO7r/VcifB5rGdizBaBiPcZFkWe8uY+4jMZb6C1TIkJOTg4A4Pz58+jYsSMAwMjIqFjeAQv6hLh48SJcXFxQrVo1qKurY/DgwUhMTERa2r/7dlRUVCRBCgAGBgaIj4/Pd33Pnj3Dp0+f4OjoKGnT0tJCnTp1vlvH0qVLoaGhIfkzMvr+EefC0tHRgby8fJ4tlPj4+DxbMrn09PQRGyvd/82beCgoKEBbW1vQ+opDbEIKwp9L1/8wIhZG+lW+uUxcYgr0tdWl2qpqqSEzMxuJycW3v08IFfExLiwdXV0kvImTanub8AYKCgrQrKIlk5oKHaaNGjXCokWLsGvXLly6dAmdOnUCAEREROT5mCGEWrVqQSQSITw8/Jt9Xrx4gY4dO6JevXrw9fXFzZs3sWHDBgCQ2n+iqKgotZxIJPrmVkpRt148PDyQnJws+YuOji7Ser5FSUkJtnYNceH8Oan2C/7n4OCY/37EJg6OuOAv3d//3FnYNWyU5z4pjQJvP0dtE+mPdLWMdREV8/aby1y/E4HWDtKfZpwdLXErPApZWTnFUqdQKuJjXFg2DZvg2v+kDzRdveQPq/p2MhtvocN0zZo1uHXrFsaPH4/Zs2ejZs2aAIDDhw+jadPvHxQoCi0tLbRr1w4bNmyQ2srMlZSUhJCQEGRlZWHlypVwcHBA7dq18fr16/90uzVr1oSioqLkABcAvHv3TrK/+FvEYjEqV64s9Se0iZOmYPu2rdixfRsehodj+tTJiI6KwohRowEAv832wHC3wZL+I0eNRtSLF3CfNgUPw8OxY/s2+Gz/C5OmfHt/cWmybvcF2FubYvqwtjAz0sHP7RthWM9m8DrwP0mfBRO6YuvCQZLL3oevwNhAC8um9kAdUz0M7uYAN1dHrNkp3FS64lTRHuO0tPcIv38X4ffvAgBeRb1A+P27eP3q88bIqqWemDlxpKT/z4OGI+ZlNJbNm4lnTx7Cd/9O+O7fiaGjJ8qkfqAI+0zr168vdTQ/1x9//AF5eXlBivraxo0b0bRpU9jb22PBggWoX78+srKycO7cOWzatAn79u1DVlYW1q1bhy5duuDq1avYvPm/TVhWU1PD8OHDMX36dGhra0NPTw+zZ8+GnJzsjwT37vMz3iYmYsniBYiNiYGVVT34Hf8HJiYmAIDYmBhER/87H7GGqSn8jv8D96mT4bVpAwwMDbFy9Vp079FTVkMolJthUfh5qjcWTOiKWaM6IPJVIqb/4Yv9p0IkffR1KsNI/9+Pdy9eJ8J1wiYsn9oTv/RpgZg3yZi6/DD8/G/LYASFV9Ee4wd3bsGtd0fJ5WXzZwIAXHsPwJI1XkiIi0XM638/5VU3roHNu3zx+7yZ2LtjC3T1DDBrwR9o28m1pEuXKPQ80+joaIhEIsmBmBs3bmDv3r2oW7cuRo0aVSxFAkBMTAwWL16MEydOICYmBlWrVkXDhg0xefJktGzZEqtXr8Yff/yBpKQk/PTTTxgwYAAGDx6Md+/eQVNTEz4+Ppg0aRKSkpIk6/Tz80P37t0lH+nd3NyQlJQEPz8/AJ8PQo0ZMwZHjhyBuro6pk6dipMnT8p8nmlpJ/Q809KuOOaZlnbFOc+0NCnMPNNCh2mLFi0watQoDBo0CLGxsahTpw6srKzw+PFjTJw4EXPnzv1PxZc3HKblH4dp+VWsk/bv378Pe/vP8/sOHjyIevXq4dq1a9i7d2+Z+ComY4wVh0KHaWZmJsRiMYDPU6O6du0KALCwsJD6NhFjjFUkhQ5TKysrbN68GZcvX8a5c+fQvn17AMDr16/L5Xw2xhgriEKH6bJly+Dl5YWWLVuiX79+aNCgAQDg77//lnz8Z4yxiqbQU6NatmyJhIQEpKSkoEqVf7+BMmrUKKioqAhaHGOMlRWFDlMAkJeXlwpSAKhRo4YQ9TDGWJlUpDA9fPgwDh48iKioqDyn3bt169Y3lmKMsfKr0PtM165di6FDh0JXVxehoaGwt7eHtrY2nj9/jg4dOhRHjYwxVuoVOkw3btyILVu2YP369VBSUoK7uzvOnTuHiRMnIjk5uThqZIyxUq/QYRoVFSU5oUmlSpWQmvr5BLyDBg3Cvn37hK2OMcbKiEKHqb6+PhITP5/J2sTERHJWpYiIiDJz0l3GGBNaocO0devWOH788xnPhw8fjsmTJ8PFxQU///wzunfvLniBjDFWFhT6aP6WLVskZ9ofPXo0tLS0cOXKFXTp0gWjR48WvEDGGCsLCh2mcnJyUuf07NOnD/r06SNoUYwxVtYUKEzv3r1b4BXWr1+/yMUwxlhZVaAwtbGx+e7vJeUSiUTIzs4WpDDGGCtLChSmERERxV0HY4yVaQUK09zfnWGMMZa/Qk+NWrp0KbZt25anfdu2bVi2bJkgRTHGWFlT6DD18vKChYVFnvbck0YzxlhFVOgwjY2NhYGBQZ72qlWr8s+WMMYqrEKHqZGREa5evZqn/erVqzA0NBSkKMYYK2sKPWl/xIgRmDRpEjIzM9G6dWsAgL+/P9zd3TF16lTBC2SMsbKg0GHq7u6Ot2/fYuzYsZITQysrK2PGjBnw8PAQvEBW9lS035Gf+neYrEsocdsWbpR1CSWCsj/9uNP/K3SYikQiLFu2DL/99hvCw8NRqVIl1KpVS/Lzz4wxVhEV6WdLAEBNTQ2NGzcWshbGGCuzCn0AijHGWF4cpowxJgAOU8YYEwCHKWOMCaBIYbpr1y40a9YMhoaGePHiBQBgzZo1OHbsmKDFMcZYWVHoMN20aROmTJmCjh07IikpSXL+Uk1NTaxZs0bo+hhjrEwodJiuW7cO3t7emD17NuTl5SXtjRo1wr179wQtjjHGyopCh2lERARsbW3ztIvFYqSlpQlSFGOMlTWFDlNTU1Pcvn07T/upU6dQt25dIWpijLEyp9DfgJo+fTrGjRuH9PR0EBFu3LiBffv2YenSpdi6dWtx1MgYY6VeocN06NChyMrKgru7Oz58+ID+/fujWrVq+PPPP9G3b9/iqJExxkq9In03f+TIkRg5ciQSEhKQk5MDXV1doetijLEypcgnOgEAHR0doepgjLEyrdBhampqCpFI9M3rnz9//p8KYoyxsqjQYTpp0iSpy5mZmQgNDcXp06cxffp0oepijLEypdBh+uuvv+bbvmHDBoSEhPznghhjrCwS7EQnHTp0gK+vr1CrY4yxMkWwMD18+DC0tLSEWh1jjJUphf6Yb2trK3UAiogQGxuLN2/eYOPGivEjW4wx9rVCh6mrq6vUZTk5OVStWhUtW7aEhYWFUHUxxliZUqgwzcrKQo0aNdCuXTvo6+sXV02MMVbmFGqfqYKCAsaMGYOMjIziqocxxsqkQh+AatKkCUJDQ4ujFkFERkZCJBLle2ar8sRr00ZY1DKFppoymto3xJUrl7/b//L/LqGpfUNoqinDsrYZvL02l1ClwqkoY75/ej/2T+4O74H28B5oD1+P/nhx6/tjffUgGIem94ZXX1vsHtMO988cKKFqhWFYVQPbFg3Gy4vLkHhtFYL2z4StpdF3l2nesCau7nHHu6DVCDs+DyN6NS+havNX6DAdO3Yspk6divXr1yMwMBB3796V+isMNzc3iEQiiEQiKCgowNjYGGPGjMG7d+8KW1axE4lE8PPzk3UZAIBDBw9g+tRJmDFzNoKCQ9G0eQu4du6AqKiofPtHRkTAtUtHNG3eAkHBoXCfMQtTJ0/E0SNlZypbRRqzmrYeHAdORu/lB9F7+UFUq9cEp5aNx9uop/n2T4l7iZOLx8DA0g69VxyGXc+RuLJtCZ4Fni3hyotGU70SLvhMQWZWDlzHb4Rtz0WYueoIklI/fnMZE0Nt+K0bg2uhz+DQ73cs33YGK917wdXZpuQK/4qIiKggHYcNG4Y1a9ZAU1Mz70pEIhARRCKR5GdMCsLNzQ1xcXHYvn07srKyEBYWhmHDhqFFixbYt29fgdfzpcjISJiamiI0NBQ2NjZFWkd+RCIRjh49mucA3I+kpKRAQ0MDcYnJqFy5siC1tGjaBLa2dli7YZOkzcbaEl26umLh4qV5+s/2mIGTJ/7G7XvhkrYJY0fj7t07uHQlUJCailtpHvPUv8MEXV9+/hriCMdB01C3Tc881wXuWomI4AD0X3tc0hbgNR+JkY/Qc+neYqln20LhZu4snNgVjg3M0Gb4mgIvs2hiN3RysoZtz0WStrWz+6J+7WpoOWSlYLVR9idk3PNGcvKPX78F3jLdsWMH0tPTERERkefv+fPnkn8LSywWQ19fH9WrV0fbtm3x888/4+zZz++oOTk5WLBgAapXrw6xWAwbGxucPn1aavkbN27A1tYWysrKaNSoUb67IMLCwtCxY0eoqalBT08PgwYNQkJCguT6li1bYuLEiXB3d4eWlhb09fUxb948yfU1atQAAHTv3h0ikUhyWRY+ffqE0Fs34ezSVqrduU1bBAVey3eZ60GBcG4j3b9N23a4dTMEmZmZxVarUCrimHPlZGfjyZV/kJn+Efp1GuTbJ/bRHRg1aCrVZmzTDG+ePUB2Vukfaycna9wKi8Ke5cPwwn8pAvfNwNDuTb+7TJMGpvAPCpdqO38tDHaWxlBQkM2PLhf4VnM3YE1MTL779188f/4cp0+fhqKiIgDgzz//xMqVK7FixQrcvXsX7dq1Q9euXfHkyRMAQFpaGjp37ow6derg5s2bmDdvHqZNmya1zpiYGDg5OcHGxgYhISE4ffo04uLi0KdPH6l+O3bsgKqqKq5fv47ly5djwYIFOHfuHAAgODgYALB9+3bExMRILstCQkICsrOzoaurJ9Wup6eHuLjYfJeJi4uFnp50f11dPWRlZUm9qZRWFXHMiS8eY8uARvDqa4tLXgvQwX0ttIxq5tv3Q1ICVDS1pdoqaWgjJzsL6alJJVDtf2NaTQcje7fA06g36Dp2A7YevoKV7r3Qv7P9N5fR066MuMRUqbb4t6lQVJSHjqZacZecr0JNjfre2aKK6sSJE1BTU0N2djbS09MBAKtWrQIArFixAjNmzJCcdHrZsmW4ePEi1qxZgw0bNmDPnj3Izs7Gtm3boKKiAisrK7x8+RJjxoyRrH/Tpk2ws7PDkiVLJG3btm2DkZERHj9+jNq1awMA6tevD09PTwBArVq1sH79evj7+8PFxQVVq1YF8PkXWH80JSwjI0NqtkNKSsp/vYvy9fVjkbubpTD982svzSrSmDUNa+DnFb7ISEvFs6Bz8F8/C64LfL4ZqMgzpv8fa/GWKQg5ORFuhUXBc/3n3RR3Hr1EXXMDjOrdAntP3Pjmcl/vnxT9/2gLuOdScIUK09q1a//wifj27dtCFdCqVSts2rQJHz58wNatW/H48WNMmDABKSkpeP36NZo1aybVv1mzZrhz5w4AIDw8HA0aNICKiorkekdHR6n+N2/exMWLF6Gmlvfd6tmzZ1Jh+iUDAwPEx8cXaiwAsHTpUsyfP7/QyxWUjo4O5OXl82yRxcfH59lyy6Wnp4/YWOn+b97EQ0FBAdra2vkuU5pUxDHLKypBw+DzJz3dmvXw5ul93D25Gy1Hz8vTV0VTBx/eSW9tf0x+Czl5BYjVNUug2v8mNiEF4c+lH6uHEbHfPZgUl5gCfW11qbaqWmrIzMxGYrJsftizUGE6f/58aGhoCFqAqqoqatb8/G67du1atGrVCvPnz5eczu97WyMFeQfKyclBly5dsGzZsjzXGRgYSP6fu2shl0gkQk5OTuEGA8DDwwNTpkyRXE5JSYGR0feneBSGkpISbO0a4sL5c+jm2l3SfsH/HDp36ZbvMk0cHPHPyeNSbf7nzsKuYaM84y6NKuKYv0YgZGd+yvc6/ToNEBkSINUWffsaqppbQV6h9I818PZz1DaR/rWOWsa6iIr59obZ9TsR6OhUT6rN2dESt8KjkJVV+NetEAoVpn379i32nyjx9PREhw4dMGbMGBgaGuLKlSv46aefJNdfu3YN9vaf96XUrVsXu3btwsePH1GpUiUAQFBQkNT67Ozs4Ovrixo1akBBoeg/LKCoqFigmQpisRhisbjIt1MQEydNwXC3QbBr2AhNHBzx19YtiI6KwohRowEAv832wOtXr/CXz04AwMhRo7F543q4T5uCYcNH4npQIHy2/4Udu4s2Y0IWKtKYg/asgbFtC6jp6CPzYxqeXDmF1w+C0XmOFwAgcPdqpL2NR5uJn2cxWLX9GfdO7cPV7ctg6dILcY/uIPyCL1wm/SHLYRTYut0XcNFnKqYPawvfc7fQ2KoGhvVshvEL/32sFkzoCkNdDYz4bRcAwPvwFYzu+xOWTe2BbUeuokl9U7i5OmKIh4+MRlGIMC2p/UwtW7aElZUVlixZgunTp8PT0xPm5uawsbHB9u3bcfv2bezZswcA0L9/f8yePRvDhw/HnDlzEBkZiRUrVkitb9y4cfD29ka/fv0wffp06Ojo4OnTp9i/fz+8vb0hLy9foLpq1KgBf39/NGvWDGKxGFWqVBF87AXVu8/PeJuYiCWLFyA2JgZWVvXgd/wfyQHA2JgYREf/O/+yhqkp/I7/A/epk+G1aQMMDA2xcvVadO+Rd5pNaVWRxvwhKRH+a2ci7d0biFXUoW1SG53neEmO2H949wbvE2Ik/SvrVUen2Ztwdfsy3Du9D6paumg+bBbMHdt+6yZKlZthUfh5qjcWTOiKWaM6IPJVIqb/4Yv9p/49P7K+TmUY6f97VroXrxPhOmETlk/tiV/6tEDMm2RMXX4Yfv63ZTCCzwo8z1ROTg6xsbGCbpm6ubkhKSkpz2T4vXv3YujQoXj8+DF27NiBLVu2ID4+HnXr1sXvv/+O9u3bS/oGBQVh9OjRCA8PR926dfHbb7+hZ8+eUvNMnzx5ghkzZuDixYvIyMiAiYkJ2rdvj1WrVkEkEqFly5awsbHBmjVrJOt1dXWFpqYmfHx8AADHjx/HlClTEBkZiWrVqiEyMrJAYyyOeaasdCmJeaaljZDzTEuzwswzLXCYsqLhMC3/OEzLr2KZtM8YY+zbOEwZY0wAHKaMMSYADlPGGBMAhyljjAmAw5QxxgTAYcoYYwLgMGWMMQFwmDLGmAA4TBljTAAcpowxJgAOU8YYEwCHKWOMCYDDlDHGBMBhyhhjAuAwZYwxAXCYMsaYADhMGWNMABymjDEmAA5TxhgTAIcpY4wJgMOUMcYEwGHKGGMC4DBljDEBiIiIZF1EeZaSkgINDQ3EJSajcuXKsi6HMVYIKSkp0NPWQHLyj1+/vGXKGGMC4DBljDEBcJgyxpgAOEwZY0wAHKaMMSYADlPGGBMAhyljjAmAw5QxxgTAYcoYYwLgMGWMMQFwmDLGmAA4TBljTAAcpowxJgAOU8YYEwCHKWOMCYDDlDHGBMBhyhhjAuAwZYwxAXCYMsaYADhMGWNMABymjDEmAA5TxhgTAIcpY4wJgMO0jPLatBEWtUyhqaaMpvYNceXK5e/2v/y/S2hq3xCaasqwrG0Gb6/NJVSpcCramHm8ZWu85T5MfXx8oKmpKesyBHXo4AFMnzoJM2bORlBwKJo2bwHXzh0QFRWVb//IiAi4dumIps1bICg4FO4zZmHq5Ik4esS3hCsvuoo2Zh5vGRwvlRFRUVE0bNgwMjAwIEVFRTI2NqaJEydSQkKCpI+JiQmtXr1aarnt27eThoZGyRb7heTkZAJAcYnJ9DGTBPlr1NieRo4aLdVWx8KCprnPzLf/lGnuVMfCQqptxMhfyL6Jg2A1FfdfRRszj7d0jDcu8fPrNzk5+Yev9TKxZfr8+XM0atQIjx8/xr59+/D06VNs3rwZ/v7+cHR0xNu3b0u8pszMzBK/TQD49OkTQm/dhLNLW6l25zZtERR4Ld9lrgcFwrmNdP82bdvh1s0QmY2jMCramHm8n5W18ZaJMB03bhyUlJRw9uxZODk5wdjYGB06dMD58+fx6tUrzJ49Gy1btsSLFy8wefJkiEQiiEQiqXWcOXMGlpaWUFNTQ/v27RETEyN1/fbt22FpaQllZWVYWFhg48aNkusiIyMhEolw8OBBtGzZEsrKyti9e3eJjP1rCQkJyM7Ohq6unlS7np4e4uJi810mLi4WenrS/XV19ZCVlYWEhIRiq1UoFW3MPN7Pytp4FWRyq4Xw9u1bnDlzBosXL0alSpWkrtPX18eAAQNw4MABPHnyBDY2Nhg1ahRGjhwp1e/Dhw9YsWIFdu3aBTk5OQwcOBDTpk3Dnj17AADe3t7w9PTE+vXrYWtri9DQUIwcORKqqqoYMmSIZD0zZszAypUrsX37dojF4nzrzcjIQEZGhuRySkqKUHeFlK/fLIgoT9uP+ufXXppVtDHzeMvWeEt9mD558gREBEtLy3yvt7S0xLt375CdnQ15eXmoq6tDX19fqk9mZiY2b94Mc3NzAMD48eOxYMECyfULFy7EypUr0aNHDwCAqakpwsLC4OXlJRWmkyZNkvT5lqVLl2L+/PlFGmtB6OjoQF5ePs87dnx8fJ539lx6evqIjZXu/+ZNPBQUFKCtrV1stQqloo2Zx/tZWRtvmfiY/z0FeTdSUVGRBCkAGBgYID4+HgDw5s0bREdHY/jw4VBTU5P8LVq0CM+ePZNaT6NGjX5Yj4eHB5KTkyV/0dHRRRnWNykpKcHWriEunD8n1X7B/xwcHJvmu0wTB0dc8Jfu73/uLOwaNoKioqKg9RWHijZmHu9nZW68xXYYWyAJCQkkEolo8eLF+V4/cuRIqlKlCuXk5BT4aP7Ro0cpd+ixsbEEgHbv3k1PnjyR+nv+/DkREUVERBAACg0NLXT9xXE0f+ee/aSoqEibt/xFoXfDaPzESaSqqkoPn0bSx0yiae4zqf+AQZL+4Y+fk4qKCk34dTKF3g2jzVv+IkVFRdp74LDMj+LymHm8pXm8hTmaX+rDlIiobdu2VK1aNfrw4YNUe0xMDKmoqNDo0aOJiKhWrVq0YsUKqT4/ClMiomrVqtGCBQu+efulLUw/ZhKtWbuBjE1MSElJiWxt7ejchUuS6wYOGkItfnKS6n/WP4BsbGxJSUmJTGrUoLXrN8n8BcRj5vGW9vEWJkxFRP//ObkUe/LkCZo2bQpLS0ssWrQIpqamePDgAaZPn46MjAwEBQVBS0sLbdu2RaVKlbBx40aIxWLo6OjAx8cHkyZNQlJSkmR9fn5+6N69u2QXwdatWzFx4kQsXboUHTp0QEZGBkJCQvDu3TtMmTIFkZGRMDU1RWhoKGxsbApVe0pKCjQ0NBCXmIzKlSsLeK8wxopbSkoK9LQ1kJz849dvmdhnWqtWLYSEhMDc3Bw///wzzM3NMWrUKLRq1QqBgYHQ0tICACxYsACRkZEwNzdH1apVC7z+ESNGYOvWrfDx8YG1tTWcnJzg4+MDU1PT4hoSY6ycKRNbpmUZb5kyVnaVuy1Txhgr7ThMGWNMABymjDEmAA5TxhgTAIcpY4wJgMOUMcYEwGHKGGMC4DBljDEBcJgyxpgAOEwZY0wAHKaMMSYADlPGGBMAhyljjAmAw5QxxgTAYcoYYwLgMGWMMQFwmDLGmAA4TBljTAAcpowxJgAOU8YYEwCHKWOMCYDDlDHGBKAg6wLKu9xf0k5NSZFxJYyxwsp93ea+jr+Hw7SYpaamAgBqmhrJuBLGWFGlpqZCQ0Pju31EVJDIZUWWk5OD169fQ11dHSKRqMRuNyUlBUZGRoiOjkblypVL7HZlhcdbvslqvESE1NRUGBoaQk7u+3tFecu0mMnJyaF69eoyu/3KlStXiBdbLh5v+SaL8f5oizQXH4BijDEBcJgyxpgAOEzLKbFYDE9PT4jFYlmXUiJ4vOVbWRgvH4BijDEB8JYpY4wJgMOUMcYEwGHKGGMC4DBljDEBcJiyCiE5OVnWJbByjsOUlXt//fUXJk+ejOfPn8u6FJnKycnJ9//lRe7EpODgYISFhZX47XOYVmC5T77yPjsuPj4eISEhWLduXYUK1NzATEtLw6dPnyAnJ4eLFy/i7du3P/yeeVkkEolw6tQptGjRAq9evUJWVlaJ3n75u0fZD0lOC5iaiszMTLx//16qvbzx8PDAL7/8gqtXr+LPP/9ERESErEsqEXJycnj58iXs7e1x9+5d7N+/H87Ozrhx44asSysWb9++xZ07d7Bo0SK4uLhAQaFkTz3CYVrBEBFEIhFOnjyJgQMHomnTphgwYACOHz9eome1KimZmZkAgH79+sHOzg7//PMPVq9ejaioKBlXVjKqV68OfX19dOrUCQMGDMDWrVvRvn37cvfGGRYWBgMDA2zZsgW6uroyqYHDtIIRiUQ4fvw4evXqhebNm2PGjBnQ0dFBt27dZLKfqbgpKipi//79+Omnn5CQkAAlJSVs2bIFK1asKPdbqNnZ2QCA3377DW/evIGGhgYsLCyQmZlZbt44c98U6tatizFjxiAyMhIvXryQzT5hYhXKhw8fqFu3brR8+XIiInr16hWZmJjQqFGjZFxZ8QgPDyddXV3y9vamtLQ0IiJauHAhWVlZ0YQJE+jFixcyrrD4hYWF0alTp6hTp06kr69PZ86coU+fPuXpl52dLYPqiiYnJyff9nHjxpFYLKajR4+WbEFExGFawSQlJZGZmRldvnyZ4uPjqVq1alJBumPHDnr06JEMKyy6P//8k3x9faXagoODSU9Pj0JCQqTaFyxYQEpKSjRp0iR68uRJSZZZ7HKDJj4+nhISEqSuc3FxIX19fTp//rwkUH18fCgxMbHE6yyq3PFduXKFfv/9d/Lw8KDdu3dLrh89ejRVqlSJjh07VqJ18cf8CkYsFqNRo0b43//+h0aNGqFz587YuHEjACAhIQEXLlzAjRs3ytw+tZcvX+LmzZuwtraWas/JyYGioqLkIFtGRgaAzx99TUxMsH//fmzdulWyb7U8EIlEOHr0KDp16gQ7OztMmzYNly5dAgCcPXsW1tbWcHNzg5eXF6ZMmYJhw4YhISFBxlUXnEgkwpEjR9CxY0c8ePAADx8+xKJFi9CrVy8AwKZNmzB06FAMGjQIhw4dKrnCSjS6WYnKfQf/+PEjZWZmStqnTZtGIpGIOnToQB8+fJC0z5w5k+rUqUORkZElXqsQcscSGBhI+/fvl7S3bt2arKyspLa+EhMTqU+fPjRjxowyO95vuX37Nuno6NDSpUvJ09OTGjduTJ07d6bjx49L+vTp04fs7e2pXr16dOvWLRlWW3hPnz4lMzMz2rhxIxERPXz4kKpUqULjx4+X6jdgwAAyNDSk1NTUEqmLw7Scyg3S48ePk7OzM7Vv3548PT0l1/fr14/09PRo/PjxNHfuXHJzcyMNDQ0KDQ2VTcECyMnJoeTkZOrVqxfZ2trSvn37iIgoNjaWrK2tycLCgk6cOEGXLl0iDw8PsrOzo3fv3sm2aIE9fvyYFi5cSPPmzZO0BQQEUNu2baljx45SgfrixYsyOf5r165R/fr1iYgoMjKSjIyM6JdffpFcf+XKFcn/Y2JiSqwuDtNy5ssd85cuXaJKlSrRmDFjaMSIEaSiokI///yz5Pq5c+dSjx49qHHjxjRq1Ci6f/++LEoW3LVr16hfv37UokULOnDgABERvXnzhtq3b081atQgQ0NDMjU1zbMftayLiYmhxo0bk7a2Nk2YMEHquosXL5KLiwt17dpVJgdnhJD73L569Sq1bNmSbty4QUZGRjRq1CjKysoiIqLQ0FAaN24chYeHl3h9HKbl1LNnz+jkyZO0YsUKIiLKysqiCxcukJaWFvXu3VvSLzs7mzIyMiRPxrIm9wX27t07Sk9PlxyRDgwMpD59+lDz5s0lgUpEdP/+fQoLC6PY2FiZ1FscvnwDPXDgAFlbW1PDhg3pxo0bUv0uXbpE9vb21KdPH3r//n1Jl1lgOTk5kjHld9T+2bNnpKenRyKRKM8slEmTJlGrVq3yHHgrCRym5cCCBQvowYMHksuvX78mRUVFUlFRoWXLlkn1vXDhAlWpUoUGDBhQZgP0a8eOHaOGDRvSTz/9RIMHD6aMjAwi+jdQW7RoIfnIX558uU/8y8fSz8+P7OzsaNCgQRQcHCy1zJUrV0r9dLDcfd+5j+Ply5dpxYoVtHHjRnr58iURfd59paioSKNHj6YrV65QSEgITZ48mTQ0NOju3bsyqZvDtIzLyMig9u3bS4VpZmYm7dixg/T19WngwIF5lgkICCCRSEQjRowoyVIFlRskt27dImVlZZo7dy5NnjyZbG1tycrKitLT04noc6D269ePrK2ty+zH2/zkjv/06dPk6upKrVu3pk6dOkmmtfn6+lKjRo1o4MCBdPPmTVmWWig7d+4kfX19ySeHgwcPkpqaGtnY2FCtWrXIzMyMHj58SESfx2hsbEzVqlUjS0tLaty4sUz3+XOYlmFfHokn+rxf7M6dO0RE9OnTJ9q9ezeJxWKaOnVqnmWvXLkieVKWVTdv3qRTp07R77//TkSfd2UEBwdT/fr1ycLCgj5+/EhEn7dshg4dWu6O2h87doxUVFTIw8ODjh07Rra2tmRiYkKPHz8mIqJDhw6Rg4MDdevWrcwcWLx06RI5OjqStbU1RUdH0/Tp08nHx4eysrIoJCSEOnXqRJqampLn7suXL+nevXv06NEjevv2rUxr5zAtoxYvXkwTJ06U7BvKzs6mFi1akJaWFt27d4+IPofLrl27SElJKd9ALcvevHlDlpaWJBKJyMPDQ9Kek5NDISEhVL9+fapXr57kDSc3WMuD3FkLTk5OtHTpUiL6PEHf1NSURo8eLdV3x44d1Lp1a3r16pUsSi2Sq1evUrNmzahmzZrUunVrqTeCJ0+eUMeOHUlDQ6PUbQxwmJZRXl5eJBKJaM6cOZL5k6mpqdSmTRsyMTGR7DfKDVQ1NTWp6SNlXUZGBvn6+lLDhg3Jzs5O6rqcnBy6efMmGRsbk729vaStrFq2bBnt2bNHqu3t27dkZWVF0dHRFBcXR4aGhlIHY76cZ5uSklJitRZW7gHDrx+fO3fuUIcOHUhBQUGyCyu375MnT6hr164kEono2bNnJVvwd3CYlmG7du2SbJnlbqGmpqZSy5Yt8wTq1q1bSU9Pj+Li4mRZsqA+fPhAx48fJzMzM2rTpo3UdTk5ORQaGlqqXmxFNWLECJKTk5P6qmxWVhY5ODjQb7/9RjVq1KDRo0dLvh4aFxdHzs7OkkAt7W8kL168oDNnzhDR532m/fv3J6LPu6KaNGlC5ubmFB8fT0T/juXhw4fUp0+fUrV1ymFaBn354tixY8d3A/XLj/zJyckyqfe/yh1vSEgIeXt709atWyXzCD9+/EjHjx+nOnXqkIuLiyzLLFaTJ08msVhMhw8fpqysLMrOzqaZM2eSpqYmOTs7S/WdNWsWWVtbU1RUlIyqLbisrCzq0KED2dnZ0axZs0heXp42b94suf7atWvUvHlzqlu3rmRDIPf5kN/JWmSJw7Qc+Ouvv/IN1DZt2pC6urrUkf6yJveF4+vrS4aGhtSwYUNq0aIF6ejo0OXLl4no30C1srKixo0by7JcQeXk5Eg+2iYnJ5Obmxtpa2tLTuDx/Plz6tixIzVq1IgmT55MmzdvpmHDhpXJb7LVq1ePRCJRvvv2r169Si1atKD69euX6DeaCovDtIz4ciLz06dPKSgoiK5evSqZApRfoKakpFDnzp3L1FmR8vtIGhAQQDo6OuTl5UVERDdu3CCRSETKysp08uRJIvocqL6+vtS4ceNSP4+yoHLvi8OHD1Pjxo2pR48epKSkRKqqqpIvIjx79ozmzZtHNjY25ODgQH369CnV32TLfXP48OEDpaen06NHjygxMZEcHByoQYMG1KxZMzp+/Hie0wFeu3aN6tatSw4ODpSdnV0qd11wmJYRX26hWVhYUM2aNcnBwYHq168v+fiT+5F/zpw5efYxlQW5L6D4+HgKDg6WTDj39PSkuXPnEtHnqTDGxsY0dOhQGjx4MInFYrp48SIREaWnp5fYSS1KSkhICFWqVIm8vb3p1atX9ODBAxoxYgSJxWKpb3bl5ORQZmZmqfvo+6XcxzcsLIx69OhB9erVIwUFBXJ2dqaxY8dSTk4OtWrVihwcHPIN1LCwMHr+/LksSi8QDtNSKveJlHtCY6LPc/DU1NTIy8uLMjIy6Pjx4yQSiWjVqlWS0MwN1AULFpSpk/3m1vrgwQNq1qwZtW/fnrp3705EnwPl2rVrlJqaSg4ODpKj1leuXCGRSEQikUhyAKO8OXr0KFlZWUnNoczMzKRhw4aRqqoq/f3332Xicc59ft69e5c0NDRo3LhxtHXrVjp8+DB169aNRCIRubm50atXr8jZ2ZkcHR3p77//JiKiGTNm0ODBg2VZfoFwmJZCuS+OkJAQMjc3p4iICCIi+uOPPySnGYuKiiJjY2MaN26cZLncrZK9e/eWqf2kuS+0+/fvk6amJs2aNYtevHiR5+uuISEh1LhxYwoLC5P079OnD02fPl3SVt4cOHCA5OXlJbtuck+leOPGDZKTkyORSFTiJ0Euqvj4eLK1taWZM2fmaV+/fj0pKSnR+PHj6dOnT+Ti4kJ169alpk2bUpUqVejatWsyqrrgOExLmdwgvX37Nqmrq9OkSZMk1w0dOpRGjBhBr169ourVq9OoUaMkQXTo0CFasWJFmf2+fWJiIjVv3jzP2Y6+3Oo6deoUiUQiyQyFOXPmUMeOHaW23sub9+/fU+PGjalv375S52N9/vw5DRw4kKZOnVpm3khu3bpF9erVo3v37kmep7mPb1JSEi1cuJCUlJTo8uXLlJSURKtXr6aFCxfK5AxQRcFhWorkPrHu3LlDKioqNGvWLKnrV61aRd27dydDQ0PJ9+pzcnLo06dPNHbsWJo0aVKer5iWFQ8ePCBzc3MKCAjI92Nr7ji7d+9OIpGIGjduTGpqanT79m0ZVCu83DfF0NBQ8vX1pYMHD0r2D+7atYscHR2pV69e9PLlS4qOjqbZs2dTs2bNytTjvX37dlJWVpZc/np//vPnz0lDQ0Pyra6yhsO0lImKiiIdHR3q06ePVPuWLVuob9++ZG5uTlpaWpKPPampqTRr1iwyMDAoVROYC2vPnj2koKAgeYHlF6hpaWl04sQJOnr0KK1atUryHfTy4vDhw6SpqUmNGzcmJSUlatSoEf3xxx9ERLR7925q0qQJiUQiqlWrFmlra5e5M+RfvnyZlJWV6fDhw9/sY2trK/VprCzhMC1lIiIiqHHjxtS1a1fJGcOXLFlCKioq9ODBA4qOjiZTU1Oys7OjWrVqUYcOHcjAwKDMvbC+dvXq1R++0DZs2FBuJ+bfvXuXqlatSl5eXpSWlkbR0dHk7u5OdnZ2tGrVKiL6vL/05MmT5O/vXyanf0VHR5Ouri517dpVqv7cN863b99S06ZNadeuXbIq8T/hMC2FHj9+TO3bt6euXbvSyJEjSVdXV+podUxMDO3du5c8PDxoz549pXq6SEG9fPlS8kL78uxOX34UnDJlCs2YMaNMTff62reOvO/fv58sLCykfkbk9evXNGnSJHJwcCg3J7P29fUlJSUlGjx4cJ75sHPmzKEaNWqU2bN7cZiWUo8ePSIXFxeqVKmS5Gz5RCT1w3jlja+vL4nFYho0aJDUbIS0tDTy8PAgExOTMvsz1ET/BmlERAStXr2aFi1aRH5+fkT0+eCasbGxJGC+PKmHSCSiU6dOyaZogWVlZdHmzZtJQUGB6tSpQ8OGDaPZs2fTgAEDSEtLq0x/wuIwLcWePn1Kbdu2pQ4dOki+OklUtibiF0Z2drbUC23o0KE0ZswY6tq1K+nq6pbpF9qXBxeNjIyoefPmZGZmRioqKrRt2zZKTEwkHR0dmjZtmtTpAnOnE+V+MaG8CAoKoh49epCVlRU1a9ZMZr/bJCQO01Iu9yN/u3btpH51sTy7fv265BdGmzdvTjNmzCjTB5u+nqUxc+ZMysjIoNu3b5OVlRXVrVuXiD7PKRWJRPTrr7/S9evX6fXr1zRz5kwyMDCg6OhoWQ6hWGRlZX33gGNZIyIiAivVnjx5gilTpiAhIQGrV6+Gg4ODrEsqdjk5OZCTk5N1GYKJjo6GnZ0dWrVqhYMHD0ranZ2dER4ejpCQEBgaGiIgIAADBw6EkpIS5OTkkJmZiaNHj8LOzk6G1RcPIoJIJMrz/7JKQdYFsB+rVasW/vjjD/z2228wNDSUdTkl4ssXVnl4oWVnZ8PU1BQZGRm4evUqmjVrhqVLl+LixYuoX78+3NzckJ2djd69e2P16tVQV1eHmpoazMzMyu1j/uVjWtYfXwDgLdMy5NOnT1BSUpJ1GayInjx5gokTJ0JJSQm6uro4duwYNm/ejObNm+Phw4cIDw/HypUrkZ6eDlNTU1y8eLFcbZ2XdxymjJWgx48fY/z48bhy5QoWLFiAadOmSV2fmpqK+/fvQ1dXF+bm5jKqkhUFhyljJezZs2cYO3Ys5OXlMWvWLDRv3hwAkJWVBQUF3vNWVvFnCMZKmLm5OdavXw8iwqJFi3D16lUA4CAt4zhMGZOBWrVqYe3atVBUVMS0adMQFBQk65LYf8RhypiM5M7SqF69erk9Yl+R8D5TxmSMZ2mUDxymjDEmAP6YzxhjAuAwZYwxAXCYMsaYADhMGWNMABymjDEmAA5TxhgTAIcpK/fmzZsHGxsbyWU3Nze4urqWeB2RkZEQiUS4fft2kZYPCAiASCRCUlKSoHUxYXCYMplwc3ODSCSCSCSCoqIizMzMMG3aNKSlpRX7bf/555/w8fEpUN//GoCs4uAzKzCZad++PbZv347MzExcvnwZI0aMQFpaGjZt2pSnb2ZmJhQVFQW5XQ0NDUHWw9iXeMuUyYxYLIa+vj6MjIzQv39/DBgwAH5+fgD+/Wi+bds2mJmZQSwWg4iQnJyMUaNGQVdXF5UrV0br1q1x584dqfX+/vvv0NPTg7q6OoYPH4709HSp67/+mJ+Tk4Nly5ahZs2aEIvFMDY2xuLFiwEApqamAABbW1uIRCK0bNlSstz27dthaWkJZWVlWFhYYOPGjVK3c+PGDdja2kJZWRmNGjVCaGjoD++TjIwMuLu7w8jICGKxGLVq1cJff/2Vb9/ExET069cP1atXh4qKCqytrbFv3z6pPocPH4a1tTUqVaoEbW1ttGnTRrL1HxAQAHt7e6iqqkJTUxPNmjXDixcvflgjyx9vmbJSo1KlSsjMzJRcfvr0KQ4ePAhfX1/Iy8sDADp16gQtLS38888/0NDQgJeXF5ydnfH48WNoaWnh4MGD8PT0xIYNG9CiRQvs2rULa9euhZmZ2Tdv18PDA97e3li9ejWaN2+OmJgYPHz4EMDnQLS3t8f58+dhZWUl+Q69t7c3PD09sX79etja2iI0NBQjR46EqqoqhgwZgrS0NHTu3BmtW7fG7t27ERERgV9//fWH98HgwYMRGBiItWvXokGDBoiIiEBCQkK+fdPT09GwYUPMmDEDlStXxsmTJzFo0CCYmZmhSZMmiImJQb9+/bB8+XJ0794dqampuHz5MogIWVlZcHV1xciRI7Fv3z58+vQJN27cKBc/HyIzJf0LfowREQ0ZMoS6desmuXz9+nXS1tamPn36EBGRp6cnKSoqUnx8vKSPv78/Va5cmdLT06XWZW5uTl5eXkRE5OjoSKNHj5a6vkmTJtSgQYN8bzslJYXEYjF5e3vnW2dERAQBoNDQUKl2IyMj2rt3r1TbwoULydHRkYiIvLy8SEtLi9LS0iTXb9q0Kd915Xr06BEBoHPnzuV7/cWLFwkAvXv3Lt/riYg6duxIU6dOJSKimzdvEgCKjIzM0y8xMZEAUEBAwDfXxQqHt0yZzJw4cQJqamrIyspCZmYmunXrhnXr1kmuNzExQdWqVSWXb968iffv30NbW1tqPR8/fsSzZ88AAOHh4Rg9erTU9Y6Ojrh48WK+NYSHhyMjIwPOzs4FrvvNmzeIjo7G8OHDMXLkSEl7VlaWZH9seHg4GjRoABUVFak6vuf27duQl5eHk5NTgerIzs7G77//jgMHDuDVq1fIyMhARkYGVFVVAQANGjSAs7MzrK2t0a5dO7Rt2xa9evVClSpVoKWlBTc3N7Rr1w4uLi5o06YN+vTpAwMDgwLfD0wahymTmVatWmHTpk1QVFSEoaFhngNMuaGQKycnBwYGBggICMizLk1NzSLVUKlSpUIvk5OTA+DzR/0mTZpIXZe7O4KKcDK2wtaycuVKrF69GmvWrIG1tTVUVVUxadIkfPr0SVLLuXPncO3aNZw9exbr1q3D7Nmzcf36dZiammL79u2YOHEiTp8+jQMHDmDOnDk4d+5chfgp8eLAB6CYzKiqqqJmzZowMTEp0JF6Ozs7xMbGQkFBATVr1pT609HRAQBYWlrmOWv9985iX6tWLVSqVAn+/v75Xp+7jzQ7O1vSpqenh2rVquH58+d56sg9YFW3bl3cuXMHHz9+LFAdAGBtbY2cnBxcunTpu/1yXb58Gd26dcPAgQPRoEEDmJmZ4cmTJ1J9RCIRmjVrhvnz5yM0NBRKSko4evSo5HpbW1t4eHjg2rVrqFevHvbu3Vug22Z5cZiyMqNNmzZwdHSEq6srzpw5g8jISFy7dg1z5sxBSEgIAODXX3/Ftm3bsG3bNjx+/Bienp548ODBN9eprKyMGTNmwN3dHTt37sSzZ88QFBQkOYKuq6uLSpUq4fTp04iLi0NycjKAz7MNli5dij///BOPHz/GvXv3sH37dqxatQoA0L9/f8jJyWH48OEICwvDP//8gxUrVnx3fDVq1MCQIUMwbNgw+Pn5ISIiAgEBATh48GC+/WvWrCnZ8gwPD8cvv/yC2NhYyfXXr1/HkiVLEBISgqioKBw5cgRv3ryBpaUlIiIi4OHhgcDAQLx48QJnz57F48ePYWlpWfAHhEmT9U5bVjF9fQDqa56enlIHjXKlpKTQhAkTyNDQkBQVFcnIyIgGDBhAUVFRkj6LFy8mHR0dUlNToyFDhpC7u/s3D0AREWVnZ9OiRYvIxMSEFBUVydjYmJYsWSK53tvbm4yMjEhOTo6cnJwk7Xv27CEbGxtSUlKiKlWq0E8//URHjhyRXB8YGEgNGjQgJSUlsrGxIV9f3+8egCIi+vjxI02ePJkMDAxISUmJatasSdu2bSOivAegEhMTqVu3bqSmpka6uro0Z84cGjx4sGRsYWFh1K5dO6patSqJxWKqXbs2rVu3joiIYmNjydXVVXI7JiYmNHfuXMrOzv5mbez7+Ez7jDEmAP6YzxhjAuAwZYwxAXCYMsaYADhMGWNMABymjDEmAA5TxhgTAIcpY4wJgMOUMcYEwGHKGGMC4DBljDEBcJgyxpgAOEwZY0wA/wcyoLom5LxWqQAAAABJRU5ErkJggg==", - "text/plain": [ - "<Figure size 350x300 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAAFjCAYAAACAMejZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUlUlEQVR4nO3dd1gUZ9cG8HtpS1MQkKYIiA1RpIstFuxdY4jGho3YY1fUSOwxsfeOxhaNBYMdEYwFCwpWFAsIKkVQQVGQcr4//HZeV1BBB5aF87uuvXSfeWbmPFvunZ2ZHSRERGCMMfZNVBRdAGOMlQYcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymSuT69esYMGAArK2toampCV1dXTg5OeGPP/7A8+fPi3Td4eHhaNq0KfT09CCRSLB06VLR1yGRSPDbb7+JvtySZN68efD39y/UPFu2bIFEIkFMTEyR1AQAMTExkEgkwk1FRQUVKlSAh4cHTpw4UWTrLQpHjhxRzOuImFJYv349qampkZ2dHa1atYqCg4PpxIkTNG/ePLK2tqauXbsW6fodHByoevXqdOTIEQoNDaX4+HjR1xEaGkpxcXGiL7ck0dHRof79+xdqnqSkJAoNDaWMjIyiKYqIoqOjCQCNGjWKQkND6ezZs7Rx40aysLAgVVVVOn36dJGtW2wjRowgRUQbh6kSOH/+PKmqqlLbtm3zfUNlZmbSwYMHi7QGNTU1GjZsWJGuoywoTJi+efOGcnNzi7ag/ycL0z///FOu/fTp0wSA+vXrVyx1iIHDlH1Sx44dSU1NjWJjYwvUPycnhxYsWEA1a9YkDQ0NqlixIvXt2zfPVl/Tpk3Jzs6OLl26RI0bNyYtLS2ytram+fPnU05ODhER+fn5EYA8NyIiX1/ffF+0snmio6OFtqCgIGratCkZGBiQpqYmWVhYUPfu3Sk9PV3oA4B8fX3llnXjxg3q3Lkz6evrk1QqpXr16tGWLVvk+gQHBxMA2rlzJ02dOpXMzMyoXLly5OHhQXfu3Pni4yUbx7Vr16hHjx5Uvnx5qlChAo0dO5aysrLozp071KZNG9LV1SVLS0tasGCB3Pxv376lcePGUb169YR53d3dyd/fX65ffo9j06ZN5R6z48eP04ABA8jIyIgA0Nu3b/M8nlFRUVSuXDnq0aOH3PKDgoJIRUWFpk+f/sUxf+xTYZqenk4AqE2bNnLt8fHx5O3tTZUqVSJ1dXWysrKi3377jbKysuT6rV69muzt7UlHR4d0dXWpZs2a5OPjI0yXje3UqVM0dOhQMjQ0JAMDA+rWrRs9efIkT51///03ubu7k7a2Nuno6FDr1q3p6tWrwvT+/fvn+zh/+FosKhymJVx2djZpa2tT/fr1CzyPt7c3AaCRI0fSsWPHaO3atVSxYkWysLCgZ8+eCf2aNm1KhoaGVL16dVq7di0FBgbS8OHDCQBt3bqViP73FRMA9ejRg0JDQyk0NJSICh6m0dHRpKmpSa1atSJ/f38KCQmhHTt2UN++fenFixfCfB+H6Z07d6hcuXJkY2NDf/31Fx0+fJh69epFAOQCTRamVlZW1Lt3bzp8+DDt2rWLqlSpQtWrV6fs7OzPPl6ycdSsWZNmz55NgYGBNGnSJOExrFWrFi1fvpwCAwNpwIABBID27dsnzP/y5Uvy8vKibdu20alTp+jYsWM0YcIEUlFRER5Hove7MbS0tKh9+/bC43jr1i25x6xSpUrk7e1NR48epb1791J2dna+H05///03AaBly5YR0ftwMzExoaZNm35xvPn5VJjevHlT+PovEx8fTxYWFmRpaUnr1q2jkydP0uzZs0kqlZKXl5fQb9euXcK8J06coJMnT9LatWtp9OjRQh/Z2KpWrUqjRo2i48eP08aNG6lChQrUvHlzuVrmzp1LEomEBg4cSIcOHaL9+/dTgwYNSEdHR3gc79+/Tz169CAAwmNc1LtIZDhMS7iEhAQCQD179ixQ/8jISAJAw4cPl2u/ePEiAaCpU6cKbU2bNiUAdPHiRbm+tWvXzrMlAoBGjBgh11bQMN27dy8BoIiIiM/W/nGY9uzZk6RSaZ4t8nbt2pG2tja9fPmSiP4Xpu3bt5frt2fPHuFN9TmycSxatEiu3cHBgQDQ/v37hbasrCyqWLEide/e/ZPLy87OpqysLBo0aBA5OjrKTfvU13zZY5bf1+n8wpSIaNiwYaShoUGhoaHUokULMjY2pqdPn352rJ8iC9MFCxZQVlYWZWRkUEREBDVo0IDMzMzk1v3zzz+Trq4uPXr0SG4ZCxcuJABCsI0cOZL09fU/u17Z2D5+vf7xxx8EQNg3HxsbS2pqanKhTkT06tUrMjU1JU9PT6FNUV/z+Wh+KRMcHAwA8PLykmt3c3ODra0tgoKC5NpNTU3h5uYm12Zvb49Hjx6JVpODgwM0NDTg7e2NrVu34uHDhwWa79SpU/Dw8ICFhYVcu5eXF968eYPQ0FC59s6dO8vdt7e3B4ACj6Vjx45y921tbSGRSNCuXTuhTU1NDdWqVcuzzH/++QeNGjWCrq4u1NTUoK6ujk2bNiEyMrJA65b5/vvvC9x3yZIlsLOzQ/PmzRESEoLt27fDzMysUOv72OTJk6Gurg5NTU04ODjg5s2bCAgIgJWVldDn0KFDaN68OczNzZGdnS3cZI/T6dOnAbx/zb18+RK9evXCwYMHkZyc/Mn1fum5O378OLKzs9GvXz+5dWpqaqJp06YICQn5pnGLgcO0hDMyMoK2tjaio6ML1D8lJQUA8n1TmZubC9NlDA0N8/STSqV4+/btV1SbPxsbG5w8eRLGxsYYMWIEbGxsYGNjg2XLln12vpSUlE+OQzb9Qx+PRSqVAkCBx2JgYCB3X0NDA9ra2tDU1MzTnpGRIdzfv38/PD09UalSJWzfvh2hoaG4fPkyBg4cKNevIAoThlKpFD/99BMyMjLg4OCAVq1aFWpd+fnll19w+fJlnD17FgsXLkRWVha6dOki91gnJiYiICAA6urqcjc7OzsAEEKzb9++2Lx5Mx49eoTvv/8exsbGqF+/PgIDA/Os90vPXWJiIgDA1dU1z3p379792aAuLmqKLoB9nqqqKjw8PHD06FE8fvwYlStX/mx/2YsyPj4+T9+nT5/CyMhItNpkIZOZmSm8+AHk+8Ju0qQJmjRpgpycHISFhWHFihUYM2YMTExM0LNnz3yXb2hoiPj4+DztT58+BQBRx/Ittm/fDmtra+zevRsSiURoz8zMLPSyPpz/S27evIkZM2bA1dUVly9fxuLFizFu3LhCr/NDlStXhouLCwCgUaNGMDU1RZ8+feDr64uVK1cCeP+429vbY+7cufkuQ/ZhBwADBgzAgAEDkJ6ejv/++w++vr7o2LEjoqKiYGlpWeC6ZM/13r17CzVfceItUyXg4+MDIsKQIUPw7t27PNOzsrIQEBAAAGjRogWA92/wD12+fBmRkZHw8PAQrS7ZV7/r16/LtctqyY+qqirq16+PVatWAQCuXr36yb4eHh44deqUEJ4yf/31F7S1teHu7v6VlYtLIpFAQ0NDLggTEhJw8ODBPH3F2upPT0/HDz/8ACsrKwQHB2PkyJGYMmUKLl68+M3L/lDv3r3RrFkzbNiwQfjK3bFjR9y8eRM2NjZwcXHJc/swTGV0dHTQrl07TJs2De/evcOtW7cKVUebNm2gpqaGBw8e5LtO2QcAUPhvJGLhLVMl0KBBA6xZswbDhw+Hs7Mzhg0bBjs7O2RlZSE8PBzr169HnTp10KlTJ9SsWRPe3t5YsWIFVFRU0K5dO8TExODXX3+FhYUFxo4dK1pd7du3h4GBAQYNGoRZs2ZBTU0NW7ZsQVxcnFy/tWvX4tSpU+jQoQOqVKmCjIwMbN68GQDQsmXLTy7f19dX2D83Y8YMGBgYYMeOHTh8+DD++OMP6OnpiTaWb9GxY0fs378fw4cPR48ePRAXF4fZs2fDzMwM9+7dk+tbt25dhISEICAgAGZmZihXrhxq1qxZ6HUOHToUsbGxuHTpEnR0dLBo0SKEhoaiZ8+eCA8Ph76+PoD3v54aMGAA/Pz88uxHL6gFCxagfv36mD17NjZu3IhZs2YhMDAQDRs2xOjRo1GzZk1kZGQgJiYGR44cwdq1a1G5cmUMGTIEWlpaaNSoEczMzJCQkID58+dDT08Prq6uharBysoKs2bNwrRp0/Dw4UO0bdsWFSpUQGJiovAYzJw5E8D7x1hWd7t27aCqqgp7e3toaGh81fgLrNgPebGvFhERQf3796cqVaqQhoYG6ejokKOjI82YMYOSkpKEfrLzTGvUqEHq6upkZGREffr0+eR5ph/r378/WVpayrUhn6P5RESXLl2ihg0bko6ODlWqVIl8fX1p48aNckefQ0NDqVu3bmRpaUlSqZQMDQ2padOm9O+//+ZZR37nmXbq1In09PRIQ0OD6tWrR35+fnJ9ZEfz//nnH7l22RHqj/t/THY0/8PTxmSPg46OTp7++T1uv//+O1lZWZFUKiVbW1vasGFDvmc7REREUKNGjUhbWzvf80wvX76cZ30fH83fsGFDvuO6f/8+lS9fXu7XcCtWrCAAdOzYsc8+Bp86NUrmhx9+IDU1Nbp//z4RET179oxGjx5N1tbWpK6uTgYGBuTs7EzTpk2j169fExHR1q1bqXnz5mRiYkIaGhpkbm5Onp6edP369Txj+3jcsuc0ODhYrt3f35+aN29O5cuXJ6lUSpaWltSjRw86efKk0CczM5MGDx5MFStWJIlEUmznmUqI+K+TMlZaeXp6Ijo6GpcvX1Z0KaUef81nrJQiIuGUKVb0eMuUMcZEwEfzGWNMBBymjDEmAg5TxhgTAYcpY4yJgI/mF7Hc3Fw8ffoU5cqVK9RPBRljikdEePXqFczNzaGi8vltTw7TIvb06dM8Vz1ijCmXuLi4L14Xg8O0iJUrVw4AoNVhESTqWgqupnhEb+qt6BJYEXvy/I2iSygWr1+9wndONYT38edwmBYx2Vd7ibpWmQnT8uXLK7oEVsRSs8pWdBRkFx0fgGKMMRFwmDLGmAg4TBljTAQcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmAg5TxhgTAYcpY4yJgMOUMcZEwGHKGGMi4DBljDERcJgyxpgIOEwZY0wEHKaMMSYCDlPGGBMBh6mSMqugjY2jmuDRpp5I2tYH5//oDAdrw8/O09jWBGd+74jk7X1xY8X3GNSqZjFVK451a1ajVnVr6OtqoqGbM86ePfPZ/mf+O42Gbs7Q19WEbY2q2LBubTFVKo6yNN7LoWfxc98eaFzPBjVMdRB4NOCL81w6fwbdWjdCHUsDtHCzw66tG4uh0k8rtWEqkUjg7+8PAIiJiYFEIkFERIRCaxKLvo4GTs5uj6zsXHSfdxIu4/wx9a/LSH3z7pPzWFbUxT6fljgfmYRGk//FwgPX8ecAN3Spb1mMlX+9f/bsxsTxYzB5yjRcuByOho2boGvHdoiNjc23f0x0NLp2ao+GjZvgwuVwTJo8FePHjsaB/fuKufKvU9bG++ZNOmrZ1cWv8xYXqH/coxgM6d0dLvUbwj/wPIb+MhFzpk/A8UP+RVvoZ0iIiBS29i/w8vLC1q1b87Tfu3cP1apV++y8EokEBw4cQNeuXZGTk4Nnz57ByMgIamrF+/e+09LSoKenB+2uqyFR1xJlmTN/ckaDmsZo7Xu0wPPM6u2MDs4WcB7nL7QtG9IAdSwrwGP6EVHqkkne6SXq8gCgScP6cHR0wvJVa4Q2h7q26NS5K2bPnZ+n/zSfyTh86F9E3IgU2kYNH4rr16/h9NlQ0esTW0kfb1zKG9GXKVPDVAer/P5Gq3adPtnnz9nTEXTiCI6duSq0zZg0Gndu3cCew8Gi1fL6VRqcqpshNTUV5cuX/2zfEr9l2rZtW8THx8vdrK2tC7UMVVVVmJqaFnuQFpUOLha4+jAZ28Y2Q/SGH3FuQSd4eVT/7Dz1q1dE0PWncm0nI57AqaoR1FQlRVjtt3v37h3Cr16BR6vWcu0eLVvjQuj5fOe5eCEUHi3l+7ds3QZXr4QhKyuryGoVQ1kb79cIv3IJjZu2kGtr3Kwlbl67qrDxlvgwlUqlMDU1lbupqqoiICAAzs7O0NTURNWqVTFz5kxkZ2fnu4yPv+aHhIRAIpEgKCgILi4u0NbWRsOGDXH37l25+QqzjuJkZVwOg1vVwv2ENHSZG4hNgXfx54D66PWdzSfnMdbXQlLqW7m2pNS3UFdTgWE5zaIu+ZskJycjJycHxsYmcu0mJiZITEzId57ExASYmMj3NzY2QXZ2NpKTk4usVjGUtfF+jeSkRBhWlB+vUUVjZGdn48VzxYxXKTfVjh8/jj59+mD58uVo0qQJHjx4AG9vbwCAr69vgZczbdo0LFq0CBUrVsTQoUMxcOBAnDt37pvWkZmZiczMTOF+Wlra1wzxs1RUgKsPUjBz1/uvONdjnsPWQh+DW9fErv8efHK+j3foSCSSfNtLKlm9MkSUp+1L/fNrL6nK2ngL6+NhKXq8JX7L9NChQ9DV1RVuP/zwA+bOnYspU6agf//+qFq1Klq1aoXZs2dj3bp1hVr23Llz0bRpU9SuXRtTpkzB+fPnkZGRIUz7mnXMnz8fenp6ws3CwuKrx/4pCS/e4s7jl3Jtdx+nwsJI55PzJL18CxN9+X22FctrIis7F89fZ4heo5iMjIygqqqaZ6ssKSkpz9abjImJKRIS5Ps/e5YENTU1GBp+/qwHRStr4/0aRsYmSE5KlGtLSX4GNTU16FdQzHhLfJg2b94cERERwm358uW4cuUKZs2aJReyQ4YMQXx8PN68KfiOcXt7e+H/ZmZmAN6/YAF89Tp8fHyQmpoq3OLi4r5y5J924W4SapjrybVVMy+P2Gfpn5zn4r1naGFvLtfmUc8cVx8mIzunZG+aamhowNHJGadOBsq1nwoKhHuDhvnOU9+9AU4FyfcPCjwBJ2cXqKurF1mtYihr4/0ajs5uOHda/kDTuZAg1KnnpLDxlviv+To6OnmO3Ofm5mLmzJno3r17nv6amgXf//fhgy77apCbm/tN65BKpZBKpQWu4WusPHwLQbM7YEK3uth/PgbO1YwwwKMGRq3/31Hb33o5wdxAG96rzgIANp24i5/b1ML8fq7YEhQFtxoV0a9FdQxY9l+R1iqW0WPGYZBXXzg5u6C+ewNs2rgecbGxGOw9FADw6zQfPH3yBJu2/AUAGOI9FGtXr8SkCeMwcNAQXLwQii1+m7B1+y5FDqPAytp409Nf41H0/3ZRPY6Nwe2b16CvbwDzyhZYOHcGEuOf4s+V788l7dlvMLZvXod5vpPh2XsAIsIuYu+urVi8ZouCRqAEYZofJycn3L1794unR5X0dXytqw9S0GvhKcz8yRlTvnfAo6RXmLz1EvacfSj0Ma2gDQsjXeH+o2ev8f38k/i9vxu829RC/Is3mOh3CQcvPlLEEArtB88f8TwlBfPmzkJCfDzs7OrAP+AILC3fnyebEB+PuLj/nYNpZW0N/4AjmDR+LNatWQUzc3MsWrIc3bp/r6ghFEpZG+/NiKvo+3074f583ykAgG6evbFg+Xo8S0xA/JPHwnQLSyts2LEf83wnY4ffepiYmGH6nIVo07FrcZcuKPHnmb58+VI4+V7m+PHj6NixI6ZNm4YffvgBKioquH79Om7cuIE5c+YAkD/PNCYmBtbW1ggPD4eDgwNCQkLQvHlzvHjxAvr6+gCAiIgIODo6Ijo6GlZWVgVaR0EUxXmmJV1RnGfKSpaiPM+0JClV55nmp02bNjh06BACAwPh6uoKd3d3LF68WPjUVpZ1MMZKjxK9ZVoa8JYpK414yzQvpdwyZYyxkobDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmAg5TxhgTAYcpY4yJgMOUMcZEwGHKGGMi4DBljDERcJgyxpgIOEwZY0wEHKaMMSYCDlPGGBMBhyljjImAw5QxxkTAYcoYYyLgMGWMMRFwmDLGmAg4TBljTAQcpowxJgI1RRdQVkRv6v3Fv7tdWlRwHanoEorVi8srFV0CKwF4y5QxxkTAYcoYYyLgMGWMMRFwmDLGmAg4TBljTAQcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmAg5TxhgTAYcpY4yJgMOUMcZEwGHKGGMi4DBljDERcJgyxpgIOEwZY0wEHKaMMSYCDlPGGBMBhyljjImAw/QDXl5e6Nq162f7NGvWDGPGjCmWej5n3ZrVqFXdGvq6mmjo5oyzZ898tv+Z/06joZsz9HU1YVujKjasW1tMlX67O4dn4m34yjy3JVM8PzlPY+dqOLdjEl5cWILbAb9hcI/GxVixOMrSc3w59Cx+7tsDjevZoIapDgKPBnxxnkvnz6Bb60aoY2mAFm522LV1YzFU+mlKE6YJCQkYNWoUqlatCqlUCgsLC3Tq1AlBQUGirWPZsmXYsmWLaMsrKv/s2Y2J48dg8pRpuHA5HA0bN0HXju0QGxubb/+Y6Gh07dQeDRs3wYXL4Zg0eSrGjx2NA/v3FXPlX6dxnz9h1dJHuLUfugIAsD8wPN/+luaG8F8xDOfDH8C91+/4Y/NxLJrUA109HIqx6m9T1p7jN2/SUcuuLn6dt7hA/eMexWBI7+5wqd8Q/oHnMfSXiZgzfQKOH/Iv2kI/Q0JEpLC1F1BMTAwaNWoEfX19zJw5E/b29sjKysLx48exfv163Llzp9hqadasGRwcHLB06dIC9U9LS4Oenh4SU1JRvnx5UWpo0rA+HB2dsHzVGqHNoa4tOnXuitlz5+fpP81nMg4f+hcRNyKFtlHDh+L69Ws4fTZUlJo+VMF1pOjL/NCfE75HuyZ1UKfLzHynzxndBR2a1oXj93OEtuXTesK+RiU0679I9HpeXF4p+jJL+nMcl/JG9GXK1DDVwSq/v9GqXadP9vlz9nQEnTiCY2euCm0zJo3GnVs3sOdwsGi1vH6VBqfqZkhN/fL7t9BbplevXsWNGzeE+wcPHkTXrl0xdepUvHv3rvDVFsDw4cMhkUhw6dIl9OjRAzVq1ICdnR3GjRuHCxcuAAAWL16MunXrQkdHBxYWFhg+fDhev34tLGPLli3Q19fH8ePHYWtrC11dXbRt2xbx8fFCn4+/5qenp6Nfv37Q1dWFmZkZFi0S/41YWO/evUP41SvwaNVart2jZWtcCD2f7zwXL4TCo6V8/5at2+DqlTBkZWUVWa1FQV1NFT3bu2LrwU8HRP161gi6ECnXdvL8bTjZVoGaWsn/MlbWn+OCCL9yCY2btpBra9ysJW5eu6qw8Rb6lfXzzz8jKioKAPDw4UP07NkT2tra+OeffzBp0iTRC3z+/DmOHTuGESNGQEdHJ890fX19AICKigqWL1+OmzdvYuvWrTh16lSeet68eYOFCxdi27Zt+O+//xAbG4sJEyZ8ct0TJ05EcHAwDhw4gBMnTiAkJARXrlwRdXyFlZycjJycHBgbm8i1m5iYIDExId95EhMTYGIi39/Y2ATZ2dlITk4uslqLQufm9tAvp4XtARc/2cfEsDwSU17JtSU9fwV1dVUY6esWdYnfrKw/xwWRnJQIw4ry4zWqaIzs7Gy8eK6Y8aoVdoaoqCg4ODgAAP755x9899132LlzJ86dO4eePXsW+OtvQd2/fx9EhFq1an2234cHhaytrTF79mwMGzYMq1evFtqzsrKwdu1a2NjYAABGjhyJWbNm5bu8169fY9OmTfjrr7/QqlUrAMDWrVtRuXLlz9aRmZmJzMxM4X5aWtpn+38tiUQid5+I8rR9qX9+7SVd/64NcfzcbcQ/S/1sv4/3XUnwfpxKsFdLUFaf44L6eFiKHm+ht0yJCLm5uQCAkydPon379gAACwuLIvkELOgDFBwcjFatWqFSpUooV64c+vXrh5SUFKSnpwt9tLW1hSAFADMzMyQlJeW7vAcPHuDdu3do0KCB0GZgYICaNWt+to758+dDT09PuFlYWHxxjIVhZGQEVVXVPFsoSUlJebZkZExMTJGQIN//2bMkqKmpwdDQUNT6ilIVswpoUb8mtvjn/1VXJjElDaaG5eTaKhroIisrBymp6Z+Yq+Qoy89xQRkZmyA5KVGuLSX5GdTU1KBfQTHjLXSYuri4YM6cOdi2bRtOnz6NDh06AACio6PzfM0QQ/Xq1SGRSBAZGfnJPo8ePUL79u1Rp04d7Nu3D1euXMGqVasAQG7/ibq6utx8Eonkk1sqX7sF4+Pjg9TUVOEWFxf3Vcv5FA0NDTg6OePUyUC59lNBgXBv0DDfeeq7N8CpIPn+QYEn4OTskucxKcn6dm6ApOevcPTMrc/2u3gtGi3c5b/JeDSwxdXIWGRn5xZliaIoy89xQTk6u+HcafkDTedCglCnnpPCxlvoMF26dCmuXr2KkSNHYtq0aahWrRoAYO/evWjYMP8n+lsYGBigTZs2WLVqldxWpszLly8RFhaG7OxsLFq0CO7u7qhRowaePn36TeutVq0a1NXVhQNcAPDixQthf/GnSKVSlC9fXu4mttFjxsFv80Zs9duMO5GRmDh+LOJiYzHYeygA4NdpPhjk1U/oP8R7KGIfPcKkCeNwJzISW/02Y4vfJowZ9+n9xSWNRCJBvy7u2HHoInJy5ANx1qjO2Di7r3B/w96zqGJmgAXju6OmtQn6dXGHV9cGWPqXeKfRFbWy9hynp7/G7ZvXcPvmNQDA49gY3L55DU8fv98YWTh3BiaOHCz079lvMJ4+jsU838m4H3UHe3duxd5dWzFo2C8KqR/4in2m9vb2ckfzZf7880+oqqqKUtTHVq9ejYYNG8LNzQ2zZs2Cvb09srOzERgYiDVr1mDXrl3Izs7GihUr0KlTJ5w7dw5r137bCcu6uroYNGgQJk6cCENDQ5iYmGDatGlQUVH80eAfPH/E85QUzJs7Cwnx8bCzqwP/gCOwtLQEACTExyMu7n/nI1pZW8M/4AgmjR+LdWtWwczcHIuWLEe37t8ragiF1qJ+TVQxM8BW/wt5ppkalYeFqYFw/9HTFHQdtQZ/jP8eP3s2QfyzVIz/Yy/8gyKKseJvU9ae45sRV9H3+3bC/fm+UwAA3Tx7Y8Hy9XiWmID4J4+F6RaWVtiwYz/m+U7GDr/1MDExw/Q5C9GmY9fiLl1Q6PNM4+LiIJFIhAMxly5dws6dO1G7dm14e3sXSZEAEB8fj7lz5+LQoUOIj49HxYoV4ezsjLFjx6JZs2ZYsmQJ/vzzT7x8+RLfffcdevfujX79+uHFixfQ19fHli1bMGbMGLx8+VJYpr+/P7p16yZ8pffy8sLLly/h7+8P4P1BqGHDhmH//v0oV64cxo8fj8OHDyv8PNOSrqjPMy1piuI805KuKM8zLUkKc55pocO0SZMm8Pb2Rt++fZGQkICaNWvCzs4OUVFRGD16NGbMmPFNxZc2HKalH4dp6VWkJ+3fvHkTbm5uAIA9e/agTp06OH/+PHbu3KkUP8VkjLGiUOgwzcrKglQqBfD+1KjOnTsDAGrVqiX3ayLGGCtLCh2mdnZ2WLt2Lc6cOYPAwEC0bdsWAPD06dNSeT4bY4wVRKHDdMGCBVi3bh2aNWuGXr16oV69egCAf//9V/j6zxhjZU2hT41q1qwZkpOTkZaWhgoVKgjt3t7e0NbWFrU4xhhTFoUOUwBQVVWVC1IAsLKyEqMexhhTSl8Vpnv37sWePXsQGxub57J7V69e/cRcjDFWehV6n+ny5csxYMAAGBsbIzw8HG5ubjA0NMTDhw/Rrl27Ly+AMcZKoUKH6erVq7F+/XqsXLkSGhoamDRpEgIDAzF69Gikpn7+smiMMVZaFTpMY2NjhQuaaGlp4dWr9xfh7du3L3bt2iVudYwxpiQKHaampqZISUkBAFhaWgpXVYqOjlaqC+8yxpiYCh2mLVq0QEDA+z/DOmjQIIwdOxatWrXCjz/+iG7duoleIGOMKYNCH81fv369cKX9oUOHwsDAAGfPnkWnTp0wdOhQ0QtkjDFlUOgwVVFRkbump6enJzw9PUUtijHGlE2BwvT69esFXqC9vf1XF8MYY8qqQGHq4ODw2b+XJCORSJCTkyNKYYwxpkwKFKbR0dFFXQdjjCm1AoWp7O/OMMYYy1+hT42aP38+Nm/enKd98+bNWLBggShFMcaYsil0mK5btw61atXK0y67aDRjjJVFhQ7ThIQEmJmZ5WmvWLEi/9kSxliZVegwtbCwwLlz5/K0nzt3Dubm5qIUxRhjyqbQJ+0PHjwYY8aMQVZWFlq0aAEACAoKwqRJkzB+/HjRC2SMMWVQ6DCdNGkSnj9/juHDhwsXhtbU1MTkyZPh4+MjeoFM+ZS1vyN/5t4zRZdQ7NaFxiq6hGKR9fZ1gfsWOkwlEgkWLFiAX3/9FZGRkdDS0kL16tWFP//MGGNl0Vf92RIA0NXVhaurq5i1MMaY0ir0ASjGGGN5cZgyxpgIOEwZY0wEHKaMMSaCrwrTbdu2oVGjRjA3N8ejR48AAEuXLsXBgwdFLY4xxpRFocN0zZo1GDduHNq3b4+XL18K1y/V19fH0qVLxa6PMcaUQqHDdMWKFdiwYQOmTZsGVVVVod3FxQU3btwQtTjGGFMWhQ7T6OhoODo65mmXSqVIT08XpSjGGFM2hQ5Ta2trRERE5Gk/evQoateuLUZNjDGmdAr9C6iJEydixIgRyMjIABHh0qVL2LVrF+bPn4+NGzcWRY2MMVbiFTpMBwwYgOzsbEyaNAlv3rzBTz/9hEqVKmHZsmXo2bNnUdTIGGMl3lf9Nn/IkCEYMmQIkpOTkZubC2NjY7HrYowxpfLVFzoBACMjI7HqYIwxpVboMLW2toZEIvnk9IcPH35TQYwxpowKHaZjxoyRu5+VlYXw8HAcO3YMEydOFKsuxhhTKoUO019++SXf9lWrViEsLOybC2KMMWUk2oVO2rVrh3379om1OMYYUyqihenevXthYGAg1uIYY0ypFPprvqOjo9wBKCJCQkICnj17htWrV4taHGOMKYtCh2nXrl3l7quoqKBixYpo1qwZatWqJVZdjDGmVAoVptnZ2bCyskKbNm1gampaVDUxxpjSKdQ+UzU1NQwbNgyZmZlFVQ9jjCmlQh+Aql+/PsLDw4uiFlHExMRAIpHke2Wr0mTdmtWoVd0a+rqaaOjmjLNnz3y2/5n/TqOhmzP0dTVhW6MqNqxbW0yViqesjHnX+mUY6dkaXVys8UPj2vAd2Q9x0fe/ON/1y+cxvEdLdHCwQL/WLjj095aiL7YIdLM3xd6BzvCqX/mz/Wqb6mJB51rY2c8Rq36og9Y1FfuLzEKH6fDhwzF+/HisXLkSoaGhuH79utytMLy8vCCRSCCRSKCmpoYqVapg2LBhePHiRWHLKnISiQT+/v6KLgMA8M+e3Zg4fgwmT5mGC5fD0bBxE3Tt2A6xsbH59o+JjkbXTu3RsHETXLgcjkmTp2L82NE4sF95TmUrS2O+EXYenXsNxLJdR/H7xj3IzcmBz2BPvH3z6esFxz9+hGlDf0JdZ3es2ReEXt5jsHreNJw5EVCMlX87GyNttKxphJjnbz7bz1hXA1NbVUNk4mtMPBiJ/dfiMcDdAvUt9Yun0HxIiIgK0nHgwIFYunQp9PX18y5EIgERQSKRCH/GpCC8vLyQmJgIPz8/ZGdn4/bt2xg4cCCaNGmCXbt2FXg5H4qJiYG1tTXCw8Ph4ODwVcvIj0QiwYEDB/IcgPuStLQ06OnpITElFeXLlxelliYN68PR0QnLV60R2hzq2qJT566YPXd+nv7TfCbj8KF/EXEjUmgbNXworl+/htNnQ0WpqaiV5DGfufdM1OV97OXzZHg2ro2Ffx2EvUuDfPtsXDQLocHHsenQOaFt2W8T8PDuLSzbdVT0mtaF5v8h9i001VTwRxdbbAiNRY96Zoh+/gZbLj7Ot28fl0pwqaKHMftvC23eDavA0kAL0w7dFa2mrLev8e/IZkhN/fL7t8Bbplu3bkVGRgaio6Pz3B4+fCj8W1hSqRSmpqaoXLkyWrdujR9//BEnTpwAAOTm5mLWrFmoXLkypFIpHBwccOzYMbn5L126BEdHR2hqasLFxSXfXRC3b99G+/btoaurCxMTE/Tt2xfJycnC9GbNmmH06NGYNGkSDAwMYGpqit9++02YbmVlBQDo1q0bJBKJcF8R3r17h/CrV+DRqrVcu0fL1rgQej7feS5eCIVHS/n+LVu3wdUrYcjKyiqyWsVSFsf8ofRXaQCAcnr6n+xzOyIMzg2bybU5N26OqFvXkK0k4x3coAquxqXixtNXX+xbw1gH156kybVFPEmDjZEOVD996ZAiVeAwlW3AWlpafvb2LR4+fIhjx45BXV0dALBs2TIsWrQICxcuxPXr19GmTRt07twZ9+7dAwCkp6ejY8eOqFmzJq5cuYLffvsNEyZMkFtmfHw8mjZtCgcHB4SFheHYsWNITEyEp6enXL+tW7dCR0cHFy9exB9//IFZs2YhMDAQAHD58mUAgJ+fH+Lj44X7ipCcnIycnBwYG5vItZuYmCAxMSHfeRITE2BiIt/f2NgE2dnZch8qJVVZHLMMEWHdH76o41Qf1tVtP9nvRXISKhhWlGurYFgROdnZSH35vKjL/GaNrCvA2lAbO648KVB/fS11pL7NlmtLfZsFNRUJyml+08Xwvlqh1vq5q0V9rUOHDkFXVxc5OTnIyMgAACxevBgAsHDhQkyePFm46PSCBQsQHByMpUuXYtWqVdixYwdycnKwefNmaGtrw87ODo8fP8awYcOE5a9ZswZOTk6YN2+e0LZ582ZYWFggKioKNWrUAADY29vD19cXAFC9enWsXLkSQUFBaNWqFSpWfP8i1dfX/+IpYZmZmXJnO6SlpX2m99f7+LmQ7WYpTP/82kuysjjmlXOmIPrubSzeXoB9nx+PSzbeIqhLTIY66hjgboHZx+8hK6dAex0BAAXvWTwKFaY1atT44gvx+fPCfQo2b94ca9aswZs3b7Bx40ZERUVh1KhRSEtLw9OnT9GoUSO5/o0aNcK1a9cAAJGRkahXrx60tbWF6Q0ayO9TunLlCoKDg6Grq5tn3Q8ePJAL0w+ZmZkhKSmpUGMBgPnz52PmzJmFnq+gjIyMoKqqmmeLLCkpKc+Wm4yJiSkSEuT7P3uWBDU1NRgaGhZZrWIpi2MGgFVzfBAafByL/jqIiqbmn+1bwcgYL5LlX68vnidDVU0N5fVL9s+8qxpqQ19LHX90/t+Wt6qKBLamumhna4xeW68i96PkfPk2C/pa8vGlp6WO7FzCqwz5LdbiUqgwnTlzJvT09EQtQEdHB9WqVQMALF++HM2bN8fMmTOFy/l9bmukIMfOcnNz0alTJyxYsCDPNDMzM+H/sl0LMhKJBLm5uYUbDAAfHx+MGzdOuJ+WlgYLC4tCL+dTNDQ04OjkjFMnA9Glazeh/VRQIDp26pLvPPXdG+DIYfktm6DAE3Bydskz7pKorI2ZiLBqrg/OnTyChVv8YVb5y7vPaju44ELwCbm2q+dCUMOuHtRK+HhvPH2FsftvybWNaGKFJ6kZ8L+ekCdIASAqKR3OFvJZVM+8PB4kp6MQG7eiKlSY9uzZs8j/RImvry/atWuHYcOGwdzcHGfPnsV3330nTD9//jzc3NwAALVr18a2bdvw9u1baGlpAQAuXLggtzwnJyfs27cPVlZWUFP7+n0p6urqBTpTQSqVQiqVfvV6CmL0mHEY5NUXTs4uqO/eAJs2rkdcbCwGew8FAPw6zQdPnzzBpi1/AQCGeA/F2tUrMWnCOAwcNAQXL4Rii98mbN3+dWdMKEJZGvOK2ZMRfHg/Zq78C1o6Onj+LBEAoFOuPKSa71/nmxbPQUpSPCb9vgoA0OHH/ji4czPWLvgV7Xv0xe2IMBzbtxM+C0v+ubUZ2bmIe5kh15aZnYtXmdlC+0/O5jDU0cCK/2IAACfuPENb24ro71YZJ+8mo6axDlrUMMTSkOjiLl9Q4HQprv1MzZo1g52dHebNm4eJEyfC19cXNjY2cHBwgJ+fHyIiIrBjxw4AwE8//YRp06Zh0KBBmD59OmJiYrBw4UK55Y0YMQIbNmxAr169MHHiRBgZGeH+/fv4+++/sWHDBqiqqhaoLisrKwQFBaFRo0aQSqWoUKGC6GMvqB88f8TzlBTMmzsLCfHxsLOrA/+AI8IBwIT4eMTF/e/UFStra/gHHMGk8WOxbs0qmJmbY9GS5ejW/XtFDaHQytKYZSfbT+jfVa59wtzlaN3t/fGD58mJSIr/38Eas8qWmLt2J9b+/isCdvrBwNgUw6fORZPWnYqr7CJVQVsdRjoawv2k1+8wL/A+vNws0Na2Ip6/yYLfhThcfPRSYTUW+DxTFRUVJCQkiLpl6uXlhZcvX+Y5GX7nzp0YMGAAoqKisHXrVqxfvx5JSUmoXbs2fv/9d7Rt21boe+HCBQwdOhSRkZGoXbs2fv31V3z//fdy55neu3cPkydPRnBwMDIzM2FpaYm2bdti8eLFkEgkaNasGRwcHLB06VJhuV27doW+vj62bNkCAAgICMC4ceMQExODSpUqISYmpkBjLIrzTFnJUtTnmZZERXGeaUlUmPNMCxym7OtwmJZ+HKalV5GctM8YY+zTOEwZY0wEHKaMMSYCDlPGGBMBhyljjImAw5QxxkTAYcoYYyLgMGWMMRFwmDLGmAg4TBljTAQcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmAg5TxhgTAYcpY4yJgMOUMcZEwGHKGGMi4DBljDERSIiIFF1EaZaWlgY9PT0kpqSifPnyii6HMVYIaWlpMDHUQ2rql9+/vGXKGGMi4DBljDERcJgyxpgIOEwZY0wEHKaMMSYCDlPGGBMBhyljjImAw5QxxkTAYcoYYyLgMGWMMRFwmDLGmAg4TBljTAQcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmAg5TxhgTAYcpY4yJgMNUSa1bsxq1qltDX1cTDd2ccfbsmc/2P/PfaTR0c4a+riZsa1TFhnVri6lS8ZS1MfN4lWu8pT5Mt2zZAn19fUWXIap/9uzGxPFjMHnKNFy4HI6GjZuga8d2iI2Nzbd/THQ0unZqj4aNm+DC5XBMmjwV48eOxoH9+4q58q9X1sbM41XC8ZKSiI2NpYEDB5KZmRmpq6tTlSpVaPTo0ZScnCz0sbS0pCVLlsjN5+fnR3p6esVb7AdSU1MJACWmpNLbLBLl5uLqRkO8h8q11axViyZMmpJv/3ETJlHNWrXk2gYP+Znc6ruLVlNR38ramHm8JWO8iSnv37+pqalffK8rxZbpw4cP4eLigqioKOzatQv379/H2rVrERQUhAYNGuD58+fFXlNWVlaxrxMA3r17h/CrV+DRqrVcu0fL1rgQej7feS5eCIVHS/n+LVu3wdUrYQobR2GUtTHzeN9TtvEqRZiOGDECGhoaOHHiBJo2bYoqVaqgXbt2OHnyJJ48eYJp06ahWbNmePToEcaOHQuJRAKJRCK3jOPHj8PW1ha6urpo27Yt4uPj5ab7+fnB1tYWmpqaqFWrFlavXi1Mi4mJgUQiwZ49e9CsWTNoampi+/btxTL2jyUnJyMnJwfGxiZy7SYmJkhMTMh3nsTEBJiYyPc3NjZBdnY2kpOTi6xWsZS1MfN431O28aopZK2F8Pz5cxw/fhxz586FlpaW3DRTU1P07t0bu3fvxr179+Dg4ABvb28MGTJErt+bN2+wcOFCbNu2DSoqKujTpw8mTJiAHTt2AAA2bNgAX19frFy5Eo6OjggPD8eQIUOgo6OD/v37C8uZPHkyFi1aBD8/P0il0nzrzczMRGZmpnA/LS1NrIdCzscfFkSUp+1L/fNrL8nK2ph5vMo13hIfpvfu3QMRwdbWNt/ptra2ePHiBXJycqCqqopy5crB1NRUrk9WVhbWrl0LGxsbAMDIkSMxa9YsYfrs2bOxaNEidO/eHQBgbW2N27dvY926dXJhOmbMGKHPp8yfPx8zZ878qrEWhJGREVRVVfN8YiclJeX5ZJcxMTFFQoJ8/2fPkqCmpgZDQ8Miq1UsZW3MPN73lG28SvE1/3MK8mmkra0tBCkAmJmZISkpCQDw7NkzxMXFYdCgQdDV1RVuc+bMwYMHD+SW4+Li8sV6fHx8kJqaKtzi4uK+ZlifpKGhAUcnZ5w6GSjXfiooEO4NGuY7T333BjgVJN8/KPAEnJxdoK6uLmp9RaGsjZnH+57SjbfIDmOLJDk5mSQSCc2dOzff6UOGDKEKFSpQbm5ugY/mHzhwgGRDT0hIIAC0fft2unfvntzt4cOHREQUHR1NACg8PLzQ9RfF0fy/dvxN6urqtHb9Jgq/fptGjh5DOjo6dOd+DL3NIpowaQr91Luv0D8y6iFpa2vTqF/GUvj127R2/SZSV1ennbv3KvwoLo+Zx1uSx1uYo/klPkyJiFq3bk2VKlWiN2/eyLXHx8eTtrY2DR06lIiIqlevTgsXLpTr86UwJSKqVKkSzZo165PrL2lh+jaLaOnyVVTF0pI0NDTI0dGJAk+dFqb16dufmnzXVK7/iaAQcnBwJA0NDbK0sqLlK9co/A3EY+bxlvTxFiZMJUT//z25BLt37x4aNmwIW1tbzJkzB9bW1rh16xYmTpyIzMxMXLhwAQYGBmjdujW0tLSwevVqSKVSGBkZYcuWLRgzZgxevnwpLM/f3x/dunUTdhFs3LgRo0ePxvz589GuXTtkZmYiLCwML168wLhx4xATEwNra2uEh4fDwcGhULWnpaVBT08PiSmpKF++vIiPCmOsqKWlpcHEUA+pqV9+/yrFPtPq1asjLCwMNjY2+PHHH2FjYwNvb280b94coaGhMDAwAADMmjULMTExsLGxQcWKFQu8/MGDB2Pjxo3YsmUL6tati6ZNm2LLli2wtrYuqiExxkoZpdgyVWa8ZcqY8ip1W6aMMVbScZgyxpgIOEwZY0wEHKaMMSYCDlPGGBMBhyljjImAw5QxxkTAYcoYYyLgMGWMMRFwmDLGmAg4TBljTAQcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmAg5TxhgTAYcpY4yJQE3RBZR2sr+k/SotTcGVMMYKS/a+lb2PP4fDtIi9evUKAFDN2kLBlTDGvtarV6+gp6f32T4SKkjksq+Wm5uLp0+foly5cpBIJMW23rS0NFhYWCAuLg7ly5cvtvUqCo+3dFPUeIkIr169grm5OVRUPr9XlLdMi5iKigoqV66ssPWXL1++TLzZZHi8pZsixvulLVIZPgDFGGMi4DBljDERcJiWUlKpFL6+vpBKpYoupVjweEs3ZRgvH4BijDER8JYpY4yJgMOUMcZEwGHKGGMi4DBljDERcJiyMiE1NVXRJbBSjsOUlXqbNm3C2LFj8fDhQ0WXolC5ubn5/r+0kJ2YdPnyZdy+fbvY189hWobJXnyl/ey4pKQkhIWFYcWKFWUqUGWBmZ6ejnfv3kFFRQXBwcF4/vz5F39nrowkEgmOHj2KJk2a4MmTJ8jOzi7W9Ze+R5R9kXBZwFevkJWVhdevX8u1lzY+Pj74+eefce7cOSxbtgzR0dGKLqlYqKio4PHjx3Bzc8P169fx999/w8PDA5cuXVJ0aUXi+fPnuHbtGubMmYNWrVpBTa14Lz3CYVrGEBEkEgkOHz6MPn36oGHDhujduzcCAgKK9apWxSUrKwsA0KtXLzg5OeHIkSNYsmQJYmNjFVxZ8ahcuTJMTU3RoUMH9O7dGxs3bkTbtm1L3Qfn7du3YWZmhvXr18PY2FghNXCYljESiQQBAQHo0aMHGjdujMmTJ8PIyAhdunRRyH6moqauro6///4b3333HZKTk6GhoYH169dj4cKFpX4LNScnBwDw66+/4tmzZ9DT00OtWrWQlZVVaj44ZR8KtWvXxrBhwxATE4NHjx4pZp8wsTLlzZs31KVLF/rjjz+IiOjJkydkaWlJ3t7eCq6saERGRpKxsTFt2LCB0tPTiYho9uzZZGdnR6NGjaJHjx4puMKid/v2bTp69Ch16NCBTE1N6fjx4/Tu3bs8/XJychRQ3dfJzc3Nt33EiBEklUrpwIEDxVsQEXGYljEvX76kqlWr0pkzZygpKYkqVaokF6Rbt26lu3fvKrDCr7ds2TLat2+fXNvly5fJxMSEwsLC5NpnzZpFGhoaNGbMGLp3715xllnkZEGTlJREycnJctNatWpFpqamdPLkSSFQt2zZQikpKcVe59eSje/s2bP0+++/k4+PD23fvl2YPnToUNLS0qKDBw8Wa138Nb+MkUqlcHFxwX///QcXFxd07NgRq1evBgAkJyfj1KlTuHTpktLtU3v8+DGuXLmCunXryrXn5uZCXV1dOMiWmZkJ4P1XX0tLS/z999/YuHGjsG+1NJBIJDhw4AA6dOgAJycnTJgwAadPnwYAnDhxAnXr1oWXlxfWrVuHcePGYeDAgUhOTlZw1QUnkUiwf/9+tG/fHrdu3cKdO3cwZ84c9OjRAwCwZs0aDBgwAH379sU///xTfIUVa3SzYiX7BH/79i1lZWUJ7RMmTCCJRELt2rWjN2/eCO1TpkyhmjVrUkxMTLHXKgbZWEJDQ+nvv/8W2lu0aEF2dnZyW18pKSnk6elJkydPVtrxfkpERAQZGRnR/PnzydfXl1xdXaljx44UEBAg9PH09CQ3NzeqU6cOXb16VYHVFt79+/epatWqtHr1aiIiunPnDlWoUIFGjhwp1693795kbm5Or169Kpa6OExLKVmQBgQEkIeHB7Vt25Z8fX2F6b169SITExMaOXIkzZgxg7y8vEhPT4/Cw8MVU7AIcnNzKTU1lXr06EGOjo60a9cuIiJKSEigunXrUq1atejQoUN0+vRp8vHxIScnJ3rx4oViixZZVFQUzZ49m3777TehLSQkhFq3bk3t27eXC9RHjx4p5fjPnz9P9vb2REQUExNDFhYW9PPPPwvTz549K/w/Pj6+2OriMC1lPtwxf/r0adLS0qJhw4bR4MGDSVtbm3788Udh+owZM6h79+7k6upK3t7edPPmTUWULLrz589Tr169qEmTJrR7924iInr27Bm1bduWrKysyNzcnKytrfPsR1V28fHx5OrqSoaGhjRq1Ci5acHBwdSqVSvq3LmzQg7OiEH22j537hw1a9aMLl26RBYWFuTt7U3Z2dlERBQeHk4jRoygyMjIYq+Pw7SUevDgAR0+fJgWLlxIRETZ2dl06tQpMjAwoB9++EHol5OTQ5mZmcKLUdnI3mAvXrygjIwM4Yh0aGgoeXp6UuPGjYVAJSK6efMm3b59mxISEhRSb1H48AN09+7dVLduXXJ2dqZLly7J9Tt9+jS5ubmRp6cnvX79urjLLLDc3FxhTPkdtX/w4AGZmJiQRCLJcxbKmDFjqHnz5nkOvBUHDtNSYNasWXTr1i3h/tOnT0ldXZ20tbVpwYIFcn1PnTpFFSpUoN69eyttgH7s4MGD5OzsTN999x3169ePMjMzieh/gdqkSRPhK39p8uE+8Q+fS39/f3JycqK+ffvS5cuX5eY5e/ZsiT8dTLbvW/Y8njlzhhYuXEirV6+mx48fE9H73Vfq6uo0dOhQOnv2LIWFhdHYsWNJT0+Prl+/rpC6OUyVXGZmJrVt21YuTLOysmjr1q1kampKffr0yTNPSEgISSQSGjx4cHGWKipZkFy9epU0NTVpxowZNHbsWHJ0dCQ7OzvKyMggoveB2qtXL6pbt67Sfr3Nj2z8x44do65du1KLFi2oQ4cOwmlt+/btIxcXF+rTpw9duXJFkaUWyl9//UWmpqbCN4c9e/aQrq4uOTg4UPXq1alq1ap0584dIno/xipVqlClSpXI1taWXF1dFbrPn8NUiX14JJ7o/X6xa9euERHRu3fvaPv27SSVSmn8+PF55j179qzwolRWV65coaNHj9Lvv/9ORO93ZVy+fJns7e2pVq1a9PbtWyJ6v2UzYMCAUnfU/uDBg6StrU0+Pj508OBBcnR0JEtLS4qKiiIion/++Yfc3d2pS5cuSnNg8fTp09SgQQOqW7cuxcXF0cSJE2nLli2UnZ1NYWFh1KFDB9LX1xdeu48fP6YbN27Q3bt36fnz5wqtncNUSc2dO5dGjx4t7BvKycmhJk2akIGBAd24cYOI3ofLtm3bSENDI99AVWbPnj0jW1tbkkgk5OPjI7Tn5uZSWFgY2dvbU506dYQPHFmwlgaysxaaNm1K8+fPJ6L3J+hbW1vT0KFD5fpu3bqVWrRoQU+ePFFEqV/l3Llz1KhRI6pWrRq1aNFC7oPg3r171L59e9LT0ytxGwMcpkpq3bp1JJFIaPr06cL5k69evaKWLVuSpaWlsN9IFqi6urpyp48ou8zMTNq3bx85OzuTk5OT3LTc3Fy6cuUKValShdzc3IQ2ZbVgwQLasWOHXNvz58/Jzs6O4uLiKDExkczNzeUOxnx4nm1aWlqx1VpYsgOGHz8/165do3bt2pGampqwC0vW9969e9S5c2eSSCT04MGD4i34MzhMldi2bduELTPZFuqrV6+oWbNmeQJ148aNZGJiQomJiYosWVRv3ryhgIAAqlq1KrVs2VJuWm5uLoWHh5eoN9vXGjx4MKmoqMj9VDY7O5vc3d3p119/JSsrKxo6dKjw89DExETy8PAQArWkf5A8evSIjh8/TkTv95n+9NNPRPR+V1T9+vXJxsaGkpKSiOh/Y7lz5w55enqWqK1TDlMl9OGbY+vWrZ8N1A+/8qempiqk3m8lG29YWBht2LCBNm7cKJxH+PbtWwoICKCaNWtSq1atFFlmkRo7dixJpVLau3cvZWdnU05ODk2ZMoX09fXJw8NDru/UqVOpbt26FBsbq6BqCy47O5vatWtHTk5ONHXqVFJVVaW1a9cK08+fP0+NGzem2rVrCxsCstdDfhdrUSQO01Jg06ZN+QZqy5YtqVy5cnJH+pWN7I2zb98+Mjc3J2dnZ2rSpAkZGRnRmTNniOh/gWpnZ0eurq6KLFdUubm5wlfb1NRU8vLyIkNDQ+ECHg8fPqT27duTi4sLjR07ltauXUsDBw5Uyl+y1alThyQSSb779s+dO0dNmjQhe3v7Yv1FU2FxmCqJD09kvn//Pl24cIHOnTsnnAKUX6CmpaVRx44dleqqSPl9JQ0JCSEjIyNat24dERFdunSJJBIJaWpq0uHDh4nofaDu27ePXF1dS/x5lAUleyz27t1Lrq6u1L17d9LQ0CAdHR3hhwgPHjyg3377jRwcHMjd3Z08PT1L9C/ZZB8Ob968oYyMDLp79y6lpKSQu7s71atXjxo1akQBAQF5Lgd4/vx5ql27Nrm7u1NOTk6J3HXBYaokPtxCq1WrFlWrVo3c3d3J3t5e+Poj+8o/ffr0PPuYlIHsDZSUlESXL18WTjj39fWlGTNmENH7U2GqVKlCAwYMoH79+pFUKqXg4GAiIsrIyCi2i1oUl7CwMNLS0qINGzbQkydP6NatWzR48GCSSqVyv+zKzc2lrKysEvfV90Oy5/f27dvUvXt3qlOnDqmpqZGHhwcNHz6ccnNzqXnz5uTu7p5voN6+fZsePnyoiNILhMO0hJK9kGQXNCZ6fw6erq4urVu3jjIzMykgIIAkEgktXrxYCE1ZoM6aNUupLvYrq/XWrVvUqFEjatu2LXXr1o2I3gfK+fPn6dWrV+Tu7i4ctT579ixJJBKSSCTCAYzS5sCBA2RnZyd3DmVWVhYNHDiQdHR06N9//1WK51n2+rx+/Trp6enRiBEjaOPGjbR3717q0qULSSQS8vLyoidPnpCHhwc1aNCA/v33XyIimjx5MvXr10+R5RcIh2kJJHtzhIWFkY2NDUVHRxMR0Z9//ilcZiw2NpaqVKlCI0aMEOaTbZXs3LlTqfaTyt5oN2/eJH19fZo6dSo9evQoz89dw8LCyNXVlW7fvi309/T0pIkTJwptpc3u3btJVVVV2HUju5TipUuXSEVFhSQSSbFfBPlrJSUlkaOjI02ZMiVP+8qVK0lDQ4NGjhxJ7969o1atWlHt2rWpYcOGVKFCBTp//ryCqi44DtMSRhakERERVK5cORozZowwbcCAATR48GB68uQJVa5cmby9vYUg+ueff2jhwoVK+3v7lJQUaty4cZ6rHX241XX06FGSSCTCGQrTp0+n9u3by229lzavX78mV1dX6tmzp9z1WB8+fEh9+vSh8ePHK80HydWrV6lOnTp048YN4XUqe35fvnxJs2fPJg0NDTpz5gy9fPmSlixZQrNnz1bIFaC+BodpCSJ7YV27do20tbVp6tSpctMXL15M3bp1I3Nzc+F39bm5ufTu3TsaPnw4jRkzJs9PTJXFrVu3yMbGhkJCQvL92iobZ7du3UgikZCrqyvp6upSRESEAqoVn+xDMTw8nPbt20d79uwR9g9u27aNGjRoQD169KDHjx9TXFwcTZs2jRo1aqRUz7efnx9pamoK9z/en//w4UPS09MTftWlbDhMS5jY2FgyMjIiT09Pufb169dTz549ycbGhgwMDISvPa9evaKpU6eSmZlZiTqBubB27NhBampqwhssv0BNT0+nQ4cO0YEDB2jx4sXCb9BLi71795K+vj65urqShoYGubi40J9//klERNu3b6f69euTRCKh6tWrk6GhodJdIf/MmTOkqalJe/fu/WQfR0dHuW9jyoTDtISJjo4mV1dX6ty5s3DF8Hnz5pG2tjbdunWL4uLiyNrampycnKh69erUrl07MjMzU7o31sfOnTv3xTfaqlWrSu2J+devX6eKFSvSunXrKD09neLi4mjSpEnk5OREixcvJqL3+0sPHz5MQUFBSnn6V1xcHBkbG1Pnzp3l6pd9cD5//pwaNmxI27ZtU1SJ34TDtASKioqitm3bUufOnWnIkCFkbGwsd7Q6Pj6edu7cST4+PrRjx44SfbpIQT1+/Fh4o314dacPvwqOGzeOJk+erFSne33sU0fe//77b6pVq5bcnxF5+vQpjRkzhtzd3UvNxaz37dtHGhoa1K9fvzznw06fPp2srKyU9upeHKYl1N27d6lVq1akpaUlXC2fiOT+MF5ps2/fPpJKpdS3b1+5sxHS09PJx8eHLC0tlfbPUBP9L0ijo6NpyZIlNGfOHPL39yei9wfXqlSpIgTMhxf1kEgkdPToUcUULbLs7Gxau3YtqampUc2aNWngwIE0bdo06t27NxkYGCj1NywO0xLs/v371Lp1a2rXrp3w00ki5ToRvzBycnLk3mgDBgygYcOGUefOncnY2Fip32gfHly0sLCgxo0bU9WqVUlbW5s2b95MKSkpZGRkRBMmTJC7XKDsdCLZDxNKiwsXLlD37t3Jzs6OGjVqpLC/2yQmDtMSTvaVv02bNnJ/dbE0u3jxovAXRhs3bkyTJ09W6oNNH5+lMWXKFMrMzKSIiAiys7Oj2rVrE9H7c0olEgn98ssvdPHiRXr69ClNmTKFzMzMKC4uTpFDKBLZ2dmfPeCobCRERGAl2r179zBu3DgkJydjyZIlcHd3V3RJRS43NxcqKiqKLkM0cXFxcHJyQvPmzbFnzx6h3cPDA5GRkQgLC4O5uTlCQkLQp08faGhoQEVFBVlZWThw4ACcnJwUWH3RICJIJJI8/1dWaoougH1Z9erV8eeff+LXX3+Fubm5osspFh++sUrDGy0nJwfW1tbIzMzEuXPn0KhRI8yfPx/BwcGwt7eHl5cXcnJy8MMPP2DJkiUoV64cdHV1UbVq1VL7nH/4nCr78wsAvGWqRN69ewcNDQ1Fl8G+0r179zB69GhoaGjA2NgYBw8exNq1a9G4cWPcuXMHkZGRWLRoETIyMmBtbY3g4OBStXVe2nGYMlaMoqKiMHLkSJw9exazZs3ChAkT5Ka/evUKN2/ehLGxMWxsbBRUJfsaHKaMFbMHDx5g+PDhUFVVxdSpU9G4cWMAQHZ2NtTUeM+bsuLvEIwVMxsbG6xcuRJEhDlz5uDcuXMAwEGq5DhMGVOA6tWrY/ny5VBXV8eECRNw4cIFRZfEvhGHKWMKIjtLo3LlyqX2iH1ZwvtMGVMwPkujdOAwZYwxEfDXfMYYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMWan322+/wcHBQbjv5eWFrl27FnsdMTExkEgkiIiI+Kr5Q0JCIJFI8PLlS1HrYuLgMGUK4eXlBYlEAolEAnV1dVStWhUTJkxAenp6ka972bJl2LJlS4H6fmsAsrKDr6zAFKZt27bw8/NDVlYWzpw5g8GDByM9PR1r1qzJ0zcrKwvq6uqirFdPT0+U5TD2Id4yZQojlUphamoKCwsL/PTTT+jduzf8/f0B/O+r+ebNm1G1alVIpVIQEVJTU+Ht7Q1jY2OUL18eLVq0wLVr1+SW+/vvv8PExATlypXDoEGDkJGRITf946/5ubm5WLBgAapVqwapVIoqVapg7ty5AABra2sAgKOjIyQSCZo1aybM5+fnB1tbW2hqaqJWrVpYvXq13HouXboER0dHaGpqwsXFBeHh4V98TDIzMzFp0iRYWFhAKpWievXq2LRpU759U1JS0KtXL1SuXBna2tqoW7cudu3aJddn7969qFu3LrS0tGBoaIiWLVsKW/8hISFwc3ODjo4O9PX10ahRIzx69OiLNbL88ZYpKzG0tLSQlZUl3L9//z727NmDffv2QVVVFQDQoUMHGBgY4MiRI9DT08O6devg4eGBqKgoGBgYYM+ePfD19cWqVavQpEkTbNu2DcuXL0fVqlU/uV4fHx9s2LABS5YsQePGjREfH487d+4AeB+Ibm5uOHnyJOzs7ITf0G/YsAG+vr5YuXIlHB0dER4ejiFDhkBHRwf9+/dHeno6OnbsiBYtWmD79u2Ijo7GL7/88sXHoF+/fggNDcXy5ctRr149REdHIzk5Od++GRkZcHZ2xuTJk1G+fHkcPnwYffv2RdWqVVG/fn3Ex8ejV69e+OOPP9CtWze8evUKZ86cAREhOzsbXbt2xZAhQ7Br1y68e/cOly5dKhV/PkRhivsv+DFGRNS/f3/q0qWLcP/ixYtkaGhInp6eRETk6+tL6urqlJSUJPQJCgqi8uXLU0ZGhtyybGxsaN26dURE1KBBAxo6dKjc9Pr161O9evXyXXdaWhpJpVLasGFDvnVGR0cTAAoPD5drt7CwoJ07d8q1zZ49mxo0aEBEROvWrSMDAwNKT08Xpq9ZsybfZcncvXuXAFBgYGC+04ODgwkAvXjxIt/pRETt27en8ePHExHRlStXCADFxMTk6ZeSkkIAKCQk5JPLYoXDW6ZMYQ4dOgRdXV1kZ2cjKysLXbp0wYoVK4TplpaWqFixonD/ypUreP36NQwNDeWW8/btWzx48AAAEBkZiaFDh8pNb9CgAYKDg/OtITIyEpmZmfDw8Chw3c+ePUNcXBwGDRqEIUOGCO3Z2dnC/tjIyEjUq1cP2tracnV8TkREBFRVVdG0adMC1ZGTk4Pff/8du3fvxpMnT5CZmYnMzEzo6OgAAOrVqwcPDw/UrVsXbdq0QevWrdGjRw9UqFABBgYG8PLyQps2bdCqVSu0bNkSnp6eMDMzK/DjwORxmDKFad68OdasWQN1dXWYm5vnOcAkCwWZ3NxcmJmZISQkJM+y9PX1v6oGLS2tQs+Tm5sL4P1X/fr168tNk+2OoK+4GFtha1m0aBGWLFmCpUuXom7dutDR0cGYMWPw7t07oZbAwECcP38eJ06cwIoVKzBt2jRcvHgR1tbW8PPzw+jRo3Hs2DHs3r0b06dPR2BgYJn4U+JFgQ9AMYXR0dFBtWrVYGlpWaAj9U5OTkhISICamhqqVasmdzMyMgIA2Nra5rlq/eeuYl+9enVoaWkhKCgo3+myfaQ5OTlCm4mJCSpVqoSHDx/mqUN2wKp27dq4du0a3r59W6A6AKBu3brIzc3F6dOnP9tP5syZM+jSpQv69OmDevXqoWrVqrh3755cH4lEgkaNGmHmzJkIDw+HhoYGDhw4IEx3dHSEj48Pzp8/jzp16mDnzp0FWjfLi8OUKY2WLVuiQYMG6Nq1K44fP46YmBicP38e06dPR1hYGADgl19+webNm7F582ZERUXB19cXt27d+uQyNTU1MXnyZEyaNAl//fUXHjx4gAsXLghH0I2NjaGlpYVjx44hMTERqampAN6fbTB//nwsW7YMUVFRuHHjBvz8/LB48WIAwE8//QQVFRUMGjQIt2/fxpEjR7Bw4cLPjs/Kygr9+/fHwIED4e/vj+joaISEhGDPnj359q9WrZqw5RkZGYmff/4ZCQkJwvSLFy9i3rx5CAsLQ2xsLPbv349nz57B1tYW0dHR8PHxQWhoKB49eoQTJ04gKioKtra2BX9CmDxF77RlZdPHB6A+5uvrK3fQSCYtLY1GjRpF5ubmpK6uThYWFtS7d2+KjY0V+sydO5eMjIxIV1eX+vfvT5MmTfrkASgiopycHJozZw5ZWlqSuro6ValShebNmydM37BhA1lYWJCKigo1bdpUaN+xYwc5ODiQhoYGVahQgb777jvav3+/MD00NJTq1atHGhoa5ODgQPv27fvsASgiordv39LYsWPJzMyMNDQ0qFq1arR582YiynsAKiUlhbp06UK6urpkbGxM06dPp379+glju337NrVp04YqVqxIUqmUatSoQStWrCAiooSEBOratauwHktLS5oxYwbl5OR8sjb2eXylfcYYEwF/zWeMMRFwmDLGmAg4TBljTAQcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmgv8DH0eV5Jg5ReMAAAAASUVORK5CYII=", - "text/plain": [ - "<Figure size 350x300 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Show confusion matrixes\n", - "plt.figure(figsize=(3.5,3))\n", - "plot_confusion_matrix(cm_googlenet, classes=classes, title='Confusion matrix, Googlenet')\n", - "plt.figure(figsize=(3.5,3))\n", - "plot_confusion_matrix(cm_resnet, classes=classes, title='Confusion matrix, Resnet')" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "<Axes: title={'center': 'Inferences'}>" - ] - }, - "execution_count": 66, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzoAAAEnCAYAAABhZjbYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAJUlEQVR4nO3de1yUZf7/8fcIMpzxzEFGICVFyTRMw0N4xLDMbLcsWw+llqEWUVnmfjd0Wyi3CDfTsi0PlWZl51WTtjRdstRkKzVLw/AAoqaCJxC8fn+4zq8RVAZBdHg9H4/7Yfd1uK/PTLdz+Znrnvu2GGOMAAAAAMCF1KvtAAAAAACgupHoAAAAAHA5JDoAAAAAXA6JDgAAAACXQ6IDAAAAwOWQ6AAAAABwOSQ6AAAAAFwOiQ4AAAAAl0OiAwAAAMDlkOjgsvHdd9/p7rvvVkREhDw9PeXr66trrrlG06ZN02+//VZj427YsEFxcXEKCAiQxWJRRkaGVqxYIYvFohUrVpy3/8iRIxUeHl5j8QEALi1z586VxWLRunXrnO67fft23XjjjWrUqJEsFouSkpKqP0CgjnCv7QCAynjllVeUmJio1q1b69FHH1Xbtm114sQJrVu3Ti+99JK++uorvf/++zUy9j333KMjR47orbfeUsOGDRUeHi5vb2999dVXatu2bY2MCQComx566CF9/fXXeu211xQUFKTg4ODaDgm4bJHo4JL31Vdf6f7771e/fv30wQcfyGq12uv69eunhx9+WMuWLaux8X/44QeNGTNGCQkJDuXXXXddjY0JAKibfvjhB3Xu3Fm33HJLtRzPGKPjx4/Ly8urWo4HXE64dA2XvNTUVFksFs2ePdshyTnNw8NDN998syTp5MmTmjZtmtq0aSOr1apmzZpp+PDh2rlzp0Ofnj17Kjo6WmvXrlWPHj3k7e2tK664Qk8//bROnjwp6f9felBaWqpZs2bJYrHIYrFI0lkvXZs7d65at24tq9WqqKgozZ8/v8LXVFJSoqeeesoeZ9OmTXX33Xdr7969Du3Cw8N10003admyZbrmmmvk5eWlNm3a6LXXXit3zF27dunee++VzWaTh4eHQkJC9Mc//lF79uyxtyksLNQjjzyiiIgIeXh4qHnz5kpKStKRI0ccjvXOO++oS5cuCggIsL8399xzT4WvBQBwbiNHjpSvr6+2bt2qAQMGyNfXVzabTQ8//LCKi4sl/f95ZevWrVq6dKl9ztm+fbukyn9+WywWjR8/Xi+99JKioqJktVo1b948SdLPP/+soUOHqlmzZvZ56sUXX3TofzqOhQsXavLkyQoJCZG/v7/69u2rLVu2lHtty5YtU58+fezzRVRUlNLS0hzarFu3TjfffLMaNWokT09PdezYUW+//bZDm6NHj9pfn6enpxo1aqROnTpp4cKFF/Teo44zwCWstLTUeHt7my5dulSq/b333mskmfHjx5tly5aZl156yTRt2tTYbDazd+9ee7u4uDjTuHFjExkZaV566SWTmZlpEhMTjSQzb948Y4wxBQUF5quvvjKSzB//+Efz1Vdfma+++soYY8wXX3xhJJkvvvjCfsw5c+YYSWbQoEHm448/Nm+88YZp1aqVsdlsJiwszN6urKzM3HDDDcbHx8dMmTLFZGZmmn/+85+mefPmpm3btubo0aP2tmFhYSY0NNS0bdvWzJ8/33z66afmtttuM5LMypUr7e127txpgoODTZMmTUx6err57LPPzKJFi8w999xjNm/ebIwx5siRI6ZDhw4ObaZPn24CAgJM7969zcmTJ40xxmRlZRmLxWLuuOMOs2TJEvP555+bOXPmmGHDhjn3Pw8A6qjT88HatWuNMcaMGDHCeHh4mKioKPPss8+azz77zPzlL38xFovFTJkyxRhjzKFDh8xXX31lgoKCTLdu3exzzvHjxyv9+W2MMZJM8+bNTfv27c2CBQvM559/bn744QezceNGExAQYK666iozf/58s3z5cvPwww+bevXqmZSUFHv/0/NbeHi4ueuuu8y//vUvs3DhQtOiRQsTGRlpSktL7W3/+c9/GovFYnr27GkWLFhgPvvsMzNz5kyTmJhob/P5558bDw8P06NHD7No0SKzbNkyM3LkSCPJzJkzx97uvvvuM97e3iY9Pd188cUX5pNPPjFPP/20eeGFF2rqfxPqABIdXNLy8/ONJHPHHXect+3mzZuNJIcPWGOM+frrr40k88QTT9jL4uLijCTz9ddfO7Rt27at6d+/v0OZJDNu3DiHsjMTnbKyMhMSEmKuueYahwln+/btpn79+g6JzsKFC40ks3jxYodjrl271kgyM2fOtJeFhYUZT09P8+uvv9rLjh07Zho1amTuu+8+e9k999xj6tevbzZt2nTW9yctLc3Uq1fPPvGe9u677xpJZsmSJcYYY5599lkjyRw8ePCsxwIAnF1FiY4k8/bbbzu0GzBggGndurVDWVhYmLnxxhsdyir7+W3MqTkrICDA/Pbbbw5t+/fvb0JDQ82hQ4ccysePH288PT3t7U/PbwMGDHBo9/bbbxtJ9i/8ioqKjL+/v+nevbvDvHemNm3amI4dO5oTJ044lN90000mODjYlJWVGWOMiY6ONrfccstZjwNUBZeuwWV88cUXkk5dIvB7nTt3VlRUlP797387lAcFBalz584OZe3bt9evv/7q9NhbtmzR7t27NXToUPvlbZIUFhamrl27OrT95JNP1KBBAw0cOFClpaX2rUOHDgoKCip3OVyHDh3UokUL+76np6euvPJKhziXLl2qXr16KSoq6qwxfvLJJ4qOjlaHDh0cxu3fv7/DZXjXXnutJOn222/X22+/rV27djn9fgAAHFksFg0cONChrLJzTmU/v0/r3bu3GjZsaN8/fvy4/v3vf2vw4MHy9vZ2OMaAAQN0/PhxrVmzxuEYpy8J/32skuzxZmVlqbCwUImJiQ7z3u9t3bpVP/74o+666y5JKjduXl6e/XK4zp07a+nSpXr88ce1YsUKHTt27LzvC3A+JDq4pDVp0kTe3t7Kyck5b9v9+/dLUoV3qAkJCbHXn9a4ceNy7axWa5U+XE8fOygoqFzdmWV79uzRwYMH5eHhofr16zts+fn52rdvn9Nx7t27V6GhoeeMcc+ePfruu+/Kjenn5ydjjH3c66+/Xh988IFKS0s1fPhwhYaGKjo6muukAeACeHt7y9PT06HMarXq+PHj5+1b2c/v086cB/fv36/S0lK98MIL5Y4xYMAASTrv3HP6N7Kn557Tvyk919xz+jeijzzySLlxExMTHcb9xz/+occee0wffPCBevXqpUaNGumWW27Rzz//fN73Bzgb7rqGS5qbm5v69OmjpUuXaufOnef8QD39oZyXl1eu3e7du9WkSZMai/P02Pn5+eXqzixr0qSJGjdufNY7xfn5+Tk9ftOmTcvdcOFMTZo0kZeXV4U3Mjhdf9qgQYM0aNAgFRcXa82aNUpLS9PQoUMVHh6u2NhYp+MDAFSdM5/fksqtsDRs2FBubm4aNmyYxo0bV+ExIiIinIqpadOmknTOued0XJMmTdKtt95aYZvWrVtLknx8fDRlyhRNmTJFe/bssa/uDBw4UD/++KNTsQGnkejgkjdp0iQtWbJEY8aM0YcffigPDw+H+hMnTmjZsmXq3bu3JOmNN96wX34lSWvXrtXmzZs1efLkGouxdevWCg4O1sKFC5WcnGyfZH799VdlZWUpJCTE3vamm27SW2+9pbKyMnXp0qVaxk9ISNDrr7+uLVu22CeNM910001KTU1V48aNKz2hWa1WxcXFqUGDBvr000+1YcMGEh0AuMiq8vn9e97e3urVq5c2bNig9u3bl5tHq6Jr164KCAjQSy+9pDvuuKPCy9dat26tyMhI/fe//1Vqamqljx0YGKiRI0fqv//9rzIyMnT06FF5e3tfcMyoe0h0cMmLjY3VrFmzlJiYqJiYGN1///1q166dTpw4oQ0bNmj27NmKjo7W+++/r3vvvVcvvPCC6tWrp4SEBG3fvl3/93//J5vNpoceeqjGYqxXr57++te/avTo0Ro8eLDGjBmjgwcPKiUlpdyla3fccYfefPNNDRgwQA8++KA6d+6s+vXra+fOnfriiy80aNAgDR482Knxp06dqqVLl+r666/XE088oauuukoHDx7UsmXLlJycrDZt2igpKUmLFy/W9ddfr4ceekjt27fXyZMnlZubq+XLl+vhhx9Wly5d9Je//EU7d+5Unz59FBoaqoMHD2r69OmqX7++4uLiqvNtAwBUQmU/v89l+vTp6t69u3r06KH7779f4eHhKioq0tatW/Xxxx/r888/dyomX19fPffccxo9erT69u2rMWPGKDAwUFu3btV///tfzZgxQ5L08ssvKyEhQf3799fIkSPVvHlz/fbbb9q8ebO+/fZbvfPOO5KkLl266KabblL79u3VsGFDbd68Wa+//rpiY2NJclBlJDq4LIwZM0adO3fW888/r2eeeUb5+fmqX7++rrzySg0dOlTjx4+XJM2aNUstW7bUq6++qhdffFEBAQG64YYblJaWVuFvXarTqFGjJEnPPPOMbr31VoWHh+uJJ57QypUrHX4o6ubmpo8++kjTp0/X66+/rrS0NLm7uys0NFRxcXG66qqrnB67efPm+uabb/Tkk0/q6aef1v79+9W0aVN1795djRo1knTqsoBVq1bp6aef1uzZs5WTkyMvLy+1aNFCffv2VXh4uKRTk826dev02GOPae/evWrQoIE6deqkzz//XO3atbvg9wkA4JzKfn6fS9u2bfXtt9/qr3/9q/785z+roKBADRo0UGRkpP13Os4aNWqUQkJC9Mwzz2j06NEyxig8PFwjRoywt+nVq5e++eYb/e1vf1NSUpIOHDigxo0bq23btrr99tvt7Xr37q2PPvpIzz//vI4eParmzZtr+PDhNXo1BlyfxRhjajsIAAAAAKhO3HUNAAAAgMsh0QEAAADgckh0AAAAALgcEh0AAAAALodEBwAAAIDLIdEBAAAA4HIui+fonDx5Urt375afn1+FT94FANQMY4yKiooUEhKievX4buz3mJsAoHZUdm66LBKd3bt3y2az1XYYAFBn7dixQ6GhobUdxiWFuQkAatf55qbLItHx8/OTdOrF+Pv713I0AFB3FBYWymaz2T+H8f8xNwFA7ajs3HRZJDqnLwnw9/dnMgGAWsClWeUxNwFA7Trf3MQF1wAAAABcDokOAAAAAJdDogMAAADA5VQp0Zk5c6YiIiLk6empmJgYrVq16pzt33zzTV199dXy9vZWcHCw7r77bu3fv79KAQMAAADA+Tid6CxatEhJSUmaPHmyNmzYoB49eighIUG5ubkVtl+9erWGDx+uUaNGaePGjXrnnXe0du1ajR49+oKDBwAAAICKOJ3opKena9SoURo9erSioqKUkZEhm82mWbNmVdh+zZo1Cg8P1wMPPKCIiAh1795d9913n9atW3fBwQMAAABARZxKdEpKSrR+/XrFx8c7lMfHxysrK6vCPl27dtXOnTu1ZMkSGWO0Z88evfvuu7rxxhurHjUAAAAAnINTz9HZt2+fysrKFBgY6FAeGBio/Pz8Cvt07dpVb775poYMGaLjx4+rtLRUN998s1544YWzjlNcXKzi4mL7fmFhoTNhogLHSsq0be/hCuuOnyjTzgPHFNrQS5713Sps07Kpr7w8Kq4DAKAqLmRuYl4CcD5VemDomQ/nMcac9YE9mzZt0gMPPKC//OUv6t+/v/Ly8vToo49q7NixevXVVyvsk5aWpilTplQlNJzFtr2HddMLq6vc/5MJ3RXdPKAaIwIA1HUXMjcxLwE4H4sxxlS2cUlJiby9vfXOO+9o8ODB9vIHH3xQ2dnZWrlyZbk+w4YN0/Hjx/XOO+/Yy1avXq0ePXpo9+7dCg4OLtenohUdm82mQ4cO8fTpKjrXt2ZbCw4raVG2MoZ0UKtmvhW24ZszoG4qLCxUQEAAn78V4L25cBcyNzEvAXVXZT9/nVrR8fDwUExMjDIzMx0SnczMTA0aNKjCPkePHpW7u+Mwbm6nPpjOlmNZrVZZrVZnQsN5eHm4nfebr1bNfPl2DABw0TA3AahJTl+6lpycrGHDhqlTp06KjY3V7NmzlZubq7Fjx0qSJk2apF27dmn+/PmSpIEDB2rMmDGaNWuW/dK1pKQkde7cWSEhIdX7agAAwCUnZ98RHSkudarP1oLDDn9Wlo/VXRFNfJzqA8A1OZ3oDBkyRPv379fUqVOVl5en6OhoLVmyRGFhYZKkvLw8h2fqjBw5UkVFRZoxY4YefvhhNWjQQL1799YzzzxTfa8CAABcknL2HVGvZ1dUuX/Somyn+3zxSE+SHQBVuxlBYmKiEhMTK6ybO3duubIJEyZowoQJVRkKAABcxk6v5Jzrd6AVqcwdQc90+nc9zq4eAXBNVUp0AAAAnFGV39p0Cq+ZWADUDU49MBQAAAAALgckOgAAAABcDokOAAAAAJdDogMAAADA5ZDoAAAAAHA5JDoAAAAAXA6JDgDApaSkpMhisThsQUFB9npjjFJSUhQSEiIvLy/17NlTGzdurMWIAQA1gUQHAOBy2rVrp7y8PPv2/fff2+umTZum9PR0zZgxQ2vXrlVQUJD69eunoqKiWowYAFDdSHQAAC7H3d1dQUFB9q1p06aSTq3mZGRkaPLkybr11lsVHR2tefPm6ejRo1qwYEEtRw0AqE4kOgAAl/Pzzz8rJCREERERuuOOO/TLL79IknJycpSfn6/4+Hh7W6vVqri4OGVlZZ3zmMXFxSosLHTYAACXLhIdAIBL6dKli+bPn69PP/1Ur7zyivLz89W1a1ft379f+fn5kqTAwECHPoGBgfa6s0lLS1NAQIB9s9lsNfYaAAAXjkQHAOBSEhIS9Ic//EFXXXWV+vbtq3/961+SpHnz5tnbWCwWhz7GmHJlZ5o0aZIOHTpk33bs2FH9wQMAqg2JDgDApfn4+Oiqq67Szz//bL/72pmrNwUFBeVWec5ktVrl7+/vsAEALl0kOgAAl1ZcXKzNmzcrODhYERERCgoKUmZmpr2+pKREK1euVNeuXWsxSgBAdXOv7QAAAKhOjzzyiAYOHKgWLVqooKBATz31lAoLCzVixAhZLBYlJSUpNTVVkZGRioyMVGpqqry9vTV06NDaDh0AUI1IdAAALmXnzp268847tW/fPjVt2lTXXXed1qxZo7CwMEnSxIkTdezYMSUmJurAgQPq0qWLli9fLj8/v1qOHABQnUh0AAAu5a233jpnvcViUUpKilJSUi5OQACAWsFvdAAAAAC4nColOjNnzlRERIQ8PT0VExOjVatWnbXtyJEjZbFYym3t2rWrctAAAAAAcC5OJzqLFi1SUlKSJk+erA0bNqhHjx5KSEhQbm5uhe2nT5+uvLw8+7Zjxw41atRIt9122wUHDwAAAAAVcTrRSU9P16hRozR69GhFRUUpIyNDNptNs2bNqrB9QECAgoKC7Nu6det04MAB3X333RccPAAAAABUxKlEp6SkROvXr1d8fLxDeXx8vLKysip1jFdffVV9+/a13/0GAAAAAKqbU3dd27dvn8rKyso9PTowMLDcU6YrkpeXp6VLl2rBggXnbFdcXKzi4mL7fmFhoTNhAgAAAKjjqnQzAovF4rBvjClXVpG5c+eqQYMGuuWWW87ZLi0tTQEBAfbNZrNVJUwAAAAAdZRTiU6TJk3k5uZWbvWmoKCg3CrPmYwxeu211zRs2DB5eHics+2kSZN06NAh+7Zjxw5nwgQAAABQxzmV6Hh4eCgmJkaZmZkO5ZmZmerates5+65cuVJbt27VqFGjzjuO1WqVv7+/wwYAAAAAleXUb3QkKTk5WcOGDVOnTp0UGxur2bNnKzc3V2PHjpV0ajVm165dmj9/vkO/V199VV26dFF0dHT1RA4AAAAAZ+F0ojNkyBDt379fU6dOVV5enqKjo7VkyRL7XdTy8vLKPVPn0KFDWrx4saZPn149UQMAAADAOTid6EhSYmKiEhMTK6ybO3duubKAgAAdPXq0KkMBAAAAgNOqdNc1AAAAALiUkegAAAAAcDkkOgAAAABcDokOAAAAAJdDogMAAADA5ZDoAAAAAHA5JDoAAAAAXA6JDgAAAACXQ6IDAAAAwOWQ6AAAAABwOSQ6AAAAAFyOe20HAAAAXJvFvVA5hVtUz9O3RsfJKTwsi3thjY4BnHaspEzb9h6usO74iTLtPHBMoQ295FnfrVx9y6a+8vIoX47qRaIDAABqVP0GX+uJb1Iv0lh9JA24KGOhbtu297BuemF1lfp+MqG7opsHVHNEOBOJDgAAqFEnDnbRczcOVctmNbuis63gsB54c1uNjgGc1rKprz6Z0L3Cuq0Fh5W0KFsZQzqoVQXnfcumNft3AaeQ6AAAgBplSv0V4d9abRvX7DfYJ48fkindW6NjAKd5ebidd1WmVTNfVm5qETcjAAAAAOBySHQAAAAAuBwSHQAAAAAuh0QHAAAAgMupUqIzc+ZMRUREyNPTUzExMVq1atU52xcXF2vy5MkKCwuT1WpVy5Yt9dprr1UpYAAAAAA4H6fvurZo0SIlJSVp5syZ6tatm15++WUlJCRo06ZNatGiRYV9br/9du3Zs0evvvqqWrVqpYKCApWWll5w8AAAAABQEadXdNLT0zVq1CiNHj1aUVFRysjIkM1m06xZsypsv2zZMq1cuVJLlixR3759FR4ers6dO6tr164XHDwAAOeTlpYmi8WipKQke5kxRikpKQoJCZGXl5d69uypjRs31l6QAIBq51SiU1JSovXr1ys+Pt6hPD4+XllZWRX2+eijj9SpUydNmzZNzZs315VXXqlHHnlEx44dq3rUAABUwtq1azV79my1b9/eoXzatGlKT0/XjBkztHbtWgUFBalfv34qKiqqpUgBANXNqURn3759KisrU2BgoEN5YGCg8vPzK+zzyy+/aPXq1frhhx/0/vvvKyMjQ++++67GjRt31nGKi4tVWFjosAEA4IzDhw/rrrvu0iuvvKKGDRvay40xysjI0OTJk3XrrbcqOjpa8+bN09GjR7VgwYJajBgAUJ2qdDMCi8XisG+MKVd22smTJ2WxWPTmm2+qc+fOGjBggNLT0zV37tyzruqkpaUpICDAvtlstqqECQCow8aNG6cbb7xRffv2dSjPyclRfn6+w9UJVqtVcXFxZ706QeJLOAC43DiV6DRp0kRubm7lVm8KCgrKrfKcFhwcrObNmysgIMBeFhUVJWOMdu7cWWGfSZMm6dChQ/Ztx44dzoQJAKjj3nrrLX377bdKS0srV3d6DnPm6gSJL+EA4HLjVKLj4eGhmJgYZWZmOpRnZmae9eYC3bp10+7du3X48GF72U8//aR69eopNDS0wj5Wq1X+/v4OGwAAlbFjxw49+OCDeuONN+Tp6XnWds5cnSDxJRwAXG6cvnQtOTlZ//znP/Xaa69p8+bNeuihh5Sbm6uxY8dKOjURDB8+3N5+6NChaty4se6++25t2rRJX375pR599FHdc8898vLyqr5XAgCApPXr16ugoEAxMTFyd3eXu7u7Vq5cqX/84x9yd3e3r+Q4c3WCxJdwAHC5cfo5OkOGDNH+/fs1depU5eXlKTo6WkuWLFFYWJgkKS8vT7m5ufb2vr6+yszM1IQJE9SpUyc1btxYt99+u5566qnqexUAAPxPnz599P333zuU3X333WrTpo0ee+wxXXHFFQoKClJmZqY6duwo6dRdRVeuXKlnnnmmNkIGANQApxMdSUpMTFRiYmKFdXPnzi1X1qZNm3KXuwEAUBP8/PwUHR3tUObj46PGjRvby5OSkpSamqrIyEhFRkYqNTVV3t7eGjp0aG2EDACoAVVKdAAAuJxNnDhRx44dU2Jiog4cOKAuXbpo+fLl8vPzq+3QAADVhEQHAODyVqxY4bBvsViUkpKilJSUWokHAFDzqvQcHQAAAAC4lJHoAAAAAHA5JDoAAAAAXA6JDgAAAACXQ6IDAAAAwOWQ6AAAAABwOSQ6AAAAAFwOiQ4AAAAAl0OiAwAAAMDlkOgAAAAAcDnutR0AAAAAcCnL2XdER4pLK91+a8Fhhz8ry8fqrogmPk71wdmR6AAAAABnkbPviHo9u6JKfZMWZTvd54tHepLsVBMSHQAAAOAsTq/kZAzpoFbNfCvV5/iJMu08cEyhDb3kWd+tUn22FhxW0qJsp1aOcG4kOgAAAMB5tGrmq+jmAZVu3ym85mJB5XAzAgAAAAAuh0QHAAAAgMsh0QEAAADgcqqU6MycOVMRERHy9PRUTEyMVq1adda2K1askMViKbf9+OOPVQ4aAAAAAM7F6ZsRLFq0SElJSZo5c6a6deuml19+WQkJCdq0aZNatGhx1n5btmyRv7+/fb9p06ZVixgAAFw2jp0okyT9sOuQU/2qetcqoCZY3AuVU7hF9Twrd9e1qsgpPCyLe2GNHb8ucjrRSU9P16hRozR69GhJUkZGhj799FPNmjVLaWlpZ+3XrFkzNWjQoMqBAgCAy8+2/yUfj7/3/UUb08fKTWVRveo3+FpPfJN6EcbpI2lAjY9TVzj1SVBSUqL169fr8ccfdyiPj49XVlbWOft27NhRx48fV9u2bfXnP/9ZvXr1cj5aAABwWYlvFyRJatnMV16VXJmR/v8zRZx5donEk+VRM04c7KLnbhyqlk6ci87aVnBYD7y5rcaOXxc5lejs27dPZWVlCgwMdCgPDAxUfn5+hX2Cg4M1e/ZsxcTEqLi4WK+//rr69OmjFStW6Prrr6+wT3FxsYqLi+37hYUs4zkjZ98Rpx42dXqp39klfyYTXCzHSsq0bW/F52dlLm9p2dRXXh6V/wcWgOrTyMdDd3Q++6Xt5+Pss0uAmmBK/RXh31ptG9fcuXjy+CGZ0r01dvy6qEpruxaLxWHfGFOu7LTWrVurdevW9v3Y2Fjt2LFDzz777FkTnbS0NE2ZMqUqodV5OfuOqNezK6rUN2lRttN9vnikJ8kOaty2vYd10wurq9z/kwnd+YcSAAB1jFOJTpMmTeTm5lZu9aagoKDcKs+5XHfddXrjjTfOWj9p0iQlJyfb9wsLC2Wz2ZwJtc46vZLjzFJ/VX/wmbQo26mVI6CqWjb11ScTuldYV5nLW1o2rblLDQAAwKXJqUTHw8NDMTExyszM1ODBg+3lmZmZGjRoUKWPs2HDBgUHB5+13mq1ymq1OhMazuDsUn+n8JqLBbhQXh5u5z2fubwFAAD8ntOXriUnJ2vYsGHq1KmTYmNjNXv2bOXm5mrs2LGSTq3G7Nq1S/Pnz5d06q5s4eHhateunUpKSvTGG29o8eLFWrx4cfW+EgAAAAD4H6cTnSFDhmj//v2aOnWq8vLyFB0drSVLligsLEySlJeXp9zcXHv7kpISPfLII9q1a5e8vLzUrl07/etf/9KAAdw6DwAAAEDNqNLNCBITE5WYmFhh3dy5cx32J06cqIkTJ1ZlGAAAAACoknq1HQAAAAAAVDcSHQAAAAAuh0QHAAAAgMsh0QEAAADgckh0AAAuZdasWWrfvr38/f3l7++v2NhYLV261F5vjFFKSopCQkLk5eWlnj17auPGjbUYMQCgJpDoAABcSmhoqJ5++mmtW7dO69atU+/evTVo0CB7MjNt2jSlp6drxowZWrt2rYKCgtSvXz8VFRXVcuQAgOpEogMAcCkDBw7UgAEDdOWVV+rKK6/U3/72N/n6+mrNmjUyxigjI0OTJ0/WrbfequjoaM2bN09Hjx7VggULajt0AEA1ItEBALissrIyvfXWWzpy5IhiY2OVk5Oj/Px8xcfH29tYrVbFxcUpKyurFiMFAFS3Kj0wFACAS9n333+v2NhYHT9+XL6+vnr//ffVtm1bezITGBjo0D4wMFC//vrrOY9ZXFys4uJi+35hYWH1Bw4AqDas6AAAXE7r1q2VnZ2tNWvW6P7779eIESO0adMme73FYnFob4wpV3amtLQ0BQQE2DebzVYjsQMAqgeJDgDA5Xh4eKhVq1bq1KmT0tLSdPXVV2v69OkKCgqSJOXn5zu0LygoKLfKc6ZJkybp0KFD9m3Hjh01Fj8A4MKR6AAAXJ4xRsXFxYqIiFBQUJAyMzPtdSUlJVq5cqW6du16zmNYrVb7LatPbwCASxe/0QEAuJQnnnhCCQkJstlsKioq0ltvvaUVK1Zo2bJlslgsSkpKUmpqqiIjIxUZGanU1FR5e3tr6NChtR06AKAakegAAFzKnj17NGzYMOXl5SkgIEDt27fXsmXL1K9fP0nSxIkTdezYMSUmJurAgQPq0qWLli9fLj8/v1qOHABQnUh0AAAu5dVXXz1nvcViUUpKilJSUi5OQACAWsFvdAAAAAC4HBIdAAAAAC6HRAcAAACAyyHRAQAAAOByqpTozJw5UxEREfL09FRMTIxWrVpVqX7/+c9/5O7urg4dOlRlWAAAAACoFKcTnUWLFikpKUmTJ0/Whg0b1KNHDyUkJCg3N/ec/Q4dOqThw4erT58+VQ4WAAAAACrD6UQnPT1do0aN0ujRoxUVFaWMjAzZbDbNmjXrnP3uu+8+DR06VLGxsVUOFgAAAAAqw6lEp6SkROvXr1d8fLxDeXx8vLKyss7ab86cOdq2bZuefPLJqkUJAAAAAE5w6oGh+/btU1lZmQIDAx3KAwMDlZ+fX2Gfn3/+WY8//rhWrVold/fKDVdcXKzi4mL7fmFhoTNh1nkW90LlFG5RPU/fGhsjp/CwLO78f0H1W7/zV+0u2lPp9jt+O6p6nrv05fYNyin0rnS/EL9AxYSGVSVEAABwGXAq0TnNYrE47BtjypVJUllZmYYOHaopU6boyiuvrPTx09LSNGXKlKqEBkn1G3ytJ75JvQjj9JE0oMbHQd2Rs++I7nzreVmb/tupfj4R0qytzo1VvLePPh35N0U08XGuIwAAuCw4leg0adJEbm5u5VZvCgoKyq3ySFJRUZHWrVunDRs2aPz48ZKkkydPyhgjd3d3LV++XL179y7Xb9KkSUpOTrbvFxYWymazORNqnXbiYBc9d+NQtWxWcys62woO64E3t9XY8VE3HSku1YmDXZQUe4tsjSq3OlNcelIFhcfVzN9TVvfKXY2747ej+vvPeTpSXHoh4QIAgEuYU4mOh4eHYmJilJmZqcGDB9vLMzMzNWjQoHLt/f399f333zuUzZw5U59//rneffddRUREVDiO1WqV1Wp1JjT8jin1V4R/a7VtHFBjY5w8fkimdG+NHR91lyn11/XhHRXdvObO3x92HdK00iM1dnwAAFD7nL50LTk5WcOGDVOnTp0UGxur2bNnKzc3V2PHjpV0ajVm165dmj9/vurVq6fo6GiH/s2aNZOnp2e5cgAAAACoLk4nOkOGDNH+/fs1depU5eXlKTo6WkuWLFFY2Kkf9ebl5Z33mToAAAAAUJOqdDOCxMREJSYmVlg3d+7cc/ZNSUlRSkpKVYYFAAAAgEpx+oGhAAAAAHCpI9EBAAAA4HJIdAAAAAC4HBIdAAAAAC6HRAcAAACAyyHRAQAAAOBySHQAAAAAuBwSHQAAAAAup0oPDAUAALhQx0rKtG3v4QrrthYcdvjzTC2b+srLw63GYgNOO3aiTJL0w65Dle5z/ESZdh44ptCGXvKsX7nz9GznOqqORAcAANSKbXsP66YXVp+zTdKi7ArLP5nQXdHNA2ogKsDRtv8lII+/9/1FGc/Hyj/PqwvvJAAAqBUtm/rqkwndK6w73zfiLZv61nR4gCQpvl2QJKllM195ObE6k7QoWxlDOqhVs8qfqz5Wd0U08alSnCiPRAcAANQKLw+3c67KdAq/eLEAZ9PIx0N3dG5Rpb6tmvmy8liLuBkBAAAAAJdDogMAAADA5ZDoAAAAAHA5JDoAAAAAXA6JDgAAAACXQ6IDAAAAwOWQ6AAAXEpaWpquvfZa+fn5qVmzZrrlllu0ZcsWhzbGGKWkpCgkJEReXl7q2bOnNm7cWEsRAwBqQpUSnZkzZyoiIkKenp6KiYnRqlWrztp29erV6tatmxo3biwvLy+1adNGzz//fJUDBgDgXFauXKlx48ZpzZo1yszMVGlpqeLj43XkyBF7m2nTpik9PV0zZszQ2rVrFRQUpH79+qmoqKgWIwcAVCenHxi6aNEiJSUlaebMmerWrZtefvllJSQkaNOmTWrRovzDlHx8fDR+/Hi1b99ePj4+Wr16te677z75+Pjo3nvvrZYXAQDAacuWLXPYnzNnjpo1a6b169fr+uuvlzFGGRkZmjx5sm699VZJ0rx58xQYGKgFCxbovvvuq42wAQDVzOkVnfT0dI0aNUqjR49WVFSUMjIyZLPZNGvWrArbd+zYUXfeeafatWun8PBw/elPf1L//v3PuQoEAEB1OXTokCSpUaNGkqScnBzl5+crPj7e3sZqtSouLk5ZWVm1EiMAoPo5leiUlJRo/fr1DpODJMXHx1d6ctiwYYOysrIUFxfnzNAAADjNGKPk5GR1795d0dHRkqT8/HxJUmBgoEPbwMBAe11FiouLVVhY6LABAC5dTl26tm/fPpWVlTk9OUhSaGio9u7dq9LSUqWkpGj06NFnbVtcXKzi4mL7PpNJ5R07USZJ+mHXoUr3OX6iTDsPHFNoQy951nerVJ+tBYerFB8AXEzjx4/Xd999p9WrV5ers1gsDvvGmHJlv5eWlqYpU6ZUe4wAgJrh9G90JOcnB0latWqVDh8+rDVr1ujxxx9Xq1atdOedd1bYlsmk6rb9LwF5/L3vL8p4PtYqnUIAUOMmTJigjz76SF9++aVCQ0Pt5UFBQZJOrewEBwfbywsKCsp9kfd7kyZNUnJysn2/sLBQNputBiIHAFQHp/6V2qRJE7m5uZVbvTnf5CBJERERkqSrrrpKe/bsUUpKylkTHSaTqotvd2oCb9nMV15OrM4kLcpWxpAOatXMt9Jj+VjdFdHEp0pxAkBNMcZowoQJev/997VixQr7/HNaRESEgoKClJmZqY4dO0o6dWn2ypUr9cwzz5z1uFarVVartUZjBwBUH6cSHQ8PD8XExCgzM1ODBw+2l2dmZmrQoEGVPo4xxuHStDMxmVRdIx8P3dG5/N3vKqNVM19FNw+o5ogA4OIaN26cFixYoA8//FB+fn72L+cCAgLk5eUli8WipKQkpaamKjIyUpGRkUpNTZW3t7eGDh1ay9EDAKqL09cdJScna9iwYerUqZNiY2M1e/Zs5ebmauzYsZJOrcbs2rVL8+fPlyS9+OKLatGihdq0aSPp1HN1nn32WU2YMKEaXwYAAKecvgtoz549HcrnzJmjkSNHSpImTpyoY8eOKTExUQcOHFCXLl20fPly+fn5XeRoAQA1xelEZ8iQIdq/f7+mTp2qvLw8RUdHa8mSJQoLC5Mk5eXlKTc3197+5MmTmjRpknJycuTu7q6WLVvq6aef5jkFAIAaYYw5bxuLxaKUlBSlpKTUfEAAgFpRpV+SJyYmKjExscK6uXPnOuxPmDCB1RsAAAAAF5XTDwwFAAAAgEsdiQ4AAAAAl0OiAwAAAMDlkOgAAAAAcDkkOgAAAABcDokOAAAAAJdDogMAAADA5ZDoAAAAAHA5JDoAAAAAXA6JDgAAAACXQ6IDAAAAwOWQ6AAAAABwOSQ6AAAAAFwOiQ4AAAAAl0OiAwAAAMDlkOgAAAAAcDkkOgAAAABcDokOAAAAAJdDogMAAADA5VQp0Zk5c6YiIiLk6empmJgYrVq16qxt33vvPfXr109NmzaVv7+/YmNj9emnn1Y5YAAAAAA4H6cTnUWLFikpKUmTJ0/Whg0b1KNHDyUkJCg3N7fC9l9++aX69eunJUuWaP369erVq5cGDhyoDRs2XHDwAAAAAFARpxOd9PR0jRo1SqNHj1ZUVJQyMjJks9k0a9asCttnZGRo4sSJuvbaaxUZGanU1FRFRkbq448/vuDgAQAAAKAiTiU6JSUlWr9+veLj4x3K4+PjlZWVValjnDx5UkVFRWrUqJEzQwMAAABApbk703jfvn0qKytTYGCgQ3lgYKDy8/MrdYznnntOR44c0e23337WNsXFxSouLrbvFxYWOhMmgMvUsRNlkqQfdh2qdJ/jJ8q088AxhTb0kmd9t0r12VpwuErxAQCAy4dTic5pFovFYd8YU66sIgsXLlRKSoo+/PBDNWvW7Kzt0tLSNGXKlKqEBuAytu1/Ccjj731/UcbzsVbpIxAAAFwGnJrlmzRpIjc3t3KrNwUFBeVWec60aNEijRo1Su+884769u17zraTJk1ScnKyfb+wsFA2m82ZUAFchuLbBUmSWjbzlZcTqzNJi7KVMaSDWjXzrfRYPlZ3RTTxqVKcAADg0udUouPh4aGYmBhlZmZq8ODB9vLMzEwNGjTorP0WLlyoe+65RwsXLtSNN9543nGsVqusVqszoQFwAY18PHRH5xZV6tuqma+imwdUc0QAAOBy5fR1G8nJyRo2bJg6deqk2NhYzZ49W7m5uRo7dqykU6sxu3bt0vz58yWdSnKGDx+u6dOn67rrrrOvBnl5eSkggH+UAAAAAKh+Tic6Q4YM0f79+zV16lTl5eUpOjpaS5YsUVhYmCQpLy/P4Zk6L7/8skpLSzVu3DiNGzfOXj5ixAjNnTv3wl8BAAAAAJyhSr/ETUxMVGJiYoV1ZyYvK1asqMoQAAAAAFBlTj8wFAAAAAAudSQ6AAAAAFwOiQ4AwOV8+eWXGjhwoEJCQmSxWPTBBx841BtjlJKSopCQEHl5ealnz57auHFj7QQLAKgRJDoAAJdz5MgRXX311ZoxY0aF9dOmTVN6erpmzJihtWvXKigoSP369VNRUdFFjhQAUFN4LDgAwOUkJCQoISGhwjpjjDIyMjR58mTdeuutkqR58+YpMDBQCxYs0H333XcxQwUA1BBWdAAAdUpOTo7y8/MVHx9vL7NarYqLi1NWVtZZ+xUXF6uwsNBhAwBcukh0AAB1yukHVwcGBjqUBwYG2usqkpaWpoCAAPtms9lqNE4AwIUh0QEA1EkWi8Vh3xhTruz3Jk2apEOHDtm3HTt21HSIAIALwG90AAB1SlBQkKRTKzvBwcH28oKCgnKrPL9ntVpltVprPD4AQPVgRQcAUKdEREQoKChImZmZ9rKSkhKtXLlSXbt2rcXIAADViRUdAIDLOXz4sLZu3Wrfz8nJUXZ2tho1aqQWLVooKSlJqampioyMVGRkpFJTU+Xt7a2hQ4fWYtQAgOpEogMAcDnr1q1Tr1697PvJycmSpBEjRmju3LmaOHGijh07psTERB04cEBdunTR8uXL5efnV1shAwCqGYkOAMDl9OzZU8aYs9ZbLBalpKQoJSXl4gUFALio+I0OAAAAAJdDogMAAADA5ZDoAAAAAHA5JDoAAAAAXA6JDgAAAACXQ6IDAAAAwOVUKdGZOXOmIiIi5OnpqZiYGK1ateqsbfPy8jR06FC1bt1a9erVU1JSUlVjBQAAAIBKcTrRWbRokZKSkjR58mRt2LBBPXr0UEJCgnJzcytsX1xcrKZNm2ry5Mm6+uqrLzhgAAAAADgfpxOd9PR0jRo1SqNHj1ZUVJQyMjJks9k0a9asCtuHh4dr+vTpGj58uAICAi44YAAAAAA4H6cSnZKSEq1fv17x8fEO5fHx8crKyqrWwAAAAACgqtydabxv3z6VlZUpMDDQoTwwMFD5+fnVFlRxcbGKi4vt+4WFhdV27LrqWEmZtu09XGHd1oLDDn9WpGVTX3l5uNVIbMD5cP4CAC41FzI3MS9dHE4lOqdZLBaHfWNMubILkZaWpilTplTb8SBt23tYN72w+pxtkhZln7XukwndFd2cSw9ROzh/AQCXmguZm5iXLg6nEp0mTZrIzc2t3OpNQUFBuVWeCzFp0iQlJyfb9wsLC2Wz2art+HVRy6a++mRC9wrrjp8o084DxxTa0Eue9Sv+dqFlU9+aDA84J85fAMCl5kLmJuali8OpRMfDw0MxMTHKzMzU4MGD7eWZmZkaNGhQtQVltVpltVqr7XiQvDzczvnNQafwixcL4CzOXwDApYa56dLn9KVrycnJGjZsmDp16qTY2FjNnj1bubm5Gjt2rKRTqzG7du3S/Pnz7X2ys7MlSYcPH9bevXuVnZ0tDw8PtW3btnpeBQAAAAD8jtOJzpAhQ7R//35NnTpVeXl5io6O1pIlSxQWFibp1ANCz3ymTseOHe3/vX79ei1YsEBhYWHavn37hUUPAAAAABWwGGNMbQdxPoWFhQoICNChQ4fk7+9f2+EAQJ3B5+/Z8d4AQO2o7Oev0w8MBQAAAIBLHYkOAAAAAJdDogMAAADA5VTpgaEX2+mfERUWFtZyJABQt5z+3L0Mfs550TE3AUDtqOzcdFkkOkVFRZLEQ0MBoJYUFRUpIICneP8ecxMA1K7zzU2XxV3XTp48qd27d8vPz08Wi6W2w3E5hYWFstls2rFjB3cOwmWH87dmGWNUVFSkkJAQ1avH1c6/x9xUs/i7jcsZ52/NquzcdFms6NSrV0+hoaG1HYbL8/f35y8jLlucvzWHlZyKMTddHPzdxuWM87fmVGZu4us5AAAAAC6HRAcAAACAyyHRgaxWq5588klZrdbaDgVwGucv4Jr4u43LGefvpeGyuBkBAAAAADiDFR0AAAAALodEBwAAAIDLIdEBAAAA4HJIdGC3fft2WSwWZWdn13YoAABIYm4CUHUkOpeA/Px8Pfjgg2rVqpU8PT0VGBio7t2766WXXtLRo0drO7wal5KSog4dOtR2GLgIRo4cKYvFIovFInd3d7Vo0UL333+/Dhw4UNuh2fXs2VNJSUm1HQZQ65ibmJvqAuYl1+Ze2wHUdb/88ou6deumBg0aKDU1VVdddZVKS0v1008/6bXXXlNISIhuvvnm2g4TqDY33HCD5syZo9LSUm3atEn33HOPDh48qIULF9Z2aAD+h7kJdQnzkgszqFX9+/c3oaGh5vDhwxXWnzx50hhjzK+//mpuvvlm4+PjY/z8/Mxtt91m8vPzHdrOnDnTXHHFFaZ+/frmyiuvNPPnz3eo37x5s+nWrZuxWq0mKirKZGZmGknm/fffN8YYk5OTYySZDRs22Pts3LjRJCQkGB8fH9OsWTPzpz/9yezdu9deHxcXZyZMmGAeffRR07BhQxMYGGiefPJJh3EPHjxoxowZY5o2bWr8/PxMr169THZ2tjHGmDlz5hhJDtucOXOq8E7icjBixAgzaNAgh7Lk5GTTqFEj+/5rr71m2rRpY6xWq2ndurV58cUX7XXFxcVm3LhxJigoyFitVhMWFmZSU1Pt9ZLMK6+8Ym655Rbj5eVlWrVqZT788EOH8c51To8YMaLc+ZiTk1P9bwRwiWNuYm6qK5iXXBuJTi3at2+fsVgsJi0t7ZztTp48aTp27Gi6d+9u1q1bZ9asWWOuueYaExcXZ2/z3nvvmfr165sXX3zRbNmyxTz33HPGzc3NfP7558YYY8rKykzr1q1Nv379THZ2tlm1apXp3LnzOSeT3bt3myZNmphJkyaZzZs3m2+//db069fP9OrVyz5uXFyc8ff3NykpKeann34y8+bNMxaLxSxfvtwee7du3czAgQPN2rVrzU8//WQefvhh07hxY7N//35z9OhR8/DDD5t27dqZvLw8k5eXZ44ePVp9bzIuKWdOKNu2bTNt27Y1gYGBxhhjZs+ebYKDg83ixYvNL7/8YhYvXmwaNWpk5s6da4wx5u9//7ux2Wzmyy+/NNu3bzerVq0yCxYssB9PkgkNDTULFiwwP//8s3nggQeMr6+v2b9/vzHm/Of0wYMHTWxsrBkzZoz9fCwtLb1I7w5waWBuYm6qS5iXXBuJTi1as2aNkWTee+89h/LGjRsbHx8f4+PjYyZOnGiWL19u3NzcTG5urr3Nxo0bjSTzzTffGGOM6dq1qxkzZozDcW677TYzYMAAY4wxS5cuNe7u7iYvL89ef75vzf7v//7PxMfHOxxzx44dRpLZsmWLMebUZNK9e3eHNtdee6157LHHjDHG/Pvf/zb+/v7m+PHjDm1atmxpXn75ZWOMMU8++aS5+uqrK/We4fI2YsQI4+bmZnx8fIynp6f926n09HRjjDE2m81hgjDGmL/+9a8mNjbWGGPMhAkTTO/eve3fJp9Jkvnzn/9s3z98+LCxWCxm6dKlxpjKn9MPPvhgtbxe4HLE3MTcVJcwL7k2bkZwCbBYLA7733zzjbKzs9WuXTsVFxdr8+bNstlsstls9jZt27ZVgwYNtHnzZknS5s2b1a1bN4fjdOvWzV6/ZcsW2Ww2BQUF2es7d+58zrjWr1+vL774Qr6+vvatTZs2kqRt27bZ27Vv396hX3BwsAoKCuzHOHz4sBo3buxwnJycHIdjoO7o1auXsrOz9fXXX2vChAnq37+/JkyYoL1792rHjh0aNWqUw7ny1FNP2c+VkSNHKjs7W61bt9YDDzyg5cuXlzv+789HHx8f+fn5OZyPlTmnATA3oe5gXnJd3IygFrVq1UoWi0U//vijQ/kVV1whSfLy8pIkGWPKTTgVlZ/Z5vf1ZzvGuZw8eVIDBw7UM888U64uODjY/t/169d3qLNYLDp58qT9GMHBwVqxYkW5YzRo0MCpeOAafHx81KpVK0nSP/7xD/Xq1UtTpkzR+PHjJUmvvPKKunTp4tDHzc1NknTNNdcoJydHS5cu1Weffabbb79dffv21bvvvmtve77zsTLnNFCXMTc1cCoeXP6Yl1wXiU4taty4sfr166cZM2ZowoQJ8vHxqbBd27ZtlZubqx07dti/Odu0aZMOHTqkqKgoSVJUVJRWr16t4cOH2/tlZWXZ69u0aaPc3Fzt2bNHgYGBkqS1a9eeM75rrrlGixcvVnh4uNzdq3aqXHPNNcrPz5e7u7vCw8MrbOPh4aGysrIqHR+XvyeffFIJCQm6//771bx5c/3yyy+66667ztre399fQ4YM0ZAhQ/THP/5RN9xwg3777Tc1atTovGNV5pzmfERdx9x0Cp8FdRfzkuvg0rVaNnPmTJWWlqpTp05atGiRNm/erC1btuiNN97Qjz/+KDc3N/Xt21ft27fXXXfdpW+//VbffPONhg8frri4OHXq1EmS9Oijj2ru3Ll66aWX9PPPPys9PV3vvfeeHnnkEUlSv3791LJlS40YMULfffed/vOf/2jy5MmSyn/bdtq4ceP022+/6c4779Q333yjX375RcuXL9c999xT6b9wffv2VWxsrG655RZ9+umn2r59u7KysvTnP/9Z69atkySFh4crJydH2dnZ2rdvn4qLiy/0bcVlpGfPnmrXrp1SU1OVkpKitLQ0TZ8+XT/99JO+//57zZkzR+np6ZKk559/Xm+99ZZ+/PFH/fTTT3rnnXcUFBRU6W9gK3NOh4eH6+uvv9b27du1b98++7duQF3C3MTcVJcxL7mQ2vt5EE7bvXu3GT9+vImIiDD169c3vr6+pnPnzubvf/+7OXLkiDGmem/h6eHhYdq0aWM+/vhjI8ksW7bMGFPxLTx/+uknM3jwYNOgQQPj5eVl2rRpY5KSkuw/uqvoB3KDBg0yI0aMsO8XFhaaCRMmmJCQEFO/fn1js9nMXXfdZf8B6/Hjx80f/vAH06BBA27h6eIquo2nMca8+eabxsPDw+Tm5po333zTdOjQwXh4eJiGDRua66+/3v6j6NmzZ5sOHToYHx8f4+/vb/r06WO+/fZb+3H0ux8wnxYQEOBwTp3vnN6yZYu57rrrjJeXF7fxRJ3G3MTcVBcwL7k2izHG1FaShdr1n//8R927d9fWrVvVsmXL2g4HAADmJgDVhkSnDnn//ffl6+uryMhIbd26VQ8++KAaNmyo1atX13ZoAIA6irkJQE3hZgR1SFFRkSZOnKgdO3aoSZMm6tu3r5577rnaDgsAUIcxNwGoKazoAAAAAHA53HUNAAAAgMsh0QEAAADgckh0AAAAALgcEh0AAAAALodEBwAAAIDLIdEBAAAA4HJIdAAAAAC4HBIdAAAAAC6HRAcAAACAy/l/eECDAN/zbY8AAAAASUVORK5CYII=", - "text/plain": [ - "<Figure size 1000x300 with 2 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(1,2, figsize = (10,3))\n", - "confidences_model1 = [0.1, 0.3, 0.4, 0.5, 0.8]\n", - "confidences_model2 = [0.4, 0.1, 0.4, 0.5, 0.2]\n", - "\n", - "inferences_model1 = [53, 34, 54, 23, 43]\n", - "inferences_model2 = [34, 23, 36, 43, 6]\n", - "\n", - "confidences_combined = pd.DataFrame({\"Googlenet\":confidences_model1, \"Resnet\": confidences_model2})\n", - "inferences_combined = pd.DataFrame({\"Googlenet\":inferences_model1, \"Resnet\": inferences_model2})\n", - "\n", - "# Creating plot\n", - "# plt.boxplot(confidences_model1)\n", - "confidences_combined[['Googlenet', 'Resnet']].plot(kind='box', title='Confidences', ax=axes[0])\n", - "inferences_combined[['Googlenet', 'Resnet']].plot(kind='box', title='Inferences', ax=axes[1])" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/HAAI_1.ipynb b/HAAI_1.ipynb deleted file mode 100644 index 5e3accc84990c4a4749e728ab944c8ddfe58b14d..0000000000000000000000000000000000000000 --- a/HAAI_1.ipynb +++ /dev/null @@ -1,411 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Exercise 1" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "IP = \"192.168.50.126\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "with open('ilsvrc12_synset_words.txt') as f:\n", - " classes = f.read()\n", - " \n", - "class_list = [''.join(c.split(' ')[1:]) for c in classes.split('\\n')]\n", - "class_list[:10]" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "ename": "ModuleNotFoundError", - "evalue": "No module named 'jetson_inference'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mjetson_inference\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mjetson_utils\u001b[39;00m\n", - "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'jetson_inference'" - ] - } - ], - "source": [ - "import jetson_inference\n", - "import jetson_utils" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "img = jetson_utils.loadImage(\"guara_navidad.png\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "img.shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.imshow(img)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model = jetson_inference.imageNet(\"googlenet\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "cls_idx, confid = model.Classify(img)\n", - "f\"Result: {class_list[cls_idx]} ({cls_idx}), with confidence {confid*100:.0f}%\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "### Exercise 2" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Set up the path\n", - "from pathlib import Path\n", - "# Import time to calculate times\n", - "import time\n", - "\n", - "# Set directory path and extract images\n", - "directory = Path('/home/jetson/hiram/task2-images/')\n", - "images = [str(filename) for filename in directory.iterdir() if filename.name.endswith('.jpg')]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display image files\n", - "images" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# The first model\n", - "model_1 = jetson_inference.imageNet(\"googlenet\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# The second model\n", - "model_2 = jetson_inference.imageNet(\"resnet-18\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Start timing the model\n", - "model_start_time = time.time()\n", - "\n", - "confidences_model1 = []\n", - "inferences_model1 = []\n", - "\n", - "# Iterate trough images\n", - "for image in images:\n", - " # Start timing the prediction\n", - " start = time.time()\n", - " \n", - " # Load and classify\n", - " img = jetson_utils.loadImage(image)\n", - " cls_idx, confid = model_1.Classify(img)\n", - " \n", - " confidences_model1.append(confid)\n", - " \n", - " # End timing of the prediction\n", - " end = time.time()\n", - " inferences_model2.append(end-start)\n", - " result = f\"Result: {class_list[cls_idx]} ({cls_idx}), with confidence {confid*100:.0f}%, with an inference time {end-start}s\"\n", - " print(result)\n", - "\n", - "# End timing the model\n", - "model_end_time = time.time()\n", - "model_inference_time = f\"Model inference time {model_end_time-model_start_time}s\"\n", - "print(model_inference_time)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Start timing the model\n", - "model_start_time = time.time()\n", - "\n", - "confidences_model2 = []\n", - "inferences_model2 = []\n", - "\n", - "# Iterate trough images\n", - "for image in images:\n", - " # Start timing the prediction\n", - " start = time.time()\n", - " \n", - " # Load and classify\n", - " img = jetson_utils.loadImage(image)\n", - " cls_idx, confid = model_2.Classify(img)\n", - " confidences_model2.append(confid)\n", - " \n", - " # End timing of the prediction\n", - " end = time.time()\n", - " inferences_model2.append(end-start)\n", - " result = f\"Result: {class_list[cls_idx]} ({cls_idx}), with confidence {confid*100:.0f}%, with an inference time {end-start}s\"\n", - " print(result)\n", - "\n", - "# End timing the model\n", - "model_end_time = time.time()\n", - "model_inference_time = f\"Model inference time {model_end_time-model_start_time}s\"\n", - "print(model_inference_time)\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "# Calculate the confusion matrix\n", - "def comp_confusion_matrix(actual, predicted):\n", - " # extract the different classes\n", - " classes = np.unique(predicted)\n", - " # initialize the confusion matrix\n", - " confmat = np.zeros((len(classes), len(classes)))\n", - "\n", - " # loop across the different combinations of actual / predicted classes\n", - " for i in range(len(classes)):\n", - " for j in range(len(classes)):\n", - " # count the number of instances in each combination of actual / predicted classes\n", - " confmat[i, j] = np.sum((actual == classes[i]) & (predicted == classes[j]))\n", - " return confmat" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "# Visualize the confusion matrix\n", - "def plot_confusion_matrix(cm, classes, title, cmap=plt.cm.Blues):\n", - " \n", - " # Creating the visualization\n", - " plt.imshow(cm, interpolation='nearest', cmap=cmap)\n", - " plt.tight_layout()\n", - " tick_marks = np.arange(len(classes))\n", - " plt.xticks(tick_marks, classes, rotation=45)\n", - " plt.yticks(tick_marks, classes)\n", - " plt.title(title)\n", - " plt.ylabel('True class')\n", - " plt.xlabel('Predicted class')\n", - " thresh = cm.max() / 2.\n", - " for i in range(cm.shape[0]):\n", - " for j in range(cm.shape[1]):\n", - " plt.text(j, i, format(cm[i, j]),\n", - " ha=\"center\", va=\"center\",\n", - " color=\"white\" if cm[i, j] > thresh else \"black\")" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [], - "source": [ - "# googlenet results\n", - "actual = [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 0]\n", - "predicted = [0, 0, 3, 0, 1, 1, 1, 2, 3, 3, 3, 3, 2, 2, 1, 3, 1, 3, 3, 1, 0]\n", - "\n", - "# confusion matrix for googlenet\n", - "classes = ['Feline', 'Canid', 'Rodent', 'Other']\n", - "cm_googlenet = comp_confusion_matrix(actual, predicted)" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [], - "source": [ - "# resnet results\n", - "actual = [0, 1, 2, 0, 1, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 0, 1, 2, 1, 2, 0]\n", - "predicted = [0, 3, 3, 0, 1, 1, 1, 2, 0, 3, 3, 2, 1, 1, 0, 0, 1, 3, 1, 3, 0]\n", - "\n", - "# confusion matrix for resnet\n", - "cm_resnet = comp_confusion_matrix(actual, predicted)" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAAFjCAYAAACAMejZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWs0lEQVR4nO3deVxM+/8H8Ne0TVqUShuVylISFVKWG5J9yXrtsl77tUa4srtc27Unl+xr5OJaI19LUWQteym0KFpEaXn//vBrrlGo7qlpeT8fjx7MZz7nzPszy2vOnPOZMyIiIjDGGPtP5GRdAGOMlQccpowxJgAOU8YYEwCHKWOMCYDDlDHGBMBhyhhjAuAwZYwxAXCYMsaYADhMGWNMABymJezu3bsYOnQoTE1NoaysDDU1NdjZ2WH58uV4+/Ztsd52aGgonJycoKGhAZFIhDVr1gh+GyKRCPPmzRN8vaXJkiVL4OfnV6hlfHx8IBKJEBkZWSw1fSkuLg6zZs2CjY0NKleuDCUlJVSvXh09evTA33//jezs7GKvoSDmzZsHkUgk6zIkNm7cCB8fnyIvryBcKexHvL29MXbsWNSpUwfTp09H3bp1kZmZiZCQEGzevBmBgYE4evRosd3+sGHDkJaWhv3796NKlSqoUaOG4LcRGBiI6tWrC77e0mTJkiXo1asXXF1dC7xMp06dEBgYCAMDg+IrDEBQUBC6du0KIsKYMWPg4OAANTU1REVF4fjx4+jRowe8vLwwfPjwYq2jLNq4cSN0dHTg5uZWpOU5TEtIYGAgxowZAxcXF/j5+UEsFkuuc3FxwdSpU3H69OlireH+/fsYOXIkOnToUGy34eDgUGzrLos+fvwIZWVlVK1aFVWrVi3W20pKSoKrqyvU1NRw9erVPME9cOBA3L17F4mJicVaR4VFrER07tyZFBQUKCoqqkD9s7OzadmyZVSnTh1SUlKiqlWr0qBBgyg6Olqqn5OTE1lZWdGNGzeoefPmVKlSJTI1NaWlS5dSdnY2ERFt376dAOT5IyLy9PSk/J4GuctERERI2vz9/cnJyYm0tLRIWVmZjIyMqEePHpSWlibpA4A8PT2l1nXv3j3q2rUraWpqklgspgYNGpCPj49Un4sXLxIA2rt3L82aNYsMDAxIXV2dnJ2d6eHDhz+8v3LHcefOHerVqxdVrlyZqlSpQpMnT6bMzEx6+PAhtWvXjtTU1MjExISWLVsmtfzHjx9pypQp1KBBA8myDg4O5OfnJ9Uvv/vRyclJ6j47c+YMDR06lHR0dAgAffz4Mc/9+fjxY1JXV6devXpJrd/f35/k5ORozpw5Pxzz15YvX04A6NChQ4VariCPDxHRixcvaMCAAVS1alVSUlIiCwsLWrFiheR5lis6Opp69uxJampqpKGhQf3796cbN24QANq+fbuk37eee/v37ycHBwdSUVEhVVVVatu2Ld26dUuqz5AhQ0hVVZWePHlCHTp0IFVVVapevTpNmTKF0tPTpfpmZGTQwoULJa8lHR0dcnNzo/j4eEkfExOTPI+riYlJoe5HDtMSkJWVRSoqKtSkSZMCLzNq1CgCQOPHj6fTp0/T5s2bqWrVqmRkZERv3ryR9HNyciJtbW2qVasWbd68mc6dO0djx44lALRjxw4iIoqPj6fAwEACQL169aLAwEAKDAwkooKHaUREBCkrK5OLiwv5+flRQEAA7dmzhwYNGkTv3r2TLPd1mD58+JDU1dXJ3Nycdu7cSSdPnqR+/foRAKlAyw3TGjVq0IABA+jkyZO0b98+MjY2plq1alFWVtZ376/ccdSpU4cWLlxI586dI3d3d8l9aGFhQWvXrqVz587R0KFDCQD5+vpKlk9KSiI3NzfatWsXXbhwgU6fPk3Tpk0jOTk5yf1IRBQYGEiVKlWijh07Su7HBw8eSN1n1apVo1GjRtGpU6fo8OHDlJWVle+b0/79+wkA/fnnn0REFBMTQ3p6euTk5PTD8ebHxcWF5OXlpd7cfqSgj098fDxVq1aNqlatSps3b6bTp0/T+PHjCQCNGTNG0u/9+/dUs2ZN0tLSog0bNtCZM2do8uTJZGpqWqAwXbx4MYlEIho2bBidOHGCjhw5Qo6OjqSqqiq5n4k+h6mSkhJZWlrSihUr6Pz58zR37lwSiUQ0f/58Sb/s7Gxq3749qaqq0vz58+ncuXO0detWqlatGtWtW5c+fPhARES3bt0iMzMzsrW1lTyuXwf4j3CYloDY2FgCQH379i1Q//DwcAJAY8eOlWq/fv06AaBZs2ZJ2pycnAgAXb9+Xapv3bp1qV27dlJtAGjcuHFSbQUN08OHDxMAun379ndr/zpM+/btS2KxOM8WeYcOHUhFRYWSkpKI6N8w7dixo1S/gwcPEgBJ+H9L7jhWrlwp1W5jY0MA6MiRI5K2zMxMqlq1KvXo0eOb68vKyqLMzEwaPnw42draSl2nqqpKQ4YMybNM7n02ePDgb173ZZgSEY0ZM4aUlJQoMDCQWrduTbq6uvT69evvjvVbLCwsSF9fP097dnY2ZWZmSv6+3JIs6OMzc+bMfJ9nY8aMIZFIRI8ePSIiog0bNhAAOnXqlFS/X3755YdhGhUVRQoKCjRhwgSpZVNTU0lfX5/69OkjaRsyZAgBoIMHD0r17dixI9WpU0dyed++fXneOImIgoODCQBt3LhR0mZlZSX5lFEUfDS/FLp48SIA5NkRbm9vD0tLS/j7+0u16+vrw97eXqqtfv36ePHihWA12djYQElJCaNGjcKOHTvw/PnzAi134cIFODs7w8jISKrdzc0NHz58QGBgoFR7165dpS7Xr18fAAo8ls6dO0tdtrS0hEgkktpPrKCggJo1a+ZZ56FDh9CsWTOoqalBQUEBioqK+OuvvxAeHl6g287Vs2fPAvddvXo1rKys0KpVKwQEBGD37t2CH6SaMmUKFBUVJX9f3scFfXwuXLiAunXr5nmeubm5gYhw4cIFAMClS5egrq6O9u3bS/Xr16/fD+s8c+YMsrKyMHjwYGRlZUn+lJWV4eTkhICAAKn+IpEIXbp0kWr7+nl/4sQJaGpqokuXLlLrtLGxgb6+fp51/hccpiVAR0cHKioqiIiIKFD/3AME+b2oDA0N8xxA0NbWztNPLBbj48ePRag2f+bm5jh//jx0dXUxbtw4mJubw9zcHH/++ed3l0tMTPzmOHKv/9LXY8k9UFfQsWhpaUldVlJSgoqKCpSVlfO0p6enSy4fOXIEffr0QbVq1bB7924EBgYiODgYw4YNk+pXEIUJQ7FYjP79+yM9PR02NjZwcXEp1G19ydjYGG/evMGHDx+k2qdOnYrg4GAEBwfnqa2gj09h+unp6eXpl1/b1+Li4gAAjRs3lgp/RUVFHDhwAAkJCVL983tcxWKx1OMVFxeHpKQkKCkp5VlnbGxsnnX+F3w0vwTIy8vD2dkZp06dwsuXL384dSg3UGJiYvL0ff36NXR0dASrLffJmJGRITXDIL8nWYsWLdCiRQtkZ2cjJCQE69atw6RJk6Cnp4e+ffvmu35tbW3ExMTkaX/9+jUACDqW/2L37t0wNTXFgQMHpOY+ZmRkFHpdhZk7ef/+fcydOxeNGzdGcHAwVq1ahSlTphT6NoHPs0LOnj2Lf/75B7169ZK0GxkZSbY8lZSUpJYp6ONTmH43btzI0y82NvaH9eeu4/DhwzAxMflh/4LQ0dGBtrb2N2fKqKurC3I7AG+ZlhgPDw8QEUaOHIlPnz7luT4zMxPHjx8HALRu3RrA5xf4l4KDgxEeHg5nZ2fB6sqda3r37l2p9txa8iMvL48mTZpgw4YNAIBbt259s6+zszMuXLggedHl2rlzJ1RUVErNVCqRSAQlJSWpIIyNjcWxY8fy9BVqqz8tLQ29e/dGjRo1cPHiRYwfPx4zZ87E9evXi7S+ESNGQE9PD+7u7vkGX34K+vg4OzsjLCwsz2O9c+dOiEQitGrVCgDg5OSE1NRUnDp1Sqrf/v37f1hLu3btoKCggGfPnqFRo0b5/hVW586dkZiYiOzs7HzXV6dOHUnf//q48pZpCXF0dMSmTZswduxYNGzYEGPGjIGVlRUyMzMRGhqKLVu2oF69eujSpQvq1KmDUaNGYd26dZCTk0OHDh0QGRmJ3377DUZGRpg8ebJgdXXs2BFaWloYPnw4FixYAAUFBfj4+CA6Olqq3+bNm3HhwgV06tQJxsbGSE9Px7Zt2wAAbdq0+eb6PT09ceLECbRq1Qpz586FlpYW9uzZg5MnT2L58uXQ0NAQbCz/RefOnXHkyBGMHTsWvXr1QnR0NBYuXAgDAwM8efJEqq+1tTUCAgJw/PhxGBgYQF1dXepFWVCjR49GVFQUbty4AVVVVaxcuRKBgYHo27cvQkNDoampCeDzt6eGDh2K7du3f3dCuaamJvz8/NClSxc0aNBAatJ+YmIi/ve//yE2NhZNmzaVLFPQx2fy5MnYuXMnOnXqhAULFsDExAQnT57Exo0bMWbMGNSuXRsAMGTIEKxevRoDBw7EokWLULNmTZw6dQpnzpwBAMjJfXv7rUaNGliwYAFmz56N58+fo3379qhSpQri4uIk99H8+fMLdR/37dsXe/bsQceOHfHrr7/C3t4eioqKePnyJS5evIhu3bqhe/fuAD4/rvv378eBAwdgZmYGZWVlWFtbF/zGinzoihXJ7du3aciQIWRsbExKSkqkqqpKtra2NHfuXKl5b7nzTGvXrk2Kioqko6NDAwcO/OY8068NGTIkzzw55HM0n4joxo0b1LRpU1JVVaVq1aqRp6cnbd26Veroc2BgIHXv3p1MTExILBaTtrY2OTk50d9//53nNvKbZ9qlSxfS0NAgJSUlatCggdRRXaJ/j+Z/PUcyIiIiz1Hg/OQeGf5y2lju/aCqqpqnf3732++//041atQgsVhMlpaW5O3tne9sh9u3b1OzZs1IRUUl33mmwcHBeW7v66P53t7e+Y7r6dOnVLlyZXJ1dZW0rVu3jgDQ6dOnv3sf5IqNjSUPDw+qX78+qaqqkqKiIhkaGlKXLl1o586dlJmZKdW/II8P0ed5pv379ydtbW1SVFSkOnXq0B9//JFnnmlUVBT16NGD1NTUSF1dnXr27En//PMPAaBjx45J+n1rJomfnx+1atWKKleuTGKxmExMTKhXr150/vx5SZ9vPa75rTMzM5NWrFhBDRo0IGVlZVJTUyMLCwv65Zdf6MmTJ5J+kZGR1LZtW1JXVy/SPFMREf86KWOlWZ8+fRAREYHg4GBZl1JkS5YswZw5cxAVFVVuv27MH/MZK8WISDJlqqxYv349AMDCwgKZmZm4cOEC1q5di4EDB5bbIAU4TBkr1UQiEeLj42VdRqGoqKhg9erViIyMREZGBoyNjTFjxgzMmTNH1qUVK/6YzxhjAuCpUYwxJgAOU8YYEwCHKWOMCYAPQBWznJwcvH79Gurq6qXqJxoYYz9GREhNTYWhoeF3v3AAcJgWu9evX+c5Iw9jrGyJjo7+4bQuDtNilnsiBZuZhyAvVpFxNSXjn4nNZV0CK2Yv3qTJuoQS8f59Klo3qlOgE6JwmBaz3I/28mIVKCiryriaklG5cmVZl8CKmVq6vKxLKFEF2UXHB6AYY0wAHKaMMSYADlPGGBMAhyljjAmAw5QxxgTAYcoYYwLgMGWMMQFwmDLGmAA4TBljTAAcpowxJgAOU8YYEwCHKWOMCYDDlDHGBMBhyhhjAuAwZYwxAXCYMsaYADhMGWNMABymjDEmAA5TxhgTAIcpY4wJgMOUMcYEwGFaxg12MELQTCdMcjb/bj9bIw34uNnh0rQW8B1tj+42BiVUoXC8Nm2ERS1TaKopo6l9Q1y5cvm7/S//7xKa2jeEppoyLGubwdtrcwlVKoyKNN6QoCsYO6Q3nOxqom41NZw/ffyHywQHXkav9s1hY6aNto71sH/n1hKo9NvKbZiKRCL4+fkBACIjIyESiXD79m2Z1iQ0S311uNoY4En8++/2M9BQxqre1rgdnYwh229ix7UoTHGpiVZ1dEqo0v/u0MEDmD51EmbMnI2g4FA0bd4Crp07ICoqKt/+kRERcO3SEU2bt0BQcCjcZ8zC1MkTcfSIbwlXXjQVbbwfPnxAnbr1MGfRygL1fxkVidGDeqKhfVP4nrmKUROmYcnc6Th70q94C/2OUh2mbm5uEIlEef6ePn1aqPUYGRkhJiYG9erVK6ZKS14lRTnM72qBpaceIzU967t9e9gaIC4lHWv8nyEy8QP+vhuL43dj0d/eqISq/e/WrlkFt6HDMXT4CFhYWmLFqjWobmQEb69N+fb33rIZRsbGWLFqDSwsLTF0+AgMcRuGNatWlHDlRVPRxvtT67b4dYYnXDp2K1D/A7v+gkG16vBYsBzmtSzQq78bevw8CNs3ry3mSr+tVIcpALRv3x4xMTFSf6ampoVah7y8PPT19aGgoFBMVZa8aW1r4eqztwh+kfTDvvWqVcb1yHdSbdcj3sJSXw3ycqJiqlA4nz59Quitm3B2aSvV7tymLYICr+W7zPWgQDi3ke7fpm073LoZgszMzGKrVQgVbbxFcfvmdTR1cpZqa96yDR7cvSWz8Zb6MBWLxdDX15f6k5eXx/Hjx9GwYUMoKyvDzMwM8+fPR1ZW/ltoX3/MDwgIgEgkgr+/Pxo1agQVFRU0bdoUjx49klquMLdRktpYVkUdPTVsCnheoP7aqkp4myb9BHublgkFeTloVlIsjhIFlZCQgOzsbOjq6km16+npIS4uNt9l4uJioacn3V9XVw9ZWVlISEgotlqFUNHGWxQJ8fHQ1tGVatPW0UVWVhaS3ibKpKZSH6b5OXPmDAYOHIiJEyciLCwMXl5e8PHxweLFiwu1ntmzZ2PlypUICQmBgoIChg0b9p9vIyMjAykpKVJ/QtJVF2NKm5qYd+IhPmVTgZcjku6buz1KKPg6ZE0kkt6KJqI8bT/qn197aVXRxltYecab+1yW0XhL/efeEydOQE1NTXK5Q4cOiIuLw8yZMzFkyBAAgJmZGRYuXAh3d3d4enoWeN2LFy+Gk5MTAGDmzJno1KkT0tPToaysjMWLFxfpNpYuXYr58+cXZagFYqGvBi1VJfi4NZS0KciJYGOkgV4Nq+GnP/6HnK/yMTHtE7TVlKTaqqgqIis7B8kfZb+l/SM6OjqQl5fPs1UWHx+fZ+stl56ePmJjpfu/eRMPBQUFaGtrF1utQqho4y0KHV1dJLyJk2p7m/AGCgoK0KyiJZOaSn2YtmrVCps2/bvTXVVVFTVr1kRwcLDUVmJ2djbS09Px4cMHqKioFGjd9evXl/zfwODzVKH4+HgYGxvj5s2bRboNDw8PTJkyRXI5JSUFRkbCHegJeZGE/luDpdrmdKqDF4kfsSsoKk+QAsD9VyloXlP6BdWkhhbCY98jO78FShklJSXY2jXEhfPn0M21u6T9gv85dO6S/wGLJg6O+Oek9PQa/3NnYdewERQVS/eujYo23qKwadgEF8/9I9V29ZI/rOrbyWy8pT5Mc8PzSzk5OZg/fz569OiRp7+ysnKB1/3lnZ77kSEnJ+c/3YZYLIZYLC5wDYX14VM2nid8kGpLz8xB8sdMSfsYJ1NUVVfCghOf9wEfCY1BL7tq+LW1OY7diUG9apXRpYE+5v4dXmx1Cm3ipCkY7jYIdg0boYmDI/7augXRUVEYMWo0AOC32R54/eoV/vLZCQAYOWo0Nm9cD/dpUzBs+EhcDwqEz/a/sGP3PlkOo8Aq2njT0t4jKuLfYwCvol4g/P5daFSpAsNqRli11BPxMa/x+1pvAMDPg4Zj73YvLJs3E70GuOH2zRvw3b8TKzZsl9UQSn+Y5sfOzg6PHj3KE7Jl7TaKi46aEvQr/xv4McnpmHLoHiY5m6OnnSES3mdg1bmnuPio7ByY6N3nZ7xNTMSSxQsQGxMDK6t68Dv+D0xMTAAAsTExiI7+dw5mDVNT+B3/B+5TJ8Nr0wYYGBpi5eq16N6jp6yGUCgVbbwP7tyCW++OksvL5s8EALj2HoAla7yQEBeLmNfRkuurG9fA5l2++H3eTOzdsQW6egaYteAPtO3kWtKlS4jo6yMTpYibmxuSkpIkk+9znTlzBp07d8bs2bPRu3dvyMnJ4e7du7h37x4WLVoE4POW5tGjR+Hq6orIyEiYmpoiNDQUNjY2CAgIQKtWrfDu3TtoamoCAG7fvg1bW1tERESgRo0aBbqNgkhJSYGGhgYaep6EgrKqUHdNqRYwzUnWJbBiFhGfJusSSsT71BTYWxgiOTkZlStX/m7fMnk0v127djhx4gTOnTuHxo0bw8HBAatWrZK8a5eV22CMlR+lesu0POAtU1Ye8ZZpXmVyy5QxxkobDlPGGBMAhyljjAmAw5QxxgTAYcoYYwLgMGWMMQFwmDLGmAA4TBljTAAcpowxJgAOU8YYEwCHKWOMCYDDlDHGBMBhyhhjAuAwZYwxAXCYMsaYADhMGWNMABymjDEmAA5TxhgTAIcpY4wJgMOUMcYEwGHKGGMC4DBljDEBcJgyxpgAFGRdQEXxz8TmP/zd7fKiSuPxsi6hRL0LXi/rElgpwFumjDEmAA5TxhgTAIcpY4wJgMOUMcYEwGHKGGMC4DBljDEBcJgyxpgAOEwZY0wAHKaMMSYADlPGGBMAhyljjAmAw5QxxgTAYcoYYwLgMGWMMQFwmDLGmAA4TBljTAAcpowxJgAOU8YYEwCHKWOMCYDDlDHGBMBhyhhjAuAwZYwxAXCYMsaYADhMGWNMABymX3Bzc4Orq+t3+7Rs2RKTJk0qkXq+x2vTRljUMoWmmjKa2jfElSuXv9v/8v8uoal9Q2iqKcOythm8vTaXUKXCMKyqgW2LBuPlxWVIvLYKQftnwtbS6LvLNG9YE1f3uONd0GqEHZ+HEb2al1C1wqhIj3FI0BWMHdIbTnY1UbeaGs6fPv7DZYIDL6NX++awMdNGW8d62L9zawlU+m1lJkxjY2MxYcIEmJmZQSwWw8jICF26dIG/v79gt/Hnn3/Cx8dHsPUVl0MHD2D61EmYMXM2goJD0bR5C7h27oCoqKh8+0dGRMC1S0c0bd4CQcGhcJ8xC1MnT8TRI74lXHnRaKpXwgWfKcjMyoHr+I2w7bkIM1cdQVLqx28uY2KoDb91Y3At9Bkc+v2O5dvOYKV7L7g625Rc4f9BRXuMP3z4gDp162HOopUF6v8yKhKjB/VEQ/um8D1zFaMmTMOSudNx9qRf8Rb6HSIiIpndegFFRkaiWbNm0NTUxPz581G/fn1kZmbizJkz2LJlCx4+fFhitbRs2RI2NjZYs2ZNgfqnpKRAQ0MDcYnJqFy5siA1tGjaBLa2dli7YZOkzcbaEl26umLh4qV5+s/2mIGTJ/7G7XvhkrYJY0fj7t07uHQlUJCavlSl8XhB17dwYlc4NjBDm+FrCrzMoond0MnJGrY9F0na1s7ui/q1q6HlkIK9YAvqXfB6QdcHlP7HOCI+TfB15qpbTQ1r/9qHNu27fLPPysW/4eLZkzhx6Zakbd6MiXgUdh/7jl8QrJb3qSmwtzBEcvKPX7+F3jK9desW7t27J7l87NgxuLq6YtasWfj06VPhqy2AsWPHQiQS4caNG+jVqxdq164NKysrTJkyBUFBQQCAVatWwdraGqqqqjAyMsLYsWPx/v17yTp8fHygqamJM2fOwNLSEmpqamjfvj1iYmIkfb7+mJ+WlobBgwdDTU0NBgYGWLlS2BdhUXz69Amht27C2aWtVLtzm7YICryW7zLXgwLh3Ea6f5u27XDrZggyMzOLrVahdHKyxq2wKOxZPgwv/JcicN8MDO3e9LvLNGlgCv+gcKm289fCYGdpDAWF0v2BrCI+xoV1++Z1NHVylmpr3rINHty9JbPxFvpZ9csvv+Dx48cAgOfPn6Nv375QUVHBoUOH4O7uLniBb9++xenTpzFu3DioqqrmuV5TUxMAICcnh7Vr1+L+/fvYsWMHLly4kKeeDx8+YMWKFdi1axf+97//ISoqCtOmTfvmbU+fPh0XL17E0aNHcfbsWQQEBODmzZuCjq+wEhISkJ2dDV1dPal2PT09xMXF5rtMXFws9PSk++vq6iErKwsJCQnFVqtQTKvpYGTvFnga9QZdx27A1sNXsNK9F/p3tv/mMnralRGXmCrVFv82FYqK8tDRVCvukv+TivgYF1ZCfDy0dXSl2rR1dJGVlYWkt4kyqUmhsAs8fvwYNjY2AIBDhw7hp59+wt69e3H16lX07du3wB9/C+rp06cgIlhYWHy335cHhUxNTbFw4UKMGTMGGzdulLRnZmZi8+bNMDc3BwCMHz8eCxYsyHd979+/x19//YWdO3fCxcUFALBjxw5Ur179u3VkZGQgIyNDcjklJeW7/YtKJBJJXSaiPG0/6p9fe2kkJyfCrbAoeK7/fFDizqOXqGtugFG9W2DviRvfXO7r/VcifB5rGdizBaBiPcZFkWe8uY+4jMZb6C1TIkJOTg4A4Pz58+jYsSMAwMjIqFjeAQv6hLh48SJcXFxQrVo1qKurY/DgwUhMTERa2r/7dlRUVCRBCgAGBgaIj4/Pd33Pnj3Dp0+f4OjoKGnT0tJCnTp1vlvH0qVLoaGhIfkzMvr+EefC0tHRgby8fJ4tlPj4+DxbMrn09PQRGyvd/82beCgoKEBbW1vQ+opDbEIKwp9L1/8wIhZG+lW+uUxcYgr0tdWl2qpqqSEzMxuJycW3v08IFfExLiwdXV0kvImTanub8AYKCgrQrKIlk5oKHaaNGjXCokWLsGvXLly6dAmdOnUCAEREROT5mCGEWrVqQSQSITw8/Jt9Xrx4gY4dO6JevXrw9fXFzZs3sWHDBgCQ2n+iqKgotZxIJPrmVkpRt148PDyQnJws+YuOji7Ser5FSUkJtnYNceH8Oan2C/7n4OCY/37EJg6OuOAv3d//3FnYNWyU5z4pjQJvP0dtE+mPdLWMdREV8/aby1y/E4HWDtKfZpwdLXErPApZWTnFUqdQKuJjXFg2DZvg2v+kDzRdveQPq/p2MhtvocN0zZo1uHXrFsaPH4/Zs2ejZs2aAIDDhw+jadPvHxQoCi0tLbRr1w4bNmyQ2srMlZSUhJCQEGRlZWHlypVwcHBA7dq18fr16/90uzVr1oSioqLkABcAvHv3TrK/+FvEYjEqV64s9Se0iZOmYPu2rdixfRsehodj+tTJiI6KwohRowEAv832wHC3wZL+I0eNRtSLF3CfNgUPw8OxY/s2+Gz/C5OmfHt/cWmybvcF2FubYvqwtjAz0sHP7RthWM9m8DrwP0mfBRO6YuvCQZLL3oevwNhAC8um9kAdUz0M7uYAN1dHrNkp3FS64lTRHuO0tPcIv38X4ffvAgBeRb1A+P27eP3q88bIqqWemDlxpKT/z4OGI+ZlNJbNm4lnTx7Cd/9O+O7fiaGjJ8qkfqAI+0zr168vdTQ/1x9//AF5eXlBivraxo0b0bRpU9jb22PBggWoX78+srKycO7cOWzatAn79u1DVlYW1q1bhy5duuDq1avYvPm/TVhWU1PD8OHDMX36dGhra0NPTw+zZ8+GnJzsjwT37vMz3iYmYsniBYiNiYGVVT34Hf8HJiYmAIDYmBhER/87H7GGqSn8jv8D96mT4bVpAwwMDbFy9Vp079FTVkMolJthUfh5qjcWTOiKWaM6IPJVIqb/4Yv9p0IkffR1KsNI/9+Pdy9eJ8J1wiYsn9oTv/RpgZg3yZi6/DD8/G/LYASFV9Ee4wd3bsGtd0fJ5WXzZwIAXHsPwJI1XkiIi0XM638/5VU3roHNu3zx+7yZ2LtjC3T1DDBrwR9o28m1pEuXKPQ80+joaIhEIsmBmBs3bmDv3r2oW7cuRo0aVSxFAkBMTAwWL16MEydOICYmBlWrVkXDhg0xefJktGzZEqtXr8Yff/yBpKQk/PTTTxgwYAAGDx6Md+/eQVNTEz4+Ppg0aRKSkpIk6/Tz80P37t0lH+nd3NyQlJQEPz8/AJ8PQo0ZMwZHjhyBuro6pk6dipMnT8p8nmlpJ/Q809KuOOaZlnbFOc+0NCnMPNNCh2mLFi0watQoDBo0CLGxsahTpw6srKzw+PFjTJw4EXPnzv1PxZc3HKblH4dp+VWsk/bv378Pe/vP8/sOHjyIevXq4dq1a9i7d2+Z+ComY4wVh0KHaWZmJsRiMYDPU6O6du0KALCwsJD6NhFjjFUkhQ5TKysrbN68GZcvX8a5c+fQvn17AMDr16/L5Xw2xhgriEKH6bJly+Dl5YWWLVuiX79+aNCgAQDg77//lnz8Z4yxiqbQU6NatmyJhIQEpKSkoEqVf7+BMmrUKKioqAhaHGOMlRWFDlMAkJeXlwpSAKhRo4YQ9TDGWJlUpDA9fPgwDh48iKioqDyn3bt169Y3lmKMsfKr0PtM165di6FDh0JXVxehoaGwt7eHtrY2nj9/jg4dOhRHjYwxVuoVOkw3btyILVu2YP369VBSUoK7uzvOnTuHiRMnIjk5uThqZIyxUq/QYRoVFSU5oUmlSpWQmvr5BLyDBg3Cvn37hK2OMcbKiEKHqb6+PhITP5/J2sTERHJWpYiIiDJz0l3GGBNaocO0devWOH788xnPhw8fjsmTJ8PFxQU///wzunfvLniBjDFWFhT6aP6WLVskZ9ofPXo0tLS0cOXKFXTp0gWjR48WvEDGGCsLCh2mcnJyUuf07NOnD/r06SNoUYwxVtYUKEzv3r1b4BXWr1+/yMUwxlhZVaAwtbGx+e7vJeUSiUTIzs4WpDDGGCtLChSmERERxV0HY4yVaQUK09zfnWGMMZa/Qk+NWrp0KbZt25anfdu2bVi2bJkgRTHGWFlT6DD18vKChYVFnvbck0YzxlhFVOgwjY2NhYGBQZ72qlWr8s+WMMYqrEKHqZGREa5evZqn/erVqzA0NBSkKMYYK2sKPWl/xIgRmDRpEjIzM9G6dWsAgL+/P9zd3TF16lTBC2SMsbKg0GHq7u6Ot2/fYuzYsZITQysrK2PGjBnw8PAQvEBW9lS035Gf+neYrEsocdsWbpR1CSWCsj/9uNP/K3SYikQiLFu2DL/99hvCw8NRqVIl1KpVS/Lzz4wxVhEV6WdLAEBNTQ2NGzcWshbGGCuzCn0AijHGWF4cpowxJgAOU8YYEwCHKWOMCaBIYbpr1y40a9YMhoaGePHiBQBgzZo1OHbsmKDFMcZYWVHoMN20aROmTJmCjh07IikpSXL+Uk1NTaxZs0bo+hhjrEwodJiuW7cO3t7emD17NuTl5SXtjRo1wr179wQtjjHGyopCh2lERARsbW3ztIvFYqSlpQlSFGOMlTWFDlNTU1Pcvn07T/upU6dQt25dIWpijLEyp9DfgJo+fTrGjRuH9PR0EBFu3LiBffv2YenSpdi6dWtx1MgYY6VeocN06NChyMrKgru7Oz58+ID+/fujWrVq+PPPP9G3b9/iqJExxkq9In03f+TIkRg5ciQSEhKQk5MDXV1doetijLEypcgnOgEAHR0doepgjLEyrdBhampqCpFI9M3rnz9//p8KYoyxsqjQYTpp0iSpy5mZmQgNDcXp06cxffp0oepijLEypdBh+uuvv+bbvmHDBoSEhPznghhjrCwS7EQnHTp0gK+vr1CrY4yxMkWwMD18+DC0tLSEWh1jjJUphf6Yb2trK3UAiogQGxuLN2/eYOPGivEjW4wx9rVCh6mrq6vUZTk5OVStWhUtW7aEhYWFUHUxxliZUqgwzcrKQo0aNdCuXTvo6+sXV02MMVbmFGqfqYKCAsaMGYOMjIziqocxxsqkQh+AatKkCUJDQ4ujFkFERkZCJBLle2ar8sRr00ZY1DKFppoymto3xJUrl7/b//L/LqGpfUNoqinDsrYZvL02l1ClwqkoY75/ej/2T+4O74H28B5oD1+P/nhx6/tjffUgGIem94ZXX1vsHtMO988cKKFqhWFYVQPbFg3Gy4vLkHhtFYL2z4StpdF3l2nesCau7nHHu6DVCDs+DyN6NS+havNX6DAdO3Yspk6divXr1yMwMBB3796V+isMNzc3iEQiiEQiKCgowNjYGGPGjMG7d+8KW1axE4lE8PPzk3UZAIBDBw9g+tRJmDFzNoKCQ9G0eQu4du6AqKiofPtHRkTAtUtHNG3eAkHBoXCfMQtTJ0/E0SNlZypbRRqzmrYeHAdORu/lB9F7+UFUq9cEp5aNx9uop/n2T4l7iZOLx8DA0g69VxyGXc+RuLJtCZ4Fni3hyotGU70SLvhMQWZWDlzHb4Rtz0WYueoIklI/fnMZE0Nt+K0bg2uhz+DQ73cs33YGK917wdXZpuQK/4qIiKggHYcNG4Y1a9ZAU1Mz70pEIhARRCKR5GdMCsLNzQ1xcXHYvn07srKyEBYWhmHDhqFFixbYt29fgdfzpcjISJiamiI0NBQ2NjZFWkd+RCIRjh49mucA3I+kpKRAQ0MDcYnJqFy5siC1tGjaBLa2dli7YZOkzcbaEl26umLh4qV5+s/2mIGTJ/7G7XvhkrYJY0fj7t07uHQlUJCailtpHvPUv8MEXV9+/hriCMdB01C3Tc881wXuWomI4AD0X3tc0hbgNR+JkY/Qc+neYqln20LhZu4snNgVjg3M0Gb4mgIvs2hiN3RysoZtz0WStrWz+6J+7WpoOWSlYLVR9idk3PNGcvKPX78F3jLdsWMH0tPTERERkefv+fPnkn8LSywWQ19fH9WrV0fbtm3x888/4+zZz++oOTk5WLBgAapXrw6xWAwbGxucPn1aavkbN27A1tYWysrKaNSoUb67IMLCwtCxY0eoqalBT08PgwYNQkJCguT6li1bYuLEiXB3d4eWlhb09fUxb948yfU1atQAAHTv3h0ikUhyWRY+ffqE0Fs34ezSVqrduU1bBAVey3eZ60GBcG4j3b9N23a4dTMEmZmZxVarUCrimHPlZGfjyZV/kJn+Efp1GuTbJ/bRHRg1aCrVZmzTDG+ePUB2Vukfaycna9wKi8Ke5cPwwn8pAvfNwNDuTb+7TJMGpvAPCpdqO38tDHaWxlBQkM2PLhf4VnM3YE1MTL779188f/4cp0+fhqKiIgDgzz//xMqVK7FixQrcvXsX7dq1Q9euXfHkyRMAQFpaGjp37ow6derg5s2bmDdvHqZNmya1zpiYGDg5OcHGxgYhISE4ffo04uLi0KdPH6l+O3bsgKqqKq5fv47ly5djwYIFOHfuHAAgODgYALB9+3bExMRILstCQkICsrOzoaurJ9Wup6eHuLjYfJeJi4uFnp50f11dPWRlZUm9qZRWFXHMiS8eY8uARvDqa4tLXgvQwX0ttIxq5tv3Q1ICVDS1pdoqaWgjJzsL6alJJVDtf2NaTQcje7fA06g36Dp2A7YevoKV7r3Qv7P9N5fR066MuMRUqbb4t6lQVJSHjqZacZecr0JNjfre2aKK6sSJE1BTU0N2djbS09MBAKtWrQIArFixAjNmzJCcdHrZsmW4ePEi1qxZgw0bNmDPnj3Izs7Gtm3boKKiAisrK7x8+RJjxoyRrH/Tpk2ws7PDkiVLJG3btm2DkZERHj9+jNq1awMA6tevD09PTwBArVq1sH79evj7+8PFxQVVq1YF8PkXWH80JSwjI0NqtkNKSsp/vYvy9fVjkbubpTD982svzSrSmDUNa+DnFb7ISEvFs6Bz8F8/C64LfL4ZqMgzpv8fa/GWKQg5ORFuhUXBc/3n3RR3Hr1EXXMDjOrdAntP3Pjmcl/vnxT9/2gLuOdScIUK09q1a//wifj27dtCFdCqVSts2rQJHz58wNatW/H48WNMmDABKSkpeP36NZo1aybVv1mzZrhz5w4AIDw8HA0aNICKiorkekdHR6n+N2/exMWLF6Gmlvfd6tmzZ1Jh+iUDAwPEx8cXaiwAsHTpUsyfP7/QyxWUjo4O5OXl82yRxcfH59lyy6Wnp4/YWOn+b97EQ0FBAdra2vkuU5pUxDHLKypBw+DzJz3dmvXw5ul93D25Gy1Hz8vTV0VTBx/eSW9tf0x+Czl5BYjVNUug2v8mNiEF4c+lH6uHEbHfPZgUl5gCfW11qbaqWmrIzMxGYrJsftizUGE6f/58aGhoCFqAqqoqatb8/G67du1atGrVCvPnz5eczu97WyMFeQfKyclBly5dsGzZsjzXGRgYSP6fu2shl0gkQk5OTuEGA8DDwwNTpkyRXE5JSYGR0feneBSGkpISbO0a4sL5c+jm2l3SfsH/HDp36ZbvMk0cHPHPyeNSbf7nzsKuYaM84y6NKuKYv0YgZGd+yvc6/ToNEBkSINUWffsaqppbQV6h9I818PZz1DaR/rWOWsa6iIr59obZ9TsR6OhUT6rN2dESt8KjkJVV+NetEAoVpn379i32nyjx9PREhw4dMGbMGBgaGuLKlSv46aefJNdfu3YN9vaf96XUrVsXu3btwsePH1GpUiUAQFBQkNT67Ozs4Ovrixo1akBBoeg/LKCoqFigmQpisRhisbjIt1MQEydNwXC3QbBr2AhNHBzx19YtiI6KwohRowEAv832wOtXr/CXz04AwMhRo7F543q4T5uCYcNH4npQIHy2/4Udu4s2Y0IWKtKYg/asgbFtC6jp6CPzYxqeXDmF1w+C0XmOFwAgcPdqpL2NR5uJn2cxWLX9GfdO7cPV7ctg6dILcY/uIPyCL1wm/SHLYRTYut0XcNFnKqYPawvfc7fQ2KoGhvVshvEL/32sFkzoCkNdDYz4bRcAwPvwFYzu+xOWTe2BbUeuokl9U7i5OmKIh4+MRlGIMC2p/UwtW7aElZUVlixZgunTp8PT0xPm5uawsbHB9u3bcfv2bezZswcA0L9/f8yePRvDhw/HnDlzEBkZiRUrVkitb9y4cfD29ka/fv0wffp06Ojo4OnTp9i/fz+8vb0hLy9foLpq1KgBf39/NGvWDGKxGFWqVBF87AXVu8/PeJuYiCWLFyA2JgZWVvXgd/wfyQHA2JgYREf/O/+yhqkp/I7/A/epk+G1aQMMDA2xcvVadO+Rd5pNaVWRxvwhKRH+a2ci7d0biFXUoW1SG53neEmO2H949wbvE2Ik/SvrVUen2Ztwdfsy3Du9D6paumg+bBbMHdt+6yZKlZthUfh5qjcWTOiKWaM6IPJVIqb/4Yv9p/49P7K+TmUY6f97VroXrxPhOmETlk/tiV/6tEDMm2RMXX4Yfv63ZTCCzwo8z1ROTg6xsbGCbpm6ubkhKSkpz2T4vXv3YujQoXj8+DF27NiBLVu2ID4+HnXr1sXvv/+O9u3bS/oGBQVh9OjRCA8PR926dfHbb7+hZ8+eUvNMnzx5ghkzZuDixYvIyMiAiYkJ2rdvj1WrVkEkEqFly5awsbHBmjVrJOt1dXWFpqYmfHx8AADHjx/HlClTEBkZiWrVqiEyMrJAYyyOeaasdCmJeaaljZDzTEuzwswzLXCYsqLhMC3/OEzLr2KZtM8YY+zbOEwZY0wAHKaMMSYADlPGGBMAhyljjAmAw5QxxgTAYcoYYwLgMGWMMQFwmDLGmAA4TBljTAAcpowxJgAOU8YYEwCHKWOMCYDDlDHGBMBhyhhjAuAwZYwxAXCYMsaYADhMGWNMABymjDEmAA5TxhgTAIcpY4wJgMOUMcYEwGHKGGMC4DBljDEBiIiIZF1EeZaSkgINDQ3EJSajcuXKsi6HMVYIKSkp0NPWQHLyj1+/vGXKGGMC4DBljDEBcJgyxpgAOEwZY0wAHKaMMSYADlPGGBMAhyljjAmAw5QxxgTAYcoYYwLgMGWMMQFwmDLGmAA4TBljTAAcpowxJgAOU8YYEwCHKWOMCYDDlDHGBMBhyhhjAuAwZYwxAXCYMsaYADhMGWNMABymjDEmAA5TxhgTAIcpY4wJgMO0jPLatBEWtUyhqaaMpvYNceXK5e/2v/y/S2hq3xCaasqwrG0Gb6/NJVSpcCramHm8ZWu85T5MfXx8oKmpKesyBHXo4AFMnzoJM2bORlBwKJo2bwHXzh0QFRWVb//IiAi4dumIps1bICg4FO4zZmHq5Ik4esS3hCsvuoo2Zh5vGRwvlRFRUVE0bNgwMjAwIEVFRTI2NqaJEydSQkKCpI+JiQmtXr1aarnt27eThoZGyRb7heTkZAJAcYnJ9DGTBPlr1NieRo4aLdVWx8KCprnPzLf/lGnuVMfCQqptxMhfyL6Jg2A1FfdfRRszj7d0jDcu8fPrNzk5+Yev9TKxZfr8+XM0atQIjx8/xr59+/D06VNs3rwZ/v7+cHR0xNu3b0u8pszMzBK/TQD49OkTQm/dhLNLW6l25zZtERR4Ld9lrgcFwrmNdP82bdvh1s0QmY2jMCramHm8n5W18ZaJMB03bhyUlJRw9uxZODk5wdjYGB06dMD58+fx6tUrzJ49Gy1btsSLFy8wefJkiEQiiEQiqXWcOXMGlpaWUFNTQ/v27RETEyN1/fbt22FpaQllZWVYWFhg48aNkusiIyMhEolw8OBBtGzZEsrKyti9e3eJjP1rCQkJyM7Ohq6unlS7np4e4uJi810mLi4WenrS/XV19ZCVlYWEhIRiq1UoFW3MPN7Pytp4FWRyq4Xw9u1bnDlzBosXL0alSpWkrtPX18eAAQNw4MABPHnyBDY2Nhg1ahRGjhwp1e/Dhw9YsWIFdu3aBTk5OQwcOBDTpk3Dnj17AADe3t7w9PTE+vXrYWtri9DQUIwcORKqqqoYMmSIZD0zZszAypUrsX37dojF4nzrzcjIQEZGhuRySkqKUHeFlK/fLIgoT9uP+ufXXppVtDHzeMvWeEt9mD558gREBEtLy3yvt7S0xLt375CdnQ15eXmoq6tDX19fqk9mZiY2b94Mc3NzAMD48eOxYMECyfULFy7EypUr0aNHDwCAqakpwsLC4OXlJRWmkyZNkvT5lqVLl2L+/PlFGmtB6OjoQF5ePs87dnx8fJ539lx6evqIjZXu/+ZNPBQUFKCtrV1stQqloo2Zx/tZWRtvmfiY/z0FeTdSUVGRBCkAGBgYID4+HgDw5s0bREdHY/jw4VBTU5P8LVq0CM+ePZNaT6NGjX5Yj4eHB5KTkyV/0dHRRRnWNykpKcHWriEunD8n1X7B/xwcHJvmu0wTB0dc8Jfu73/uLOwaNoKioqKg9RWHijZmHu9nZW68xXYYWyAJCQkkEolo8eLF+V4/cuRIqlKlCuXk5BT4aP7Ro0cpd+ixsbEEgHbv3k1PnjyR+nv+/DkREUVERBAACg0NLXT9xXE0f+ee/aSoqEibt/xFoXfDaPzESaSqqkoPn0bSx0yiae4zqf+AQZL+4Y+fk4qKCk34dTKF3g2jzVv+IkVFRdp74LDMj+LymHm8pXm8hTmaX+rDlIiobdu2VK1aNfrw4YNUe0xMDKmoqNDo0aOJiKhWrVq0YsUKqT4/ClMiomrVqtGCBQu+efulLUw/ZhKtWbuBjE1MSElJiWxt7ejchUuS6wYOGkItfnKS6n/WP4BsbGxJSUmJTGrUoLXrN8n8BcRj5vGW9vEWJkxFRP//ObkUe/LkCZo2bQpLS0ssWrQIpqamePDgAaZPn46MjAwEBQVBS0sLbdu2RaVKlbBx40aIxWLo6OjAx8cHkyZNQlJSkmR9fn5+6N69u2QXwdatWzFx4kQsXboUHTp0QEZGBkJCQvDu3TtMmTIFkZGRMDU1RWhoKGxsbApVe0pKCjQ0NBCXmIzKlSsLeK8wxopbSkoK9LQ1kJz849dvmdhnWqtWLYSEhMDc3Bw///wzzM3NMWrUKLRq1QqBgYHQ0tICACxYsACRkZEwNzdH1apVC7z+ESNGYOvWrfDx8YG1tTWcnJzg4+MDU1PT4hoSY6ycKRNbpmUZb5kyVnaVuy1Txhgr7ThMGWNMABymjDEmAA5TxhgTAIcpY4wJgMOUMcYEwGHKGGMC4DBljDEBcJgyxpgAOEwZY0wAHKaMMSYADlPGGBMAhyljjAmAw5QxxgTAYcoYYwLgMGWMMQFwmDLGmAA4TBljTAAcpowxJgAOU8YYEwCHKWOMCYDDlDHGBKAg6wLKu9xf0k5NSZFxJYyxwsp93ea+jr+Hw7SYpaamAgBqmhrJuBLGWFGlpqZCQ0Pju31EVJDIZUWWk5OD169fQ11dHSKRqMRuNyUlBUZGRoiOjkblypVL7HZlhcdbvslqvESE1NRUGBoaQk7u+3tFecu0mMnJyaF69eoyu/3KlStXiBdbLh5v+SaL8f5oizQXH4BijDEBcJgyxpgAOEzLKbFYDE9PT4jFYlmXUiJ4vOVbWRgvH4BijDEB8JYpY4wJgMOUMcYEwGHKGGMC4DBljDEBcJiyCiE5OVnWJbByjsOUlXt//fUXJk+ejOfPn8u6FJnKycnJ9//lRe7EpODgYISFhZX47XOYVmC5T77yPjsuPj4eISEhWLduXYUK1NzATEtLw6dPnyAnJ4eLFy/i7du3P/yeeVkkEolw6tQptGjRAq9evUJWVlaJ3n75u0fZD0lOC5iaiszMTLx//16qvbzx8PDAL7/8gqtXr+LPP/9ERESErEsqEXJycnj58iXs7e1x9+5d7N+/H87Ozrhx44asSysWb9++xZ07d7Bo0SK4uLhAQaFkTz3CYVrBEBFEIhFOnjyJgQMHomnTphgwYACOHz9eome1KimZmZkAgH79+sHOzg7//PMPVq9ejaioKBlXVjKqV68OfX19dOrUCQMGDMDWrVvRvn37cvfGGRYWBgMDA2zZsgW6uroyqYHDtIIRiUQ4fvw4evXqhebNm2PGjBnQ0dFBt27dZLKfqbgpKipi//79+Omnn5CQkAAlJSVs2bIFK1asKPdbqNnZ2QCA3377DW/evIGGhgYsLCyQmZlZbt44c98U6tatizFjxiAyMhIvXryQzT5hYhXKhw8fqFu3brR8+XIiInr16hWZmJjQqFGjZFxZ8QgPDyddXV3y9vamtLQ0IiJauHAhWVlZ0YQJE+jFixcyrrD4hYWF0alTp6hTp06kr69PZ86coU+fPuXpl52dLYPqiiYnJyff9nHjxpFYLKajR4+WbEFExGFawSQlJZGZmRldvnyZ4uPjqVq1alJBumPHDnr06JEMKyy6P//8k3x9faXagoODSU9Pj0JCQqTaFyxYQEpKSjRp0iR68uRJSZZZ7HKDJj4+nhISEqSuc3FxIX19fTp//rwkUH18fCgxMbHE6yyq3PFduXKFfv/9d/Lw8KDdu3dLrh89ejRVqlSJjh07VqJ18cf8CkYsFqNRo0b43//+h0aNGqFz587YuHEjACAhIQEXLlzAjRs3ytw+tZcvX+LmzZuwtraWas/JyYGioqLkIFtGRgaAzx99TUxMsH//fmzdulWyb7U8EIlEOHr0KDp16gQ7OztMmzYNly5dAgCcPXsW1tbWcHNzg5eXF6ZMmYJhw4YhISFBxlUXnEgkwpEjR9CxY0c8ePAADx8+xKJFi9CrVy8AwKZNmzB06FAMGjQIhw4dKrnCSjS6WYnKfQf/+PEjZWZmStqnTZtGIpGIOnToQB8+fJC0z5w5k+rUqUORkZElXqsQcscSGBhI+/fvl7S3bt2arKyspLa+EhMTqU+fPjRjxowyO95vuX37Nuno6NDSpUvJ09OTGjduTJ07d6bjx49L+vTp04fs7e2pXr16dOvWLRlWW3hPnz4lMzMz2rhxIxERPXz4kKpUqULjx4+X6jdgwAAyNDSk1NTUEqmLw7Scyg3S48ePk7OzM7Vv3548PT0l1/fr14/09PRo/PjxNHfuXHJzcyMNDQ0KDQ2VTcECyMnJoeTkZOrVqxfZ2trSvn37iIgoNjaWrK2tycLCgk6cOEGXLl0iDw8PsrOzo3fv3sm2aIE9fvyYFi5cSPPmzZO0BQQEUNu2baljx45SgfrixYsyOf5r165R/fr1iYgoMjKSjIyM6JdffpFcf+XKFcn/Y2JiSqwuDtNy5ssd85cuXaJKlSrRmDFjaMSIEaSiokI///yz5Pq5c+dSjx49qHHjxjRq1Ci6f/++LEoW3LVr16hfv37UokULOnDgABERvXnzhtq3b081atQgQ0NDMjU1zbMftayLiYmhxo0bk7a2Nk2YMEHquosXL5KLiwt17dpVJgdnhJD73L569Sq1bNmSbty4QUZGRjRq1CjKysoiIqLQ0FAaN24chYeHl3h9HKbl1LNnz+jkyZO0YsUKIiLKysqiCxcukJaWFvXu3VvSLzs7mzIyMiRPxrIm9wX27t07Sk9PlxyRDgwMpD59+lDz5s0lgUpEdP/+fQoLC6PY2FiZ1FscvnwDPXDgAFlbW1PDhg3pxo0bUv0uXbpE9vb21KdPH3r//n1Jl1lgOTk5kjHld9T+2bNnpKenRyKRKM8slEmTJlGrVq3yHHgrCRym5cCCBQvowYMHksuvX78mRUVFUlFRoWXLlkn1vXDhAlWpUoUGDBhQZgP0a8eOHaOGDRvSTz/9RIMHD6aMjAwi+jdQW7RoIfnIX558uU/8y8fSz8+P7OzsaNCgQRQcHCy1zJUrV0r9dLDcfd+5j+Ply5dpxYoVtHHjRnr58iURfd59paioSKNHj6YrV65QSEgITZ48mTQ0NOju3bsyqZvDtIzLyMig9u3bS4VpZmYm7dixg/T19WngwIF5lgkICCCRSEQjRowoyVIFlRskt27dImVlZZo7dy5NnjyZbG1tycrKitLT04noc6D269ePrK2ty+zH2/zkjv/06dPk6upKrVu3pk6dOkmmtfn6+lKjRo1o4MCBdPPmTVmWWig7d+4kfX19ySeHgwcPkpqaGtnY2FCtWrXIzMyMHj58SESfx2hsbEzVqlUjS0tLaty4sUz3+XOYlmFfHokn+rxf7M6dO0RE9OnTJ9q9ezeJxWKaOnVqnmWvXLkieVKWVTdv3qRTp07R77//TkSfd2UEBwdT/fr1ycLCgj5+/EhEn7dshg4dWu6O2h87doxUVFTIw8ODjh07Rra2tmRiYkKPHz8mIqJDhw6Rg4MDdevWrcwcWLx06RI5OjqStbU1RUdH0/Tp08nHx4eysrIoJCSEOnXqRJqampLn7suXL+nevXv06NEjevv2rUxr5zAtoxYvXkwTJ06U7BvKzs6mFi1akJaWFt27d4+IPofLrl27SElJKd9ALcvevHlDlpaWJBKJyMPDQ9Kek5NDISEhVL9+fapXr57kDSc3WMuD3FkLTk5OtHTpUiL6PEHf1NSURo8eLdV3x44d1Lp1a3r16pUsSi2Sq1evUrNmzahmzZrUunVrqTeCJ0+eUMeOHUlDQ6PUbQxwmJZRXl5eJBKJaM6cOZL5k6mpqdSmTRsyMTGR7DfKDVQ1NTWp6SNlXUZGBvn6+lLDhg3Jzs5O6rqcnBy6efMmGRsbk729vaStrFq2bBnt2bNHqu3t27dkZWVF0dHRFBcXR4aGhlIHY76cZ5uSklJitRZW7gHDrx+fO3fuUIcOHUhBQUGyCyu375MnT6hr164kEono2bNnJVvwd3CYlmG7du2SbJnlbqGmpqZSy5Yt8wTq1q1bSU9Pj+Li4mRZsqA+fPhAx48fJzMzM2rTpo3UdTk5ORQaGlqqXmxFNWLECJKTk5P6qmxWVhY5ODjQb7/9RjVq1KDRo0dLvh4aFxdHzs7OkkAt7W8kL168oDNnzhDR532m/fv3J6LPu6KaNGlC5ubmFB8fT0T/juXhw4fUp0+fUrV1ymFaBn354tixY8d3A/XLj/zJyckyqfe/yh1vSEgIeXt709atWyXzCD9+/EjHjx+nOnXqkIuLiyzLLFaTJ08msVhMhw8fpqysLMrOzqaZM2eSpqYmOTs7S/WdNWsWWVtbU1RUlIyqLbisrCzq0KED2dnZ0axZs0heXp42b94suf7atWvUvHlzqlu3rmRDIPf5kN/JWmSJw7Qc+Ouvv/IN1DZt2pC6urrUkf6yJveF4+vrS4aGhtSwYUNq0aIF6ejo0OXLl4no30C1srKixo0by7JcQeXk5Eg+2iYnJ5Obmxtpa2tLTuDx/Plz6tixIzVq1IgmT55MmzdvpmHDhpXJb7LVq1ePRCJRvvv2r169Si1atKD69euX6DeaCovDtIz4ciLz06dPKSgoiK5evSqZApRfoKakpFDnzp3L1FmR8vtIGhAQQDo6OuTl5UVERDdu3CCRSETKysp08uRJIvocqL6+vtS4ceNSP4+yoHLvi8OHD1Pjxo2pR48epKSkRKqqqpIvIjx79ozmzZtHNjY25ODgQH369CnV32TLfXP48OEDpaen06NHjygxMZEcHByoQYMG1KxZMzp+/Hie0wFeu3aN6tatSw4ODpSdnV0qd11wmJYRX26hWVhYUM2aNcnBwYHq168v+fiT+5F/zpw5efYxlQW5L6D4+HgKDg6WTDj39PSkuXPnEtHnqTDGxsY0dOhQGjx4MInFYrp48SIREaWnp5fYSS1KSkhICFWqVIm8vb3p1atX9ODBAxoxYgSJxWKpb3bl5ORQZmZmqfvo+6XcxzcsLIx69OhB9erVIwUFBXJ2dqaxY8dSTk4OtWrVihwcHPIN1LCwMHr+/LksSi8QDtNSKveJlHtCY6LPc/DU1NTIy8uLMjIy6Pjx4yQSiWjVqlWS0MwN1AULFpSpk/3m1vrgwQNq1qwZtW/fnrp3705EnwPl2rVrlJqaSg4ODpKj1leuXCGRSEQikUhyAKO8OXr0KFlZWUnNoczMzKRhw4aRqqoq/f3332Xicc59ft69e5c0NDRo3LhxtHXrVjp8+DB169aNRCIRubm50atXr8jZ2ZkcHR3p77//JiKiGTNm0ODBg2VZfoFwmJZCuS+OkJAQMjc3p4iICCIi+uOPPySnGYuKiiJjY2MaN26cZLncrZK9e/eWqf2kuS+0+/fvk6amJs2aNYtevHiR5+uuISEh1LhxYwoLC5P079OnD02fPl3SVt4cOHCA5OXlJbtuck+leOPGDZKTkyORSFTiJ0Euqvj4eLK1taWZM2fmaV+/fj0pKSnR+PHj6dOnT+Ti4kJ169alpk2bUpUqVejatWsyqrrgOExLmdwgvX37Nqmrq9OkSZMk1w0dOpRGjBhBr169ourVq9OoUaMkQXTo0CFasWJFmf2+fWJiIjVv3jzP2Y6+3Oo6deoUiUQiyQyFOXPmUMeOHaW23sub9+/fU+PGjalv375S52N9/vw5DRw4kKZOnVpm3khu3bpF9erVo3v37kmep7mPb1JSEi1cuJCUlJTo8uXLlJSURKtXr6aFCxfK5AxQRcFhWorkPrHu3LlDKioqNGvWLKnrV61aRd27dydDQ0PJ9+pzcnLo06dPNHbsWJo0aVKer5iWFQ8ePCBzc3MKCAjI92Nr7ji7d+9OIpGIGjduTGpqanT79m0ZVCu83DfF0NBQ8vX1pYMHD0r2D+7atYscHR2pV69e9PLlS4qOjqbZs2dTs2bNytTjvX37dlJWVpZc/np//vPnz0lDQ0Pyra6yhsO0lImKiiIdHR3q06ePVPuWLVuob9++ZG5uTlpaWpKPPampqTRr1iwyMDAoVROYC2vPnj2koKAgeYHlF6hpaWl04sQJOnr0KK1atUryHfTy4vDhw6SpqUmNGzcmJSUlatSoEf3xxx9ERLR7925q0qQJiUQiqlWrFmlra5e5M+RfvnyZlJWV6fDhw9/sY2trK/VprCzhMC1lIiIiqHHjxtS1a1fJGcOXLFlCKioq9ODBA4qOjiZTU1Oys7OjWrVqUYcOHcjAwKDMvbC+dvXq1R++0DZs2FBuJ+bfvXuXqlatSl5eXpSWlkbR0dHk7u5OdnZ2tGrVKiL6vL/05MmT5O/vXyanf0VHR5Ouri517dpVqv7cN863b99S06ZNadeuXbIq8T/hMC2FHj9+TO3bt6euXbvSyJEjSVdXV+podUxMDO3du5c8PDxoz549pXq6SEG9fPlS8kL78uxOX34UnDJlCs2YMaNMTff62reOvO/fv58sLCykfkbk9evXNGnSJHJwcCg3J7P29fUlJSUlGjx4cJ75sHPmzKEaNWqU2bN7cZiWUo8ePSIXFxeqVKmS5Gz5RCT1w3jlja+vL4nFYho0aJDUbIS0tDTy8PAgExOTMvsz1ET/BmlERAStXr2aFi1aRH5+fkT0+eCasbGxJGC+PKmHSCSiU6dOyaZogWVlZdHmzZtJQUGB6tSpQ8OGDaPZs2fTgAEDSEtLq0x/wuIwLcWePn1Kbdu2pQ4dOki+OklUtibiF0Z2drbUC23o0KE0ZswY6tq1K+nq6pbpF9qXBxeNjIyoefPmZGZmRioqKrRt2zZKTEwkHR0dmjZtmtTpAnOnE+V+MaG8CAoKoh49epCVlRU1a9ZMZr/bJCQO01Iu9yN/u3btpH51sTy7fv265BdGmzdvTjNmzCjTB5u+nqUxc+ZMysjIoNu3b5OVlRXVrVuXiD7PKRWJRPTrr7/S9evX6fXr1zRz5kwyMDCg6OhoWQ6hWGRlZX33gGNZIyIiAivVnjx5gilTpiAhIQGrV6+Gg4ODrEsqdjk5OZCTk5N1GYKJjo6GnZ0dWrVqhYMHD0ranZ2dER4ejpCQEBgaGiIgIAADBw6EkpIS5OTkkJmZiaNHj8LOzk6G1RcPIoJIJMrz/7JKQdYFsB+rVasW/vjjD/z2228wNDSUdTkl4ssXVnl4oWVnZ8PU1BQZGRm4evUqmjVrhqVLl+LixYuoX78+3NzckJ2djd69e2P16tVQV1eHmpoazMzMyu1j/uVjWtYfXwDgLdMy5NOnT1BSUpJ1GayInjx5gokTJ0JJSQm6uro4duwYNm/ejObNm+Phw4cIDw/HypUrkZ6eDlNTU1y8eLFcbZ2XdxymjJWgx48fY/z48bhy5QoWLFiAadOmSV2fmpqK+/fvQ1dXF+bm5jKqkhUFhyljJezZs2cYO3Ys5OXlMWvWLDRv3hwAkJWVBQUF3vNWVvFnCMZKmLm5OdavXw8iwqJFi3D16lUA4CAt4zhMGZOBWrVqYe3atVBUVMS0adMQFBQk65LYf8RhypiM5M7SqF69erk9Yl+R8D5TxmSMZ2mUDxymjDEmAP6YzxhjAuAwZYwxAXCYMsaYADhMGWNMABymjDEmAA5TxhgTAIcpK/fmzZsHGxsbyWU3Nze4urqWeB2RkZEQiUS4fft2kZYPCAiASCRCUlKSoHUxYXCYMplwc3ODSCSCSCSCoqIizMzMMG3aNKSlpRX7bf/555/w8fEpUN//GoCs4uAzKzCZad++PbZv347MzExcvnwZI0aMQFpaGjZt2pSnb2ZmJhQVFQW5XQ0NDUHWw9iXeMuUyYxYLIa+vj6MjIzQv39/DBgwAH5+fgD+/Wi+bds2mJmZQSwWg4iQnJyMUaNGQVdXF5UrV0br1q1x584dqfX+/vvv0NPTg7q6OoYPH4709HSp67/+mJ+Tk4Nly5ahZs2aEIvFMDY2xuLFiwEApqamAABbW1uIRCK0bNlSstz27dthaWkJZWVlWFhYYOPGjVK3c+PGDdja2kJZWRmNGjVCaGjoD++TjIwMuLu7w8jICGKxGLVq1cJff/2Vb9/ExET069cP1atXh4qKCqytrbFv3z6pPocPH4a1tTUqVaoEbW1ttGnTRrL1HxAQAHt7e6iqqkJTUxPNmjXDixcvflgjyx9vmbJSo1KlSsjMzJRcfvr0KQ4ePAhfX1/Iy8sDADp16gQtLS38888/0NDQgJeXF5ydnfH48WNoaWnh4MGD8PT0xIYNG9CiRQvs2rULa9euhZmZ2Tdv18PDA97e3li9ejWaN2+OmJgYPHz4EMDnQLS3t8f58+dhZWUl+Q69t7c3PD09sX79etja2iI0NBQjR46EqqoqhgwZgrS0NHTu3BmtW7fG7t27ERERgV9//fWH98HgwYMRGBiItWvXokGDBoiIiEBCQkK+fdPT09GwYUPMmDEDlStXxsmTJzFo0CCYmZmhSZMmiImJQb9+/bB8+XJ0794dqampuHz5MogIWVlZcHV1xciRI7Fv3z58+vQJN27cKBc/HyIzJf0LfowREQ0ZMoS6desmuXz9+nXS1tamPn36EBGRp6cnKSoqUnx8vKSPv78/Va5cmdLT06XWZW5uTl5eXkRE5OjoSKNHj5a6vkmTJtSgQYN8bzslJYXEYjF5e3vnW2dERAQBoNDQUKl2IyMj2rt3r1TbwoULydHRkYiIvLy8SEtLi9LS0iTXb9q0Kd915Xr06BEBoHPnzuV7/cWLFwkAvXv3Lt/riYg6duxIU6dOJSKimzdvEgCKjIzM0y8xMZEAUEBAwDfXxQqHt0yZzJw4cQJqamrIyspCZmYmunXrhnXr1kmuNzExQdWqVSWXb968iffv30NbW1tqPR8/fsSzZ88AAOHh4Rg9erTU9Y6Ojrh48WK+NYSHhyMjIwPOzs4FrvvNmzeIjo7G8OHDMXLkSEl7VlaWZH9seHg4GjRoABUVFak6vuf27duQl5eHk5NTgerIzs7G77//jgMHDuDVq1fIyMhARkYGVFVVAQANGjSAs7MzrK2t0a5dO7Rt2xa9evVClSpVoKWlBTc3N7Rr1w4uLi5o06YN+vTpAwMDgwLfD0wahymTmVatWmHTpk1QVFSEoaFhngNMuaGQKycnBwYGBggICMizLk1NzSLVUKlSpUIvk5OTA+DzR/0mTZpIXZe7O4KKcDK2wtaycuVKrF69GmvWrIG1tTVUVVUxadIkfPr0SVLLuXPncO3aNZw9exbr1q3D7Nmzcf36dZiammL79u2YOHEiTp8+jQMHDmDOnDk4d+5chfgp8eLAB6CYzKiqqqJmzZowMTEp0JF6Ozs7xMbGQkFBATVr1pT609HRAQBYWlrmOWv9985iX6tWLVSqVAn+/v75Xp+7jzQ7O1vSpqenh2rVquH58+d56sg9YFW3bl3cuXMHHz9+LFAdAGBtbY2cnBxcunTpu/1yXb58Gd26dcPAgQPRoEEDmJmZ4cmTJ1J9RCIRmjVrhvnz5yM0NBRKSko4evSo5HpbW1t4eHjg2rVrqFevHvbu3Vug22Z5cZiyMqNNmzZwdHSEq6srzpw5g8jISFy7dg1z5sxBSEgIAODXX3/Ftm3bsG3bNjx+/Bienp548ODBN9eprKyMGTNmwN3dHTt37sSzZ88QFBQkOYKuq6uLSpUq4fTp04iLi0NycjKAz7MNli5dij///BOPHz/GvXv3sH37dqxatQoA0L9/f8jJyWH48OEICwvDP//8gxUrVnx3fDVq1MCQIUMwbNgw+Pn5ISIiAgEBATh48GC+/WvWrCnZ8gwPD8cvv/yC2NhYyfXXr1/HkiVLEBISgqioKBw5cgRv3ryBpaUlIiIi4OHhgcDAQLx48QJnz57F48ePYWlpWfAHhEmT9U5bVjF9fQDqa56enlIHjXKlpKTQhAkTyNDQkBQVFcnIyIgGDBhAUVFRkj6LFy8mHR0dUlNToyFDhpC7u/s3D0AREWVnZ9OiRYvIxMSEFBUVydjYmJYsWSK53tvbm4yMjEhOTo6cnJwk7Xv27CEbGxtSUlKiKlWq0E8//URHjhyRXB8YGEgNGjQgJSUlsrGxIV9f3+8egCIi+vjxI02ePJkMDAxISUmJatasSdu2bSOivAegEhMTqVu3bqSmpka6uro0Z84cGjx4sGRsYWFh1K5dO6patSqJxWKqXbs2rVu3joiIYmNjydXVVXI7JiYmNHfuXMrOzv5mbez7+Ez7jDEmAP6YzxhjAuAwZYwxAXCYMsaYADhMGWNMABymjDEmAA5TxhgTAIcpY4wJgMOUMcYEwGHKGGMC4DBljDEBcJgyxpgAOEwZY0wA/wcyoLom5LxWqQAAAABJRU5ErkJggg==", - "text/plain": [ - "<Figure size 350x300 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAAFjCAYAAACAMejZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUlUlEQVR4nO3dd1gUZ9cG8HtpS1MQkKYIiA1RpIstFuxdY4jGho3YY1fUSOwxsfeOxhaNBYMdEYwFCwpWFAsIKkVQQVGQcr4//HZeV1BBB5aF87uuvXSfeWbmPFvunZ2ZHSRERGCMMfZNVBRdAGOMlQYcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymSuT69esYMGAArK2toampCV1dXTg5OeGPP/7A8+fPi3Td4eHhaNq0KfT09CCRSLB06VLR1yGRSPDbb7+JvtySZN68efD39y/UPFu2bIFEIkFMTEyR1AQAMTExkEgkwk1FRQUVKlSAh4cHTpw4UWTrLQpHjhxRzOuImFJYv349qampkZ2dHa1atYqCg4PpxIkTNG/ePLK2tqauXbsW6fodHByoevXqdOTIEQoNDaX4+HjR1xEaGkpxcXGiL7ck0dHRof79+xdqnqSkJAoNDaWMjIyiKYqIoqOjCQCNGjWKQkND6ezZs7Rx40aysLAgVVVVOn36dJGtW2wjRowgRUQbh6kSOH/+PKmqqlLbtm3zfUNlZmbSwYMHi7QGNTU1GjZsWJGuoywoTJi+efOGcnNzi7ag/ycL0z///FOu/fTp0wSA+vXrVyx1iIHDlH1Sx44dSU1NjWJjYwvUPycnhxYsWEA1a9YkDQ0NqlixIvXt2zfPVl/Tpk3Jzs6OLl26RI0bNyYtLS2ytram+fPnU05ODhER+fn5EYA8NyIiX1/ffF+0snmio6OFtqCgIGratCkZGBiQpqYmWVhYUPfu3Sk9PV3oA4B8fX3llnXjxg3q3Lkz6evrk1QqpXr16tGWLVvk+gQHBxMA2rlzJ02dOpXMzMyoXLly5OHhQXfu3Pni4yUbx7Vr16hHjx5Uvnx5qlChAo0dO5aysrLozp071KZNG9LV1SVLS0tasGCB3Pxv376lcePGUb169YR53d3dyd/fX65ffo9j06ZN5R6z48eP04ABA8jIyIgA0Nu3b/M8nlFRUVSuXDnq0aOH3PKDgoJIRUWFpk+f/sUxf+xTYZqenk4AqE2bNnLt8fHx5O3tTZUqVSJ1dXWysrKi3377jbKysuT6rV69muzt7UlHR4d0dXWpZs2a5OPjI0yXje3UqVM0dOhQMjQ0JAMDA+rWrRs9efIkT51///03ubu7k7a2Nuno6FDr1q3p6tWrwvT+/fvn+zh/+FosKhymJVx2djZpa2tT/fr1CzyPt7c3AaCRI0fSsWPHaO3atVSxYkWysLCgZ8+eCf2aNm1KhoaGVL16dVq7di0FBgbS8OHDCQBt3bqViP73FRMA9ejRg0JDQyk0NJSICh6m0dHRpKmpSa1atSJ/f38KCQmhHTt2UN++fenFixfCfB+H6Z07d6hcuXJkY2NDf/31Fx0+fJh69epFAOQCTRamVlZW1Lt3bzp8+DDt2rWLqlSpQtWrV6fs7OzPPl6ycdSsWZNmz55NgYGBNGnSJOExrFWrFi1fvpwCAwNpwIABBID27dsnzP/y5Uvy8vKibdu20alTp+jYsWM0YcIEUlFRER5Hove7MbS0tKh9+/bC43jr1i25x6xSpUrk7e1NR48epb1791J2dna+H05///03AaBly5YR0ftwMzExoaZNm35xvPn5VJjevHlT+PovEx8fTxYWFmRpaUnr1q2jkydP0uzZs0kqlZKXl5fQb9euXcK8J06coJMnT9LatWtp9OjRQh/Z2KpWrUqjRo2i48eP08aNG6lChQrUvHlzuVrmzp1LEomEBg4cSIcOHaL9+/dTgwYNSEdHR3gc79+/Tz169CAAwmNc1LtIZDhMS7iEhAQCQD179ixQ/8jISAJAw4cPl2u/ePEiAaCpU6cKbU2bNiUAdPHiRbm+tWvXzrMlAoBGjBgh11bQMN27dy8BoIiIiM/W/nGY9uzZk6RSaZ4t8nbt2pG2tja9fPmSiP4Xpu3bt5frt2fPHuFN9TmycSxatEiu3cHBgQDQ/v37hbasrCyqWLEide/e/ZPLy87OpqysLBo0aBA5OjrKTfvU13zZY5bf1+n8wpSIaNiwYaShoUGhoaHUokULMjY2pqdPn352rJ8iC9MFCxZQVlYWZWRkUEREBDVo0IDMzMzk1v3zzz+Trq4uPXr0SG4ZCxcuJABCsI0cOZL09fU/u17Z2D5+vf7xxx8EQNg3HxsbS2pqanKhTkT06tUrMjU1JU9PT6FNUV/z+Wh+KRMcHAwA8PLykmt3c3ODra0tgoKC5NpNTU3h5uYm12Zvb49Hjx6JVpODgwM0NDTg7e2NrVu34uHDhwWa79SpU/Dw8ICFhYVcu5eXF968eYPQ0FC59s6dO8vdt7e3B4ACj6Vjx45y921tbSGRSNCuXTuhTU1NDdWqVcuzzH/++QeNGjWCrq4u1NTUoK6ujk2bNiEyMrJA65b5/vvvC9x3yZIlsLOzQ/PmzRESEoLt27fDzMysUOv72OTJk6Gurg5NTU04ODjg5s2bCAgIgJWVldDn0KFDaN68OczNzZGdnS3cZI/T6dOnAbx/zb18+RK9evXCwYMHkZyc/Mn1fum5O378OLKzs9GvXz+5dWpqaqJp06YICQn5pnGLgcO0hDMyMoK2tjaio6ML1D8lJQUA8n1TmZubC9NlDA0N8/STSqV4+/btV1SbPxsbG5w8eRLGxsYYMWIEbGxsYGNjg2XLln12vpSUlE+OQzb9Qx+PRSqVAkCBx2JgYCB3X0NDA9ra2tDU1MzTnpGRIdzfv38/PD09UalSJWzfvh2hoaG4fPkyBg4cKNevIAoThlKpFD/99BMyMjLg4OCAVq1aFWpd+fnll19w+fJlnD17FgsXLkRWVha6dOki91gnJiYiICAA6urqcjc7OzsAEEKzb9++2Lx5Mx49eoTvv/8exsbGqF+/PgIDA/Os90vPXWJiIgDA1dU1z3p379792aAuLmqKLoB9nqqqKjw8PHD06FE8fvwYlStX/mx/2YsyPj4+T9+nT5/CyMhItNpkIZOZmSm8+AHk+8Ju0qQJmjRpgpycHISFhWHFihUYM2YMTExM0LNnz3yXb2hoiPj4+DztT58+BQBRx/Ittm/fDmtra+zevRsSiURoz8zMLPSyPpz/S27evIkZM2bA1dUVly9fxuLFizFu3LhCr/NDlStXhouLCwCgUaNGMDU1RZ8+feDr64uVK1cCeP+429vbY+7cufkuQ/ZhBwADBgzAgAEDkJ6ejv/++w++vr7o2LEjoqKiYGlpWeC6ZM/13r17CzVfceItUyXg4+MDIsKQIUPw7t27PNOzsrIQEBAAAGjRogWA92/wD12+fBmRkZHw8PAQrS7ZV7/r16/LtctqyY+qqirq16+PVatWAQCuXr36yb4eHh44deqUEJ4yf/31F7S1teHu7v6VlYtLIpFAQ0NDLggTEhJw8ODBPH3F2upPT0/HDz/8ACsrKwQHB2PkyJGYMmUKLl68+M3L/lDv3r3RrFkzbNiwQfjK3bFjR9y8eRM2NjZwcXHJc/swTGV0dHTQrl07TJs2De/evcOtW7cKVUebNm2gpqaGBw8e5LtO2QcAUPhvJGLhLVMl0KBBA6xZswbDhw+Hs7Mzhg0bBjs7O2RlZSE8PBzr169HnTp10KlTJ9SsWRPe3t5YsWIFVFRU0K5dO8TExODXX3+FhYUFxo4dK1pd7du3h4GBAQYNGoRZs2ZBTU0NW7ZsQVxcnFy/tWvX4tSpU+jQoQOqVKmCjIwMbN68GQDQsmXLTy7f19dX2D83Y8YMGBgYYMeOHTh8+DD++OMP6OnpiTaWb9GxY0fs378fw4cPR48ePRAXF4fZs2fDzMwM9+7dk+tbt25dhISEICAgAGZmZihXrhxq1qxZ6HUOHToUsbGxuHTpEnR0dLBo0SKEhoaiZ8+eCA8Ph76+PoD3v54aMGAA/Pz88uxHL6gFCxagfv36mD17NjZu3IhZs2YhMDAQDRs2xOjRo1GzZk1kZGQgJiYGR44cwdq1a1G5cmUMGTIEWlpaaNSoEczMzJCQkID58+dDT08Prq6uharBysoKs2bNwrRp0/Dw4UO0bdsWFSpUQGJiovAYzJw5E8D7x1hWd7t27aCqqgp7e3toaGh81fgLrNgPebGvFhERQf3796cqVaqQhoYG6ejokKOjI82YMYOSkpKEfrLzTGvUqEHq6upkZGREffr0+eR5ph/r378/WVpayrUhn6P5RESXLl2ihg0bko6ODlWqVIl8fX1p48aNckefQ0NDqVu3bmRpaUlSqZQMDQ2padOm9O+//+ZZR37nmXbq1In09PRIQ0OD6tWrR35+fnJ9ZEfz//nnH7l22RHqj/t/THY0/8PTxmSPg46OTp7++T1uv//+O1lZWZFUKiVbW1vasGFDvmc7REREUKNGjUhbWzvf80wvX76cZ30fH83fsGFDvuO6f/8+lS9fXu7XcCtWrCAAdOzYsc8+Bp86NUrmhx9+IDU1Nbp//z4RET179oxGjx5N1tbWpK6uTgYGBuTs7EzTpk2j169fExHR1q1bqXnz5mRiYkIaGhpkbm5Onp6edP369Txj+3jcsuc0ODhYrt3f35+aN29O5cuXJ6lUSpaWltSjRw86efKk0CczM5MGDx5MFStWJIlEUmznmUqI+K+TMlZaeXp6Ijo6GpcvX1Z0KaUef81nrJQiIuGUKVb0eMuUMcZEwEfzGWNMBBymjDEmAg5TxhgTAYcpY4yJgI/mF7Hc3Fw8ffoU5cqVK9RPBRljikdEePXqFczNzaGi8vltTw7TIvb06dM8Vz1ijCmXuLi4L14Xg8O0iJUrVw4AoNVhESTqWgqupnhEb+qt6BJYEXvy/I2iSygWr1+9wndONYT38edwmBYx2Vd7ibpWmQnT8uXLK7oEVsRSs8pWdBRkFx0fgGKMMRFwmDLGmAg4TBljTAQcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmAg5TxhgTAYcpY4yJgMOUMcZEwGHKGGMi4DBljDERcJgyxpgIOEwZY0wEHKaMMSYCDlPGGBMBh6mSMqugjY2jmuDRpp5I2tYH5//oDAdrw8/O09jWBGd+74jk7X1xY8X3GNSqZjFVK451a1ajVnVr6OtqoqGbM86ePfPZ/mf+O42Gbs7Q19WEbY2q2LBubTFVKo6yNN7LoWfxc98eaFzPBjVMdRB4NOCL81w6fwbdWjdCHUsDtHCzw66tG4uh0k8rtWEqkUjg7+8PAIiJiYFEIkFERIRCaxKLvo4GTs5uj6zsXHSfdxIu4/wx9a/LSH3z7pPzWFbUxT6fljgfmYRGk//FwgPX8ecAN3Spb1mMlX+9f/bsxsTxYzB5yjRcuByOho2boGvHdoiNjc23f0x0NLp2ao+GjZvgwuVwTJo8FePHjsaB/fuKufKvU9bG++ZNOmrZ1cWv8xYXqH/coxgM6d0dLvUbwj/wPIb+MhFzpk/A8UP+RVvoZ0iIiBS29i/w8vLC1q1b87Tfu3cP1apV++y8EokEBw4cQNeuXZGTk4Nnz57ByMgIamrF+/e+09LSoKenB+2uqyFR1xJlmTN/ckaDmsZo7Xu0wPPM6u2MDs4WcB7nL7QtG9IAdSwrwGP6EVHqkkne6SXq8gCgScP6cHR0wvJVa4Q2h7q26NS5K2bPnZ+n/zSfyTh86F9E3IgU2kYNH4rr16/h9NlQ0esTW0kfb1zKG9GXKVPDVAer/P5Gq3adPtnnz9nTEXTiCI6duSq0zZg0Gndu3cCew8Gi1fL6VRqcqpshNTUV5cuX/2zfEr9l2rZtW8THx8vdrK2tC7UMVVVVmJqaFnuQFpUOLha4+jAZ28Y2Q/SGH3FuQSd4eVT/7Dz1q1dE0PWncm0nI57AqaoR1FQlRVjtt3v37h3Cr16BR6vWcu0eLVvjQuj5fOe5eCEUHi3l+7ds3QZXr4QhKyuryGoVQ1kb79cIv3IJjZu2kGtr3Kwlbl67qrDxlvgwlUqlMDU1lbupqqoiICAAzs7O0NTURNWqVTFz5kxkZ2fnu4yPv+aHhIRAIpEgKCgILi4u0NbWRsOGDXH37l25+QqzjuJkZVwOg1vVwv2ENHSZG4hNgXfx54D66PWdzSfnMdbXQlLqW7m2pNS3UFdTgWE5zaIu+ZskJycjJycHxsYmcu0mJiZITEzId57ExASYmMj3NzY2QXZ2NpKTk4usVjGUtfF+jeSkRBhWlB+vUUVjZGdn48VzxYxXKTfVjh8/jj59+mD58uVo0qQJHjx4AG9vbwCAr69vgZczbdo0LFq0CBUrVsTQoUMxcOBAnDt37pvWkZmZiczMTOF+Wlra1wzxs1RUgKsPUjBz1/uvONdjnsPWQh+DW9fErv8efHK+j3foSCSSfNtLKlm9MkSUp+1L/fNrL6nK2ngL6+NhKXq8JX7L9NChQ9DV1RVuP/zwA+bOnYspU6agf//+qFq1Klq1aoXZs2dj3bp1hVr23Llz0bRpU9SuXRtTpkzB+fPnkZGRIUz7mnXMnz8fenp6ws3CwuKrx/4pCS/e4s7jl3Jtdx+nwsJI55PzJL18CxN9+X22FctrIis7F89fZ4heo5iMjIygqqqaZ6ssKSkpz9abjImJKRIS5Ps/e5YENTU1GBp+/qwHRStr4/0aRsYmSE5KlGtLSX4GNTU16FdQzHhLfJg2b94cERERwm358uW4cuUKZs2aJReyQ4YMQXx8PN68KfiOcXt7e+H/ZmZmAN6/YAF89Tp8fHyQmpoq3OLi4r5y5J924W4SapjrybVVMy+P2Gfpn5zn4r1naGFvLtfmUc8cVx8mIzunZG+aamhowNHJGadOBsq1nwoKhHuDhvnOU9+9AU4FyfcPCjwBJ2cXqKurF1mtYihr4/0ajs5uOHda/kDTuZAg1KnnpLDxlviv+To6OnmO3Ofm5mLmzJno3r17nv6amgXf//fhgy77apCbm/tN65BKpZBKpQWu4WusPHwLQbM7YEK3uth/PgbO1YwwwKMGRq3/31Hb33o5wdxAG96rzgIANp24i5/b1ML8fq7YEhQFtxoV0a9FdQxY9l+R1iqW0WPGYZBXXzg5u6C+ewNs2rgecbGxGOw9FADw6zQfPH3yBJu2/AUAGOI9FGtXr8SkCeMwcNAQXLwQii1+m7B1+y5FDqPAytp409Nf41H0/3ZRPY6Nwe2b16CvbwDzyhZYOHcGEuOf4s+V788l7dlvMLZvXod5vpPh2XsAIsIuYu+urVi8ZouCRqAEYZofJycn3L1794unR5X0dXytqw9S0GvhKcz8yRlTvnfAo6RXmLz1EvacfSj0Ma2gDQsjXeH+o2ev8f38k/i9vxu829RC/Is3mOh3CQcvPlLEEArtB88f8TwlBfPmzkJCfDzs7OrAP+AILC3fnyebEB+PuLj/nYNpZW0N/4AjmDR+LNatWQUzc3MsWrIc3bp/r6ghFEpZG+/NiKvo+3074f583ykAgG6evbFg+Xo8S0xA/JPHwnQLSyts2LEf83wnY4ffepiYmGH6nIVo07FrcZcuKPHnmb58+VI4+V7m+PHj6NixI6ZNm4YffvgBKioquH79Om7cuIE5c+YAkD/PNCYmBtbW1ggPD4eDgwNCQkLQvHlzvHjxAvr6+gCAiIgIODo6Ijo6GlZWVgVaR0EUxXmmJV1RnGfKSpaiPM+0JClV55nmp02bNjh06BACAwPh6uoKd3d3LF68WPjUVpZ1MMZKjxK9ZVoa8JYpK414yzQvpdwyZYyxkobDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmAg5TxhgTAYcpY4yJgMOUMcZEwGHKGGMi4DBljDERcJgyxpgIOEwZY0wEHKaMMSYCDlPGGBMBhyljjImAw5QxxkTAYcoYYyLgMGWMMRFwmDLGmAg4TBljTAQcpowxJgI1RRdQVkRv6v3Fv7tdWlRwHanoEorVi8srFV0CKwF4y5QxxkTAYcoYYyLgMGWMMRFwmDLGmAg4TBljTAQcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmAg5TxhgTAYcpY4yJgMOUMcZEwGHKGGMi4DBljDERcJgyxpgIOEwZY0wEHKaMMSYCDlPGGBMBhyljjImAw/QDXl5e6Nq162f7NGvWDGPGjCmWej5n3ZrVqFXdGvq6mmjo5oyzZ898tv+Z/06joZsz9HU1YVujKjasW1tMlX67O4dn4m34yjy3JVM8PzlPY+dqOLdjEl5cWILbAb9hcI/GxVixOMrSc3w59Cx+7tsDjevZoIapDgKPBnxxnkvnz6Bb60aoY2mAFm522LV1YzFU+mlKE6YJCQkYNWoUqlatCqlUCgsLC3Tq1AlBQUGirWPZsmXYsmWLaMsrKv/s2Y2J48dg8pRpuHA5HA0bN0HXju0QGxubb/+Y6Gh07dQeDRs3wYXL4Zg0eSrGjx2NA/v3FXPlX6dxnz9h1dJHuLUfugIAsD8wPN/+luaG8F8xDOfDH8C91+/4Y/NxLJrUA109HIqx6m9T1p7jN2/SUcuuLn6dt7hA/eMexWBI7+5wqd8Q/oHnMfSXiZgzfQKOH/Iv2kI/Q0JEpLC1F1BMTAwaNWoEfX19zJw5E/b29sjKysLx48exfv163Llzp9hqadasGRwcHLB06dIC9U9LS4Oenh4SU1JRvnx5UWpo0rA+HB2dsHzVGqHNoa4tOnXuitlz5+fpP81nMg4f+hcRNyKFtlHDh+L69Ws4fTZUlJo+VMF1pOjL/NCfE75HuyZ1UKfLzHynzxndBR2a1oXj93OEtuXTesK+RiU0679I9HpeXF4p+jJL+nMcl/JG9GXK1DDVwSq/v9GqXadP9vlz9nQEnTiCY2euCm0zJo3GnVs3sOdwsGi1vH6VBqfqZkhN/fL7t9BbplevXsWNGzeE+wcPHkTXrl0xdepUvHv3rvDVFsDw4cMhkUhw6dIl9OjRAzVq1ICdnR3GjRuHCxcuAAAWL16MunXrQkdHBxYWFhg+fDhev34tLGPLli3Q19fH8ePHYWtrC11dXbRt2xbx8fFCn4+/5qenp6Nfv37Q1dWFmZkZFi0S/41YWO/evUP41SvwaNVart2jZWtcCD2f7zwXL4TCo6V8/5at2+DqlTBkZWUVWa1FQV1NFT3bu2LrwU8HRP161gi6ECnXdvL8bTjZVoGaWsn/MlbWn+OCCL9yCY2btpBra9ysJW5eu6qw8Rb6lfXzzz8jKioKAPDw4UP07NkT2tra+OeffzBp0iTRC3z+/DmOHTuGESNGQEdHJ890fX19AICKigqWL1+OmzdvYuvWrTh16lSeet68eYOFCxdi27Zt+O+//xAbG4sJEyZ8ct0TJ05EcHAwDhw4gBMnTiAkJARXrlwRdXyFlZycjJycHBgbm8i1m5iYIDExId95EhMTYGIi39/Y2ATZ2dlITk4uslqLQufm9tAvp4XtARc/2cfEsDwSU17JtSU9fwV1dVUY6esWdYnfrKw/xwWRnJQIw4ry4zWqaIzs7Gy8eK6Y8aoVdoaoqCg4ODgAAP755x9899132LlzJ86dO4eePXsW+OtvQd2/fx9EhFq1an2234cHhaytrTF79mwMGzYMq1evFtqzsrKwdu1a2NjYAABGjhyJWbNm5bu8169fY9OmTfjrr7/QqlUrAMDWrVtRuXLlz9aRmZmJzMxM4X5aWtpn+38tiUQid5+I8rR9qX9+7SVd/64NcfzcbcQ/S/1sv4/3XUnwfpxKsFdLUFaf44L6eFiKHm+ht0yJCLm5uQCAkydPon379gAACwuLIvkELOgDFBwcjFatWqFSpUooV64c+vXrh5SUFKSnpwt9tLW1hSAFADMzMyQlJeW7vAcPHuDdu3do0KCB0GZgYICaNWt+to758+dDT09PuFlYWHxxjIVhZGQEVVXVPFsoSUlJebZkZExMTJGQIN//2bMkqKmpwdDQUNT6ilIVswpoUb8mtvjn/1VXJjElDaaG5eTaKhroIisrBymp6Z+Yq+Qoy89xQRkZmyA5KVGuLSX5GdTU1KBfQTHjLXSYuri4YM6cOdi2bRtOnz6NDh06AACio6PzfM0QQ/Xq1SGRSBAZGfnJPo8ePUL79u1Rp04d7Nu3D1euXMGqVasAQG7/ibq6utx8Eonkk1sqX7sF4+Pjg9TUVOEWFxf3Vcv5FA0NDTg6OePUyUC59lNBgXBv0DDfeeq7N8CpIPn+QYEn4OTskucxKcn6dm6ApOevcPTMrc/2u3gtGi3c5b/JeDSwxdXIWGRn5xZliaIoy89xQTk6u+HcafkDTedCglCnnpPCxlvoMF26dCmuXr2KkSNHYtq0aahWrRoAYO/evWjYMP8n+lsYGBigTZs2WLVqldxWpszLly8RFhaG7OxsLFq0CO7u7qhRowaePn36TeutVq0a1NXVhQNcAPDixQthf/GnSKVSlC9fXu4mttFjxsFv80Zs9duMO5GRmDh+LOJiYzHYeygA4NdpPhjk1U/oP8R7KGIfPcKkCeNwJzISW/02Y4vfJowZ9+n9xSWNRCJBvy7u2HHoInJy5ANx1qjO2Di7r3B/w96zqGJmgAXju6OmtQn6dXGHV9cGWPqXeKfRFbWy9hynp7/G7ZvXcPvmNQDA49gY3L55DU8fv98YWTh3BiaOHCz079lvMJ4+jsU838m4H3UHe3duxd5dWzFo2C8KqR/4in2m9vb2ckfzZf7880+oqqqKUtTHVq9ejYYNG8LNzQ2zZs2Cvb09srOzERgYiDVr1mDXrl3Izs7GihUr0KlTJ5w7dw5r137bCcu6uroYNGgQJk6cCENDQ5iYmGDatGlQUVH80eAfPH/E85QUzJs7Cwnx8bCzqwP/gCOwtLQEACTExyMu7n/nI1pZW8M/4AgmjR+LdWtWwczcHIuWLEe37t8ragiF1qJ+TVQxM8BW/wt5ppkalYeFqYFw/9HTFHQdtQZ/jP8eP3s2QfyzVIz/Yy/8gyKKseJvU9ae45sRV9H3+3bC/fm+UwAA3Tx7Y8Hy9XiWmID4J4+F6RaWVtiwYz/m+U7GDr/1MDExw/Q5C9GmY9fiLl1Q6PNM4+LiIJFIhAMxly5dws6dO1G7dm14e3sXSZEAEB8fj7lz5+LQoUOIj49HxYoV4ezsjLFjx6JZs2ZYsmQJ/vzzT7x8+RLfffcdevfujX79+uHFixfQ19fHli1bMGbMGLx8+VJYpr+/P7p16yZ8pffy8sLLly/h7+8P4P1BqGHDhmH//v0oV64cxo8fj8OHDyv8PNOSrqjPMy1piuI805KuKM8zLUkKc55pocO0SZMm8Pb2Rt++fZGQkICaNWvCzs4OUVFRGD16NGbMmPFNxZc2HKalH4dp6VWkJ+3fvHkTbm5uAIA9e/agTp06OH/+PHbu3KkUP8VkjLGiUOgwzcrKglQqBfD+1KjOnTsDAGrVqiX3ayLGGCtLCh2mdnZ2WLt2Lc6cOYPAwEC0bdsWAPD06dNSeT4bY4wVRKHDdMGCBVi3bh2aNWuGXr16oV69egCAf//9V/j6zxhjZU2hT41q1qwZkpOTkZaWhgoVKgjt3t7e0NbWFrU4xhhTFoUOUwBQVVWVC1IAsLKyEqMexhhTSl8Vpnv37sWePXsQGxub57J7V69e/cRcjDFWehV6n+ny5csxYMAAGBsbIzw8HG5ubjA0NMTDhw/Rrl27Ly+AMcZKoUKH6erVq7F+/XqsXLkSGhoamDRpEgIDAzF69Gikpn7+smiMMVZaFTpMY2NjhQuaaGlp4dWr9xfh7du3L3bt2iVudYwxpiQKHaampqZISUkBAFhaWgpXVYqOjlaqC+8yxpiYCh2mLVq0QEDA+z/DOmjQIIwdOxatWrXCjz/+iG7duoleIGOMKYNCH81fv369cKX9oUOHwsDAAGfPnkWnTp0wdOhQ0QtkjDFlUOgwVVFRkbump6enJzw9PUUtijHGlE2BwvT69esFXqC9vf1XF8MYY8qqQGHq4ODw2b+XJCORSJCTkyNKYYwxpkwKFKbR0dFFXQdjjCm1AoWp7O/OMMYYy1+hT42aP38+Nm/enKd98+bNWLBggShFMcaYsil0mK5btw61atXK0y67aDRjjJVFhQ7ThIQEmJmZ5WmvWLEi/9kSxliZVegwtbCwwLlz5/K0nzt3Dubm5qIUxRhjyqbQJ+0PHjwYY8aMQVZWFlq0aAEACAoKwqRJkzB+/HjRC2SMMWVQ6DCdNGkSnj9/juHDhwsXhtbU1MTkyZPh4+MjeoFM+ZS1vyN/5t4zRZdQ7NaFxiq6hGKR9fZ1gfsWOkwlEgkWLFiAX3/9FZGRkdDS0kL16tWFP//MGGNl0Vf92RIA0NXVhaurq5i1MMaY0ir0ASjGGGN5cZgyxpgIOEwZY0wEHKaMMSaCrwrTbdu2oVGjRjA3N8ejR48AAEuXLsXBgwdFLY4xxpRFocN0zZo1GDduHNq3b4+XL18K1y/V19fH0qVLxa6PMcaUQqHDdMWKFdiwYQOmTZsGVVVVod3FxQU3btwQtTjGGFMWhQ7T6OhoODo65mmXSqVIT08XpSjGGFM2hQ5Ta2trRERE5Gk/evQoateuLUZNjDGmdAr9C6iJEydixIgRyMjIABHh0qVL2LVrF+bPn4+NGzcWRY2MMVbiFTpMBwwYgOzsbEyaNAlv3rzBTz/9hEqVKmHZsmXo2bNnUdTIGGMl3lf9Nn/IkCEYMmQIkpOTkZubC2NjY7HrYowxpfLVFzoBACMjI7HqYIwxpVboMLW2toZEIvnk9IcPH35TQYwxpowKHaZjxoyRu5+VlYXw8HAcO3YMEydOFKsuxhhTKoUO019++SXf9lWrViEsLOybC2KMMWUk2oVO2rVrh3379om1OMYYUyqihenevXthYGAg1uIYY0ypFPprvqOjo9wBKCJCQkICnj17htWrV4taHGOMKYtCh2nXrl3l7quoqKBixYpo1qwZatWqJVZdjDGmVAoVptnZ2bCyskKbNm1gampaVDUxxpjSKdQ+UzU1NQwbNgyZmZlFVQ9jjCmlQh+Aql+/PsLDw4uiFlHExMRAIpHke2Wr0mTdmtWoVd0a+rqaaOjmjLNnz3y2/5n/TqOhmzP0dTVhW6MqNqxbW0yViqesjHnX+mUY6dkaXVys8UPj2vAd2Q9x0fe/ON/1y+cxvEdLdHCwQL/WLjj095aiL7YIdLM3xd6BzvCqX/mz/Wqb6mJB51rY2c8Rq36og9Y1FfuLzEKH6fDhwzF+/HisXLkSoaGhuH79utytMLy8vCCRSCCRSKCmpoYqVapg2LBhePHiRWHLKnISiQT+/v6KLgMA8M+e3Zg4fgwmT5mGC5fD0bBxE3Tt2A6xsbH59o+JjkbXTu3RsHETXLgcjkmTp2L82NE4sF95TmUrS2O+EXYenXsNxLJdR/H7xj3IzcmBz2BPvH3z6esFxz9+hGlDf0JdZ3es2ReEXt5jsHreNJw5EVCMlX87GyNttKxphJjnbz7bz1hXA1NbVUNk4mtMPBiJ/dfiMcDdAvUt9Yun0HxIiIgK0nHgwIFYunQp9PX18y5EIgERQSKRCH/GpCC8vLyQmJgIPz8/ZGdn4/bt2xg4cCCaNGmCXbt2FXg5H4qJiYG1tTXCw8Ph4ODwVcvIj0QiwYEDB/IcgPuStLQ06OnpITElFeXLlxelliYN68PR0QnLV60R2hzq2qJT566YPXd+nv7TfCbj8KF/EXEjUmgbNXworl+/htNnQ0WpqaiV5DGfufdM1OV97OXzZHg2ro2Ffx2EvUuDfPtsXDQLocHHsenQOaFt2W8T8PDuLSzbdVT0mtaF5v8h9i001VTwRxdbbAiNRY96Zoh+/gZbLj7Ot28fl0pwqaKHMftvC23eDavA0kAL0w7dFa2mrLev8e/IZkhN/fL7t8Bbplu3bkVGRgaio6Pz3B4+fCj8W1hSqRSmpqaoXLkyWrdujR9//BEnTpwAAOTm5mLWrFmoXLkypFIpHBwccOzYMbn5L126BEdHR2hqasLFxSXfXRC3b99G+/btoaurCxMTE/Tt2xfJycnC9GbNmmH06NGYNGkSDAwMYGpqit9++02YbmVlBQDo1q0bJBKJcF8R3r17h/CrV+DRqrVcu0fL1rgQej7feS5eCIVHS/n+LVu3wdUrYcjKyiqyWsVSFsf8ofRXaQCAcnr6n+xzOyIMzg2bybU5N26OqFvXkK0k4x3coAquxqXixtNXX+xbw1gH156kybVFPEmDjZEOVD996ZAiVeAwlW3AWlpafvb2LR4+fIhjx45BXV0dALBs2TIsWrQICxcuxPXr19GmTRt07twZ9+7dAwCkp6ejY8eOqFmzJq5cuYLffvsNEyZMkFtmfHw8mjZtCgcHB4SFheHYsWNITEyEp6enXL+tW7dCR0cHFy9exB9//IFZs2YhMDAQAHD58mUAgJ+fH+Lj44X7ipCcnIycnBwYG5vItZuYmCAxMSHfeRITE2BiIt/f2NgE2dnZch8qJVVZHLMMEWHdH76o41Qf1tVtP9nvRXISKhhWlGurYFgROdnZSH35vKjL/GaNrCvA2lAbO648KVB/fS11pL7NlmtLfZsFNRUJyml+08Xwvlqh1vq5q0V9rUOHDkFXVxc5OTnIyMgAACxevBgAsHDhQkyePFm46PSCBQsQHByMpUuXYtWqVdixYwdycnKwefNmaGtrw87ODo8fP8awYcOE5a9ZswZOTk6YN2+e0LZ582ZYWFggKioKNWrUAADY29vD19cXAFC9enWsXLkSQUFBaNWqFSpWfP8i1dfX/+IpYZmZmXJnO6SlpX2m99f7+LmQ7WYpTP/82kuysjjmlXOmIPrubSzeXoB9nx+PSzbeIqhLTIY66hjgboHZx+8hK6dAex0BAAXvWTwKFaY1atT44gvx+fPCfQo2b94ca9aswZs3b7Bx40ZERUVh1KhRSEtLw9OnT9GoUSO5/o0aNcK1a9cAAJGRkahXrx60tbWF6Q0ayO9TunLlCoKDg6Grq5tn3Q8ePJAL0w+ZmZkhKSmpUGMBgPnz52PmzJmFnq+gjIyMoKqqmmeLLCkpKc+Wm4yJiSkSEuT7P3uWBDU1NRgaGhZZrWIpi2MGgFVzfBAafByL/jqIiqbmn+1bwcgYL5LlX68vnidDVU0N5fVL9s+8qxpqQ19LHX90/t+Wt6qKBLamumhna4xeW68i96PkfPk2C/pa8vGlp6WO7FzCqwz5LdbiUqgwnTlzJvT09EQtQEdHB9WqVQMALF++HM2bN8fMmTOFy/l9bmukIMfOcnNz0alTJyxYsCDPNDMzM+H/sl0LMhKJBLm5uYUbDAAfHx+MGzdOuJ+WlgYLC4tCL+dTNDQ04OjkjFMnA9Glazeh/VRQIDp26pLvPPXdG+DIYfktm6DAE3Bydskz7pKorI2ZiLBqrg/OnTyChVv8YVb5y7vPaju44ELwCbm2q+dCUMOuHtRK+HhvPH2FsftvybWNaGKFJ6kZ8L+ekCdIASAqKR3OFvJZVM+8PB4kp6MQG7eiKlSY9uzZs8j/RImvry/atWuHYcOGwdzcHGfPnsV3330nTD9//jzc3NwAALVr18a2bdvw9u1baGlpAQAuXLggtzwnJyfs27cPVlZWUFP7+n0p6urqBTpTQSqVQiqVfvV6CmL0mHEY5NUXTs4uqO/eAJs2rkdcbCwGew8FAPw6zQdPnzzBpi1/AQCGeA/F2tUrMWnCOAwcNAQXL4Rii98mbN3+dWdMKEJZGvOK2ZMRfHg/Zq78C1o6Onj+LBEAoFOuPKSa71/nmxbPQUpSPCb9vgoA0OHH/ji4czPWLvgV7Xv0xe2IMBzbtxM+C0v+ubUZ2bmIe5kh15aZnYtXmdlC+0/O5jDU0cCK/2IAACfuPENb24ro71YZJ+8mo6axDlrUMMTSkOjiLl9Q4HQprv1MzZo1g52dHebNm4eJEyfC19cXNjY2cHBwgJ+fHyIiIrBjxw4AwE8//YRp06Zh0KBBmD59OmJiYrBw4UK55Y0YMQIbNmxAr169MHHiRBgZGeH+/fv4+++/sWHDBqiqqhaoLisrKwQFBaFRo0aQSqWoUKGC6GMvqB88f8TzlBTMmzsLCfHxsLOrA/+AI8IBwIT4eMTF/e/UFStra/gHHMGk8WOxbs0qmJmbY9GS5ejW/XtFDaHQytKYZSfbT+jfVa59wtzlaN3t/fGD58mJSIr/38Eas8qWmLt2J9b+/isCdvrBwNgUw6fORZPWnYqr7CJVQVsdRjoawv2k1+8wL/A+vNws0Na2Ip6/yYLfhThcfPRSYTUW+DxTFRUVJCQkiLpl6uXlhZcvX+Y5GX7nzp0YMGAAoqKisHXrVqxfvx5JSUmoXbs2fv/9d7Rt21boe+HCBQwdOhSRkZGoXbs2fv31V3z//fdy55neu3cPkydPRnBwMDIzM2FpaYm2bdti8eLFkEgkaNasGRwcHLB06VJhuV27doW+vj62bNkCAAgICMC4ceMQExODSpUqISYmpkBjLIrzTFnJUtTnmZZERXGeaUlUmPNMCxym7OtwmJZ+HKalV5GctM8YY+zTOEwZY0wEHKaMMSYCDlPGGBMBhyljjImAw5QxxkTAYcoYYyLgMGWMMRFwmDLGmAg4TBljTAQcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmAg5TxhgTAYcpY4yJgMOUMcZEwGHKGGMi4DBljDERSIiIFF1EaZaWlgY9PT0kpqSifPnyii6HMVYIaWlpMDHUQ2rql9+/vGXKGGMi4DBljDERcJgyxpgIOEwZY0wEHKaMMSYCDlPGGBMBhyljjImAw5QxxkTAYcoYYyLgMGWMMRFwmDLGmAg4TBljTAQcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmAg5TxhgTAYcpY4yJgMNUSa1bsxq1qltDX1cTDd2ccfbsmc/2P/PfaTR0c4a+riZsa1TFhnVri6lS8ZS1MfN4lWu8pT5Mt2zZAn19fUWXIap/9uzGxPFjMHnKNFy4HI6GjZuga8d2iI2Nzbd/THQ0unZqj4aNm+DC5XBMmjwV48eOxoH9+4q58q9X1sbM41XC8ZKSiI2NpYEDB5KZmRmpq6tTlSpVaPTo0ZScnCz0sbS0pCVLlsjN5+fnR3p6esVb7AdSU1MJACWmpNLbLBLl5uLqRkO8h8q11axViyZMmpJv/3ETJlHNWrXk2gYP+Znc6ruLVlNR38ramHm8JWO8iSnv37+pqalffK8rxZbpw4cP4eLigqioKOzatQv379/H2rVrERQUhAYNGuD58+fFXlNWVlaxrxMA3r17h/CrV+DRqrVcu0fL1rgQej7feS5eCIVHS/n+LVu3wdUrYQobR2GUtTHzeN9TtvEqRZiOGDECGhoaOHHiBJo2bYoqVaqgXbt2OHnyJJ48eYJp06ahWbNmePToEcaOHQuJRAKJRCK3jOPHj8PW1ha6urpo27Yt4uPj5ab7+fnB1tYWmpqaqFWrFlavXi1Mi4mJgUQiwZ49e9CsWTNoampi+/btxTL2jyUnJyMnJwfGxiZy7SYmJkhMTMh3nsTEBJiYyPc3NjZBdnY2kpOTi6xWsZS1MfN431O28aopZK2F8Pz5cxw/fhxz586FlpaW3DRTU1P07t0bu3fvxr179+Dg4ABvb28MGTJErt+bN2+wcOFCbNu2DSoqKujTpw8mTJiAHTt2AAA2bNgAX19frFy5Eo6OjggPD8eQIUOgo6OD/v37C8uZPHkyFi1aBD8/P0il0nzrzczMRGZmpnA/LS1NrIdCzscfFkSUp+1L/fNrL8nK2ph5vMo13hIfpvfu3QMRwdbWNt/ptra2ePHiBXJycqCqqopy5crB1NRUrk9WVhbWrl0LGxsbAMDIkSMxa9YsYfrs2bOxaNEidO/eHQBgbW2N27dvY926dXJhOmbMGKHPp8yfPx8zZ878qrEWhJGREVRVVfN8YiclJeX5ZJcxMTFFQoJ8/2fPkqCmpgZDQ8Miq1UsZW3MPN73lG28SvE1/3MK8mmkra0tBCkAmJmZISkpCQDw7NkzxMXFYdCgQdDV1RVuc+bMwYMHD+SW4+Li8sV6fHx8kJqaKtzi4uK+ZlifpKGhAUcnZ5w6GSjXfiooEO4NGuY7T333BjgVJN8/KPAEnJxdoK6uLmp9RaGsjZnH+57SjbfIDmOLJDk5mSQSCc2dOzff6UOGDKEKFSpQbm5ugY/mHzhwgGRDT0hIIAC0fft2unfvntzt4cOHREQUHR1NACg8PLzQ9RfF0fy/dvxN6urqtHb9Jgq/fptGjh5DOjo6dOd+DL3NIpowaQr91Luv0D8y6iFpa2vTqF/GUvj127R2/SZSV1ennbv3KvwoLo+Zx1uSx1uYo/klPkyJiFq3bk2VKlWiN2/eyLXHx8eTtrY2DR06lIiIqlevTgsXLpTr86UwJSKqVKkSzZo165PrL2lh+jaLaOnyVVTF0pI0NDTI0dGJAk+dFqb16dufmnzXVK7/iaAQcnBwJA0NDbK0sqLlK9co/A3EY+bxlvTxFiZMJUT//z25BLt37x4aNmwIW1tbzJkzB9bW1rh16xYmTpyIzMxMXLhwAQYGBmjdujW0tLSwevVqSKVSGBkZYcuWLRgzZgxevnwpLM/f3x/dunUTdhFs3LgRo0ePxvz589GuXTtkZmYiLCwML168wLhx4xATEwNra2uEh4fDwcGhULWnpaVBT08PiSmpKF++vIiPCmOsqKWlpcHEUA+pqV9+/yrFPtPq1asjLCwMNjY2+PHHH2FjYwNvb280b94coaGhMDAwAADMmjULMTExsLGxQcWKFQu8/MGDB2Pjxo3YsmUL6tati6ZNm2LLli2wtrYuqiExxkoZpdgyVWa8ZcqY8ip1W6aMMVbScZgyxpgIOEwZY0wEHKaMMSYCDlPGGBMBhyljjImAw5QxxkTAYcoYYyLgMGWMMRFwmDLGmAg4TBljTAQcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmAg5TxhgTAYcpY4yJQE3RBZR2sr+k/SotTcGVMMYKS/a+lb2PP4fDtIi9evUKAFDN2kLBlTDGvtarV6+gp6f32T4SKkjksq+Wm5uLp0+foly5cpBIJMW23rS0NFhYWCAuLg7ly5cvtvUqCo+3dFPUeIkIr169grm5OVRUPr9XlLdMi5iKigoqV66ssPWXL1++TLzZZHi8pZsixvulLVIZPgDFGGMi4DBljDERcJiWUlKpFL6+vpBKpYoupVjweEs3ZRgvH4BijDER8JYpY4yJgMOUMcZEwGHKGGMi4DBljDERcJiyMiE1NVXRJbBSjsOUlXqbNm3C2LFj8fDhQ0WXolC5ubn5/r+0kJ2YdPnyZdy+fbvY189hWobJXnyl/ey4pKQkhIWFYcWKFWUqUGWBmZ6ejnfv3kFFRQXBwcF4/vz5F39nrowkEgmOHj2KJk2a4MmTJ8jOzi7W9Ze+R5R9kXBZwFevkJWVhdevX8u1lzY+Pj74+eefce7cOSxbtgzR0dGKLqlYqKio4PHjx3Bzc8P169fx999/w8PDA5cuXVJ0aUXi+fPnuHbtGubMmYNWrVpBTa14Lz3CYVrGEBEkEgkOHz6MPn36oGHDhujduzcCAgKK9apWxSUrKwsA0KtXLzg5OeHIkSNYsmQJYmNjFVxZ8ahcuTJMTU3RoUMH9O7dGxs3bkTbtm1L3Qfn7du3YWZmhvXr18PY2FghNXCYljESiQQBAQHo0aMHGjdujMmTJ8PIyAhdunRRyH6moqauro6///4b3333HZKTk6GhoYH169dj4cKFpX4LNScnBwDw66+/4tmzZ9DT00OtWrWQlZVVaj44ZR8KtWvXxrBhwxATE4NHjx4pZp8wsTLlzZs31KVLF/rjjz+IiOjJkydkaWlJ3t7eCq6saERGRpKxsTFt2LCB0tPTiYho9uzZZGdnR6NGjaJHjx4puMKid/v2bTp69Ch16NCBTE1N6fjx4/Tu3bs8/XJychRQ3dfJzc3Nt33EiBEklUrpwIEDxVsQEXGYljEvX76kqlWr0pkzZygpKYkqVaokF6Rbt26lu3fvKrDCr7ds2TLat2+fXNvly5fJxMSEwsLC5NpnzZpFGhoaNGbMGLp3715xllnkZEGTlJREycnJctNatWpFpqamdPLkSSFQt2zZQikpKcVe59eSje/s2bP0+++/k4+PD23fvl2YPnToUNLS0qKDBw8Wa138Nb+MkUqlcHFxwX///QcXFxd07NgRq1evBgAkJyfj1KlTuHTpktLtU3v8+DGuXLmCunXryrXn5uZCXV1dOMiWmZkJ4P1XX0tLS/z999/YuHGjsG+1NJBIJDhw4AA6dOgAJycnTJgwAadPnwYAnDhxAnXr1oWXlxfWrVuHcePGYeDAgUhOTlZw1QUnkUiwf/9+tG/fHrdu3cKdO3cwZ84c9OjRAwCwZs0aDBgwAH379sU///xTfIUVa3SzYiX7BH/79i1lZWUJ7RMmTCCJRELt2rWjN2/eCO1TpkyhmjVrUkxMTLHXKgbZWEJDQ+nvv/8W2lu0aEF2dnZyW18pKSnk6elJkydPVtrxfkpERAQZGRnR/PnzydfXl1xdXaljx44UEBAg9PH09CQ3NzeqU6cOXb16VYHVFt79+/epatWqtHr1aiIiunPnDlWoUIFGjhwp1693795kbm5Or169Kpa6OExLKVmQBgQEkIeHB7Vt25Z8fX2F6b169SITExMaOXIkzZgxg7y8vEhPT4/Cw8MVU7AIcnNzKTU1lXr06EGOjo60a9cuIiJKSEigunXrUq1atejQoUN0+vRp8vHxIScnJ3rx4oViixZZVFQUzZ49m3777TehLSQkhFq3bk3t27eXC9RHjx4p5fjPnz9P9vb2REQUExNDFhYW9PPPPwvTz549K/w/Pj6+2OriMC1lPtwxf/r0adLS0qJhw4bR4MGDSVtbm3788Udh+owZM6h79+7k6upK3t7edPPmTUWULLrz589Tr169qEmTJrR7924iInr27Bm1bduWrKysyNzcnKytrfPsR1V28fHx5OrqSoaGhjRq1Ci5acHBwdSqVSvq3LmzQg7OiEH22j537hw1a9aMLl26RBYWFuTt7U3Z2dlERBQeHk4jRoygyMjIYq+Pw7SUevDgAR0+fJgWLlxIRETZ2dl06tQpMjAwoB9++EHol5OTQ5mZmcKLUdnI3mAvXrygjIwM4Yh0aGgoeXp6UuPGjYVAJSK6efMm3b59mxISEhRSb1H48AN09+7dVLduXXJ2dqZLly7J9Tt9+jS5ubmRp6cnvX79urjLLLDc3FxhTPkdtX/w4AGZmJiQRCLJcxbKmDFjqHnz5nkOvBUHDtNSYNasWXTr1i3h/tOnT0ldXZ20tbVpwYIFcn1PnTpFFSpUoN69eyttgH7s4MGD5OzsTN999x3169ePMjMzieh/gdqkSRPhK39p8uE+8Q+fS39/f3JycqK+ffvS5cuX5eY5e/ZsiT8dTLbvW/Y8njlzhhYuXEirV6+mx48fE9H73Vfq6uo0dOhQOnv2LIWFhdHYsWNJT0+Prl+/rpC6OUyVXGZmJrVt21YuTLOysmjr1q1kampKffr0yTNPSEgISSQSGjx4cHGWKipZkFy9epU0NTVpxowZNHbsWHJ0dCQ7OzvKyMggoveB2qtXL6pbt67Sfr3Nj2z8x44do65du1KLFi2oQ4cOwmlt+/btIxcXF+rTpw9duXJFkaUWyl9//UWmpqbCN4c9e/aQrq4uOTg4UPXq1alq1ap0584dIno/xipVqlClSpXI1taWXF1dFbrPn8NUiX14JJ7o/X6xa9euERHRu3fvaPv27SSVSmn8+PF55j179qzwolRWV65coaNHj9Lvv/9ORO93ZVy+fJns7e2pVq1a9PbtWyJ6v2UzYMCAUnfU/uDBg6StrU0+Pj508OBBcnR0JEtLS4qKiiIion/++Yfc3d2pS5cuSnNg8fTp09SgQQOqW7cuxcXF0cSJE2nLli2UnZ1NYWFh1KFDB9LX1xdeu48fP6YbN27Q3bt36fnz5wqtncNUSc2dO5dGjx4t7BvKycmhJk2akIGBAd24cYOI3ofLtm3bSENDI99AVWbPnj0jW1tbkkgk5OPjI7Tn5uZSWFgY2dvbU506dYQPHFmwlgaysxaaNm1K8+fPJ6L3J+hbW1vT0KFD5fpu3bqVWrRoQU+ePFFEqV/l3Llz1KhRI6pWrRq1aNFC7oPg3r171L59e9LT0ytxGwMcpkpq3bp1JJFIaPr06cL5k69evaKWLVuSpaWlsN9IFqi6urpyp48ou8zMTNq3bx85OzuTk5OT3LTc3Fy6cuUKValShdzc3IQ2ZbVgwQLasWOHXNvz58/Jzs6O4uLiKDExkczNzeUOxnx4nm1aWlqx1VpYsgOGHz8/165do3bt2pGampqwC0vW9969e9S5c2eSSCT04MGD4i34MzhMldi2bduELTPZFuqrV6+oWbNmeQJ148aNZGJiQomJiYosWVRv3ryhgIAAqlq1KrVs2VJuWm5uLoWHh5eoN9vXGjx4MKmoqMj9VDY7O5vc3d3p119/JSsrKxo6dKjw89DExETy8PAQArWkf5A8evSIjh8/TkTv95n+9NNPRPR+V1T9+vXJxsaGkpKSiOh/Y7lz5w55enqWqK1TDlMl9OGbY+vWrZ8N1A+/8qempiqk3m8lG29YWBht2LCBNm7cKJxH+PbtWwoICKCaNWtSq1atFFlmkRo7dixJpVLau3cvZWdnU05ODk2ZMoX09fXJw8NDru/UqVOpbt26FBsbq6BqCy47O5vatWtHTk5ONHXqVFJVVaW1a9cK08+fP0+NGzem2rVrCxsCstdDfhdrUSQO01Jg06ZN+QZqy5YtqVy5cnJH+pWN7I2zb98+Mjc3J2dnZ2rSpAkZGRnRmTNniOh/gWpnZ0eurq6KLFdUubm5wlfb1NRU8vLyIkNDQ+ECHg8fPqT27duTi4sLjR07ltauXUsDBw5Uyl+y1alThyQSSb779s+dO0dNmjQhe3v7Yv1FU2FxmCqJD09kvn//Pl24cIHOnTsnnAKUX6CmpaVRx44dleqqSPl9JQ0JCSEjIyNat24dERFdunSJJBIJaWpq0uHDh4nofaDu27ePXF1dS/x5lAUleyz27t1Lrq6u1L17d9LQ0CAdHR3hhwgPHjyg3377jRwcHMjd3Z08PT1L9C/ZZB8Ob968oYyMDLp79y6lpKSQu7s71atXjxo1akQBAQF5Lgd4/vx5ql27Nrm7u1NOTk6J3HXBYaokPtxCq1WrFlWrVo3c3d3J3t5e+Poj+8o/ffr0PPuYlIHsDZSUlESXL18WTjj39fWlGTNmENH7U2GqVKlCAwYMoH79+pFUKqXg4GAiIsrIyCi2i1oUl7CwMNLS0qINGzbQkydP6NatWzR48GCSSqVyv+zKzc2lrKysEvfV90Oy5/f27dvUvXt3qlOnDqmpqZGHhwcNHz6ccnNzqXnz5uTu7p5voN6+fZsePnyoiNILhMO0hJK9kGQXNCZ6fw6erq4urVu3jjIzMykgIIAkEgktXrxYCE1ZoM6aNUupLvYrq/XWrVvUqFEjatu2LXXr1o2I3gfK+fPn6dWrV+Tu7i4ctT579ixJJBKSSCTCAYzS5sCBA2RnZyd3DmVWVhYNHDiQdHR06N9//1WK51n2+rx+/Trp6enRiBEjaOPGjbR3717q0qULSSQS8vLyoidPnpCHhwc1aNCA/v33XyIimjx5MvXr10+R5RcIh2kJJHtzhIWFkY2NDUVHRxMR0Z9//ilcZiw2NpaqVKlCI0aMEOaTbZXs3LlTqfaTyt5oN2/eJH19fZo6dSo9evQoz89dw8LCyNXVlW7fvi309/T0pIkTJwptpc3u3btJVVVV2HUju5TipUuXSEVFhSQSSbFfBPlrJSUlkaOjI02ZMiVP+8qVK0lDQ4NGjhxJ7969o1atWlHt2rWpYcOGVKFCBTp//ryCqi44DtMSRhakERERVK5cORozZowwbcCAATR48GB68uQJVa5cmby9vYUg+ueff2jhwoVK+3v7lJQUaty4cZ6rHX241XX06FGSSCTCGQrTp0+n9u3by229lzavX78mV1dX6tmzp9z1WB8+fEh9+vSh8ePHK80HydWrV6lOnTp048YN4XUqe35fvnxJs2fPJg0NDTpz5gy9fPmSlixZQrNnz1bIFaC+BodpCSJ7YV27do20tbVp6tSpctMXL15M3bp1I3Nzc+F39bm5ufTu3TsaPnw4jRkzJs9PTJXFrVu3yMbGhkJCQvL92iobZ7du3UgikZCrqyvp6upSRESEAqoVn+xDMTw8nPbt20d79uwR9g9u27aNGjRoQD169KDHjx9TXFwcTZs2jRo1aqRUz7efnx9pamoK9z/en//w4UPS09MTftWlbDhMS5jY2FgyMjIiT09Pufb169dTz549ycbGhgwMDISvPa9evaKpU6eSmZlZiTqBubB27NhBampqwhssv0BNT0+nQ4cO0YEDB2jx4sXCb9BLi71795K+vj65urqShoYGubi40J9//klERNu3b6f69euTRCKh6tWrk6GhodJdIf/MmTOkqalJe/fu/WQfR0dHuW9jyoTDtISJjo4mV1dX6ty5s3DF8Hnz5pG2tjbdunWL4uLiyNrampycnKh69erUrl07MjMzU7o31sfOnTv3xTfaqlWrSu2J+devX6eKFSvSunXrKD09neLi4mjSpEnk5OREixcvJqL3+0sPHz5MQUFBSnn6V1xcHBkbG1Pnzp3l6pd9cD5//pwaNmxI27ZtU1SJ34TDtASKioqitm3bUufOnWnIkCFkbGwsd7Q6Pj6edu7cST4+PrRjx44SfbpIQT1+/Fh4o314dacPvwqOGzeOJk+erFSne33sU0fe//77b6pVq5bcnxF5+vQpjRkzhtzd3UvNxaz37dtHGhoa1K9fvzznw06fPp2srKyU9upeHKYl1N27d6lVq1akpaUlXC2fiOT+MF5ps2/fPpJKpdS3b1+5sxHS09PJx8eHLC0tlfbPUBP9L0ijo6NpyZIlNGfOHPL39yei9wfXqlSpIgTMhxf1kEgkdPToUcUULbLs7Gxau3YtqampUc2aNWngwIE0bdo06t27NxkYGCj1NywO0xLs/v371Lp1a2rXrp3w00ki5ToRvzBycnLk3mgDBgygYcOGUefOncnY2Fip32gfHly0sLCgxo0bU9WqVUlbW5s2b95MKSkpZGRkRBMmTJC7XKDsdCLZDxNKiwsXLlD37t3Jzs6OGjVqpLC/2yQmDtMSTvaVv02bNnJ/dbE0u3jxovAXRhs3bkyTJ09W6oNNH5+lMWXKFMrMzKSIiAiys7Oj2rVrE9H7c0olEgn98ssvdPHiRXr69ClNmTKFzMzMKC4uTpFDKBLZ2dmfPeCobCRERGAl2r179zBu3DgkJydjyZIlcHd3V3RJRS43NxcqKiqKLkM0cXFxcHJyQvPmzbFnzx6h3cPDA5GRkQgLC4O5uTlCQkLQp08faGhoQEVFBVlZWThw4ACcnJwUWH3RICJIJJI8/1dWaoougH1Z9erV8eeff+LXX3+Fubm5osspFh++sUrDGy0nJwfW1tbIzMzEuXPn0KhRI8yfPx/BwcGwt7eHl5cXcnJy8MMPP2DJkiUoV64cdHV1UbVq1VL7nH/4nCr78wsAvGWqRN69ewcNDQ1Fl8G+0r179zB69GhoaGjA2NgYBw8exNq1a9G4cWPcuXMHkZGRWLRoETIyMmBtbY3g4OBStXVe2nGYMlaMoqKiMHLkSJw9exazZs3ChAkT5Ka/evUKN2/ehLGxMWxsbBRUJfsaHKaMFbMHDx5g+PDhUFVVxdSpU9G4cWMAQHZ2NtTUeM+bsuLvEIwVMxsbG6xcuRJEhDlz5uDcuXMAwEGq5DhMGVOA6tWrY/ny5VBXV8eECRNw4cIFRZfEvhGHKWMKIjtLo3LlyqX2iH1ZwvtMGVMwPkujdOAwZYwxEfDXfMYYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMWan322+/wcHBQbjv5eWFrl27FnsdMTExkEgkiIiI+Kr5Q0JCIJFI8PLlS1HrYuLgMGUK4eXlBYlEAolEAnV1dVStWhUTJkxAenp6ka972bJl2LJlS4H6fmsAsrKDr6zAFKZt27bw8/NDVlYWzpw5g8GDByM9PR1r1qzJ0zcrKwvq6uqirFdPT0+U5TD2Id4yZQojlUphamoKCwsL/PTTT+jduzf8/f0B/O+r+ebNm1G1alVIpVIQEVJTU+Ht7Q1jY2OUL18eLVq0wLVr1+SW+/vvv8PExATlypXDoEGDkJGRITf946/5ubm5WLBgAapVqwapVIoqVapg7ty5AABra2sAgKOjIyQSCZo1aybM5+fnB1tbW2hqaqJWrVpYvXq13HouXboER0dHaGpqwsXFBeHh4V98TDIzMzFp0iRYWFhAKpWievXq2LRpU759U1JS0KtXL1SuXBna2tqoW7cudu3aJddn7969qFu3LrS0tGBoaIiWLVsKW/8hISFwc3ODjo4O9PX10ahRIzx69OiLNbL88ZYpKzG0tLSQlZUl3L9//z727NmDffv2QVVVFQDQoUMHGBgY4MiRI9DT08O6devg4eGBqKgoGBgYYM+ePfD19cWqVavQpEkTbNu2DcuXL0fVqlU/uV4fHx9s2LABS5YsQePGjREfH487d+4AeB+Ibm5uOHnyJOzs7ITf0G/YsAG+vr5YuXIlHB0dER4ejiFDhkBHRwf9+/dHeno6OnbsiBYtWmD79u2Ijo7GL7/88sXHoF+/fggNDcXy5ctRr149REdHIzk5Od++GRkZcHZ2xuTJk1G+fHkcPnwYffv2RdWqVVG/fn3Ex8ejV69e+OOPP9CtWze8evUKZ86cAREhOzsbXbt2xZAhQ7Br1y68e/cOly5dKhV/PkRhivsv+DFGRNS/f3/q0qWLcP/ixYtkaGhInp6eRETk6+tL6urqlJSUJPQJCgqi8uXLU0ZGhtyybGxsaN26dURE1KBBAxo6dKjc9Pr161O9evXyXXdaWhpJpVLasGFDvnVGR0cTAAoPD5drt7CwoJ07d8q1zZ49mxo0aEBEROvWrSMDAwNKT08Xpq9ZsybfZcncvXuXAFBgYGC+04ODgwkAvXjxIt/pRETt27en8ePHExHRlStXCADFxMTk6ZeSkkIAKCQk5JPLYoXDW6ZMYQ4dOgRdXV1kZ2cjKysLXbp0wYoVK4TplpaWqFixonD/ypUreP36NQwNDeWW8/btWzx48AAAEBkZiaFDh8pNb9CgAYKDg/OtITIyEpmZmfDw8Chw3c+ePUNcXBwGDRqEIUOGCO3Z2dnC/tjIyEjUq1cP2tracnV8TkREBFRVVdG0adMC1ZGTk4Pff/8du3fvxpMnT5CZmYnMzEzo6OgAAOrVqwcPDw/UrVsXbdq0QevWrdGjRw9UqFABBgYG8PLyQps2bdCqVSu0bNkSnp6eMDMzK/DjwORxmDKFad68OdasWQN1dXWYm5vnOcAkCwWZ3NxcmJmZISQkJM+y9PX1v6oGLS2tQs+Tm5sL4P1X/fr168tNk+2OoK+4GFtha1m0aBGWLFmCpUuXom7dutDR0cGYMWPw7t07oZbAwECcP38eJ06cwIoVKzBt2jRcvHgR1tbW8PPzw+jRo3Hs2DHs3r0b06dPR2BgYJn4U+JFgQ9AMYXR0dFBtWrVYGlpWaAj9U5OTkhISICamhqqVasmdzMyMgIA2Nra5rlq/eeuYl+9enVoaWkhKCgo3+myfaQ5OTlCm4mJCSpVqoSHDx/mqUN2wKp27dq4du0a3r59W6A6AKBu3brIzc3F6dOnP9tP5syZM+jSpQv69OmDevXqoWrVqrh3755cH4lEgkaNGmHmzJkIDw+HhoYGDhw4IEx3dHSEj48Pzp8/jzp16mDnzp0FWjfLi8OUKY2WLVuiQYMG6Nq1K44fP46YmBicP38e06dPR1hYGADgl19+webNm7F582ZERUXB19cXt27d+uQyNTU1MXnyZEyaNAl//fUXHjx4gAsXLghH0I2NjaGlpYVjx44hMTERqampAN6fbTB//nwsW7YMUVFRuHHjBvz8/LB48WIAwE8//QQVFRUMGjQIt2/fxpEjR7Bw4cLPjs/Kygr9+/fHwIED4e/vj+joaISEhGDPnj359q9WrZqw5RkZGYmff/4ZCQkJwvSLFy9i3rx5CAsLQ2xsLPbv349nz57B1tYW0dHR8PHxQWhoKB49eoQTJ04gKioKtra2BX9CmDxF77RlZdPHB6A+5uvrK3fQSCYtLY1GjRpF5ubmpK6uThYWFtS7d2+KjY0V+sydO5eMjIxIV1eX+vfvT5MmTfrkASgiopycHJozZw5ZWlqSuro6ValShebNmydM37BhA1lYWJCKigo1bdpUaN+xYwc5ODiQhoYGVahQgb777jvav3+/MD00NJTq1atHGhoa5ODgQPv27fvsASgiordv39LYsWPJzMyMNDQ0qFq1arR582YiynsAKiUlhbp06UK6urpkbGxM06dPp379+glju337NrVp04YqVqxIUqmUatSoQStWrCAiooSEBOratauwHktLS5oxYwbl5OR8sjb2eXylfcYYEwF/zWeMMRFwmDLGmAg4TBljTAQcpowxJgIOU8YYEwGHKWOMiYDDlDHGRMBhyhhjIuAwZYwxEXCYMsaYCDhMGWNMBBymjDEmgv8DH0eV5Jg5ReMAAAAASUVORK5CYII=", - "text/plain": [ - "<Figure size 350x300 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Show confusion matrixes\n", - "plt.figure(figsize=(3.5,3))\n", - "plot_confusion_matrix(cm_googlenet, classes=classes, title='Confusion matrix, Googlenet')\n", - "plt.figure(figsize=(3.5,3))\n", - "plot_confusion_matrix(cm_resnet, classes=classes, title='Confusion matrix, Resnet')" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "<Axes: title={'center': 'Inferences'}>" - ] - }, - "execution_count": 66, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzoAAAEnCAYAAABhZjbYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAJUlEQVR4nO3de1yUZf7/8fcIMpzxzEFGICVFyTRMw0N4xLDMbLcsWw+llqEWUVnmfjd0Wyi3CDfTsi0PlWZl51WTtjRdstRkKzVLw/AAoqaCJxC8fn+4zq8RVAZBdHg9H4/7Yfd1uK/PTLdz+Znrnvu2GGOMAAAAAMCF1KvtAAAAAACgupHoAAAAAHA5JDoAAAAAXA6JDgAAAACXQ6IDAAAAwOWQ6AAAAABwOSQ6AAAAAFwOiQ4AAAAAl0OiAwAAAMDlkOjgsvHdd9/p7rvvVkREhDw9PeXr66trrrlG06ZN02+//VZj427YsEFxcXEKCAiQxWJRRkaGVqxYIYvFohUrVpy3/8iRIxUeHl5j8QEALi1z586VxWLRunXrnO67fft23XjjjWrUqJEsFouSkpKqP0CgjnCv7QCAynjllVeUmJio1q1b69FHH1Xbtm114sQJrVu3Ti+99JK++uorvf/++zUy9j333KMjR47orbfeUsOGDRUeHi5vb2999dVXatu2bY2MCQComx566CF9/fXXeu211xQUFKTg4ODaDgm4bJHo4JL31Vdf6f7771e/fv30wQcfyGq12uv69eunhx9+WMuWLaux8X/44QeNGTNGCQkJDuXXXXddjY0JAKibfvjhB3Xu3Fm33HJLtRzPGKPjx4/Ly8urWo4HXE64dA2XvNTUVFksFs2ePdshyTnNw8NDN998syTp5MmTmjZtmtq0aSOr1apmzZpp+PDh2rlzp0Ofnj17Kjo6WmvXrlWPHj3k7e2tK664Qk8//bROnjwp6f9felBaWqpZs2bJYrHIYrFI0lkvXZs7d65at24tq9WqqKgozZ8/v8LXVFJSoqeeesoeZ9OmTXX33Xdr7969Du3Cw8N10003admyZbrmmmvk5eWlNm3a6LXXXit3zF27dunee++VzWaTh4eHQkJC9Mc//lF79uyxtyksLNQjjzyiiIgIeXh4qHnz5kpKStKRI0ccjvXOO++oS5cuCggIsL8399xzT4WvBQBwbiNHjpSvr6+2bt2qAQMGyNfXVzabTQ8//LCKi4sl/f95ZevWrVq6dKl9ztm+fbukyn9+WywWjR8/Xi+99JKioqJktVo1b948SdLPP/+soUOHqlmzZvZ56sUXX3TofzqOhQsXavLkyQoJCZG/v7/69u2rLVu2lHtty5YtU58+fezzRVRUlNLS0hzarFu3TjfffLMaNWokT09PdezYUW+//bZDm6NHj9pfn6enpxo1aqROnTpp4cKFF/Teo44zwCWstLTUeHt7my5dulSq/b333mskmfHjx5tly5aZl156yTRt2tTYbDazd+9ee7u4uDjTuHFjExkZaV566SWTmZlpEhMTjSQzb948Y4wxBQUF5quvvjKSzB//+Efz1Vdfma+++soYY8wXX3xhJJkvvvjCfsw5c+YYSWbQoEHm448/Nm+88YZp1aqVsdlsJiwszN6urKzM3HDDDcbHx8dMmTLFZGZmmn/+85+mefPmpm3btubo0aP2tmFhYSY0NNS0bdvWzJ8/33z66afmtttuM5LMypUr7e127txpgoODTZMmTUx6err57LPPzKJFi8w999xjNm/ebIwx5siRI6ZDhw4ObaZPn24CAgJM7969zcmTJ40xxmRlZRmLxWLuuOMOs2TJEvP555+bOXPmmGHDhjn3Pw8A6qjT88HatWuNMcaMGDHCeHh4mKioKPPss8+azz77zPzlL38xFovFTJkyxRhjzKFDh8xXX31lgoKCTLdu3exzzvHjxyv9+W2MMZJM8+bNTfv27c2CBQvM559/bn744QezceNGExAQYK666iozf/58s3z5cvPwww+bevXqmZSUFHv/0/NbeHi4ueuuu8y//vUvs3DhQtOiRQsTGRlpSktL7W3/+c9/GovFYnr27GkWLFhgPvvsMzNz5kyTmJhob/P5558bDw8P06NHD7No0SKzbNkyM3LkSCPJzJkzx97uvvvuM97e3iY9Pd188cUX5pNPPjFPP/20eeGFF2rqfxPqABIdXNLy8/ONJHPHHXect+3mzZuNJIcPWGOM+frrr40k88QTT9jL4uLijCTz9ddfO7Rt27at6d+/v0OZJDNu3DiHsjMTnbKyMhMSEmKuueYahwln+/btpn79+g6JzsKFC40ks3jxYodjrl271kgyM2fOtJeFhYUZT09P8+uvv9rLjh07Zho1amTuu+8+e9k999xj6tevbzZt2nTW9yctLc3Uq1fPPvGe9u677xpJZsmSJcYYY5599lkjyRw8ePCsxwIAnF1FiY4k8/bbbzu0GzBggGndurVDWVhYmLnxxhsdyir7+W3MqTkrICDA/Pbbbw5t+/fvb0JDQ82hQ4ccysePH288PT3t7U/PbwMGDHBo9/bbbxtJ9i/8ioqKjL+/v+nevbvDvHemNm3amI4dO5oTJ044lN90000mODjYlJWVGWOMiY6ONrfccstZjwNUBZeuwWV88cUXkk5dIvB7nTt3VlRUlP797387lAcFBalz584OZe3bt9evv/7q9NhbtmzR7t27NXToUPvlbZIUFhamrl27OrT95JNP1KBBAw0cOFClpaX2rUOHDgoKCip3OVyHDh3UokUL+76np6euvPJKhziXLl2qXr16KSoq6qwxfvLJJ4qOjlaHDh0cxu3fv7/DZXjXXnutJOn222/X22+/rV27djn9fgAAHFksFg0cONChrLJzTmU/v0/r3bu3GjZsaN8/fvy4/v3vf2vw4MHy9vZ2OMaAAQN0/PhxrVmzxuEYpy8J/32skuzxZmVlqbCwUImJiQ7z3u9t3bpVP/74o+666y5JKjduXl6e/XK4zp07a+nSpXr88ce1YsUKHTt27LzvC3A+JDq4pDVp0kTe3t7Kyck5b9v9+/dLUoV3qAkJCbHXn9a4ceNy7axWa5U+XE8fOygoqFzdmWV79uzRwYMH5eHhofr16zts+fn52rdvn9Nx7t27V6GhoeeMcc+ePfruu+/Kjenn5ydjjH3c66+/Xh988IFKS0s1fPhwhYaGKjo6muukAeACeHt7y9PT06HMarXq+PHj5+1b2c/v086cB/fv36/S0lK98MIL5Y4xYMAASTrv3HP6N7Kn557Tvyk919xz+jeijzzySLlxExMTHcb9xz/+occee0wffPCBevXqpUaNGumWW27Rzz//fN73Bzgb7rqGS5qbm5v69OmjpUuXaufOnef8QD39oZyXl1eu3e7du9WkSZMai/P02Pn5+eXqzixr0qSJGjdufNY7xfn5+Tk9ftOmTcvdcOFMTZo0kZeXV4U3Mjhdf9qgQYM0aNAgFRcXa82aNUpLS9PQoUMVHh6u2NhYp+MDAFSdM5/fksqtsDRs2FBubm4aNmyYxo0bV+ExIiIinIqpadOmknTOued0XJMmTdKtt95aYZvWrVtLknx8fDRlyhRNmTJFe/bssa/uDBw4UD/++KNTsQGnkejgkjdp0iQtWbJEY8aM0YcffigPDw+H+hMnTmjZsmXq3bu3JOmNN96wX34lSWvXrtXmzZs1efLkGouxdevWCg4O1sKFC5WcnGyfZH799VdlZWUpJCTE3vamm27SW2+9pbKyMnXp0qVaxk9ISNDrr7+uLVu22CeNM910001KTU1V48aNKz2hWa1WxcXFqUGDBvr000+1YcMGEh0AuMiq8vn9e97e3urVq5c2bNig9u3bl5tHq6Jr164KCAjQSy+9pDvuuKPCy9dat26tyMhI/fe//1Vqamqljx0YGKiRI0fqv//9rzIyMnT06FF5e3tfcMyoe0h0cMmLjY3VrFmzlJiYqJiYGN1///1q166dTpw4oQ0bNmj27NmKjo7W+++/r3vvvVcvvPCC6tWrp4SEBG3fvl3/93//J5vNpoceeqjGYqxXr57++te/avTo0Ro8eLDGjBmjgwcPKiUlpdyla3fccYfefPNNDRgwQA8++KA6d+6s+vXra+fOnfriiy80aNAgDR482Knxp06dqqVLl+r666/XE088oauuukoHDx7UsmXLlJycrDZt2igpKUmLFy/W9ddfr4ceekjt27fXyZMnlZubq+XLl+vhhx9Wly5d9Je//EU7d+5Unz59FBoaqoMHD2r69OmqX7++4uLiqvNtAwBUQmU/v89l+vTp6t69u3r06KH7779f4eHhKioq0tatW/Xxxx/r888/dyomX19fPffccxo9erT69u2rMWPGKDAwUFu3btV///tfzZgxQ5L08ssvKyEhQf3799fIkSPVvHlz/fbbb9q8ebO+/fZbvfPOO5KkLl266KabblL79u3VsGFDbd68Wa+//rpiY2NJclBlJDq4LIwZM0adO3fW888/r2eeeUb5+fmqX7++rrzySg0dOlTjx4+XJM2aNUstW7bUq6++qhdffFEBAQG64YYblJaWVuFvXarTqFGjJEnPPPOMbr31VoWHh+uJJ57QypUrHX4o6ubmpo8++kjTp0/X66+/rrS0NLm7uys0NFRxcXG66qqrnB67efPm+uabb/Tkk0/q6aef1v79+9W0aVN1795djRo1knTqsoBVq1bp6aef1uzZs5WTkyMvLy+1aNFCffv2VXh4uKRTk826dev02GOPae/evWrQoIE6deqkzz//XO3atbvg9wkA4JzKfn6fS9u2bfXtt9/qr3/9q/785z+roKBADRo0UGRkpP13Os4aNWqUQkJC9Mwzz2j06NEyxig8PFwjRoywt+nVq5e++eYb/e1vf1NSUpIOHDigxo0bq23btrr99tvt7Xr37q2PPvpIzz//vI4eParmzZtr+PDhNXo1BlyfxRhjajsIAAAAAKhO3HUNAAAAgMsh0QEAAADgckh0AAAAALgcEh0AAAAALodEBwAAAIDLIdEBAAAA4HIui+fonDx5Urt375afn1+FT94FANQMY4yKiooUEhKievX4buz3mJsAoHZUdm66LBKd3bt3y2az1XYYAFBn7dixQ6GhobUdxiWFuQkAatf55qbLItHx8/OTdOrF+Pv713I0AFB3FBYWymaz2T+H8f8xNwFA7ajs3HRZJDqnLwnw9/dnMgGAWsClWeUxNwFA7Trf3MQF1wAAAABcDokOAAAAAJdDogMAAADA5VQp0Zk5c6YiIiLk6empmJgYrVq16pzt33zzTV199dXy9vZWcHCw7r77bu3fv79KAQMAAADA+Tid6CxatEhJSUmaPHmyNmzYoB49eighIUG5ubkVtl+9erWGDx+uUaNGaePGjXrnnXe0du1ajR49+oKDBwAAAICKOJ3opKena9SoURo9erSioqKUkZEhm82mWbNmVdh+zZo1Cg8P1wMPPKCIiAh1795d9913n9atW3fBwQMAAABARZxKdEpKSrR+/XrFx8c7lMfHxysrK6vCPl27dtXOnTu1ZMkSGWO0Z88evfvuu7rxxhurHjUAAAAAnINTz9HZt2+fysrKFBgY6FAeGBio/Pz8Cvt07dpVb775poYMGaLjx4+rtLRUN998s1544YWzjlNcXKzi4mL7fmFhoTNhogLHSsq0be/hCuuOnyjTzgPHFNrQS5713Sps07Kpr7w8Kq4DAKAqLmRuYl4CcD5VemDomQ/nMcac9YE9mzZt0gMPPKC//OUv6t+/v/Ly8vToo49q7NixevXVVyvsk5aWpilTplQlNJzFtr2HddMLq6vc/5MJ3RXdPKAaIwIA1HUXMjcxLwE4H4sxxlS2cUlJiby9vfXOO+9o8ODB9vIHH3xQ2dnZWrlyZbk+w4YN0/Hjx/XOO+/Yy1avXq0ePXpo9+7dCg4OLtenohUdm82mQ4cO8fTpKjrXt2ZbCw4raVG2MoZ0UKtmvhW24ZszoG4qLCxUQEAAn78V4L25cBcyNzEvAXVXZT9/nVrR8fDwUExMjDIzMx0SnczMTA0aNKjCPkePHpW7u+Mwbm6nPpjOlmNZrVZZrVZnQsN5eHm4nfebr1bNfPl2DABw0TA3AahJTl+6lpycrGHDhqlTp06KjY3V7NmzlZubq7Fjx0qSJk2apF27dmn+/PmSpIEDB2rMmDGaNWuW/dK1pKQkde7cWSEhIdX7agAAwCUnZ98RHSkudarP1oLDDn9Wlo/VXRFNfJzqA8A1OZ3oDBkyRPv379fUqVOVl5en6OhoLVmyRGFhYZKkvLw8h2fqjBw5UkVFRZoxY4YefvhhNWjQQL1799YzzzxTfa8CAABcknL2HVGvZ1dUuX/Somyn+3zxSE+SHQBVuxlBYmKiEhMTK6ybO3duubIJEyZowoQJVRkKAABcxk6v5Jzrd6AVqcwdQc90+nc9zq4eAXBNVUp0AAAAnFGV39p0Cq+ZWADUDU49MBQAAAAALgckOgAAAABcDokOAAAAAJdDogMAAADA5ZDoAAAAAHA5JDoAAAAAXA6JDgDApaSkpMhisThsQUFB9npjjFJSUhQSEiIvLy/17NlTGzdurMWIAQA1gUQHAOBy2rVrp7y8PPv2/fff2+umTZum9PR0zZgxQ2vXrlVQUJD69eunoqKiWowYAFDdSHQAAC7H3d1dQUFB9q1p06aSTq3mZGRkaPLkybr11lsVHR2tefPm6ejRo1qwYEEtRw0AqE4kOgAAl/Pzzz8rJCREERERuuOOO/TLL79IknJycpSfn6/4+Hh7W6vVqri4OGVlZZ3zmMXFxSosLHTYAACXLhIdAIBL6dKli+bPn69PP/1Ur7zyivLz89W1a1ft379f+fn5kqTAwECHPoGBgfa6s0lLS1NAQIB9s9lsNfYaAAAXjkQHAOBSEhIS9Ic//EFXXXWV+vbtq3/961+SpHnz5tnbWCwWhz7GmHJlZ5o0aZIOHTpk33bs2FH9wQMAqg2JDgDApfn4+Oiqq67Szz//bL/72pmrNwUFBeVWec5ktVrl7+/vsAEALl0kOgAAl1ZcXKzNmzcrODhYERERCgoKUmZmpr2+pKREK1euVNeuXWsxSgBAdXOv7QAAAKhOjzzyiAYOHKgWLVqooKBATz31lAoLCzVixAhZLBYlJSUpNTVVkZGRioyMVGpqqry9vTV06NDaDh0AUI1IdAAALmXnzp268847tW/fPjVt2lTXXXed1qxZo7CwMEnSxIkTdezYMSUmJurAgQPq0qWLli9fLj8/v1qOHABQnUh0AAAu5a233jpnvcViUUpKilJSUi5OQACAWsFvdAAAAAC4nColOjNnzlRERIQ8PT0VExOjVatWnbXtyJEjZbFYym3t2rWrctAAAAAAcC5OJzqLFi1SUlKSJk+erA0bNqhHjx5KSEhQbm5uhe2nT5+uvLw8+7Zjxw41atRIt9122wUHDwAAAAAVcTrRSU9P16hRozR69GhFRUUpIyNDNptNs2bNqrB9QECAgoKC7Nu6det04MAB3X333RccPAAAAABUxKlEp6SkROvXr1d8fLxDeXx8vLKysip1jFdffVV9+/a13/0GAAAAAKqbU3dd27dvn8rKyso9PTowMLDcU6YrkpeXp6VLl2rBggXnbFdcXKzi4mL7fmFhoTNhAgAAAKjjqnQzAovF4rBvjClXVpG5c+eqQYMGuuWWW87ZLi0tTQEBAfbNZrNVJUwAAAAAdZRTiU6TJk3k5uZWbvWmoKCg3CrPmYwxeu211zRs2DB5eHics+2kSZN06NAh+7Zjxw5nwgQAAABQxzmV6Hh4eCgmJkaZmZkO5ZmZmerates5+65cuVJbt27VqFGjzjuO1WqVv7+/wwYAAAAAleXUb3QkKTk5WcOGDVOnTp0UGxur2bNnKzc3V2PHjpV0ajVm165dmj9/vkO/V199VV26dFF0dHT1RA4AAAAAZ+F0ojNkyBDt379fU6dOVV5enqKjo7VkyRL7XdTy8vLKPVPn0KFDWrx4saZPn149UQMAAADAOTid6EhSYmKiEhMTK6ybO3duubKAgAAdPXq0KkMBAAAAgNOqdNc1AAAAALiUkegAAAAAcDkkOgAAAABcDokOAAAAAJdDogMAAADA5ZDoAAAAAHA5JDoAAAAAXA6JDgAAAACXQ6IDAAAAwOWQ6AAAAABwOSQ6AAAAAFyOe20HAAAAXJvFvVA5hVtUz9O3RsfJKTwsi3thjY4BnHaspEzb9h6usO74iTLtPHBMoQ295FnfrVx9y6a+8vIoX47qRaIDAABqVP0GX+uJb1Iv0lh9JA24KGOhbtu297BuemF1lfp+MqG7opsHVHNEOBOJDgAAqFEnDnbRczcOVctmNbuis63gsB54c1uNjgGc1rKprz6Z0L3Cuq0Fh5W0KFsZQzqoVQXnfcumNft3AaeQ6AAAgBplSv0V4d9abRvX7DfYJ48fkindW6NjAKd5ebidd1WmVTNfVm5qETcjAAAAAOBySHQAAAAAuBwSHQAAAAAuh0QHAAAAgMupUqIzc+ZMRUREyNPTUzExMVq1atU52xcXF2vy5MkKCwuT1WpVy5Yt9dprr1UpYAAAAAA4H6fvurZo0SIlJSVp5syZ6tatm15++WUlJCRo06ZNatGiRYV9br/9du3Zs0evvvqqWrVqpYKCApWWll5w8AAAAABQEadXdNLT0zVq1CiNHj1aUVFRysjIkM1m06xZsypsv2zZMq1cuVJLlixR3759FR4ers6dO6tr164XHDwAAOeTlpYmi8WipKQke5kxRikpKQoJCZGXl5d69uypjRs31l6QAIBq51SiU1JSovXr1ys+Pt6hPD4+XllZWRX2+eijj9SpUydNmzZNzZs315VXXqlHHnlEx44dq3rUAABUwtq1azV79my1b9/eoXzatGlKT0/XjBkztHbtWgUFBalfv34qKiqqpUgBANXNqURn3759KisrU2BgoEN5YGCg8vPzK+zzyy+/aPXq1frhhx/0/vvvKyMjQ++++67GjRt31nGKi4tVWFjosAEA4IzDhw/rrrvu0iuvvKKGDRvay40xysjI0OTJk3XrrbcqOjpa8+bN09GjR7VgwYJajBgAUJ2qdDMCi8XisG+MKVd22smTJ2WxWPTmm2+qc+fOGjBggNLT0zV37tyzruqkpaUpICDAvtlstqqECQCow8aNG6cbb7xRffv2dSjPyclRfn6+w9UJVqtVcXFxZ706QeJLOAC43DiV6DRp0kRubm7lVm8KCgrKrfKcFhwcrObNmysgIMBeFhUVJWOMdu7cWWGfSZMm6dChQ/Ztx44dzoQJAKjj3nrrLX377bdKS0srV3d6DnPm6gSJL+EA4HLjVKLj4eGhmJgYZWZmOpRnZmae9eYC3bp10+7du3X48GF72U8//aR69eopNDS0wj5Wq1X+/v4OGwAAlbFjxw49+OCDeuONN+Tp6XnWds5cnSDxJRwAXG6cvnQtOTlZ//znP/Xaa69p8+bNeuihh5Sbm6uxY8dKOjURDB8+3N5+6NChaty4se6++25t2rRJX375pR599FHdc8898vLyqr5XAgCApPXr16ugoEAxMTFyd3eXu7u7Vq5cqX/84x9yd3e3r+Q4c3WCxJdwAHC5cfo5OkOGDNH+/fs1depU5eXlKTo6WkuWLFFYWJgkKS8vT7m5ufb2vr6+yszM1IQJE9SpUyc1btxYt99+u5566qnqexUAAPxPnz599P333zuU3X333WrTpo0ee+wxXXHFFQoKClJmZqY6duwo6dRdRVeuXKlnnnmmNkIGANQApxMdSUpMTFRiYmKFdXPnzi1X1qZNm3KXuwEAUBP8/PwUHR3tUObj46PGjRvby5OSkpSamqrIyEhFRkYqNTVV3t7eGjp0aG2EDACoAVVKdAAAuJxNnDhRx44dU2Jiog4cOKAuXbpo+fLl8vPzq+3QAADVhEQHAODyVqxY4bBvsViUkpKilJSUWokHAFDzqvQcHQAAAAC4lJHoAAAAAHA5JDoAAAAAXA6JDgAAAACXQ6IDAAAAwOWQ6AAAAABwOSQ6AAAAAFwOiQ4AAAAAl0OiAwAAAMDlkOgAAAAAcDnutR0AAAAAcCnL2XdER4pLK91+a8Fhhz8ry8fqrogmPk71wdmR6AAAAABnkbPviHo9u6JKfZMWZTvd54tHepLsVBMSHQAAAOAsTq/kZAzpoFbNfCvV5/iJMu08cEyhDb3kWd+tUn22FhxW0qJsp1aOcG4kOgAAAMB5tGrmq+jmAZVu3ym85mJB5XAzAgAAAAAuh0QHAAAAgMsh0QEAAADgcqqU6MycOVMRERHy9PRUTEyMVq1adda2K1askMViKbf9+OOPVQ4aAAAAAM7F6ZsRLFq0SElJSZo5c6a6deuml19+WQkJCdq0aZNatGhx1n5btmyRv7+/fb9p06ZVixgAAFw2jp0okyT9sOuQU/2qetcqoCZY3AuVU7hF9Twrd9e1qsgpPCyLe2GNHb8ucjrRSU9P16hRozR69GhJUkZGhj799FPNmjVLaWlpZ+3XrFkzNWjQoMqBAgCAy8+2/yUfj7/3/UUb08fKTWVRveo3+FpPfJN6EcbpI2lAjY9TVzj1SVBSUqL169fr8ccfdyiPj49XVlbWOft27NhRx48fV9u2bfXnP/9ZvXr1cj5aAABwWYlvFyRJatnMV16VXJmR/v8zRZx5donEk+VRM04c7KLnbhyqlk6ci87aVnBYD7y5rcaOXxc5lejs27dPZWVlCgwMdCgPDAxUfn5+hX2Cg4M1e/ZsxcTEqLi4WK+//rr69OmjFStW6Prrr6+wT3FxsYqLi+37hYUs4zkjZ98Rpx42dXqp39klfyYTXCzHSsq0bW/F52dlLm9p2dRXXh6V/wcWgOrTyMdDd3Q++6Xt5+Pss0uAmmBK/RXh31ptG9fcuXjy+CGZ0r01dvy6qEpruxaLxWHfGFOu7LTWrVurdevW9v3Y2Fjt2LFDzz777FkTnbS0NE2ZMqUqodV5OfuOqNezK6rUN2lRttN9vnikJ8kOaty2vYd10wurq9z/kwnd+YcSAAB1jFOJTpMmTeTm5lZu9aagoKDcKs+5XHfddXrjjTfOWj9p0iQlJyfb9wsLC2Wz2ZwJtc46vZLjzFJ/VX/wmbQo26mVI6CqWjb11ScTuldYV5nLW1o2rblLDQAAwKXJqUTHw8NDMTExyszM1ODBg+3lmZmZGjRoUKWPs2HDBgUHB5+13mq1ymq1OhMazuDsUn+n8JqLBbhQXh5u5z2fubwFAAD8ntOXriUnJ2vYsGHq1KmTYmNjNXv2bOXm5mrs2LGSTq3G7Nq1S/Pnz5d06q5s4eHhateunUpKSvTGG29o8eLFWrx4cfW+EgAAAAD4H6cTnSFDhmj//v2aOnWq8vLyFB0drSVLligsLEySlJeXp9zcXHv7kpISPfLII9q1a5e8vLzUrl07/etf/9KAAdw6DwAAAEDNqNLNCBITE5WYmFhh3dy5cx32J06cqIkTJ1ZlGAAAAACoknq1HQAAAAAAVDcSHQAAAAAuh0QHAAAAgMsh0QEAAADgckh0AAAuZdasWWrfvr38/f3l7++v2NhYLV261F5vjFFKSopCQkLk5eWlnj17auPGjbUYMQCgJpDoAABcSmhoqJ5++mmtW7dO69atU+/evTVo0CB7MjNt2jSlp6drxowZWrt2rYKCgtSvXz8VFRXVcuQAgOpEogMAcCkDBw7UgAEDdOWVV+rKK6/U3/72N/n6+mrNmjUyxigjI0OTJ0/WrbfequjoaM2bN09Hjx7VggULajt0AEA1ItEBALissrIyvfXWWzpy5IhiY2OVk5Oj/Px8xcfH29tYrVbFxcUpKyurFiMFAFS3Kj0wFACAS9n333+v2NhYHT9+XL6+vnr//ffVtm1bezITGBjo0D4wMFC//vrrOY9ZXFys4uJi+35hYWH1Bw4AqDas6AAAXE7r1q2VnZ2tNWvW6P7779eIESO0adMme73FYnFob4wpV3amtLQ0BQQE2DebzVYjsQMAqgeJDgDA5Xh4eKhVq1bq1KmT0tLSdPXVV2v69OkKCgqSJOXn5zu0LygoKLfKc6ZJkybp0KFD9m3Hjh01Fj8A4MKR6AAAXJ4xRsXFxYqIiFBQUJAyMzPtdSUlJVq5cqW6du16zmNYrVb7LatPbwCASxe/0QEAuJQnnnhCCQkJstlsKioq0ltvvaUVK1Zo2bJlslgsSkpKUmpqqiIjIxUZGanU1FR5e3tr6NChtR06AKAakegAAFzKnj17NGzYMOXl5SkgIEDt27fXsmXL1K9fP0nSxIkTdezYMSUmJurAgQPq0qWLli9fLj8/v1qOHABQnUh0AAAu5dVXXz1nvcViUUpKilJSUi5OQACAWsFvdAAAAAC4HBIdAAAAAC6HRAcAAACAyyHRAQAAAOByqpTozJw5UxEREfL09FRMTIxWrVpVqX7/+c9/5O7urg4dOlRlWAAAAACoFKcTnUWLFikpKUmTJ0/Whg0b1KNHDyUkJCg3N/ec/Q4dOqThw4erT58+VQ4WAAAAACrD6UQnPT1do0aN0ujRoxUVFaWMjAzZbDbNmjXrnP3uu+8+DR06VLGxsVUOFgAAAAAqw6lEp6SkROvXr1d8fLxDeXx8vLKyss7ab86cOdq2bZuefPLJqkUJAAAAAE5w6oGh+/btU1lZmQIDAx3KAwMDlZ+fX2Gfn3/+WY8//rhWrVold/fKDVdcXKzi4mL7fmFhoTNh1nkW90LlFG5RPU/fGhsjp/CwLO78f0H1W7/zV+0u2lPp9jt+O6p6nrv05fYNyin0rnS/EL9AxYSGVSVEAABwGXAq0TnNYrE47BtjypVJUllZmYYOHaopU6boyiuvrPTx09LSNGXKlKqEBkn1G3ytJ75JvQjj9JE0oMbHQd2Rs++I7nzreVmb/tupfj4R0qytzo1VvLePPh35N0U08XGuIwAAuCw4leg0adJEbm5u5VZvCgoKyq3ySFJRUZHWrVunDRs2aPz48ZKkkydPyhgjd3d3LV++XL179y7Xb9KkSUpOTrbvFxYWymazORNqnXbiYBc9d+NQtWxWcys62woO64E3t9XY8VE3HSku1YmDXZQUe4tsjSq3OlNcelIFhcfVzN9TVvfKXY2747ej+vvPeTpSXHoh4QIAgEuYU4mOh4eHYmJilJmZqcGDB9vLMzMzNWjQoHLt/f399f333zuUzZw5U59//rneffddRUREVDiO1WqV1Wp1JjT8jin1V4R/a7VtHFBjY5w8fkimdG+NHR91lyn11/XhHRXdvObO3x92HdK00iM1dnwAAFD7nL50LTk5WcOGDVOnTp0UGxur2bNnKzc3V2PHjpV0ajVm165dmj9/vurVq6fo6GiH/s2aNZOnp2e5cgAAAACoLk4nOkOGDNH+/fs1depU5eXlKTo6WkuWLFFY2Kkf9ebl5Z33mToAAAAAUJOqdDOCxMREJSYmVlg3d+7cc/ZNSUlRSkpKVYYFAAAAgEpx+oGhAAAAAHCpI9EBAAAA4HJIdAAAAAC4HBIdAAAAAC6HRAcAAACAyyHRAQAAAOBySHQAAAAAuBwSHQAAAAAup0oPDAUAALhQx0rKtG3v4QrrthYcdvjzTC2b+srLw63GYgNOO3aiTJL0w65Dle5z/ESZdh44ptCGXvKsX7nz9GznOqqORAcAANSKbXsP66YXVp+zTdKi7ArLP5nQXdHNA2ogKsDRtv8lII+/9/1FGc/Hyj/PqwvvJAAAqBUtm/rqkwndK6w73zfiLZv61nR4gCQpvl2QJKllM195ObE6k7QoWxlDOqhVs8qfqz5Wd0U08alSnCiPRAcAANQKLw+3c67KdAq/eLEAZ9PIx0N3dG5Rpb6tmvmy8liLuBkBAAAAAJdDogMAAADA5ZDoAAAAAHA5JDoAAAAAXA6JDgAAAACXQ6IDAAAAwOWQ6AAAXEpaWpquvfZa+fn5qVmzZrrlllu0ZcsWhzbGGKWkpCgkJEReXl7q2bOnNm7cWEsRAwBqQpUSnZkzZyoiIkKenp6KiYnRqlWrztp29erV6tatmxo3biwvLy+1adNGzz//fJUDBgDgXFauXKlx48ZpzZo1yszMVGlpqeLj43XkyBF7m2nTpik9PV0zZszQ2rVrFRQUpH79+qmoqKgWIwcAVCenHxi6aNEiJSUlaebMmerWrZtefvllJSQkaNOmTWrRovzDlHx8fDR+/Hi1b99ePj4+Wr16te677z75+Pjo3nvvrZYXAQDAacuWLXPYnzNnjpo1a6b169fr+uuvlzFGGRkZmjx5sm699VZJ0rx58xQYGKgFCxbovvvuq42wAQDVzOkVnfT0dI0aNUqjR49WVFSUMjIyZLPZNGvWrArbd+zYUXfeeafatWun8PBw/elPf1L//v3PuQoEAEB1OXTokCSpUaNGkqScnBzl5+crPj7e3sZqtSouLk5ZWVm1EiMAoPo5leiUlJRo/fr1DpODJMXHx1d6ctiwYYOysrIUFxfnzNAAADjNGKPk5GR1795d0dHRkqT8/HxJUmBgoEPbwMBAe11FiouLVVhY6LABAC5dTl26tm/fPpWVlTk9OUhSaGio9u7dq9LSUqWkpGj06NFnbVtcXKzi4mL7PpNJ5R07USZJ+mHXoUr3OX6iTDsPHFNoQy951nerVJ+tBYerFB8AXEzjx4/Xd999p9WrV5ers1gsDvvGmHJlv5eWlqYpU6ZUe4wAgJrh9G90JOcnB0latWqVDh8+rDVr1ujxxx9Xq1atdOedd1bYlsmk6rb9LwF5/L3vL8p4PtYqnUIAUOMmTJigjz76SF9++aVCQ0Pt5UFBQZJOrewEBwfbywsKCsp9kfd7kyZNUnJysn2/sLBQNputBiIHAFQHp/6V2qRJE7m5uZVbvTnf5CBJERERkqSrrrpKe/bsUUpKylkTHSaTqotvd2oCb9nMV15OrM4kLcpWxpAOatXMt9Jj+VjdFdHEp0pxAkBNMcZowoQJev/997VixQr7/HNaRESEgoKClJmZqY4dO0o6dWn2ypUr9cwzz5z1uFarVVartUZjBwBUH6cSHQ8PD8XExCgzM1ODBw+2l2dmZmrQoEGVPo4xxuHStDMxmVRdIx8P3dG5/N3vKqNVM19FNw+o5ogA4OIaN26cFixYoA8//FB+fn72L+cCAgLk5eUli8WipKQkpaamKjIyUpGRkUpNTZW3t7eGDh1ay9EDAKqL09cdJScna9iwYerUqZNiY2M1e/Zs5ebmauzYsZJOrcbs2rVL8+fPlyS9+OKLatGihdq0aSPp1HN1nn32WU2YMKEaXwYAAKecvgtoz549HcrnzJmjkSNHSpImTpyoY8eOKTExUQcOHFCXLl20fPly+fn5XeRoAQA1xelEZ8iQIdq/f7+mTp2qvLw8RUdHa8mSJQoLC5Mk5eXlKTc3197+5MmTmjRpknJycuTu7q6WLVvq6aef5jkFAIAaYYw5bxuLxaKUlBSlpKTUfEAAgFpRpV+SJyYmKjExscK6uXPnOuxPmDCB1RsAAAAAF5XTDwwFAAAAgEsdiQ4AAAAAl0OiAwAAAMDlkOgAAAAAcDkkOgAAAABcDokOAAAAAJdDogMAAADA5ZDoAAAAAHA5JDoAAAAAXA6JDgAAAACXQ6IDAAAAwOWQ6AAAAABwOSQ6AAAAAFwOiQ4AAAAAl0OiAwAAAMDlkOgAAAAAcDkkOgAAAABcDokOAAAAAJdDogMAAADA5VQp0Zk5c6YiIiLk6empmJgYrVq16qxt33vvPfXr109NmzaVv7+/YmNj9emnn1Y5YAAAAAA4H6cTnUWLFikpKUmTJ0/Whg0b1KNHDyUkJCg3N7fC9l9++aX69eunJUuWaP369erVq5cGDhyoDRs2XHDwAAAAAFARpxOd9PR0jRo1SqNHj1ZUVJQyMjJks9k0a9asCttnZGRo4sSJuvbaaxUZGanU1FRFRkbq448/vuDgAQAAAKAiTiU6JSUlWr9+veLj4x3K4+PjlZWVValjnDx5UkVFRWrUqJEzQwMAAABApbk703jfvn0qKytTYGCgQ3lgYKDy8/MrdYznnntOR44c0e23337WNsXFxSouLrbvFxYWOhMmgMvUsRNlkqQfdh2qdJ/jJ8q088AxhTb0kmd9t0r12VpwuErxAQCAy4dTic5pFovFYd8YU66sIgsXLlRKSoo+/PBDNWvW7Kzt0tLSNGXKlKqEBuAytu1/Ccjj731/UcbzsVbpIxAAAFwGnJrlmzRpIjc3t3KrNwUFBeVWec60aNEijRo1Su+884769u17zraTJk1ScnKyfb+wsFA2m82ZUAFchuLbBUmSWjbzlZcTqzNJi7KVMaSDWjXzrfRYPlZ3RTTxqVKcAADg0udUouPh4aGYmBhlZmZq8ODB9vLMzEwNGjTorP0WLlyoe+65RwsXLtSNN9543nGsVqusVqszoQFwAY18PHRH5xZV6tuqma+imwdUc0QAAOBy5fR1G8nJyRo2bJg6deqk2NhYzZ49W7m5uRo7dqykU6sxu3bt0vz58yWdSnKGDx+u6dOn67rrrrOvBnl5eSkggH+UAAAAAKh+Tic6Q4YM0f79+zV16lTl5eUpOjpaS5YsUVhYmCQpLy/P4Zk6L7/8skpLSzVu3DiNGzfOXj5ixAjNnTv3wl8BAAAAAJyhSr/ETUxMVGJiYoV1ZyYvK1asqMoQAAAAAFBlTj8wFAAAAAAudSQ6AAAAAFwOiQ4AwOV8+eWXGjhwoEJCQmSxWPTBBx841BtjlJKSopCQEHl5ealnz57auHFj7QQLAKgRJDoAAJdz5MgRXX311ZoxY0aF9dOmTVN6erpmzJihtWvXKigoSP369VNRUdFFjhQAUFN4LDgAwOUkJCQoISGhwjpjjDIyMjR58mTdeuutkqR58+YpMDBQCxYs0H333XcxQwUA1BBWdAAAdUpOTo7y8/MVHx9vL7NarYqLi1NWVtZZ+xUXF6uwsNBhAwBcukh0AAB1yukHVwcGBjqUBwYG2usqkpaWpoCAAPtms9lqNE4AwIUh0QEA1EkWi8Vh3xhTruz3Jk2apEOHDtm3HTt21HSIAIALwG90AAB1SlBQkKRTKzvBwcH28oKCgnKrPL9ntVpltVprPD4AQPVgRQcAUKdEREQoKChImZmZ9rKSkhKtXLlSXbt2rcXIAADViRUdAIDLOXz4sLZu3Wrfz8nJUXZ2tho1aqQWLVooKSlJqampioyMVGRkpFJTU+Xt7a2hQ4fWYtQAgOpEogMAcDnr1q1Tr1697PvJycmSpBEjRmju3LmaOHGijh07psTERB04cEBdunTR8uXL5efnV1shAwCqGYkOAMDl9OzZU8aYs9ZbLBalpKQoJSXl4gUFALio+I0OAAAAAJdDogMAAADA5ZDoAAAAAHA5JDoAAAAAXA6JDgAAAACXQ6IDAAAAwOVUKdGZOXOmIiIi5OnpqZiYGK1ateqsbfPy8jR06FC1bt1a9erVU1JSUlVjBQAAAIBKcTrRWbRokZKSkjR58mRt2LBBPXr0UEJCgnJzcytsX1xcrKZNm2ry5Mm6+uqrLzhgAAAAADgfpxOd9PR0jRo1SqNHj1ZUVJQyMjJks9k0a9asCtuHh4dr+vTpGj58uAICAi44YAAAAAA4H6cSnZKSEq1fv17x8fEO5fHx8crKyqrWwAAAAACgqtydabxv3z6VlZUpMDDQoTwwMFD5+fnVFlRxcbGKi4vt+4WFhdV27LrqWEmZtu09XGHd1oLDDn9WpGVTX3l5uNVIbMD5cP4CAC41FzI3MS9dHE4lOqdZLBaHfWNMubILkZaWpilTplTb8SBt23tYN72w+pxtkhZln7XukwndFd2cSw9ROzh/AQCXmguZm5iXLg6nEp0mTZrIzc2t3OpNQUFBuVWeCzFp0iQlJyfb9wsLC2Wz2art+HVRy6a++mRC9wrrjp8o084DxxTa0Eue9Sv+dqFlU9+aDA84J85fAMCl5kLmJuali8OpRMfDw0MxMTHKzMzU4MGD7eWZmZkaNGhQtQVltVpltVqr7XiQvDzczvnNQafwixcL4CzOXwDApYa56dLn9KVrycnJGjZsmDp16qTY2FjNnj1bubm5Gjt2rKRTqzG7du3S/Pnz7X2ys7MlSYcPH9bevXuVnZ0tDw8PtW3btnpeBQAAAAD8jtOJzpAhQ7R//35NnTpVeXl5io6O1pIlSxQWFibp1ANCz3ymTseOHe3/vX79ei1YsEBhYWHavn37hUUPAAAAABWwGGNMbQdxPoWFhQoICNChQ4fk7+9f2+EAQJ3B5+/Z8d4AQO2o7Oev0w8MBQAAAIBLHYkOAAAAAJdDogMAAADA5VTpgaEX2+mfERUWFtZyJABQt5z+3L0Mfs550TE3AUDtqOzcdFkkOkVFRZLEQ0MBoJYUFRUpIICneP8ecxMA1K7zzU2XxV3XTp48qd27d8vPz08Wi6W2w3E5hYWFstls2rFjB3cOwmWH87dmGWNUVFSkkJAQ1avH1c6/x9xUs/i7jcsZ52/NquzcdFms6NSrV0+hoaG1HYbL8/f35y8jLlucvzWHlZyKMTddHPzdxuWM87fmVGZu4us5AAAAAC6HRAcAAACAyyHRgaxWq5588klZrdbaDgVwGucv4Jr4u43LGefvpeGyuBkBAAAAADiDFR0AAAAALodEBwAAAIDLIdEBAAAA4HJIdGC3fft2WSwWZWdn13YoAABIYm4CUHUkOpeA/Px8Pfjgg2rVqpU8PT0VGBio7t2766WXXtLRo0drO7wal5KSog4dOtR2GLgIRo4cKYvFIovFInd3d7Vo0UL333+/Dhw4UNuh2fXs2VNJSUm1HQZQ65ibmJvqAuYl1+Ze2wHUdb/88ou6deumBg0aKDU1VVdddZVKS0v1008/6bXXXlNISIhuvvnm2g4TqDY33HCD5syZo9LSUm3atEn33HOPDh48qIULF9Z2aAD+h7kJdQnzkgszqFX9+/c3oaGh5vDhwxXWnzx50hhjzK+//mpuvvlm4+PjY/z8/Mxtt91m8vPzHdrOnDnTXHHFFaZ+/frmyiuvNPPnz3eo37x5s+nWrZuxWq0mKirKZGZmGknm/fffN8YYk5OTYySZDRs22Pts3LjRJCQkGB8fH9OsWTPzpz/9yezdu9deHxcXZyZMmGAeffRR07BhQxMYGGiefPJJh3EPHjxoxowZY5o2bWr8/PxMr169THZ2tjHGmDlz5hhJDtucOXOq8E7icjBixAgzaNAgh7Lk5GTTqFEj+/5rr71m2rRpY6xWq2ndurV58cUX7XXFxcVm3LhxJigoyFitVhMWFmZSU1Pt9ZLMK6+8Ym655Rbj5eVlWrVqZT788EOH8c51To8YMaLc+ZiTk1P9bwRwiWNuYm6qK5iXXBuJTi3at2+fsVgsJi0t7ZztTp48aTp27Gi6d+9u1q1bZ9asWWOuueYaExcXZ2/z3nvvmfr165sXX3zRbNmyxTz33HPGzc3NfP7558YYY8rKykzr1q1Nv379THZ2tlm1apXp3LnzOSeT3bt3myZNmphJkyaZzZs3m2+//db069fP9OrVyz5uXFyc8ff3NykpKeann34y8+bNMxaLxSxfvtwee7du3czAgQPN2rVrzU8//WQefvhh07hxY7N//35z9OhR8/DDD5t27dqZvLw8k5eXZ44ePVp9bzIuKWdOKNu2bTNt27Y1gYGBxhhjZs+ebYKDg83ixYvNL7/8YhYvXmwaNWpk5s6da4wx5u9//7ux2Wzmyy+/NNu3bzerVq0yCxYssB9PkgkNDTULFiwwP//8s3nggQeMr6+v2b9/vzHm/Of0wYMHTWxsrBkzZoz9fCwtLb1I7w5waWBuYm6qS5iXXBuJTi1as2aNkWTee+89h/LGjRsbHx8f4+PjYyZOnGiWL19u3NzcTG5urr3Nxo0bjSTzzTffGGOM6dq1qxkzZozDcW677TYzYMAAY4wxS5cuNe7u7iYvL89ef75vzf7v//7PxMfHOxxzx44dRpLZsmWLMebUZNK9e3eHNtdee6157LHHjDHG/Pvf/zb+/v7m+PHjDm1atmxpXn75ZWOMMU8++aS5+uqrK/We4fI2YsQI4+bmZnx8fIynp6f926n09HRjjDE2m81hgjDGmL/+9a8mNjbWGGPMhAkTTO/eve3fJp9Jkvnzn/9s3z98+LCxWCxm6dKlxpjKn9MPPvhgtbxe4HLE3MTcVJcwL7k2bkZwCbBYLA7733zzjbKzs9WuXTsVFxdr8+bNstlsstls9jZt27ZVgwYNtHnzZknS5s2b1a1bN4fjdOvWzV6/ZcsW2Ww2BQUF2es7d+58zrjWr1+vL774Qr6+vvatTZs2kqRt27bZ27Vv396hX3BwsAoKCuzHOHz4sBo3buxwnJycHIdjoO7o1auXsrOz9fXXX2vChAnq37+/JkyYoL1792rHjh0aNWqUw7ny1FNP2c+VkSNHKjs7W61bt9YDDzyg5cuXlzv+789HHx8f+fn5OZyPlTmnATA3oe5gXnJd3IygFrVq1UoWi0U//vijQ/kVV1whSfLy8pIkGWPKTTgVlZ/Z5vf1ZzvGuZw8eVIDBw7UM888U64uODjY/t/169d3qLNYLDp58qT9GMHBwVqxYkW5YzRo0MCpeOAafHx81KpVK0nSP/7xD/Xq1UtTpkzR+PHjJUmvvPKKunTp4tDHzc1NknTNNdcoJydHS5cu1Weffabbb79dffv21bvvvmtve77zsTLnNFCXMTc1cCoeXP6Yl1wXiU4taty4sfr166cZM2ZowoQJ8vHxqbBd27ZtlZubqx07dti/Odu0aZMOHTqkqKgoSVJUVJRWr16t4cOH2/tlZWXZ69u0aaPc3Fzt2bNHgYGBkqS1a9eeM75rrrlGixcvVnh4uNzdq3aqXHPNNcrPz5e7u7vCw8MrbOPh4aGysrIqHR+XvyeffFIJCQm6//771bx5c/3yyy+66667ztre399fQ4YM0ZAhQ/THP/5RN9xwg3777Tc1atTovGNV5pzmfERdx9x0Cp8FdRfzkuvg0rVaNnPmTJWWlqpTp05atGiRNm/erC1btuiNN97Qjz/+KDc3N/Xt21ft27fXXXfdpW+//VbffPONhg8frri4OHXq1EmS9Oijj2ru3Ll66aWX9PPPPys9PV3vvfeeHnnkEUlSv3791LJlS40YMULfffed/vOf/2jy5MmSyn/bdtq4ceP022+/6c4779Q333yjX375RcuXL9c999xT6b9wffv2VWxsrG655RZ9+umn2r59u7KysvTnP/9Z69atkySFh4crJydH2dnZ2rdvn4qLiy/0bcVlpGfPnmrXrp1SU1OVkpKitLQ0TZ8+XT/99JO+//57zZkzR+np6ZKk559/Xm+99ZZ+/PFH/fTTT3rnnXcUFBRU6W9gK3NOh4eH6+uvv9b27du1b98++7duQF3C3MTcVJcxL7mQ2vt5EE7bvXu3GT9+vImIiDD169c3vr6+pnPnzubvf/+7OXLkiDGmem/h6eHhYdq0aWM+/vhjI8ksW7bMGFPxLTx/+uknM3jwYNOgQQPj5eVl2rRpY5KSkuw/uqvoB3KDBg0yI0aMsO8XFhaaCRMmmJCQEFO/fn1js9nMXXfdZf8B6/Hjx80f/vAH06BBA27h6eIquo2nMca8+eabxsPDw+Tm5po333zTdOjQwXh4eJiGDRua66+/3v6j6NmzZ5sOHToYHx8f4+/vb/r06WO+/fZb+3H0ux8wnxYQEOBwTp3vnN6yZYu57rrrjJeXF7fxRJ3G3MTcVBcwL7k2izHG1FaShdr1n//8R927d9fWrVvVsmXL2g4HAADmJgDVhkSnDnn//ffl6+uryMhIbd26VQ8++KAaNmyo1atX13ZoAIA6irkJQE3hZgR1SFFRkSZOnKgdO3aoSZMm6tu3r5577rnaDgsAUIcxNwGoKazoAAAAAHA53HUNAAAAgMsh0QEAAADgckh0AAAAALgcEh0AAAAALodEBwAAAIDLIdEBAAAA4HJIdAAAAAC4HBIdAAAAAC6HRAcAAACAy/l/eECDAN/zbY8AAAAASUVORK5CYII=", - "text/plain": [ - "<Figure size 1000x300 with 2 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(1,2, figsize = (10,3))\n", - "confidences_model1 = [0.1, 0.3, 0.4, 0.5, 0.8]\n", - "confidences_model2 = [0.4, 0.1, 0.4, 0.5, 0.2]\n", - "\n", - "inferences_model1 = [53, 34, 54, 23, 43]\n", - "inferences_model2 = [34, 23, 36, 43, 6]\n", - "\n", - "confidences_combined = pd.DataFrame({\"Googlenet\":confidences_model1, \"Resnet\": confidences_model2})\n", - "inferences_combined = pd.DataFrame({\"Googlenet\":inferences_model1, \"Resnet\": inferences_model2})\n", - "\n", - "# Creating plot\n", - "# plt.boxplot(confidences_model1)\n", - "confidences_combined[['Googlenet', 'Resnet']].plot(kind='box', title='Confidences', ax=axes[0])\n", - "inferences_combined[['Googlenet', 'Resnet']].plot(kind='box', title='Inferences', ax=axes[1])" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/README.md b/README.md index 1c9fe12777d47c597279243bbfe5d2ebbef89de1..d54aed9d49820665b87db36d9fbd961f0f2eaccd 100644 --- a/README.md +++ b/README.md @@ -1 +1,5 @@ -Exercises for the course Hardware acceleration for AI. \ No newline at end of file +# Exercises for the Course: Hardware Acceleration for AI + +### Labs: The .ipynb and .pdf files can be found in each labs respective folder. + +### Project: Our project can be found in the project foulder diff --git a/pdf/Lab1-task1-2.ipynb b/lab1/Lab1-task1-2.ipynb similarity index 100% rename from pdf/Lab1-task1-2.ipynb rename to lab1/Lab1-task1-2.ipynb diff --git a/pdf/Lab1-task3.ipynb b/lab1/Lab1-task3.ipynb similarity index 100% rename from pdf/Lab1-task3.ipynb rename to lab1/Lab1-task3.ipynb diff --git a/pdf/Lab1.pdf b/lab1/Lab1.pdf similarity index 100% rename from pdf/Lab1.pdf rename to lab1/Lab1.pdf diff --git a/lab1/Lab_Exercise_1.pdf b/lab1/Lab_Exercise_1.pdf deleted file mode 100644 index 4ce52da03fdab55adcbced9694c3e8c8ca7c29cf..0000000000000000000000000000000000000000 Binary files a/lab1/Lab_Exercise_1.pdf and /dev/null differ diff --git a/lab1/haarcascade_frontalface_default.xml b/lab1/haarcascade_frontalface_default.xml deleted file mode 100644 index 8dff079dac798e0b84f26aad876f3323d594c8fa..0000000000000000000000000000000000000000 --- a/lab1/haarcascade_frontalface_default.xml +++ /dev/null @@ -1,35712 +0,0 @@ -<?xml version="1.0"?> -<!-- - Stump-based 24x24 discrete(?) adaboost frontal face detector. - Created by Rainer Lienhart. - -//////////////////////////////////////////////////////////////////////////////////////// - - IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. - - By downloading, copying, installing or using the software you agree to this license. - If you do not agree to this license, do not download, install, - copy or use the software. - - - Intel License Agreement - For Open Source Computer Vision Library - - Copyright (C) 2000, Intel Corporation, all rights reserved. - Third party copyrights are property of their respective owners. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistribution's of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - * Redistribution's in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - - * The name of Intel Corporation may not be used to endorse or promote products - derived from this software without specific prior written permission. - - This software is provided by the copyright holders and contributors "as is" and - any express or implied warranties, including, but not limited to, the implied - warranties of merchantability and fitness for a particular purpose are disclaimed. - In no event shall the Intel Corporation or contributors be liable for any direct, - indirect, incidental, special, exemplary, or consequential damages - (including, but not limited to, procurement of substitute goods or services; - loss of use, data, or profits; or business interruption) however caused - and on any theory of liability, whether in contract, strict liability, - or tort (including negligence or otherwise) arising in any way out of - the use of this software, even if advised of the possibility of such damage. ---> -<opencv_storage> -<haarcascade_frontalface_default type_id="opencv-haar-classifier"> - <size>24 24</size> - <stages> - <_> - <!-- stage 0 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 12 9 -1.</_> - <_>6 7 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0315119996666908</threshold> - <left_val>2.0875380039215088</left_val> - <right_val>-2.2172100543975830</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 12 7 -1.</_> - <_>10 4 4 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0123960003256798</threshold> - <left_val>-1.8633940219879150</left_val> - <right_val>1.3272049427032471</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 9 18 9 -1.</_> - <_>3 12 18 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0219279993325472</threshold> - <left_val>-1.5105249881744385</left_val> - <right_val>1.0625729560852051</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 18 9 6 -1.</_> - <_>8 20 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.7529998011887074e-003</threshold> - <left_val>-0.8746389746665955</left_val> - <right_val>1.1760339736938477</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 5 4 19 -1.</_> - <_>5 5 2 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0150140002369881</threshold> - <left_val>-0.7794569730758667</left_val> - <right_val>1.2608419656753540</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 12 16 -1.</_> - <_>6 13 12 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0993710011243820</threshold> - <left_val>0.5575129985809326</left_val> - <right_val>-1.8743000030517578</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 12 6 -1.</_> - <_>5 11 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.7340000960975885e-003</threshold> - <left_val>-1.6911929845809937</left_val> - <right_val>0.4400970041751862</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 14 4 10 -1.</_> - <_>11 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0188590008765459</threshold> - <left_val>-1.4769539833068848</left_val> - <right_val>0.4435009956359863</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 7 6 -1.</_> - <_>4 3 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.9739998541772366e-003</threshold> - <left_val>-0.8590919971466065</left_val> - <right_val>0.8525559902191162</right_val></_></_></trees> - <stage_threshold>-5.0425500869750977</stage_threshold> - <parent>-1</parent> - <next>-1</next></_> - <_> - <!-- stage 1 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 12 6 -1.</_> - <_>6 8 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0211100000888109</threshold> - <left_val>1.2435649633407593</left_val> - <right_val>-1.5713009834289551</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 12 7 -1.</_> - <_>10 4 4 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0203559994697571</threshold> - <left_val>-1.6204780340194702</left_val> - <right_val>1.1817760467529297</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 8 19 12 -1.</_> - <_>1 12 19 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0213089995086193</threshold> - <left_val>-1.9415930509567261</left_val> - <right_val>0.7006909847259522</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 3 -1.</_> - <_>8 2 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0916600003838539</threshold> - <left_val>-0.5567010045051575</left_val> - <right_val>1.7284419536590576</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 9 6 15 -1.</_> - <_>9 14 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0362880006432533</threshold> - <left_val>0.2676379978656769</left_val> - <right_val>-2.1831810474395752</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 14 10 -1.</_> - <_>5 11 14 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0191099997609854</threshold> - <left_val>-2.6730210781097412</left_val> - <right_val>0.4567080140113831</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 14 9 -1.</_> - <_>5 3 14 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.2539999857544899e-003</threshold> - <left_val>-1.0852910280227661</left_val> - <right_val>0.5356420278549194</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 11 9 6 -1.</_> - <_>16 11 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0183550007641315</threshold> - <left_val>-0.3520019948482513</left_val> - <right_val>0.9333919882774353</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 6 10 -1.</_> - <_>9 5 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.0569999516010284e-003</threshold> - <left_val>0.9278209805488586</left_val> - <right_val>-0.6634989976882935</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 8 6 10 -1.</_> - <_>12 8 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.8770000040531158e-003</threshold> - <left_val>1.1577470302581787</left_val> - <right_val>-0.2977479994297028</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 5 4 9 -1.</_> - <_>4 5 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0158140007406473</threshold> - <left_val>-0.4196060001850128</left_val> - <right_val>1.3576040267944336</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 0 6 11 -1.</_> - <_>20 0 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0207000002264977</threshold> - <left_val>1.4590020179748535</left_val> - <right_val>-0.1973939985036850</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 24 13 -1.</_> - <_>8 6 8 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1376080065965653</threshold> - <left_val>1.1186759471893311</left_val> - <right_val>-0.5291550159454346</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 9 -1.</_> - <_>11 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0143189998343587</threshold> - <left_val>-0.3512719869613648</left_val> - <right_val>1.1440860033035278</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 18 10 6 -1.</_> - <_>7 20 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0102530000731349</threshold> - <left_val>-0.6085060238838196</left_val> - <right_val>0.7709850072860718</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 14 12 -1.</_> - <_>5 13 14 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0915080010890961</threshold> - <left_val>0.3881779909133911</left_val> - <right_val>-1.5122940540313721</right_val></_></_></trees> - <stage_threshold>-4.9842400550842285</stage_threshold> - <parent>0</parent> - <next>-1</next></_> - <_> - <!-- stage 2 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 24 3 -1.</_> - <_>8 3 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0697470009326935</threshold> - <left_val>-1.0130879878997803</left_val> - <right_val>1.4687349796295166</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 15 6 -1.</_> - <_>5 11 15 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0315029993653297</threshold> - <left_val>-1.6463639736175537</left_val> - <right_val>1.0000629425048828</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 5 14 -1.</_> - <_>9 13 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0142609998583794</threshold> - <left_val>0.4648030102252960</left_val> - <right_val>-1.5959889888763428</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 6 10 -1.</_> - <_>11 5 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0144530003890395</threshold> - <left_val>-0.6551190018653870</left_val> - <right_val>0.8302180171012878</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 3 12 -1.</_> - <_>6 12 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.0509999487549067e-003</threshold> - <left_val>-1.3982310295104980</left_val> - <right_val>0.4255059957504273</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 21 18 3 -1.</_> - <_>9 21 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0327229984104633</threshold> - <left_val>-0.5070260167121887</left_val> - <right_val>1.0526109933853149</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 13 6 -1.</_> - <_>5 8 13 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.2960001416504383e-003</threshold> - <left_val>0.3635689914226532</left_val> - <right_val>-1.3464889526367187</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 1 6 15 -1.</_> - <_>18 1 3 15 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0504250004887581</threshold> - <left_val>-0.3046140074729919</left_val> - <right_val>1.4504129886627197</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 6 15 -1.</_> - <_>4 1 3 15 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0468790009617805</threshold> - <left_val>-0.4028620123863220</left_val> - <right_val>1.2145609855651855</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 24 15 -1.</_> - <_>8 8 8 15 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0693589970469475</threshold> - <left_val>1.0539360046386719</left_val> - <right_val>-0.4571970105171204</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 14 12 -1.</_> - <_>5 6 7 6 2.</_> - <_>12 12 7 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0490339994430542</threshold> - <left_val>-1.6253089904785156</left_val> - <right_val>0.1537899971008301</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 12 21 12 -1.</_> - <_>2 16 21 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0848279967904091</threshold> - <left_val>0.2840299904346466</left_val> - <right_val>-1.5662059783935547</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 4 10 -1.</_> - <_>10 1 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.7229999648407102e-003</threshold> - <left_val>-1.0147459506988525</left_val> - <right_val>0.2329480051994324</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 13 20 10 -1.</_> - <_>2 13 10 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1156219989061356</threshold> - <left_val>-0.1673289984464645</left_val> - <right_val>1.2804069519042969</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 6 13 -1.</_> - <_>2 1 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0512799993157387</threshold> - <left_val>1.5162390470504761</left_val> - <right_val>-0.3027110099792481</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 2 4 13 -1.</_> - <_>20 2 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0427069999277592</threshold> - <left_val>1.7631920576095581</left_val> - <right_val>-0.0518320016562939</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 22 19 -1.</_> - <_>11 5 11 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3717809915542603</threshold> - <left_val>-0.3138920068740845</left_val> - <right_val>1.5357979536056519</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 4 6 9 -1.</_> - <_>20 4 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0194129999727011</threshold> - <left_val>-0.1001759991049767</left_val> - <right_val>0.9365540146827698</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 6 11 -1.</_> - <_>2 3 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0174390003085136</threshold> - <left_val>-0.4037989974021912</left_val> - <right_val>0.9629300236701965</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 4 9 -1.</_> - <_>12 1 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0396389998495579</threshold> - <left_val>0.1703909933567047</left_val> - <right_val>-2.9602990150451660</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 19 3 -1.</_> - <_>0 7 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.1469995677471161e-003</threshold> - <left_val>0.8878679871559143</left_val> - <right_val>-0.4381870031356812</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 4 9 -1.</_> - <_>12 1 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.7219999572262168e-003</threshold> - <left_val>-0.3721860051155090</left_val> - <right_val>0.4001890122890472</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 4 9 -1.</_> - <_>10 1 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0302310008555651</threshold> - <left_val>0.0659240037202835</left_val> - <right_val>-2.6469180583953857</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 5 14 14 -1.</_> - <_>12 5 7 7 2.</_> - <_>5 12 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0787959992885590</threshold> - <left_val>-1.7491459846496582</left_val> - <right_val>0.2847529947757721</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 18 2 -1.</_> - <_>1 11 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.1110000088810921e-003</threshold> - <left_val>-0.9390810132026672</left_val> - <right_val>0.2320519983768463</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 13 4 11 -1.</_> - <_>17 13 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0270910002291203</threshold> - <left_val>-0.0526640005409718</left_val> - <right_val>1.0756820440292358</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 6 9 -1.</_> - <_>0 7 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0449649989604950</threshold> - <left_val>-1.8294479846954346</left_val> - <right_val>0.0995619967579842</right_val></_></_></trees> - <stage_threshold>-4.6551899909973145</stage_threshold> - <parent>1</parent> - <next>-1</next></_> - <_> - <!-- stage 3 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 12 9 -1.</_> - <_>6 7 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0657010003924370</threshold> - <left_val>1.1558510065078735</left_val> - <right_val>-1.0716359615325928</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 12 6 -1.</_> - <_>10 5 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0158399995416403</threshold> - <left_val>-1.5634720325469971</left_val> - <right_val>0.7687709927558899</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 5 -1.</_> - <_>8 1 8 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1457089930772781</threshold> - <left_val>-0.5745009779930115</left_val> - <right_val>1.3808720111846924</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 10 18 6 -1.</_> - <_>4 12 18 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.1389999464154243e-003</threshold> - <left_val>-1.4570560455322266</left_val> - <right_val>0.5161030292510986</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 17 12 6 -1.</_> - <_>2 17 6 3 2.</_> - <_>8 20 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7179999314248562e-003</threshold> - <left_val>-0.8353360295295715</left_val> - <right_val>0.5852220058441162</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 3 4 13 -1.</_> - <_>19 3 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0185180008411407</threshold> - <left_val>-0.3131209909915924</left_val> - <right_val>1.1696679592132568</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 3 4 13 -1.</_> - <_>3 3 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0199580006301403</threshold> - <left_val>-0.4344260096549988</left_val> - <right_val>0.9544690251350403</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 23 -1.</_> - <_>8 1 8 23 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2775500118732452</threshold> - <left_val>1.4906179904937744</left_val> - <right_val>-0.1381590068340302</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 7 8 12 -1.</_> - <_>1 11 8 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.1859996318817139e-003</threshold> - <left_val>-0.9636150002479553</left_val> - <right_val>0.2766549885272980</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 7 3 14 -1.</_> - <_>14 14 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0377379991114140</threshold> - <left_val>-2.4464108943939209</left_val> - <right_val>0.2361959964036942</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 12 16 6 -1.</_> - <_>3 12 8 3 2.</_> - <_>11 15 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0184630006551743</threshold> - <left_val>0.1753920018672943</left_val> - <right_val>-1.3423130512237549</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 12 6 -1.</_> - <_>6 8 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0111149996519089</threshold> - <left_val>0.4871079921722412</left_val> - <right_val>-0.8985189795494080</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 6 12 -1.</_> - <_>8 13 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0339279994368553</threshold> - <left_val>0.1787420064210892</left_val> - <right_val>-1.6342279911041260</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 15 9 6 -1.</_> - <_>15 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0356490015983582</threshold> - <left_val>-1.9607399702072144</left_val> - <right_val>0.1810249984264374</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 17 18 3 -1.</_> - <_>1 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0114380000159144</threshold> - <left_val>0.9901069998741150</left_val> - <right_val>-0.3810319900512695</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 4 16 12 -1.</_> - <_>4 10 16 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0652360022068024</threshold> - <left_val>-2.5794160366058350</left_val> - <right_val>0.2475360035896301</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 4 20 -1.</_> - <_>2 1 2 20 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0422720015048981</threshold> - <left_val>1.4411840438842773</left_val> - <right_val>-0.2950829863548279</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 18 2 -1.</_> - <_>3 1 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.9219999667257071e-003</threshold> - <left_val>-0.4960860013961792</left_val> - <right_val>0.6317359805107117</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 20 14 -1.</_> - <_>1 5 10 7 2.</_> - <_>11 12 10 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1292179971933365</threshold> - <left_val>-2.3314270973205566</left_val> - <right_val>0.0544969998300076</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 14 12 -1.</_> - <_>5 12 14 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0229310002177954</threshold> - <left_val>-0.8444709777832031</left_val> - <right_val>0.3873809874057770</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 14 7 9 -1.</_> - <_>3 17 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0341200008988380</threshold> - <left_val>-1.4431500434875488</left_val> - <right_val>0.0984229966998100</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 15 9 6 -1.</_> - <_>14 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0262230001389980</threshold> - <left_val>0.1822309941053391</left_val> - <right_val>-1.2586519718170166</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 15 9 6 -1.</_> - <_>1 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0222369991242886</threshold> - <left_val>0.0698079988360405</left_val> - <right_val>-2.3820950984954834</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 8 10 -1.</_> - <_>15 6 4 5 2.</_> - <_>11 11 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.8240001089870930e-003</threshold> - <left_val>0.3933250010013580</left_val> - <right_val>-0.2754279971122742</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 5 14 14 -1.</_> - <_>5 5 7 7 2.</_> - <_>12 12 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0436530001461506</threshold> - <left_val>0.1483269929885864</left_val> - <right_val>-1.1368780136108398</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 12 5 -1.</_> - <_>10 0 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0572669990360737</threshold> - <left_val>0.2462809979915619</left_val> - <right_val>-1.2687400579452515</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 6 9 -1.</_> - <_>9 3 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.3409998975694180e-003</threshold> - <left_val>-0.7544890046119690</left_val> - <right_val>0.2716380059719086</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 9 -1.</_> - <_>11 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0129960002377629</threshold> - <left_val>-0.3639490008354187</left_val> - <right_val>0.7095919847488403</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 6 9 -1.</_> - <_>9 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0265170000493526</threshold> - <left_val>-2.3221859931945801</left_val> - <right_val>0.0357440002262592</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 6 9 -1.</_> - <_>12 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.8400002308189869e-003</threshold> - <left_val>0.4219430088996887</left_val> - <right_val>-0.0481849983334541</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 6 9 -1.</_> - <_>10 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0165689997375011</threshold> - <left_val>1.1099940538406372</left_val> - <right_val>-0.3484970033168793</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 8 18 4 -1.</_> - <_>9 8 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0681570023298264</threshold> - <left_val>-3.3269989490509033</left_val> - <right_val>0.2129900008440018</right_val></_></_></trees> - <stage_threshold>-4.4531588554382324</stage_threshold> - <parent>2</parent> - <next>-1</next></_> - <_> - <!-- stage 4 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 12 9 -1.</_> - <_>6 3 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0399740003049374</threshold> - <left_val>-1.2173449993133545</left_val> - <right_val>1.0826710462570190</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 6 -1.</_> - <_>8 0 8 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1881950050592423</threshold> - <left_val>-0.4828940033912659</left_val> - <right_val>1.4045250415802002</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 16 12 -1.</_> - <_>4 11 16 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0780270025134087</threshold> - <left_val>-1.0782150030136108</left_val> - <right_val>0.7404029965400696</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 6 6 -1.</_> - <_>11 6 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1899999663000926e-004</threshold> - <left_val>-1.2019979953765869</left_val> - <right_val>0.3774920105934143</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 20 24 3 -1.</_> - <_>8 20 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0850569978356361</threshold> - <left_val>-0.4393909871578217</left_val> - <right_val>1.2647340297698975</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 4 9 -1.</_> - <_>11 6 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9720003306865692e-003</threshold> - <left_val>-0.1844049990177155</left_val> - <right_val>0.4572640061378479</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 13 15 4 -1.</_> - <_>9 13 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.8120000436902046e-003</threshold> - <left_val>0.3039669990539551</left_val> - <right_val>-0.9599109888076782</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 4 9 -1.</_> - <_>11 6 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0235079992562532</threshold> - <left_val>1.2487529516220093</left_val> - <right_val>0.0462279990315437</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 4 9 -1.</_> - <_>11 6 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.0039997808635235e-003</threshold> - <left_val>-0.5944210290908814</left_val> - <right_val>0.5396329760551453</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 6 12 -1.</_> - <_>9 18 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0338519997894764</threshold> - <left_val>0.2849609851837158</left_val> - <right_val>-1.4895249605178833</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 22 18 2 -1.</_> - <_>1 23 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.2530000898987055e-003</threshold> - <left_val>0.4812079966068268</left_val> - <right_val>-0.5271239876747131</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 7 4 10 -1.</_> - <_>10 12 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0290970001369715</threshold> - <left_val>0.2674390077590942</left_val> - <right_val>-1.6007850170135498</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 8 10 -1.</_> - <_>6 12 8 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.4790000692009926e-003</threshold> - <left_val>-1.3107639551162720</left_val> - <right_val>0.1524309962987900</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 10 6 -1.</_> - <_>7 8 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0107950000092387</threshold> - <left_val>0.4561359882354736</left_val> - <right_val>-0.7205089926719666</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 10 4 -1.</_> - <_>0 16 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0246200002729893</threshold> - <left_val>-1.7320619821548462</left_val> - <right_val>0.0683630034327507</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 18 18 2 -1.</_> - <_>6 19 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.7380000576376915e-003</threshold> - <left_val>-0.1930329948663712</left_val> - <right_val>0.6824349761009216</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 22 3 -1.</_> - <_>1 2 22 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0122640002518892</threshold> - <left_val>-1.6095290184020996</left_val> - <right_val>0.0752680003643036</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 16 18 3 -1.</_> - <_>6 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.8670000396668911e-003</threshold> - <left_val>0.7428650259971619</left_val> - <right_val>-0.2151020020246506</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 4 6 15 -1.</_> - <_>5 4 3 15 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0767259970307350</threshold> - <left_val>-0.2683509886264801</left_val> - <right_val>1.3094140291213989</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 4 4 10 -1.</_> - <_>20 4 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0285780001431704</threshold> - <left_val>-0.0587930008769035</left_val> - <right_val>1.2196329832077026</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 4 10 -1.</_> - <_>2 4 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0196940004825592</threshold> - <left_val>-0.3514289855957031</left_val> - <right_val>0.8492699861526489</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 16 20 6 -1.</_> - <_>12 16 10 3 2.</_> - <_>2 19 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0290939994156361</threshold> - <left_val>-1.0507299900054932</left_val> - <right_val>0.2980630099773407</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 8 9 -1.</_> - <_>4 12 4 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0291440002620220</threshold> - <left_val>0.8254780173301697</left_val> - <right_val>-0.3268719911575317</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 6 9 -1.</_> - <_>14 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0197410006076097</threshold> - <left_val>0.2045260071754456</left_val> - <right_val>-0.8376020193099976</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 10 6 6 -1.</_> - <_>8 10 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.3299999088048935e-003</threshold> - <left_val>0.2057790011167526</left_val> - <right_val>-0.6682980060577393</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 8 12 6 -1.</_> - <_>17 8 6 3 2.</_> - <_>11 11 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0355009995400906</threshold> - <left_val>-1.2969900369644165</left_val> - <right_val>0.1389749944210053</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 12 6 -1.</_> - <_>0 8 6 3 2.</_> - <_>6 11 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0161729995161295</threshold> - <left_val>-1.3110569715499878</left_val> - <right_val>0.0757519975304604</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 6 9 -1.</_> - <_>14 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0221510007977486</threshold> - <left_val>-1.0524389743804932</left_val> - <right_val>0.1924110054969788</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 6 9 -1.</_> - <_>8 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0227070003747940</threshold> - <left_val>-1.3735309839248657</left_val> - <right_val>0.0667809993028641</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 14 9 6 -1.</_> - <_>8 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0166079998016357</threshold> - <left_val>-0.0371359996497631</left_val> - <right_val>0.7784640192985535</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 9 6 -1.</_> - <_>0 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0133090000599623</threshold> - <left_val>-0.9985070228576660</left_val> - <right_val>0.1224810034036636</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 8 6 10 -1.</_> - <_>12 8 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0337320007383823</threshold> - <left_val>1.4461359977722168</left_val> - <right_val>0.0131519995629787</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 19 12 3 -1.</_> - <_>9 19 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0169350001960993</threshold> - <left_val>-0.3712129890918732</left_val> - <right_val>0.5284219980239868</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 10 20 2 -1.</_> - <_>2 11 20 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.3259999472647905e-003</threshold> - <left_val>-0.5756850242614746</left_val> - <right_val>0.3926190137863159</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 9 18 12 -1.</_> - <_>2 9 9 6 2.</_> - <_>11 15 9 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0836440026760101</threshold> - <left_val>0.0161160007119179</left_val> - <right_val>-2.1173279285430908</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 18 24 -1.</_> - <_>3 0 9 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2578519880771637</threshold> - <left_val>-0.0816090032458305</left_val> - <right_val>0.9878249764442444</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 14 10 -1.</_> - <_>5 6 7 5 2.</_> - <_>12 11 7 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0365669988095760</threshold> - <left_val>-1.1512110233306885</left_val> - <right_val>0.0964590013027191</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 10 12 -1.</_> - <_>14 5 5 6 2.</_> - <_>9 11 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0164459999650717</threshold> - <left_val>0.3731549978256226</left_val> - <right_val>-0.1458539962768555</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 5 12 12 -1.</_> - <_>4 5 6 6 2.</_> - <_>10 11 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.7519999314099550e-003</threshold> - <left_val>0.2617929875850678</left_val> - <right_val>-0.5815669894218445</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 14 18 3 -1.</_> - <_>4 15 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.3660000450909138e-003</threshold> - <left_val>0.7547739744186401</left_val> - <right_val>-0.1705520004034042</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 13 8 8 -1.</_> - <_>6 17 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.8499999791383743e-003</threshold> - <left_val>0.2265399992465973</left_val> - <right_val>-0.6387640237808228</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 16 18 6 -1.</_> - <_>3 19 18 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0454940013587475</threshold> - <left_val>-1.2640299797058105</left_val> - <right_val>0.2526069879531860</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 6 6 -1.</_> - <_>3 0 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0239410009235144</threshold> - <left_val>0.8706840276718140</left_val> - <right_val>-0.2710469961166382</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 12 18 -1.</_> - <_>10 6 4 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0775580033659935</threshold> - <left_val>-1.3901610374450684</left_val> - <right_val>0.2361229956150055</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 1 4 14 -1.</_> - <_>8 1 2 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0236140005290508</threshold> - <left_val>0.0661400035023689</left_val> - <right_val>-1.2645419836044312</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 19 2 -1.</_> - <_>3 3 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.5750000495463610e-003</threshold> - <left_val>-0.5384169816970825</left_val> - <right_val>0.3037909865379334</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 8 22 13 -1.</_> - <_>12 8 11 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1201080009341240</threshold> - <left_val>-0.3534300029277802</left_val> - <right_val>0.5286620259284973</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 9 11 4 -1.</_> - <_>8 11 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.2899999748915434e-003</threshold> - <left_val>-0.5870199799537659</left_val> - <right_val>0.2406100034713745</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 15 10 -1.</_> - <_>5 12 5 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0697169974446297</threshold> - <left_val>-0.3334890007972717</left_val> - <right_val>0.5191630125045776</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 16 12 6 -1.</_> - <_>16 16 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0466700010001659</threshold> - <left_val>0.6979539990425110</left_val> - <right_val>-0.0148959998041391</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 12 6 -1.</_> - <_>4 16 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0501290000975132</threshold> - <left_val>0.8614619970321655</left_val> - <right_val>-0.2598600089550018</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 1 5 12 -1.</_> - <_>19 5 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0301479995250702</threshold> - <left_val>0.1933279931545258</left_val> - <right_val>-0.5913109779357910</right_val></_></_></trees> - <stage_threshold>-4.3864588737487793</stage_threshold> - <parent>3</parent> - <next>-1</next></_> - <_> - <!-- stage 5 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 4 -1.</_> - <_>8 2 8 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0910850018262863</threshold> - <left_val>-0.8923310041427612</left_val> - <right_val>1.0434230566024780</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 8 12 4 -1.</_> - <_>6 10 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0128189995884895</threshold> - <left_val>-1.2597670555114746</left_val> - <right_val>0.5531709790229797</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 9 6 -1.</_> - <_>10 5 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0159319993108511</threshold> - <left_val>-0.8625440001487732</left_val> - <right_val>0.6373180150985718</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 17 6 6 -1.</_> - <_>9 20 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.2780001163482666e-003</threshold> - <left_val>-0.7463920116424561</left_val> - <right_val>0.5315560102462769</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 22 15 -1.</_> - <_>0 12 22 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0318409986793995</threshold> - <left_val>-1.2650489807128906</left_val> - <right_val>0.3615390062332153</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 1 17 9 -1.</_> - <_>4 4 17 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.6960000395774841e-003</threshold> - <left_val>-0.9829040169715881</left_val> - <right_val>0.3601300120353699</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 6 10 -1.</_> - <_>9 5 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0120550002902746</threshold> - <left_val>0.6406840085983276</left_val> - <right_val>-0.5012500286102295</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 1 6 8 -1.</_> - <_>18 1 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0213249996304512</threshold> - <left_val>-0.2403499931097031</left_val> - <right_val>0.8544800281524658</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 6 7 -1.</_> - <_>3 1 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0304860007017851</threshold> - <left_val>-0.3427360057830811</left_val> - <right_val>1.1428849697113037</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 0 6 22 -1.</_> - <_>18 0 3 22 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0450799986720085</threshold> - <left_val>1.0976949930191040</left_val> - <right_val>-0.1797460019588471</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 6 22 -1.</_> - <_>3 0 3 22 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0717009976506233</threshold> - <left_val>1.5735000371932983</left_val> - <right_val>-0.3143349885940552</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 7 8 16 -1.</_> - <_>16 7 4 16 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0592180006206036</threshold> - <left_val>-0.2758240103721619</left_val> - <right_val>1.0448570251464844</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 10 19 6 -1.</_> - <_>2 12 19 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7010000348091125e-003</threshold> - <left_val>-1.0974019765853882</left_val> - <right_val>0.1980119943618774</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 9 6 12 -1.</_> - <_>9 13 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0410469993948936</threshold> - <left_val>0.3054769933223724</left_val> - <right_val>-1.3287999629974365</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 15 17 6 -1.</_> - <_>2 17 17 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.5499999113380909e-004</threshold> - <left_val>0.2580710053443909</left_val> - <right_val>-0.7005289793014526</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 7 3 14 -1.</_> - <_>14 14 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0303600002080202</threshold> - <left_val>-1.2306419610977173</left_val> - <right_val>0.2260939925909042</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 8 10 -1.</_> - <_>5 6 4 5 2.</_> - <_>9 11 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0129300002008677</threshold> - <left_val>0.4075860083103180</left_val> - <right_val>-0.5123450160026550</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 8 9 11 -1.</_> - <_>18 8 3 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0373679995536804</threshold> - <left_val>-0.0947550013661385</left_val> - <right_val>0.6176509857177734</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 9 11 -1.</_> - <_>3 8 3 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0244340002536774</threshold> - <left_val>-0.4110060036182404</left_val> - <right_val>0.4763050079345703</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 10 18 -1.</_> - <_>8 15 10 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0570079982280731</threshold> - <left_val>0.2524929940700531</left_val> - <right_val>-0.6866980195045471</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 3 14 -1.</_> - <_>7 14 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0163139998912811</threshold> - <left_val>-0.9392840266227722</left_val> - <right_val>0.1144810020923615</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 24 8 -1.</_> - <_>8 14 8 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1764889955520630</threshold> - <left_val>1.2451089620590210</left_val> - <right_val>-0.0565190017223358</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 18 14 -1.</_> - <_>10 10 9 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1761460006237030</threshold> - <left_val>-0.3252820074558258</left_val> - <right_val>0.8279150128364563</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 12 6 6 -1.</_> - <_>14 15 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.3910001665353775e-003</threshold> - <left_val>0.3478370010852814</left_val> - <right_val>-0.1792909950017929</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 10 16 -1.</_> - <_>7 0 5 8 2.</_> - <_>12 8 5 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0608909986913204</threshold> - <left_val>0.0550980009138584</left_val> - <right_val>-1.5480779409408569</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 9 6 -1.</_> - <_>13 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0291230008006096</threshold> - <left_val>-1.0255639553070068</left_val> - <right_val>0.2410690039396286</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 16 4 -1.</_> - <_>12 3 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0456489995121956</threshold> - <left_val>1.0301599502563477</left_val> - <right_val>-0.3167209923267365</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 9 6 -1.</_> - <_>13 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0373330004513264</threshold> - <left_val>0.2162059992551804</left_val> - <right_val>-0.8258990049362183</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 20 4 -1.</_> - <_>1 1 10 2 2.</_> - <_>11 3 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0244110003113747</threshold> - <left_val>-1.5957959890365601</left_val> - <right_val>0.0511390008032322</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 9 6 -1.</_> - <_>13 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0598069988191128</threshold> - <left_val>-1.0312290191650391</left_val> - <right_val>0.1309230029582977</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 9 6 -1.</_> - <_>8 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0301060006022453</threshold> - <left_val>-1.4781630039215088</left_val> - <right_val>0.0372119992971420</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 18 10 6 -1.</_> - <_>8 20 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.4209999293088913e-003</threshold> - <left_val>-0.2402410060167313</left_val> - <right_val>0.4933399856090546</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 3 6 9 -1.</_> - <_>8 3 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.1909999195486307e-003</threshold> - <left_val>0.2894150018692017</left_val> - <right_val>-0.5725960135459900</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 3 12 6 -1.</_> - <_>7 5 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0208609998226166</threshold> - <left_val>-0.2314839959144592</left_val> - <right_val>0.6376590132713318</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 10 18 3 -1.</_> - <_>0 11 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.6990000195801258e-003</threshold> - <left_val>-1.2107750177383423</left_val> - <right_val>0.0640180036425591</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 22 3 -1.</_> - <_>1 11 22 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0187580008059740</threshold> - <left_val>0.2446130067110062</left_val> - <right_val>-0.9978669881820679</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 8 8 -1.</_> - <_>9 11 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0443230010569096</threshold> - <left_val>-1.3699189424514771</left_val> - <right_val>0.0360519997775555</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 11 6 6 -1.</_> - <_>12 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0228599999099970</threshold> - <left_val>0.2128839939832687</left_val> - <right_val>-1.0397620201110840</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 11 6 6 -1.</_> - <_>9 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.8600005730986595e-004</threshold> - <left_val>0.3244360089302063</left_val> - <right_val>-0.5429180264472961</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 10 11 6 -1.</_> - <_>7 12 11 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0172390006482601</threshold> - <left_val>-0.2832390069961548</left_val> - <right_val>0.4446820020675659</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 24 4 -1.</_> - <_>0 13 12 2 2.</_> - <_>12 15 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0345310010015965</threshold> - <left_val>-2.3107020854949951</left_val> - <right_val>-3.1399999279528856e-003</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 4 22 12 -1.</_> - <_>13 4 11 6 2.</_> - <_>2 10 11 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0670069977641106</threshold> - <left_val>0.2871569991111755</left_val> - <right_val>-0.6448100209236145</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 20 17 -1.</_> - <_>12 0 10 17 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2377689927816391</threshold> - <left_val>-0.2717480063438416</left_val> - <right_val>0.8021910190582275</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 2 24 -1.</_> - <_>14 0 1 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0129030002281070</threshold> - <left_val>-1.5317620038986206</left_val> - <right_val>0.2142360061407089</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 0 2 24 -1.</_> - <_>9 0 1 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0105149997398257</threshold> - <left_val>0.0770379975438118</left_val> - <right_val>-1.0581140518188477</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 1 2 22 -1.</_> - <_>14 1 1 22 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0169690009206533</threshold> - <left_val>0.1430670022964478</left_val> - <right_val>-0.8582839965820313</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 2 22 -1.</_> - <_>9 1 1 22 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.2460002265870571e-003</threshold> - <left_val>-1.1020129919052124</left_val> - <right_val>0.0649069994688034</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 6 3 18 -1.</_> - <_>18 6 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0105569995939732</threshold> - <left_val>0.0139640001580119</left_val> - <right_val>0.6360149979591370</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 14 9 6 -1.</_> - <_>6 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.1380001716315746e-003</threshold> - <left_val>-0.3454590141773224</left_val> - <right_val>0.5629680156707764</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 14 9 4 -1.</_> - <_>13 16 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0131580000743270</threshold> - <left_val>0.1992730051279068</left_val> - <right_val>-1.5040320158004761</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 18 18 3 -1.</_> - <_>3 19 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.1310000922530890e-003</threshold> - <left_val>-0.4090369939804077</left_val> - <right_val>0.3779639899730682</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 4 8 18 -1.</_> - <_>13 4 4 9 2.</_> - <_>9 13 4 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1092069968581200</threshold> - <left_val>-2.2227079868316650</left_val> - <right_val>0.1217819973826408</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 18 3 -1.</_> - <_>0 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.1820003688335419e-003</threshold> - <left_val>-0.2865200042724609</left_val> - <right_val>0.6789079904556274</right_val></_></_></trees> - <stage_threshold>-4.1299300193786621</stage_threshold> - <parent>4</parent> - <next>-1</next></_> - <_> - <!-- stage 6 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 12 4 -1.</_> - <_>6 2 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0313469991087914</threshold> - <left_val>-0.8888459801673889</left_val> - <right_val>0.9493680000305176</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 8 14 6 -1.</_> - <_>6 11 14 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0319180004298687</threshold> - <left_val>-1.1146880388259888</left_val> - <right_val>0.4888899922370911</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 6 6 -1.</_> - <_>10 5 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.5939999185502529e-003</threshold> - <left_val>-1.0097689628601074</left_val> - <right_val>0.4972380101680756</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 6 16 -1.</_> - <_>10 13 6 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0261480007320642</threshold> - <left_val>0.2599129974842072</left_val> - <right_val>-1.2537480592727661</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 4 9 16 -1.</_> - <_>4 4 3 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0128450002521276</threshold> - <left_val>-0.5713859796524048</left_val> - <right_val>0.5965949892997742</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 18 9 -1.</_> - <_>5 3 18 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0263449996709824</threshold> - <left_val>-0.5520319938659668</left_val> - <right_val>0.3021740019321442</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 15 5 8 -1.</_> - <_>9 19 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0150830000638962</threshold> - <left_val>-1.2871240377426147</left_val> - <right_val>0.2235420048236847</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 0 4 9 -1.</_> - <_>20 0 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0388870015740395</threshold> - <left_val>1.7425049543380737</left_val> - <right_val>-0.0997470021247864</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 18 3 -1.</_> - <_>2 1 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.7029998861253262e-003</threshold> - <left_val>-1.0523240566253662</left_val> - <right_val>0.1836259961128235</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 22 19 2 -1.</_> - <_>5 23 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4860000228509307e-003</threshold> - <left_val>0.5678420066833496</left_val> - <right_val>-0.4674200117588043</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 4 9 -1.</_> - <_>2 0 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0284860003739595</threshold> - <left_val>1.3082909584045410</left_val> - <right_val>-0.2646090090274811</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 19 18 -1.</_> - <_>5 12 19 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0662249997258186</threshold> - <left_val>-0.4621070027351379</left_val> - <right_val>0.4174959957599640</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 6 9 -1.</_> - <_>2 1 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.8569996878504753e-003</threshold> - <left_val>-0.4147489964962006</left_val> - <right_val>0.5920479893684387</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 14 12 -1.</_> - <_>13 5 7 6 2.</_> - <_>6 11 7 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0113559998571873</threshold> - <left_val>0.3610309958457947</left_val> - <right_val>-0.4578120112419128</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 20 2 -1.</_> - <_>0 2 20 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7679998893290758e-003</threshold> - <left_val>-0.8923889994621277</left_val> - <right_val>0.1419900059700012</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 22 3 -1.</_> - <_>1 3 22 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0112469997256994</threshold> - <left_val>0.2935340106487274</left_val> - <right_val>-0.9733060002326965</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 8 7 9 -1.</_> - <_>2 11 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.1970000863075256e-003</threshold> - <left_val>-0.7933490276336670</left_val> - <right_val>0.1831340044736862</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 12 22 4 -1.</_> - <_>13 12 11 2 2.</_> - <_>2 14 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0317689999938011</threshold> - <left_val>0.1552309989929199</left_val> - <right_val>-1.3245639801025391</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 22 4 -1.</_> - <_>0 12 11 2 2.</_> - <_>11 14 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0251739993691444</threshold> - <left_val>0.0342149995267391</left_val> - <right_val>-2.0948131084442139</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 7 6 11 -1.</_> - <_>11 7 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.5360001064836979e-003</threshold> - <left_val>-0.3945060074329376</left_val> - <right_val>0.5133399963378906</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 1 9 6 -1.</_> - <_>10 1 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0328730009496212</threshold> - <left_val>0.0883729979395866</left_val> - <right_val>-1.2814120054244995</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 2 4 10 -1.</_> - <_>11 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7379998937249184e-003</threshold> - <left_val>0.5528650283813477</left_val> - <right_val>-0.4638499915599823</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 12 12 -1.</_> - <_>6 10 12 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0380750000476837</threshold> - <left_val>-1.8497270345687866</left_val> - <right_val>0.0459440015256405</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 1 6 15 -1.</_> - <_>18 6 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0389840006828308</threshold> - <left_val>-0.4822370111942291</left_val> - <right_val>0.3476060032844544</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 15 18 3 -1.</_> - <_>3 16 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.8029999230057001e-003</threshold> - <left_val>-0.4515469968318939</left_val> - <right_val>0.4280630052089691</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 5 6 9 -1.</_> - <_>18 8 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0541459992527962</threshold> - <left_val>-0.8452079892158508</left_val> - <right_val>0.1667490005493164</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 16 6 -1.</_> - <_>1 5 8 3 2.</_> - <_>9 8 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.3280000835657120e-003</threshold> - <left_val>0.3534829914569855</left_val> - <right_val>-0.4716320037841797</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 0 6 9 -1.</_> - <_>13 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0337780006229877</threshold> - <left_val>0.1846310049295425</left_val> - <right_val>-1.6686669588088989</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 24 14 -1.</_> - <_>0 4 12 7 2.</_> - <_>12 11 12 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1123809963464737</threshold> - <left_val>-1.2521569728851318</left_val> - <right_val>0.0359920002520084</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 4 13 -1.</_> - <_>13 0 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0104080000892282</threshold> - <left_val>-0.8162040114402771</left_val> - <right_val>0.2342859953641892</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 4 13 -1.</_> - <_>9 0 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.9439999274909496e-003</threshold> - <left_val>-0.9258469939231873</left_val> - <right_val>0.1003480032086372</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 6 9 -1.</_> - <_>13 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3029998242855072e-003</threshold> - <left_val>0.5649930238723755</left_val> - <right_val>-0.1888190060853958</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 6 9 -1.</_> - <_>10 7 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0117499995976686</threshold> - <left_val>0.8030239939689636</left_val> - <right_val>-0.3827700018882752</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 17 9 6 -1.</_> - <_>13 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0232170000672340</threshold> - <left_val>-0.8492699861526489</left_val> - <right_val>0.1967120021581650</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 18 14 6 -1.</_> - <_>2 18 7 3 2.</_> - <_>9 21 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0168660003691912</threshold> - <left_val>-0.4059189856052399</left_val> - <right_val>0.5069530010223389</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 18 18 4 -1.</_> - <_>12 18 9 2 2.</_> - <_>3 20 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0240310002118349</threshold> - <left_val>-1.5297520160675049</left_val> - <right_val>0.2334499955177307</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 20 15 4 -1.</_> - <_>5 20 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0369459986686707</threshold> - <left_val>0.6300770044326782</left_val> - <right_val>-0.3178040087223053</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 15 15 9 -1.</_> - <_>14 15 5 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0615639984607697</threshold> - <left_val>0.5862789750099182</left_val> - <right_val>-0.0121079999953508</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 4 16 4 -1.</_> - <_>4 6 16 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0216610003262758</threshold> - <left_val>-0.2562370002269745</left_val> - <right_val>1.0409849882125854</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 10 6 -1.</_> - <_>7 8 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.6710000131279230e-003</threshold> - <left_val>0.2917110025882721</left_val> - <right_val>-0.8328729867935181</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 15 10 -1.</_> - <_>5 14 5 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0448490008711815</threshold> - <left_val>-0.3963319957256317</left_val> - <right_val>0.4566200077533722</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 9 10 14 -1.</_> - <_>12 9 5 7 2.</_> - <_>7 16 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0571950003504753</threshold> - <left_val>0.2102389931678772</left_val> - <right_val>-1.5004800558090210</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 6 9 -1.</_> - <_>9 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0113420002162457</threshold> - <left_val>0.4407129883766174</left_val> - <right_val>-0.3865379989147186</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 18 3 -1.</_> - <_>3 7 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0120040001347661</threshold> - <left_val>0.9395459890365601</left_val> - <right_val>-0.1058949977159500</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 10 18 3 -1.</_> - <_>0 11 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0225159991532564</threshold> - <left_val>9.4480002298951149e-003</left_val> - <right_val>-1.6799509525299072</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 16 18 4 -1.</_> - <_>12 16 9 2 2.</_> - <_>3 18 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0198090001940727</threshold> - <left_val>-1.0133639574050903</left_val> - <right_val>0.2414660006761551</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 14 6 -1.</_> - <_>4 6 7 3 2.</_> - <_>11 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0158910006284714</threshold> - <left_val>-0.3750759959220886</left_val> - <right_val>0.4661409854888916</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 2 18 -1.</_> - <_>13 0 1 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.1420002281665802e-003</threshold> - <left_val>-0.8048409819602966</left_val> - <right_val>0.1781699955463409</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 2 18 -1.</_> - <_>10 0 1 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.4740000739693642e-003</threshold> - <left_val>-1.0562069416046143</left_val> - <right_val>0.0733050033450127</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 15 10 -1.</_> - <_>10 7 5 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1274250000715256</threshold> - <left_val>0.2016559988260269</left_val> - <right_val>-1.5467929840087891</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 20 21 4 -1.</_> - <_>8 20 7 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0477030016481876</threshold> - <left_val>-0.3793779909610748</left_val> - <right_val>0.3788599967956543</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 5 18 -1.</_> - <_>10 14 5 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0536080002784729</threshold> - <left_val>0.2122049927711487</left_val> - <right_val>-1.2399710416793823</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 6 -1.</_> - <_>0 2 12 3 2.</_> - <_>12 5 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0396809987723827</threshold> - <left_val>-1.0257550477981567</left_val> - <right_val>0.0512829981744289</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 22 8 -1.</_> - <_>12 1 11 4 2.</_> - <_>1 5 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0673270002007484</threshold> - <left_val>-1.0304750204086304</left_val> - <right_val>0.2300529927015305</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 15 9 -1.</_> - <_>4 3 15 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1333760023117065</threshold> - <left_val>-0.2086900025606155</left_val> - <right_val>1.2272510528564453</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 19 -1.</_> - <_>8 0 8 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2091930061578751</threshold> - <left_val>0.8792989850044251</left_val> - <right_val>-0.0442549996078014</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 21 18 3 -1.</_> - <_>11 21 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0655890032649040</threshold> - <left_val>1.0443429946899414</left_val> - <right_val>-0.2168209999799728</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 7 10 4 -1.</_> - <_>9 7 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0618829987943172</threshold> - <left_val>0.1379819959402084</left_val> - <right_val>-1.9009059667587280</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 10 4 -1.</_> - <_>10 7 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0255789998918772</threshold> - <left_val>-1.6607600450515747</left_val> - <right_val>5.8439997956156731e-003</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 8 6 16 -1.</_> - <_>20 8 3 8 2.</_> - <_>17 16 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0348270013928413</threshold> - <left_val>0.7994040250778198</left_val> - <right_val>-0.0824069976806641</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 15 20 4 -1.</_> - <_>1 15 10 2 2.</_> - <_>11 17 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0182099994271994</threshold> - <left_val>-0.9607399702072144</left_val> - <right_val>0.0663200020790100</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 15 10 6 -1.</_> - <_>14 17 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0150709999725223</threshold> - <left_val>0.1989939957857132</left_val> - <right_val>-0.7643300294876099</right_val></_></_></trees> - <stage_threshold>-4.0218091011047363</stage_threshold> - <parent>5</parent> - <next>-1</next></_> - <_> - <!-- stage 7 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 16 9 -1.</_> - <_>3 3 16 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0463249981403351</threshold> - <left_val>-1.0362670421600342</left_val> - <right_val>0.8220149874687195</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 6 7 15 -1.</_> - <_>15 11 7 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0154069997370243</threshold> - <left_val>-1.2327589988708496</left_val> - <right_val>0.2964769899845123</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 6 13 -1.</_> - <_>11 1 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0128089999780059</threshold> - <left_val>-0.7585229873657227</left_val> - <right_val>0.5798550248146057</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 2 6 14 -1.</_> - <_>17 2 3 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0491509996354580</threshold> - <left_val>-0.3898389935493469</left_val> - <right_val>0.8968030214309692</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 14 12 10 -1.</_> - <_>3 14 6 5 2.</_> - <_>9 19 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0126210004091263</threshold> - <left_val>-0.7179930210113525</left_val> - <right_val>0.5044090151786804</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 10 6 -1.</_> - <_>7 8 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0187689997255802</threshold> - <left_val>0.5514760017395020</left_val> - <right_val>-0.7055540084838867</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 6 14 -1.</_> - <_>4 2 3 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0419650003314018</threshold> - <left_val>-0.4478209912776947</left_val> - <right_val>0.7098550200462341</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 4 5 12 -1.</_> - <_>10 8 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0514019988477230</threshold> - <left_val>-1.0932120084762573</left_val> - <right_val>0.2670190036296845</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 24 5 -1.</_> - <_>8 17 8 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0709609985351563</threshold> - <left_val>0.8361840248107910</left_val> - <right_val>-0.3831810057163239</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 7 5 12 -1.</_> - <_>15 11 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0167459994554520</threshold> - <left_val>-0.2573310136795044</left_val> - <right_val>0.2596650123596191</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 1 6 12 -1.</_> - <_>3 1 3 6 2.</_> - <_>6 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.2400000169873238e-003</threshold> - <left_val>0.3163149952888489</left_val> - <right_val>-0.5879690051078796</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 13 6 6 -1.</_> - <_>12 16 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0393979996442795</threshold> - <left_val>-1.0491210222244263</left_val> - <right_val>0.1682240068912506</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 13 6 6 -1.</_> - <_>6 16 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.</threshold> - <left_val>0.1614419966936112</left_val> - <right_val>-0.8787689805030823</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 6 3 16 -1.</_> - <_>14 14 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0223079994320869</threshold> - <left_val>-0.6905350089073181</left_val> - <right_val>0.2360700070858002</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 12 13 6 -1.</_> - <_>1 14 13 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.8919999711215496e-003</threshold> - <left_val>0.2498919963836670</left_val> - <right_val>-0.5658329725265503</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 1 4 9 -1.</_> - <_>13 1 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0730000212788582e-003</threshold> - <left_val>-0.5041580200195313</left_val> - <right_val>0.3837450146675110</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 9 6 -1.</_> - <_>10 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0392309986054897</threshold> - <left_val>0.0426190011203289</left_val> - <right_val>-1.3875889778137207</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 2 6 9 -1.</_> - <_>12 2 3 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0622380003333092</threshold> - <left_val>0.1411940008401871</left_val> - <right_val>-1.0688860416412354</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 2 6 9 -1.</_> - <_>9 2 3 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.1399999968707561e-003</threshold> - <left_val>-0.8962240219116211</left_val> - <right_val>0.1979639977216721</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 18 12 6 -1.</_> - <_>6 20 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.1800000518560410e-004</threshold> - <left_val>-0.4533729851245880</left_val> - <right_val>0.4353269934654236</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 6 9 -1.</_> - <_>9 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.9169998168945313e-003</threshold> - <left_val>0.3382279872894287</left_val> - <right_val>-0.4479300081729889</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 12 3 -1.</_> - <_>7 7 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0238669998943806</threshold> - <left_val>-0.7890859842300415</left_val> - <right_val>0.2251179963350296</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 3 8 21 -1.</_> - <_>8 10 8 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1026280000805855</threshold> - <left_val>-2.2831439971923828</left_val> - <right_val>-5.3960001096129417e-003</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 4 10 12 -1.</_> - <_>7 8 10 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.5239998772740364e-003</threshold> - <left_val>0.3934670090675354</left_val> - <right_val>-0.5224220156669617</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 6 9 -1.</_> - <_>0 4 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0398770011961460</threshold> - <left_val>0.0327990017831326</left_val> - <right_val>-1.5079489946365356</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 2 2 20 -1.</_> - <_>15 2 1 20 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0131449997425079</threshold> - <left_val>-1.0839990377426147</left_val> - <right_val>0.1848240047693253</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 6 9 -1.</_> - <_>0 6 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0505909994244576</threshold> - <left_val>-1.8822289705276489</left_val> - <right_val>-2.2199999075382948e-003</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 3 2 21 -1.</_> - <_>15 3 1 21 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0249170009046793</threshold> - <left_val>0.1459340006113052</left_val> - <right_val>-2.2196519374847412</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 2 23 -1.</_> - <_>8 0 1 23 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.6370001770555973e-003</threshold> - <left_val>-1.0164569616317749</left_val> - <right_val>0.0587970018386841</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 8 9 4 -1.</_> - <_>15 10 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0429119989275932</threshold> - <left_val>0.1544300019741058</left_val> - <right_val>-1.1843889951705933</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 9 4 -1.</_> - <_>0 10 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.3000000510364771e-004</threshold> - <left_val>-0.7730579972267151</left_val> - <right_val>0.1218990013003349</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 14 9 6 -1.</_> - <_>8 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.0929996222257614e-003</threshold> - <left_val>-0.1145009994506836</left_val> - <right_val>0.7109130024909973</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 9 6 -1.</_> - <_>0 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0111450003460050</threshold> - <left_val>0.0700009986758232</left_val> - <right_val>-1.0534820556640625</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 18 4 -1.</_> - <_>9 10 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0524530000984669</threshold> - <left_val>-1.7594360113143921</left_val> - <right_val>0.1952379941940308</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 19 -1.</_> - <_>8 0 8 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2302069962024689</threshold> - <left_val>0.9584029912948608</left_val> - <right_val>-0.2504569888114929</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 8 12 -1.</_> - <_>9 7 8 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0163659993559122</threshold> - <left_val>0.4673190116882324</left_val> - <right_val>-0.2110839933156967</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 10 -1.</_> - <_>12 6 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0172080006450415</threshold> - <left_val>0.7083569765090942</left_val> - <right_val>-0.2801829874515533</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 9 10 12 -1.</_> - <_>12 9 5 6 2.</_> - <_>7 15 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0366480015218258</threshold> - <left_val>-1.1013339757919312</left_val> - <right_val>0.2434110045433044</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 3 19 -1.</_> - <_>6 0 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0103049995377660</threshold> - <left_val>-1.0933129787445068</left_val> - <right_val>0.0562589988112450</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 6 10 -1.</_> - <_>16 0 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0137130003422499</threshold> - <left_val>-0.2643809914588928</left_val> - <right_val>0.1982100009918213</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 6 12 -1.</_> - <_>2 0 3 6 2.</_> - <_>5 6 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0293080005794764</threshold> - <left_val>-0.2214239984750748</left_val> - <right_val>1.0525950193405151</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 11 24 2 -1.</_> - <_>0 12 24 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0240770000964403</threshold> - <left_val>0.1848569959402084</left_val> - <right_val>-1.7203969955444336</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 9 13 4 -1.</_> - <_>4 11 13 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.1280000954866409e-003</threshold> - <left_val>-0.9272149801254273</left_val> - <right_val>0.0587529987096787</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 6 9 -1.</_> - <_>9 11 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0223779994994402</threshold> - <left_val>1.9646559953689575</left_val> - <right_val>0.0277859997004271</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 16 4 -1.</_> - <_>0 14 16 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.0440000854432583e-003</threshold> - <left_val>0.2142760008573532</left_val> - <right_val>-0.4840759932994843</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 12 6 9 -1.</_> - <_>18 15 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0406030006706715</threshold> - <left_val>-1.1754349470138550</left_val> - <right_val>0.1606120020151138</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 6 9 -1.</_> - <_>0 15 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0244660004973412</threshold> - <left_val>-1.1239900588989258</left_val> - <right_val>0.0411100015044212</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 10 4 -1.</_> - <_>8 7 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.5309999473392963e-003</threshold> - <left_val>-0.1716970056295395</left_val> - <right_val>0.3217880129814148</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 6 9 -1.</_> - <_>10 7 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0195889994502068</threshold> - <left_val>0.8272020220756531</left_val> - <right_val>-0.2637670040130615</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 0 6 9 -1.</_> - <_>13 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0296359993517399</threshold> - <left_val>-1.1524770259857178</left_val> - <right_val>0.1499930024147034</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 6 9 -1.</_> - <_>9 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0150300003588200</threshold> - <left_val>-1.0491830110549927</left_val> - <right_val>0.0401609987020493</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 3 6 15 -1.</_> - <_>14 3 2 15 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0607150010764599</threshold> - <left_val>-1.0903840065002441</left_val> - <right_val>0.1533080041408539</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 3 6 15 -1.</_> - <_>8 3 2 15 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0127900000661612</threshold> - <left_val>0.4224860072135925</left_val> - <right_val>-0.4239920079708099</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 2 9 4 -1.</_> - <_>15 4 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0202479995787144</threshold> - <left_val>-0.9186699986457825</left_val> - <right_val>0.1848569959402084</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 10 6 7 -1.</_> - <_>8 10 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0306839998811483</threshold> - <left_val>-1.5958670377731323</left_val> - <right_val>2.5760000571608543e-003</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 14 6 10 -1.</_> - <_>9 19 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0207180008292198</threshold> - <left_val>-0.6629999876022339</left_val> - <right_val>0.3103719949722290</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 13 5 8 -1.</_> - <_>7 17 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.7290000105276704e-003</threshold> - <left_val>0.1918340027332306</left_val> - <right_val>-0.6508499979972839</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 5 3 16 -1.</_> - <_>14 13 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0313940010964870</threshold> - <left_val>-0.6364300251007080</left_val> - <right_val>0.1540839970111847</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 17 18 3 -1.</_> - <_>2 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0190030001103878</threshold> - <left_val>-0.1891939938068390</left_val> - <right_val>1.5294510126113892</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 18 19 3 -1.</_> - <_>5 19 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.1769997701048851e-003</threshold> - <left_val>-0.1059790030121803</left_val> - <right_val>0.6485959887504578</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 6 9 -1.</_> - <_>11 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0101659996435046</threshold> - <left_val>-1.0802700519561768</left_val> - <right_val>0.0371760018169880</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 4 3 18 -1.</_> - <_>13 4 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4169999631121755e-003</threshold> - <left_val>0.3415749967098236</left_val> - <right_val>-0.0977379977703094</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 4 3 18 -1.</_> - <_>10 4 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.0799998678267002e-003</threshold> - <left_val>0.4762459993362427</left_val> - <right_val>-0.3436630070209503</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 3 18 9 -1.</_> - <_>9 3 6 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0440969988703728</threshold> - <left_val>0.9763429760932922</left_val> - <right_val>-0.0191730000078678</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 1 6 14 -1.</_> - <_>8 1 2 14 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0606699995696545</threshold> - <left_val>-2.1752851009368896</left_val> - <right_val>-0.0289259999990463</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 16 9 6 -1.</_> - <_>12 19 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0329319983720779</threshold> - <left_val>-0.6438310146331787</left_val> - <right_val>0.1649409979581833</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 3 20 16 -1.</_> - <_>1 3 10 8 2.</_> - <_>11 11 10 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1472280025482178</threshold> - <left_val>-1.4745830297470093</left_val> - <right_val>2.5839998852461576e-003</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 5 6 12 -1.</_> - <_>15 5 3 6 2.</_> - <_>12 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0119300000369549</threshold> - <left_val>0.4244140088558197</left_val> - <right_val>-0.1771260052919388</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 22 16 -1.</_> - <_>1 2 11 8 2.</_> - <_>12 10 11 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1451790034770966</threshold> - <left_val>0.0254449993371964</left_val> - <right_val>-1.2779400348663330</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 14 5 10 -1.</_> - <_>10 19 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0514479987323284</threshold> - <left_val>0.1567839980125427</left_val> - <right_val>-1.5188430547714233</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 21 18 3 -1.</_> - <_>3 22 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.1479999888688326e-003</threshold> - <left_val>-0.4042440056800842</left_val> - <right_val>0.3242970108985901</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 14 6 10 -1.</_> - <_>12 14 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0436000004410744</threshold> - <left_val>-1.9932260513305664</left_val> - <right_val>0.1501860022544861</right_val></_></_></trees> - <stage_threshold>-3.8832089900970459</stage_threshold> - <parent>6</parent> - <next>-1</next></_> - <_> - <!-- stage 8 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 4 -1.</_> - <_>8 2 8 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1289959996938705</threshold> - <left_val>-0.6216199994087219</left_val> - <right_val>1.1116520166397095</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 12 9 -1.</_> - <_>6 7 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0912619978189468</threshold> - <left_val>1.0143059492111206</left_val> - <right_val>-0.6133520007133484</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 12 5 -1.</_> - <_>10 6 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0142719997093081</threshold> - <left_val>-1.0261659622192383</left_val> - <right_val>0.3977999985218048</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 14 12 -1.</_> - <_>5 12 14 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0328899994492531</threshold> - <left_val>-1.1386079788208008</left_val> - <right_val>0.2869080007076263</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 14 8 10 -1.</_> - <_>4 14 4 5 2.</_> - <_>8 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0125900004059076</threshold> - <left_val>-0.5664560198783875</left_val> - <right_val>0.4517239928245544</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 5 14 -1.</_> - <_>11 13 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0146610001102090</threshold> - <left_val>0.3050599992275238</left_val> - <right_val>-0.6812959909439087</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 3 16 -1.</_> - <_>7 14 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0335559993982315</threshold> - <left_val>-1.7208939790725708</left_val> - <right_val>0.0614390000700951</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 7 18 8 -1.</_> - <_>9 7 6 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1425269991159439</threshold> - <left_val>0.2319220006465912</left_val> - <right_val>-1.7297149896621704</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 3 20 2 -1.</_> - <_>2 4 20 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.2079997733235359e-003</threshold> - <left_val>-1.2163300514221191</left_val> - <right_val>0.1216019988059998</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 12 19 6 -1.</_> - <_>3 14 19 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0181789994239807</threshold> - <left_val>0.3255369961261749</left_val> - <right_val>-0.8100399971008301</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 6 9 -1.</_> - <_>10 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0250369999557734</threshold> - <left_val>-0.3169879913330078</left_val> - <right_val>0.6736140251159668</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 6 6 14 -1.</_> - <_>16 6 3 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0465609990060329</threshold> - <left_val>-0.1108980029821396</left_val> - <right_val>0.8408250212669373</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 9 6 12 -1.</_> - <_>9 9 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.9999996125698090e-003</threshold> - <left_val>0.3957450091838837</left_val> - <right_val>-0.4762459993362427</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 6 6 18 -1.</_> - <_>21 6 3 9 2.</_> - <_>18 15 3 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0408059991896153</threshold> - <left_val>-1.8000000272877514e-004</left_val> - <right_val>0.9457070231437683</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 6 18 -1.</_> - <_>0 6 3 9 2.</_> - <_>3 15 3 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0342219993472099</threshold> - <left_val>0.7520629763603210</left_val> - <right_val>-0.3153150081634522</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 2 6 9 -1.</_> - <_>18 5 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0397160016000271</threshold> - <left_val>-0.8313959836959839</left_val> - <right_val>0.1774439960718155</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 18 15 6 -1.</_> - <_>3 20 15 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.5170000735670328e-003</threshold> - <left_val>-0.5937799811363220</left_val> - <right_val>0.2465700060129166</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 2 6 9 -1.</_> - <_>18 5 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0274289995431900</threshold> - <left_val>0.1599839925765991</left_val> - <right_val>-0.4278199970722199</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 9 -1.</_> - <_>0 5 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0349860005080700</threshold> - <left_val>0.0350559987127781</left_val> - <right_val>-1.5988600254058838</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 10 18 2 -1.</_> - <_>5 11 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.4970000162720680e-003</threshold> - <left_val>-0.5203430056571960</left_val> - <right_val>0.3782829940319061</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 12 6 -1.</_> - <_>6 2 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.7699999045580626e-003</threshold> - <left_val>-0.5318260192871094</left_val> - <right_val>0.2495100051164627</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 6 9 -1.</_> - <_>12 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0351740010082722</threshold> - <left_val>0.1998340040445328</left_val> - <right_val>-1.4446129798889160</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 0 6 9 -1.</_> - <_>10 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0259709991514683</threshold> - <left_val>0.0444269999861717</left_val> - <right_val>-1.3622980117797852</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 12 9 6 -1.</_> - <_>15 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0157839991152287</threshold> - <left_val>-0.9102039933204651</left_val> - <right_val>0.2719030082225800</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 13 6 -1.</_> - <_>3 8 13 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.5880000367760658e-003</threshold> - <left_val>0.0920649990439415</left_val> - <right_val>-0.8162890076637268</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 12 9 6 -1.</_> - <_>15 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0207540001720190</threshold> - <left_val>0.2118570059537888</left_val> - <right_val>-0.7472900152206421</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 5 6 15 -1.</_> - <_>5 5 3 15 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0598290003836155</threshold> - <left_val>-0.2730109989643097</left_val> - <right_val>0.8092330098152161</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 8 9 6 -1.</_> - <_>11 8 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0390390008687973</threshold> - <left_val>-0.1043229997158051</left_val> - <right_val>0.8622620105743408</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 3 14 -1.</_> - <_>8 13 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0216659996658564</threshold> - <left_val>0.0627090036869049</left_val> - <right_val>-0.9889429807662964</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 12 9 6 -1.</_> - <_>15 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0274969991296530</threshold> - <left_val>-0.9269099831581116</left_val> - <right_val>0.1558630019426346</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 12 10 4 -1.</_> - <_>9 12 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0104620000347495</threshold> - <left_val>0.1341809928417206</left_val> - <right_val>-0.7038639783859253</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 1 4 19 -1.</_> - <_>13 1 2 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0248709991574287</threshold> - <left_val>0.1970670074224472</left_val> - <right_val>-0.4026330113410950</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 1 4 19 -1.</_> - <_>9 1 2 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0160360001027584</threshold> - <left_val>-1.1409829854965210</left_val> - <right_val>0.0739979967474937</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 9 6 9 -1.</_> - <_>18 12 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0486270003020763</threshold> - <left_val>0.1699039936065674</left_val> - <right_val>-0.7215219736099243</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 21 18 3 -1.</_> - <_>1 22 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2619999470189214e-003</threshold> - <left_val>-0.4738979935646057</left_val> - <right_val>0.2625499963760376</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 13 10 9 -1.</_> - <_>14 16 10 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0880350023508072</threshold> - <left_val>-2.1606519222259521</left_val> - <right_val>0.1455480009317398</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 13 22 4 -1.</_> - <_>1 13 11 2 2.</_> - <_>12 15 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0183569993823767</threshold> - <left_val>0.0447509996592999</left_val> - <right_val>-1.0766370296478271</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 16 6 -1.</_> - <_>12 6 8 3 2.</_> - <_>4 9 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0352750010788441</threshold> - <left_val>-0.0329190008342266</left_val> - <right_val>1.2153890132904053</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 18 22 -1.</_> - <_>1 0 9 11 2.</_> - <_>10 11 9 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2039290070533752</threshold> - <left_val>-1.3187999725341797</left_val> - <right_val>0.0155039997771382</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 7 8 14 -1.</_> - <_>14 7 4 7 2.</_> - <_>10 14 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0166190005838871</threshold> - <left_val>0.3685019910335541</left_val> - <right_val>-0.1528369933366776</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 6 20 -1.</_> - <_>0 4 3 10 2.</_> - <_>3 14 3 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0377390012145042</threshold> - <left_val>-0.2572779953479767</left_val> - <right_val>0.7065529823303223</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 6 9 -1.</_> - <_>17 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.2720000706613064e-003</threshold> - <left_val>-0.0776029974222183</left_val> - <right_val>0.3336780071258545</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 6 9 -1.</_> - <_>5 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0148029997944832</threshold> - <left_val>-0.7852479815483093</left_val> - <right_val>0.0769340023398399</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 12 6 12 -1.</_> - <_>18 12 3 6 2.</_> - <_>15 18 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0483190007507801</threshold> - <left_val>1.7022320032119751</left_val> - <right_val>0.0497220009565353</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 12 6 12 -1.</_> - <_>3 12 3 6 2.</_> - <_>6 18 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0295390002429485</threshold> - <left_val>0.7767069935798645</left_val> - <right_val>-0.2453429996967316</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 12 9 6 -1.</_> - <_>15 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0461690016090870</threshold> - <left_val>-1.4922779798507690</left_val> - <right_val>0.1234000027179718</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 9 6 -1.</_> - <_>0 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0280649997293949</threshold> - <left_val>-2.1345369815826416</left_val> - <right_val>-0.0257970001548529</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 14 19 3 -1.</_> - <_>4 15 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.7339998893439770e-003</threshold> - <left_val>0.5698260068893433</left_val> - <right_val>-0.1205660030245781</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 13 19 3 -1.</_> - <_>2 14 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0101110003888607</threshold> - <left_val>0.6791139841079712</left_val> - <right_val>-0.2663800120353699</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 15 10 6 -1.</_> - <_>14 17 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0113599998876452</threshold> - <left_val>0.2478979974985123</left_val> - <right_val>-0.6449300050735474</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 10 12 -1.</_> - <_>6 0 5 6 2.</_> - <_>11 6 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0518090017139912</threshold> - <left_val>0.0147160002961755</left_val> - <right_val>-1.2395579814910889</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 1 6 12 -1.</_> - <_>20 1 3 6 2.</_> - <_>17 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0332919992506504</threshold> - <left_val>-8.2559995353221893e-003</left_val> - <right_val>1.0168470144271851</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 6 12 -1.</_> - <_>1 1 3 6 2.</_> - <_>4 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0144940000027418</threshold> - <left_val>0.4506680071353912</left_val> - <right_val>-0.3625099956989288</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 14 6 9 -1.</_> - <_>16 17 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0342219993472099</threshold> - <left_val>-0.9529250264167786</left_val> - <right_val>0.2068459987640381</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 3 9 12 -1.</_> - <_>7 9 9 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0806540027260780</threshold> - <left_val>-2.0139501094818115</left_val> - <right_val>-0.0230849999934435</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 4 12 -1.</_> - <_>12 7 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.9399999706074595e-004</threshold> - <left_val>0.3957200050354004</left_val> - <right_val>-0.2935130000114441</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 14 8 -1.</_> - <_>4 4 14 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0971620008349419</threshold> - <left_val>-0.2498030066490173</left_val> - <right_val>1.0859220027923584</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 6 9 -1.</_> - <_>12 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0366140007972717</threshold> - <left_val>-0.0578440017998219</left_val> - <right_val>1.2162159681320190</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 10 18 3 -1.</_> - <_>8 10 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0516939982771873</threshold> - <left_val>0.0430629998445511</left_val> - <right_val>-1.0636160373687744</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 15 9 6 -1.</_> - <_>15 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0245570000261068</threshold> - <left_val>-0.4894680082798004</left_val> - <right_val>0.1718290001153946</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 21 23 -1.</_> - <_>7 1 7 23 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3273679912090302</threshold> - <left_val>-0.2968859970569611</left_val> - <right_val>0.5179830193519592</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 9 17 4 -1.</_> - <_>6 11 17 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.6959999278187752e-003</threshold> - <left_val>-0.5980589985847473</left_val> - <right_val>0.2480320036411285</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 11 18 -1.</_> - <_>1 6 11 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1617220044136047</threshold> - <left_val>-0.0296139996498823</left_val> - <right_val>-2.3162529468536377</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 15 13 6 -1.</_> - <_>6 17 13 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.7889999113976955e-003</threshold> - <left_val>0.3745790123939514</left_val> - <right_val>-0.3277919888496399</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 9 6 -1.</_> - <_>0 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0184029992669821</threshold> - <left_val>-0.9969270229339600</left_val> - <right_val>0.0729480013251305</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 15 4 -1.</_> - <_>13 7 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0776650011539459</threshold> - <left_val>0.1417569965124130</left_val> - <right_val>-1.7238730192184448</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 6 9 -1.</_> - <_>9 15 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0189210008829832</threshold> - <left_val>-0.2127310037612915</left_val> - <right_val>1.0165189504623413</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 8 18 3 -1.</_> - <_>12 8 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0793979987502098</threshold> - <left_val>-1.3164349794387817</left_val> - <right_val>0.1498199999332428</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 24 4 -1.</_> - <_>8 14 8 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0680370032787323</threshold> - <left_val>0.4942199885845184</left_val> - <right_val>-0.2909100055694580</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 10 3 12 -1.</_> - <_>16 16 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.1010001227259636e-003</threshold> - <left_val>0.4243049919605255</left_val> - <right_val>-0.3389930129051209</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 24 3 -1.</_> - <_>0 4 24 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0319270007312298</threshold> - <left_val>-0.0310469996184111</left_val> - <right_val>-2.3459999561309814</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 17 10 6 -1.</_> - <_>14 19 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0298439990729094</threshold> - <left_val>-0.7898960113525391</left_val> - <right_val>0.1541769951581955</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 13 18 3 -1.</_> - <_>7 13 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0805419981479645</threshold> - <left_val>-2.2509229183197021</left_val> - <right_val>-0.0309069994837046</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 18 9 -1.</_> - <_>5 3 18 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.8109999150037766e-003</threshold> - <left_val>-0.2557730078697205</left_val> - <right_val>0.2378550022840500</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 16 9 -1.</_> - <_>4 6 16 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0336470007896423</threshold> - <left_val>-0.2254139930009842</left_val> - <right_val>0.9230740070343018</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 5 3 12 -1.</_> - <_>16 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.2809999585151672e-003</threshold> - <left_val>-0.2889620065689087</left_val> - <right_val>0.3104619979858398</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 18 4 -1.</_> - <_>6 7 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1010439991950989</threshold> - <left_val>-0.0348640009760857</left_val> - <right_val>-2.7102620601654053</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 6 9 -1.</_> - <_>12 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0100090000778437</threshold> - <left_val>0.5971540212631226</left_val> - <right_val>-0.0338310003280640</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 6 10 -1.</_> - <_>11 8 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.1919998154044151e-003</threshold> - <left_val>-0.4773800075054169</left_val> - <right_val>0.2268600016832352</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 15 6 9 -1.</_> - <_>11 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0249690003693104</threshold> - <left_val>0.2287770062685013</left_val> - <right_val>-1.0435529947280884</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 1 18 21 -1.</_> - <_>12 1 9 21 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2790800034999847</threshold> - <left_val>-0.2581810057163239</left_val> - <right_val>0.7678049802780151</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 8 12 7 -1.</_> - <_>6 8 6 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0442130006849766</threshold> - <left_val>-0.5979800224304199</left_val> - <right_val>0.2803989946842194</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 5 6 9 -1.</_> - <_>10 5 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0141369998455048</threshold> - <left_val>0.7098730206489563</left_val> - <right_val>-0.2564519941806793</right_val></_></_></trees> - <stage_threshold>-3.8424909114837646</stage_threshold> - <parent>7</parent> - <next>-1</next></_> - <_> - <!-- stage 9 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 4 -1.</_> - <_>8 2 8 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1377120018005371</threshold> - <left_val>-0.5587059855461121</left_val> - <right_val>1.0953769683837891</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 7 5 12 -1.</_> - <_>14 11 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0344609990715981</threshold> - <left_val>-0.7117189764976502</left_val> - <right_val>0.5289959907531738</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 5 12 -1.</_> - <_>5 11 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0185800008475780</threshold> - <left_val>-1.1157519817352295</left_val> - <right_val>0.4059399962425232</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 9 -1.</_> - <_>11 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0250419992953539</threshold> - <left_val>-0.4089249968528748</left_val> - <right_val>0.7412999868392944</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 6 17 -1.</_> - <_>3 1 3 17 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0571790002286434</threshold> - <left_val>-0.3805429935455322</left_val> - <right_val>0.7364770174026489</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 1 19 9 -1.</_> - <_>3 4 19 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0149320000782609</threshold> - <left_val>-0.6994550228118897</left_val> - <right_val>0.3795099854469299</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 18 12 6 -1.</_> - <_>3 18 6 3 2.</_> - <_>9 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.8900001719594002e-003</threshold> - <left_val>-0.5455859899520874</left_val> - <right_val>0.3633249998092651</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 4 4 19 -1.</_> - <_>20 4 2 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0304359998553991</threshold> - <left_val>-0.1012459993362427</left_val> - <right_val>0.7958589792251587</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 10 7 -1.</_> - <_>5 16 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0441600009799004</threshold> - <left_val>0.8441089987754822</left_val> - <right_val>-0.3297640085220337</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 10 12 -1.</_> - <_>13 7 5 6 2.</_> - <_>8 13 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0184610001742840</threshold> - <left_val>0.2632659971714020</left_val> - <right_val>-0.9673650264739990</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 10 12 -1.</_> - <_>6 7 5 6 2.</_> - <_>11 13 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0106149995699525</threshold> - <left_val>0.1525190025568008</left_val> - <right_val>-1.0589870214462280</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 2 9 6 -1.</_> - <_>12 2 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0459740012884140</threshold> - <left_val>-1.9918340444564819</left_val> - <right_val>0.1362909972667694</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 20 21 4 -1.</_> - <_>8 20 7 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0829000025987625</threshold> - <left_val>-0.3203719854354858</left_val> - <right_val>0.6030420064926148</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 9 6 -1.</_> - <_>9 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.9130001142621040e-003</threshold> - <left_val>0.5958660244941711</left_val> - <right_val>-0.2113959938287735</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 2 9 6 -1.</_> - <_>10 2 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0428140014410019</threshold> - <left_val>0.0229250006377697</left_val> - <right_val>-1.4679330587387085</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 4 14 -1.</_> - <_>13 0 2 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.7139997631311417e-003</threshold> - <left_val>-0.4398950040340424</left_val> - <right_val>0.2043969929218292</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 4 14 -1.</_> - <_>9 0 2 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.3390002101659775e-003</threshold> - <left_val>-0.8906679749488831</left_val> - <right_val>0.1046999990940094</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 15 9 6 -1.</_> - <_>14 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.0749997869133949e-003</threshold> - <left_val>0.2116419970989227</left_val> - <right_val>-0.4023160040378571</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 8 18 5 -1.</_> - <_>8 8 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0967390015721321</threshold> - <left_val>0.0133199999108911</left_val> - <right_val>-1.6085360050201416</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 3 6 11 -1.</_> - <_>20 3 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0305369999259710</threshold> - <left_val>1.0063740015029907</left_val> - <right_val>-0.1341329962015152</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 11 14 -1.</_> - <_>6 12 11 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0608559995889664</threshold> - <left_val>-1.4689979553222656</left_val> - <right_val>9.4240000471472740e-003</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 4 6 9 -1.</_> - <_>18 7 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0381620004773140</threshold> - <left_val>-0.8163639903068543</left_val> - <right_val>0.2617120146751404</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 9 6 -1.</_> - <_>7 8 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.6960002556443214e-003</threshold> - <left_val>0.1156169995665550</left_val> - <right_val>-0.7169319987297058</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 4 6 9 -1.</_> - <_>18 7 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0489029996097088</threshold> - <left_val>0.1305049955844879</left_val> - <right_val>-1.6448370218276978</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 6 9 -1.</_> - <_>0 7 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0416119992733002</threshold> - <left_val>-1.1795840263366699</left_val> - <right_val>0.0250170007348061</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 4 9 4 -1.</_> - <_>9 6 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0201880000531673</threshold> - <left_val>0.6318820118904114</left_val> - <right_val>-0.1049040034413338</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 22 19 2 -1.</_> - <_>0 23 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.7900000400841236e-004</threshold> - <left_val>0.1850779950618744</left_val> - <right_val>-0.5356590151786804</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 14 6 9 -1.</_> - <_>17 17 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0336220003664494</threshold> - <left_val>-0.9312760233879089</left_val> - <right_val>0.2007150053977966</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 14 6 9 -1.</_> - <_>1 17 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0194559991359711</threshold> - <left_val>0.0380290001630783</left_val> - <right_val>-1.0112210512161255</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 11 4 9 -1.</_> - <_>14 11 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.1800000579096377e-004</threshold> - <left_val>0.3645769953727722</left_val> - <right_val>-0.2761090099811554</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 11 4 9 -1.</_> - <_>8 11 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.8899999344721437e-004</threshold> - <left_val>0.1966589987277985</left_val> - <right_val>-0.5341050028800964</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 9 18 7 -1.</_> - <_>9 9 6 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0934960022568703</threshold> - <left_val>-1.6772350072860718</left_val> - <right_val>0.2072709947824478</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 6 10 -1.</_> - <_>9 17 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0778779983520508</threshold> - <left_val>-3.0760629177093506</left_val> - <right_val>-0.0358039997518063</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 6 9 -1.</_> - <_>14 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0169479995965958</threshold> - <left_val>0.2144739925861359</left_val> - <right_val>-0.7137629985809326</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 6 9 -1.</_> - <_>8 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0214590001851320</threshold> - <left_val>-1.1468060016632080</left_val> - <right_val>0.0158559996634722</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 17 18 3 -1.</_> - <_>6 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0128659997135401</threshold> - <left_val>0.8381239771842957</left_val> - <right_val>-0.0659440010786057</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 17 18 3 -1.</_> - <_>1 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.8220004215836525e-003</threshold> - <left_val>-0.2802680134773254</left_val> - <right_val>0.7937690019607544</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 11 12 -1.</_> - <_>10 12 11 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1029440015554428</threshold> - <left_val>0.1783230006694794</left_val> - <right_val>-0.6841220259666443</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 14 6 -1.</_> - <_>5 6 7 3 2.</_> - <_>12 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0374879986047745</threshold> - <left_val>0.9618999958038330</left_val> - <right_val>-0.2173559963703156</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 15 4 -1.</_> - <_>5 6 15 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0255059991031885</threshold> - <left_val>0.0101039996370673</left_val> - <right_val>1.2461110353469849</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 22 2 -1.</_> - <_>0 1 22 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.6700001480057836e-004</threshold> - <left_val>-0.5348820090293884</left_val> - <right_val>0.1474629938602448</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 24 -1.</_> - <_>8 0 8 24 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2886790037155151</threshold> - <left_val>0.8217279911041260</left_val> - <right_val>-0.0149480002000928</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 15 18 4 -1.</_> - <_>10 15 9 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0912949964404106</threshold> - <left_val>-0.1960539966821671</left_val> - <right_val>1.0803170204162598</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 8 12 9 -1.</_> - <_>6 11 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1205660030245781</threshold> - <left_val>-0.0238489992916584</left_val> - <right_val>1.1392610073089600</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 12 7 12 -1.</_> - <_>4 16 7 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0737750008702278</threshold> - <left_val>-1.3583840131759644</left_val> - <right_val>-4.2039998807013035e-003</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 22 6 -1.</_> - <_>12 2 11 3 2.</_> - <_>1 5 11 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0331280007958412</threshold> - <left_val>-0.6448320150375366</left_val> - <right_val>0.2414219975471497</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 20 14 3 -1.</_> - <_>12 20 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0439370013773441</threshold> - <left_val>0.8428540229797363</left_val> - <right_val>-0.2062480002641678</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 16 -1.</_> - <_>12 0 12 8 2.</_> - <_>0 8 12 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1811019927263260</threshold> - <left_val>0.1921209990978241</left_val> - <right_val>-1.2222139835357666</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 13 18 4 -1.</_> - <_>3 13 9 2 2.</_> - <_>12 15 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0118509996682405</threshold> - <left_val>-0.7267739772796631</left_val> - <right_val>0.0526879988610744</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 10 22 2 -1.</_> - <_>2 11 22 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.5920000411570072e-003</threshold> - <left_val>-0.3630520105361939</left_val> - <right_val>0.2922379970550537</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 3 11 8 -1.</_> - <_>6 7 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.0620002225041389e-003</threshold> - <left_val>0.0581160001456738</left_val> - <right_val>-0.6716160178184509</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 5 6 6 -1.</_> - <_>14 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0237150005996227</threshold> - <left_val>0.4714210033416748</left_val> - <right_val>0.0185800008475780</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 24 6 -1.</_> - <_>0 9 24 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0671719983220100</threshold> - <left_val>-1.1331889629364014</left_val> - <right_val>0.0237809997051954</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 10 10 -1.</_> - <_>19 0 5 5 2.</_> - <_>14 5 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0653100013732910</threshold> - <left_val>0.9825350046157837</left_val> - <right_val>0.0283620003610849</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 10 10 -1.</_> - <_>0 0 5 5 2.</_> - <_>5 5 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0227910000830889</threshold> - <left_val>-0.2821370065212250</left_val> - <right_val>0.5899339914321899</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 4 -1.</_> - <_>12 1 12 2 2.</_> - <_>0 3 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0190379992127419</threshold> - <left_val>-0.6371150016784668</left_val> - <right_val>0.2651459872722626</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 18 3 -1.</_> - <_>0 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.8689999170601368e-003</threshold> - <left_val>0.3748730123043060</left_val> - <right_val>-0.3323209881782532</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 15 16 6 -1.</_> - <_>13 15 8 3 2.</_> - <_>5 18 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0401460006833076</threshold> - <left_val>-1.3048729896545410</left_val> - <right_val>0.1572429984807968</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 15 16 6 -1.</_> - <_>3 15 8 3 2.</_> - <_>11 18 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0405309982597828</threshold> - <left_val>-2.0458049774169922</left_val> - <right_val>-0.0269259996712208</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 16 18 3 -1.</_> - <_>6 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0122539997100830</threshold> - <left_val>0.7764940261840820</left_val> - <right_val>-0.0429710000753403</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 21 10 -1.</_> - <_>0 18 21 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0272199995815754</threshold> - <left_val>0.1742440015077591</left_val> - <right_val>-0.4460090100765228</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 6 24 -1.</_> - <_>15 0 2 24 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0883660018444061</threshold> - <left_val>-1.5036419630050659</left_val> - <right_val>0.1428990066051483</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 4 6 11 -1.</_> - <_>9 4 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.9159997403621674e-003</threshold> - <left_val>0.2866669893264771</left_val> - <right_val>-0.3792369961738586</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 9 6 -1.</_> - <_>12 5 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0419600009918213</threshold> - <left_val>1.3846950531005859</left_val> - <right_val>0.0650269985198975</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 4 2 20 -1.</_> - <_>1 14 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0456629991531372</threshold> - <left_val>-0.2245229929685593</left_val> - <right_val>0.7952100038528442</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 6 24 -1.</_> - <_>15 0 2 24 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1409060060977936</threshold> - <left_val>-1.5879319906234741</left_val> - <right_val>0.1135900020599365</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 6 24 -1.</_> - <_>7 0 2 24 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0592160001397133</threshold> - <left_val>-1.1945960521697998</left_val> - <right_val>-7.1640000678598881e-003</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 7 6 14 -1.</_> - <_>19 7 3 7 2.</_> - <_>16 14 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.3390002101659775e-003</threshold> - <left_val>-0.1552869975566864</left_val> - <right_val>0.4066449999809265</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 4 12 -1.</_> - <_>6 7 2 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.0369999110698700e-003</threshold> - <left_val>0.2592790126800537</left_val> - <right_val>-0.3836829960346222</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 24 14 -1.</_> - <_>8 5 8 14 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2751649916172028</threshold> - <left_val>-0.0884979963302612</left_val> - <right_val>0.7678750157356262</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 13 10 6 -1.</_> - <_>5 15 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0266019999980927</threshold> - <left_val>0.7502449750900269</left_val> - <right_val>-0.2262199968099594</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 6 9 -1.</_> - <_>14 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0409060008823872</threshold> - <left_val>0.1215860024094582</left_val> - <right_val>-1.4566910266876221</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 7 6 14 -1.</_> - <_>2 7 3 7 2.</_> - <_>5 14 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.5320002138614655e-003</threshold> - <left_val>-0.3661150038242340</left_val> - <right_val>0.2596859931945801</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 2 9 15 -1.</_> - <_>18 2 3 15 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0318790003657341</threshold> - <left_val>-0.0750190019607544</left_val> - <right_val>0.4848479926586151</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 9 -1.</_> - <_>2 2 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0414820015430450</threshold> - <left_val>0.7822039723396301</left_val> - <right_val>-0.2199220061302185</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 2 10 14 -1.</_> - <_>17 2 5 7 2.</_> - <_>12 9 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0961309969425201</threshold> - <left_val>-0.8945630192756653</left_val> - <right_val>0.1468070000410080</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 2 18 -1.</_> - <_>12 6 1 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0115689998492599</threshold> - <left_val>0.8271409869194031</left_val> - <right_val>-0.2027560025453568</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 15 6 -1.</_> - <_>14 5 5 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0183129999786615</threshold> - <left_val>0.0163679998368025</left_val> - <right_val>0.2730680108070374</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 6 10 -1.</_> - <_>10 6 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0341660007834435</threshold> - <left_val>1.1307320594787598</left_val> - <right_val>-0.1881089955568314</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 6 9 -1.</_> - <_>14 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0244769994169474</threshold> - <left_val>-0.5779129862785339</left_val> - <right_val>0.1581249982118607</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 3 9 7 -1.</_> - <_>6 3 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0489570014178753</threshold> - <left_val>-0.0225649997591972</left_val> - <right_val>-1.6373280286788940</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 14 3 -1.</_> - <_>6 7 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0207029990851879</threshold> - <left_val>-0.5451210141181946</left_val> - <right_val>0.2408699989318848</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 8 6 -1.</_> - <_>11 7 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0230020005255938</threshold> - <left_val>-1.2236540317535400</left_val> - <right_val>-7.3440000414848328e-003</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 7 7 12 -1.</_> - <_>12 13 7 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0645850002765656</threshold> - <left_val>0.1469559967517853</left_val> - <right_val>-0.4496749937534332</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 18 -1.</_> - <_>10 6 2 9 2.</_> - <_>12 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0126660000532866</threshold> - <left_val>-0.2787390053272247</left_val> - <right_val>0.4387660026550293</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 14 6 9 -1.</_> - <_>16 17 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0120029998943210</threshold> - <left_val>-0.2428909987211227</left_val> - <right_val>0.2535009980201721</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 6 13 -1.</_> - <_>6 0 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0264439992606640</threshold> - <left_val>-0.8586480021476746</left_val> - <right_val>0.0260259993374348</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 2 21 3 -1.</_> - <_>9 2 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0255479998886585</threshold> - <left_val>0.6928790211677551</left_val> - <right_val>-2.1160000469535589e-003</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 5 12 -1.</_> - <_>5 8 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0391150005161762</threshold> - <left_val>-0.1658910065889359</left_val> - <right_val>1.5209139585494995</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 3 4 10 -1.</_> - <_>10 8 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.0330000706017017e-003</threshold> - <left_val>0.4385690093040466</left_val> - <right_val>-0.2161370068788528</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 4 5 8 -1.</_> - <_>8 8 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0339369997382164</threshold> - <left_val>-0.9799839854240418</left_val> - <right_val>0.0221330001950264</right_val></_></_></trees> - <stage_threshold>-3.6478610038757324</stage_threshold> - <parent>8</parent> - <next>-1</next></_> - <_> - <!-- stage 10 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 11 9 -1.</_> - <_>6 3 11 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0406729988753796</threshold> - <left_val>-0.9047470092773438</left_val> - <right_val>0.6441059708595276</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 12 5 -1.</_> - <_>10 6 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0256099998950958</threshold> - <left_val>-0.7921699881553650</left_val> - <right_val>0.5748999714851379</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 5 -1.</_> - <_>8 0 8 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1995950043201447</threshold> - <left_val>-0.3009960055351257</left_val> - <right_val>1.3143850564956665</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 23 6 -1.</_> - <_>1 12 23 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0124049996957183</threshold> - <left_val>-0.8988299965858460</left_val> - <right_val>0.2920579910278320</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 21 18 3 -1.</_> - <_>9 21 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0392079986631870</threshold> - <left_val>-0.4195519983768463</left_val> - <right_val>0.5346329808235169</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 21 6 -1.</_> - <_>3 8 21 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0308439992368221</threshold> - <left_val>0.4579339921474457</left_val> - <right_val>-0.4462909996509552</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 6 12 -1.</_> - <_>2 5 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0355230011045933</threshold> - <left_val>0.9131050109863281</left_val> - <right_val>-0.2737320065498352</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 4 15 -1.</_> - <_>10 7 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0616500005125999</threshold> - <left_val>-1.4697799682617187</left_val> - <right_val>0.2036409974098206</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 8 10 -1.</_> - <_>8 12 8 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0117399999871850</threshold> - <left_val>-1.0482879877090454</left_val> - <right_val>0.0678019970655441</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 15 12 -1.</_> - <_>10 7 5 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0669339969754219</threshold> - <left_val>0.2927449941635132</left_val> - <right_val>-0.5228289961814880</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 10 6 -1.</_> - <_>0 19 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0206310003995895</threshold> - <left_val>-1.2855139970779419</left_val> - <right_val>0.0445509999990463</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 18 9 6 -1.</_> - <_>14 20 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0223570000380278</threshold> - <left_val>-0.8575379848480225</left_val> - <right_val>0.1843400001525879</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 16 -1.</_> - <_>9 14 6 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1500000255182385e-003</threshold> - <left_val>0.1640550047159195</left_val> - <right_val>-0.6912500262260437</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 18 9 6 -1.</_> - <_>14 20 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0358729995787144</threshold> - <left_val>0.1575649976730347</left_val> - <right_val>-0.8426259756088257</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 18 9 6 -1.</_> - <_>1 20 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0306599996984005</threshold> - <left_val>0.0216370001435280</left_val> - <right_val>-1.3634690046310425</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 9 9 6 -1.</_> - <_>15 11 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.5559999309480190e-003</threshold> - <left_val>-0.1673700064420700</left_val> - <right_val>0.2588840126991272</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 9 9 6 -1.</_> - <_>0 11 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.1160000041127205e-003</threshold> - <left_val>-0.9727180004119873</left_val> - <right_val>0.0661000013351440</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 3 6 9 -1.</_> - <_>19 3 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0303169991821051</threshold> - <left_val>0.9847419857978821</left_val> - <right_val>-0.0164480004459620</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 17 18 3 -1.</_> - <_>2 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.7200004383921623e-003</threshold> - <left_val>0.4760470092296600</left_val> - <right_val>-0.3251670002937317</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 15 21 6 -1.</_> - <_>3 17 21 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0571269989013672</threshold> - <left_val>-0.9592069983482361</left_val> - <right_val>0.1993820071220398</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 17 6 6 -1.</_> - <_>9 20 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0059997700154781e-003</threshold> - <left_val>-0.5261250138282776</left_val> - <right_val>0.2242870032787323</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 3 6 9 -1.</_> - <_>18 6 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0337340012192726</threshold> - <left_val>0.1707009971141815</left_val> - <right_val>-1.0737580060958862</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 6 9 -1.</_> - <_>0 6 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0346419997513294</threshold> - <left_val>-1.1343129873275757</left_val> - <right_val>0.0365400016307831</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 16 10 -1.</_> - <_>12 0 8 5 2.</_> - <_>4 5 8 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0469230003654957</threshold> - <left_val>0.2583230137825012</left_val> - <right_val>-0.7153580188751221</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 10 16 -1.</_> - <_>2 0 5 8 2.</_> - <_>7 8 5 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.7660001590847969e-003</threshold> - <left_val>0.1964090019464493</left_val> - <right_val>-0.5335509777069092</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 10 5 -1.</_> - <_>14 0 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0656279996037483</threshold> - <left_val>-0.0511949993669987</left_val> - <right_val>0.9761070013046265</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 10 5 -1.</_> - <_>5 0 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0441650003194809</threshold> - <left_val>1.0631920099258423</left_val> - <right_val>-0.2346259951591492</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 3 6 10 -1.</_> - <_>18 3 3 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0173049997538328</threshold> - <left_val>-0.1858289986848831</left_val> - <right_val>0.4588989913463593</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 12 6 -1.</_> - <_>5 11 6 3 2.</_> - <_>11 14 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0331359989941120</threshold> - <left_val>-0.0293819997459650</left_val> - <right_val>-2.6651329994201660</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>21 0 3 18 -1.</_> - <_>22 0 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0210299994796515</threshold> - <left_val>0.9997990131378174</left_val> - <right_val>0.0249370001256466</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 6 9 -1.</_> - <_>8 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0297839995473623</threshold> - <left_val>-0.0296059995889664</left_val> - <right_val>-2.1695868968963623</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 8 9 7 -1.</_> - <_>11 8 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0552919991314411</threshold> - <left_val>-7.5599999399855733e-004</left_val> - <right_val>0.7465199828147888</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 12 8 10 -1.</_> - <_>7 12 4 5 2.</_> - <_>11 17 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0335979983210564</threshold> - <left_val>-1.5274159908294678</left_val> - <right_val>0.0110600003972650</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>21 0 3 18 -1.</_> - <_>22 0 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0196029990911484</threshold> - <left_val>0.0335749983787537</left_val> - <right_val>0.9952620267868042</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 9 -1.</_> - <_>12 6 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0207870006561279</threshold> - <left_val>0.7661290168762207</left_val> - <right_val>-0.2467080056667328</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 9 6 -1.</_> - <_>15 2 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0325360000133514</threshold> - <left_val>0.1626340001821518</left_val> - <right_val>-0.6113430261611939</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 3 -1.</_> - <_>0 3 24 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0107880001887679</threshold> - <left_val>-0.9783970117568970</left_val> - <right_val>0.0289699994027615</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 7 6 9 -1.</_> - <_>13 7 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.9560003727674484e-003</threshold> - <left_val>0.4614579975605011</left_val> - <right_val>-0.1351049989461899</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 6 10 -1.</_> - <_>9 6 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.7489999085664749e-003</threshold> - <left_val>0.2545819878578186</left_val> - <right_val>-0.5195559859275818</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 6 12 -1.</_> - <_>14 1 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0417799986898899</threshold> - <left_val>-0.8056510090827942</left_val> - <right_val>0.1520850062370300</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 12 12 -1.</_> - <_>6 10 12 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0342210009694099</threshold> - <left_val>-1.3137799501419067</left_val> - <right_val>-3.5800000187009573e-003</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 3 2 21 -1.</_> - <_>14 3 1 21 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0101300003007054</threshold> - <left_val>0.2017579972743988</left_val> - <right_val>-0.6133959889411926</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 1 12 8 -1.</_> - <_>6 5 12 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0898490026593208</threshold> - <left_val>0.9763280153274536</left_val> - <right_val>-0.2088479995727539</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 18 8 -1.</_> - <_>3 4 18 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0260979998856783</threshold> - <left_val>-0.1880799978971481</left_val> - <right_val>0.4770579934120178</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 18 3 -1.</_> - <_>3 1 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.7539999466389418e-003</threshold> - <left_val>-0.6798040270805359</left_val> - <right_val>0.1128880009055138</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 24 4 -1.</_> - <_>12 13 12 2 2.</_> - <_>0 15 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0319730006158352</threshold> - <left_val>0.1895170062780380</left_val> - <right_val>-1.4967479705810547</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 4 9 -1.</_> - <_>12 5 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0193329993635416</threshold> - <left_val>-0.2360990047454834</left_val> - <right_val>0.8132050037384033</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 1 6 9 -1.</_> - <_>13 1 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.9490000559017062e-003</threshold> - <left_val>0.2483039945363998</left_val> - <right_val>-0.0692119970917702</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 2 6 22 -1.</_> - <_>8 2 2 22 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0441469997167587</threshold> - <left_val>-1.0418920516967773</left_val> - <right_val>0.0480530001223087</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 10 8 14 -1.</_> - <_>20 10 4 7 2.</_> - <_>16 17 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0446819998323917</threshold> - <left_val>0.5134630203247070</left_val> - <right_val>-7.3799998499453068e-003</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 4 16 15 -1.</_> - <_>3 9 16 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1075749993324280</threshold> - <left_val>1.6202019453048706</left_val> - <right_val>-0.1866759955883026</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 10 8 14 -1.</_> - <_>20 10 4 7 2.</_> - <_>16 17 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1284680068492889</threshold> - <left_val>2.9869480133056641</left_val> - <right_val>0.0954279974102974</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 10 8 14 -1.</_> - <_>0 10 4 7 2.</_> - <_>4 17 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0447579994797707</threshold> - <left_val>0.6040530204772949</left_val> - <right_val>-0.2705869972705841</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 14 11 6 -1.</_> - <_>10 17 11 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0439909994602203</threshold> - <left_val>-0.6179050207138062</left_val> - <right_val>0.1599719971418381</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 24 9 -1.</_> - <_>8 7 8 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1226899996399880</threshold> - <left_val>0.6632720232009888</left_val> - <right_val>-0.2363699972629547</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 1 4 16 -1.</_> - <_>13 1 2 16 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0199829991906881</threshold> - <left_val>-1.1228660345077515</left_val> - <right_val>0.1961670070886612</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 1 4 16 -1.</_> - <_>9 1 2 16 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0155279999598861</threshold> - <left_val>-1.0770269632339478</left_val> - <right_val>0.0206930004060268</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 5 16 8 -1.</_> - <_>13 5 8 4 2.</_> - <_>5 9 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0489710010588169</threshold> - <left_val>0.8116829991340637</left_val> - <right_val>-0.0172520000487566</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 9 6 9 -1.</_> - <_>0 12 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0559759996831417</threshold> - <left_val>-0.0225290004163980</left_val> - <right_val>-1.7356760501861572</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 16 18 3 -1.</_> - <_>6 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.8580000922083855e-003</threshold> - <left_val>0.6788139939308167</left_val> - <right_val>-0.0581800006330013</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 12 6 9 -1.</_> - <_>3 15 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0134810004383326</threshold> - <left_val>0.0578479990363121</left_val> - <right_val>-0.7725530266761780</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 14 9 6 -1.</_> - <_>8 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.5609999001026154e-003</threshold> - <left_val>-0.1314689964056015</left_val> - <right_val>0.6705579757690430</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 13 8 10 -1.</_> - <_>2 13 4 5 2.</_> - <_>6 18 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.1149999275803566e-003</threshold> - <left_val>-0.3788059949874878</left_val> - <right_val>0.3097899854183197</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 5 3 18 -1.</_> - <_>15 11 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.8159998841583729e-003</threshold> - <left_val>-0.5847039818763733</left_val> - <right_val>0.2560209929943085</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 5 18 3 -1.</_> - <_>3 6 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.5319999381899834e-003</threshold> - <left_val>-0.3021700084209442</left_val> - <right_val>0.4125329852104187</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 5 6 11 -1.</_> - <_>19 5 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0274749994277954</threshold> - <left_val>0.5915470123291016</left_val> - <right_val>0.0179639998823404</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 6 11 -1.</_> - <_>3 5 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0395199991762638</threshold> - <left_val>0.9691349864006043</left_val> - <right_val>-0.2102030068635941</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 1 4 9 -1.</_> - <_>19 1 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0306589994579554</threshold> - <left_val>0.9115589857101440</left_val> - <right_val>0.0405500009655952</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 4 9 -1.</_> - <_>3 1 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4680000022053719e-003</threshold> - <left_val>-0.6048979759216309</left_val> - <right_val>0.1696089953184128</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 15 18 9 -1.</_> - <_>4 15 9 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1907760053873062</threshold> - <left_val>0.0435150004923344</left_val> - <right_val>0.8189290165901184</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 9 12 4 -1.</_> - <_>6 11 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.1790000870823860e-003</threshold> - <left_val>-0.9361730217933655</left_val> - <right_val>0.0249370001256466</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 2 9 6 -1.</_> - <_>15 4 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0241260007023811</threshold> - <left_val>0.1817550063133240</left_val> - <right_val>-0.3418590128421783</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 9 6 -1.</_> - <_>0 4 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0263839997351170</threshold> - <left_val>-1.2912579774856567</left_val> - <right_val>-3.4280000254511833e-003</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 6 17 -1.</_> - <_>17 0 2 17 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.4139997810125351e-003</threshold> - <left_val>-0.0462919995188713</left_val> - <right_val>0.2526960074901581</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 6 17 -1.</_> - <_>5 0 2 17 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0542160011827946</threshold> - <left_val>-0.0128480000421405</left_val> - <right_val>-1.4304540157318115</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 17 9 4 -1.</_> - <_>8 19 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.3799999326001853e-004</threshold> - <left_val>-0.2667669951915741</left_val> - <right_val>0.3358829915523529</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 3 18 -1.</_> - <_>6 11 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0152169996872544</threshold> - <left_val>-0.5136730074882507</left_val> - <right_val>0.1300510019063950</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 14 12 -1.</_> - <_>5 8 14 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0170079991221428</threshold> - <left_val>0.4157589972019196</left_val> - <right_val>-0.3124119937419891</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 3 12 -1.</_> - <_>10 8 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0304969996213913</threshold> - <left_val>-0.2482099980115891</left_val> - <right_val>0.7082849740982056</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 7 14 15 -1.</_> - <_>10 12 14 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.5430002287030220e-003</threshold> - <left_val>-0.2263700067996979</left_val> - <right_val>0.1918459981679916</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 14 15 -1.</_> - <_>0 12 14 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1416399925947189</threshold> - <left_val>0.0652270019054413</left_val> - <right_val>-0.8880950212478638</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 9 6 -1.</_> - <_>15 2 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0193380005657673</threshold> - <left_val>0.1889120042324066</left_val> - <right_val>-0.2739770114421845</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 9 6 -1.</_> - <_>0 2 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0173240005970001</threshold> - <left_val>-0.9486669898033142</left_val> - <right_val>0.0241969991475344</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 6 6 14 -1.</_> - <_>14 6 2 14 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.2069999985396862e-003</threshold> - <left_val>0.3693839907646179</left_val> - <right_val>-0.1749490052461624</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 7 6 9 -1.</_> - <_>11 7 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0161090008914471</threshold> - <left_val>0.9615949988365173</left_val> - <right_val>-0.2000530064105988</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 6 6 15 -1.</_> - <_>14 6 2 15 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1012250036001205</threshold> - <left_val>-3.0699110031127930</left_val> - <right_val>0.1136379987001419</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 6 15 -1.</_> - <_>8 6 2 15 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.5509999878704548e-003</threshold> - <left_val>0.2292100042104721</left_val> - <right_val>-0.4564509987831116</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 3 8 9 -1.</_> - <_>15 3 4 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0442479997873306</threshold> - <left_val>-3.1599999056197703e-004</left_val> - <right_val>0.3922530114650726</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 9 21 -1.</_> - <_>3 0 3 21 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1163600012660027</threshold> - <left_val>0.9523370265960693</left_val> - <right_val>-0.2020159959793091</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 9 8 12 -1.</_> - <_>11 13 8 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.7360002063214779e-003</threshold> - <left_val>-0.0991770029067993</left_val> - <right_val>0.2037049978971481</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 10 12 -1.</_> - <_>6 7 5 6 2.</_> - <_>11 13 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0224590003490448</threshold> - <left_val>8.7280003353953362e-003</left_val> - <right_val>-1.0217070579528809</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 18 -1.</_> - <_>12 6 2 9 2.</_> - <_>10 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0121090002357960</threshold> - <left_val>0.6481260061264038</left_val> - <right_val>-0.0901490002870560</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 6 9 -1.</_> - <_>0 3 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0561200007796288</threshold> - <left_val>-0.0367599986493587</left_val> - <right_val>-1.9275590181350708</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 14 18 3 -1.</_> - <_>3 15 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.7379999458789825e-003</threshold> - <left_val>0.6926130056381226</left_val> - <right_val>-0.0683749988675117</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 14 8 10 -1.</_> - <_>3 14 4 5 2.</_> - <_>7 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.6399998031556606e-003</threshold> - <left_val>-0.4056980013847351</left_val> - <right_val>0.1862570047378540</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 24 4 -1.</_> - <_>12 12 12 2 2.</_> - <_>0 14 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0181319992989302</threshold> - <left_val>-0.6451820135116577</left_val> - <right_val>0.2197639942169190</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 3 20 -1.</_> - <_>1 2 1 20 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0227189995348454</threshold> - <left_val>0.9777619838714600</left_val> - <right_val>-0.1865430027246475</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 16 10 8 -1.</_> - <_>17 16 5 4 2.</_> - <_>12 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0127050001174212</threshold> - <left_val>-0.1054660007357597</left_val> - <right_val>0.3740409910678864</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 16 10 8 -1.</_> - <_>2 16 5 4 2.</_> - <_>7 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0136829996481538</threshold> - <left_val>0.6106410026550293</left_val> - <right_val>-0.2688109874725342</right_val></_></_></trees> - <stage_threshold>-3.8700489997863770</stage_threshold> - <parent>9</parent> - <next>-1</next></_> - <_> - <!-- stage 11 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 10 9 -1.</_> - <_>7 3 10 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0313579998910427</threshold> - <left_val>-1.0183910131454468</left_val> - <right_val>0.5752859711647034</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 3 -1.</_> - <_>8 0 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0930500030517578</threshold> - <left_val>-0.4129750132560730</left_val> - <right_val>1.0091199874877930</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 8 15 4 -1.</_> - <_>3 10 15 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0259499996900558</threshold> - <left_val>-0.5858790278434753</left_val> - <right_val>0.5660619735717773</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 12 6 -1.</_> - <_>10 5 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0164720006287098</threshold> - <left_val>-0.9285749793052673</left_val> - <right_val>0.3092449903488159</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 13 14 6 -1.</_> - <_>5 16 14 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.8779999809339643e-003</threshold> - <left_val>0.1195100024342537</left_val> - <right_val>-1.1180130243301392</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 14 4 10 -1.</_> - <_>11 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.0129999443888664e-003</threshold> - <left_val>-0.5784950256347656</left_val> - <right_val>0.3315440118312836</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 6 7 -1.</_> - <_>3 6 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0225479993969202</threshold> - <left_val>-0.3832510113716126</left_val> - <right_val>0.5246220231056213</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 0 6 6 -1.</_> - <_>18 0 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0377800017595291</threshold> - <left_val>1.1790670156478882</left_val> - <right_val>-0.0341669991612434</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 1 18 3 -1.</_> - <_>3 2 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.3799999877810478e-003</threshold> - <left_val>-0.8626589775085449</left_val> - <right_val>0.1186790019273758</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 14 18 -1.</_> - <_>9 12 14 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0238930005580187</threshold> - <left_val>-0.7495059967041016</left_val> - <right_val>0.2101140022277832</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 6 6 -1.</_> - <_>3 0 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0265219993889332</threshold> - <left_val>0.9212859869003296</left_val> - <right_val>-0.2825280129909515</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 11 6 6 -1.</_> - <_>13 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0122800003737211</threshold> - <left_val>0.2666279971599579</left_val> - <right_val>-0.7001360058784485</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 20 24 3 -1.</_> - <_>8 20 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0965949967503548</threshold> - <left_val>-0.2845399975776672</left_val> - <right_val>0.7316899895668030</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 11 6 7 -1.</_> - <_>13 11 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0274149999022484</threshold> - <left_val>-0.6149269938468933</left_val> - <right_val>0.1557620018720627</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 12 10 6 -1.</_> - <_>4 14 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0157670006155968</threshold> - <left_val>0.5755119919776917</left_val> - <right_val>-0.3436219990253449</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 11 6 6 -1.</_> - <_>13 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.1100000012665987e-003</threshold> - <left_val>0.3259969949722290</left_val> - <right_val>-0.1300829946994782</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 6 7 -1.</_> - <_>8 11 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0120069999247789</threshold> - <left_val>0.0893229991197586</left_val> - <right_val>-0.9602559804916382</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 4 11 12 -1.</_> - <_>7 8 11 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0154219996184111</threshold> - <left_val>0.3444949984550476</left_val> - <right_val>-0.4671199917793274</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 15 10 4 -1.</_> - <_>6 17 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.1579999960958958e-003</threshold> - <left_val>0.2369630038738251</left_val> - <right_val>-0.5256329774856567</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 6 9 -1.</_> - <_>16 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0211859997361898</threshold> - <left_val>-0.7426769733428955</left_val> - <right_val>0.2170200049877167</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 6 9 -1.</_> - <_>6 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0170770008116961</threshold> - <left_val>-0.9047179818153381</left_val> - <right_val>0.0660120025277138</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 2 4 15 -1.</_> - <_>11 7 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0408499985933304</threshold> - <left_val>-0.3444660007953644</left_val> - <right_val>0.2150370031595230</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 20 3 -1.</_> - <_>0 1 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.1930002197623253e-003</threshold> - <left_val>-0.9338859915733337</left_val> - <right_val>0.0504710003733635</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 18 10 6 -1.</_> - <_>13 20 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0192380007356405</threshold> - <left_val>-0.5320370197296143</left_val> - <right_val>0.1724060028791428</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 7 6 11 -1.</_> - <_>5 7 3 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0441920012235641</threshold> - <left_val>0.9207500219345093</left_val> - <right_val>-0.2214850038290024</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 14 10 9 -1.</_> - <_>10 17 10 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0623920001089573</threshold> - <left_val>-0.7105380296707153</left_val> - <right_val>0.1832389980554581</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 2 4 9 -1.</_> - <_>10 2 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0079999919980764e-003</threshold> - <left_val>-0.8706309795379639</left_val> - <right_val>0.0553300008177757</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 3 10 4 -1.</_> - <_>14 3 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0238700006157160</threshold> - <left_val>-0.2285420000553131</left_val> - <right_val>0.5241559743881226</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 12 6 -1.</_> - <_>6 6 6 3 2.</_> - <_>12 9 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0213910005986691</threshold> - <left_val>-0.3032589852809906</left_val> - <right_val>0.5586060285568237</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 8 8 10 -1.</_> - <_>12 8 4 5 2.</_> - <_>8 13 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0202549993991852</threshold> - <left_val>0.2690150141716003</left_val> - <right_val>-0.7026180028915405</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 4 4 16 -1.</_> - <_>7 12 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0287720002233982</threshold> - <left_val>-1.1835030317306519</left_val> - <right_val>0.0465120002627373</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 8 9 4 -1.</_> - <_>8 10 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.4199999645352364e-003</threshold> - <left_val>-0.5465210080146790</left_val> - <right_val>0.2596249878406525</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 14 9 -1.</_> - <_>5 5 14 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0569830015301704</threshold> - <left_val>-0.2698290050029755</left_val> - <right_val>0.5817070007324219</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 16 19 8 -1.</_> - <_>3 20 19 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0938920006155968</threshold> - <left_val>-0.9104639887809753</left_val> - <right_val>0.1967770010232925</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 10 8 -1.</_> - <_>5 0 5 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0176999997347593</threshold> - <left_val>-0.4400329887866974</left_val> - <right_val>0.2134950011968613</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 16 18 -1.</_> - <_>5 2 8 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2284419983625412</threshold> - <left_val>0.0236050002276897</left_val> - <right_val>0.7717159986495972</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 11 24 11 -1.</_> - <_>8 11 8 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1828750073909760</threshold> - <left_val>0.7922859787940979</left_val> - <right_val>-0.2464479953050613</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 3 18 5 -1.</_> - <_>3 3 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0698919966816902</threshold> - <left_val>0.8026779890060425</left_val> - <right_val>-0.0360720008611679</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 16 18 3 -1.</_> - <_>1 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0152970002964139</threshold> - <left_val>-0.2007230073213577</left_val> - <right_val>1.1030600070953369</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 17 18 3 -1.</_> - <_>5 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7500001750886440e-003</threshold> - <left_val>-0.0459679998457432</left_val> - <right_val>0.7209450006484985</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 13 9 6 -1.</_> - <_>1 15 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0159830003976822</threshold> - <left_val>-0.9035720229148865</left_val> - <right_val>0.0449879989027977</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 9 23 10 -1.</_> - <_>1 14 23 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0130880000069737</threshold> - <left_val>0.3529709875583649</left_val> - <right_val>-0.3771060109138489</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 7 18 3 -1.</_> - <_>3 8 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0130610000342131</threshold> - <left_val>-0.1958359926939011</left_val> - <right_val>1.1198940277099609</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 8 12 3 -1.</_> - <_>6 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0399070009589195</threshold> - <left_val>-1.3998429775238037</left_val> - <right_val>0.1914509981870651</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 2 3 22 -1.</_> - <_>7 2 1 22 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0150269996374846</threshold> - <left_val>2.3600000422447920e-003</left_val> - <right_val>-1.1611249446868896</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 17 10 6 -1.</_> - <_>14 19 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0205179993063211</threshold> - <left_val>-0.4890809953212738</left_val> - <right_val>0.1674340069293976</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 18 10 6 -1.</_> - <_>1 20 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0223590005189180</threshold> - <left_val>-1.2202980518341064</left_val> - <right_val>-0.0119759999215603</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 3 6 12 -1.</_> - <_>13 3 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.9150004312396049e-003</threshold> - <left_val>0.3722809851169586</left_val> - <right_val>-0.0850630030035973</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 9 -1.</_> - <_>12 6 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0152580002322793</threshold> - <left_val>-0.2941260039806366</left_val> - <right_val>0.5940639972686768</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 0 6 9 -1.</_> - <_>13 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0316659994423389</threshold> - <left_val>-1.4395569562911987</left_val> - <right_val>0.1357879936695099</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 6 9 -1.</_> - <_>9 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0307739991694689</threshold> - <left_val>-2.2545371055603027</left_val> - <right_val>-0.0339710004627705</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 10 9 6 -1.</_> - <_>15 10 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0154830003157258</threshold> - <left_val>0.3770070075988770</left_val> - <right_val>0.0158479996025562</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 11 6 9 -1.</_> - <_>5 11 3 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0351670011878014</threshold> - <left_val>-0.2944610118865967</left_val> - <right_val>0.5315909981727600</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 5 3 19 -1.</_> - <_>15 5 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0179060008376837</threshold> - <left_val>-0.9978820085525513</left_val> - <right_val>0.1623599976301193</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 9 6 -1.</_> - <_>6 8 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.1799999997019768e-003</threshold> - <left_val>0.0476570017635822</left_val> - <right_val>-0.7524989843368530</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 5 3 19 -1.</_> - <_>15 5 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0157200004905462</threshold> - <left_val>0.1487379968166351</left_val> - <right_val>-0.6537539958953857</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 6 9 -1.</_> - <_>0 6 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0298640001565218</threshold> - <left_val>-0.0149520002305508</left_val> - <right_val>-1.2275190353393555</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 21 18 3 -1.</_> - <_>5 22 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.9899999499320984e-003</threshold> - <left_val>-0.1426369994878769</left_val> - <right_val>0.4327279925346375</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 18 4 -1.</_> - <_>7 10 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0847499966621399</threshold> - <left_val>-0.0192809998989105</left_val> - <right_val>-1.1946409940719604</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 4 8 10 -1.</_> - <_>17 4 4 5 2.</_> - <_>13 9 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0587249994277954</threshold> - <left_val>-1.7328219413757324</left_val> - <right_val>0.1437470018863678</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 9 6 -1.</_> - <_>10 8 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0447559989988804</threshold> - <left_val>-0.2414059937000275</left_val> - <right_val>0.5401999950408936</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 9 9 8 -1.</_> - <_>15 9 3 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0403690002858639</threshold> - <left_val>5.7680001482367516e-003</left_val> - <right_val>0.5657809972763062</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 5 12 -1.</_> - <_>0 10 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0377359986305237</threshold> - <left_val>0.0381809994578362</left_val> - <right_val>-0.7937039732933044</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 14 6 -1.</_> - <_>14 6 7 3 2.</_> - <_>7 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0607529990375042</threshold> - <left_val>0.0764530003070831</left_val> - <right_val>1.4813209772109985</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 3 19 -1.</_> - <_>8 5 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0198320001363754</threshold> - <left_val>-1.6971720457077026</left_val> - <right_val>-0.0273700002580881</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 4 15 20 -1.</_> - <_>13 4 5 20 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1659269928932190</threshold> - <left_val>0.6297600269317627</left_val> - <right_val>0.0317629985511303</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 4 15 20 -1.</_> - <_>6 4 5 20 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0690149962902069</threshold> - <left_val>-0.3346320092678070</left_val> - <right_val>0.3007670044898987</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 10 6 6 -1.</_> - <_>13 10 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0113580003380775</threshold> - <left_val>0.2274149954319000</left_val> - <right_val>-0.3822470009326935</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 10 6 6 -1.</_> - <_>8 10 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.7000000225380063e-003</threshold> - <left_val>0.1922380030155182</left_val> - <right_val>-0.5273510217666626</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 2 6 14 -1.</_> - <_>17 2 3 7 2.</_> - <_>14 9 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0797690004110336</threshold> - <left_val>0.0914919972419739</left_val> - <right_val>2.1049048900604248</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 2 6 14 -1.</_> - <_>4 2 3 7 2.</_> - <_>7 9 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0571440011262894</threshold> - <left_val>-1.7452130317687988</left_val> - <right_val>-0.0409100018441677</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 4 6 7 -1.</_> - <_>12 4 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.3830001056194305e-003</threshold> - <left_val>-0.2421479970216751</left_val> - <right_val>0.3557780086994171</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 4 6 9 -1.</_> - <_>11 4 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0180409997701645</threshold> - <left_val>1.1779999732971191</left_val> - <right_val>-0.1767670065164566</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 4 8 10 -1.</_> - <_>11 4 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0945030003786087</threshold> - <left_val>0.1393609941005707</left_val> - <right_val>-1.2993700504302979</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 8 10 -1.</_> - <_>9 4 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.4210000671446323e-003</threshold> - <left_val>-0.5460860133171082</left_val> - <right_val>0.1391640007495880</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 18 10 6 -1.</_> - <_>8 20 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.0290002040565014e-003</threshold> - <left_val>-0.2159720063209534</left_val> - <right_val>0.3925809860229492</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 18 21 6 -1.</_> - <_>1 20 21 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0345159992575645</threshold> - <left_val>0.0631889998912811</left_val> - <right_val>-0.7210810184478760</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 2 12 6 -1.</_> - <_>9 2 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0519249998033047</threshold> - <left_val>0.6866760253906250</left_val> - <right_val>0.0632729977369308</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 12 6 -1.</_> - <_>9 2 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0691620036959648</threshold> - <left_val>1.7411810159683228</left_val> - <right_val>-0.1661929935216904</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 5 12 6 -1.</_> - <_>18 5 6 3 2.</_> - <_>12 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.5229999125003815e-003</threshold> - <left_val>0.3069469928741455</left_val> - <right_val>-0.1666290014982224</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 8 6 9 -1.</_> - <_>8 11 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0685999989509583</threshold> - <left_val>-0.2140540033578873</left_val> - <right_val>0.7318500280380249</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 7 20 6 -1.</_> - <_>2 9 20 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0670389980077744</threshold> - <left_val>-0.7936059832572937</left_val> - <right_val>0.2052579969167709</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 12 6 -1.</_> - <_>0 5 6 3 2.</_> - <_>6 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0210050009191036</threshold> - <left_val>0.3734439909458160</left_val> - <right_val>-0.2961860001087189</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 14 8 10 -1.</_> - <_>18 14 4 5 2.</_> - <_>14 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0202789995819330</threshold> - <left_val>-0.0152000002563000</left_val> - <right_val>0.4055530130863190</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 14 8 10 -1.</_> - <_>2 14 4 5 2.</_> - <_>6 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0471079982817173</threshold> - <left_val>1.2116849422454834</left_val> - <right_val>-0.1746429949998856</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 11 20 13 -1.</_> - <_>2 11 10 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1876849979162216</threshold> - <left_val>-0.0229090005159378</left_val> - <right_val>0.6964579820632935</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 9 12 5 -1.</_> - <_>12 9 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0432289987802505</threshold> - <left_val>-1.0602480173110962</left_val> - <right_val>-5.5599998449906707e-004</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 16 6 -1.</_> - <_>13 6 8 3 2.</_> - <_>5 9 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0200040005147457</threshold> - <left_val>-0.0327510014176369</left_val> - <right_val>0.5380510091781616</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 19 9 4 -1.</_> - <_>1 21 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.0880001187324524e-003</threshold> - <left_val>0.0375480018556118</left_val> - <right_val>-0.7476890087127686</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 12 5 -1.</_> - <_>11 5 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0271010007709265</threshold> - <left_val>-0.0817900002002716</left_val> - <right_val>0.3338710069656372</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 5 14 12 -1.</_> - <_>3 5 7 6 2.</_> - <_>10 11 7 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0917460024356842</threshold> - <left_val>-1.9213509559631348</left_val> - <right_val>-0.0389529988169670</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 4 9 6 -1.</_> - <_>12 4 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0124549996107817</threshold> - <left_val>0.4836060106754303</left_val> - <right_val>0.0181680005043745</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 6 19 3 -1.</_> - <_>2 7 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0146490000188351</threshold> - <left_val>-0.1990669965744019</left_val> - <right_val>0.7281540036201477</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 10 6 9 -1.</_> - <_>18 13 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0291019994765520</threshold> - <left_val>0.1987109929323196</left_val> - <right_val>-0.4921680092811585</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 7 18 2 -1.</_> - <_>3 8 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.7799998000264168e-003</threshold> - <left_val>-0.1949959993362427</left_val> - <right_val>0.7731739878654480</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 2 4 18 -1.</_> - <_>22 2 2 9 2.</_> - <_>20 11 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0547400005161762</threshold> - <left_val>1.8087190389633179</left_val> - <right_val>0.0683230012655258</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 18 20 3 -1.</_> - <_>2 19 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0147980004549026</threshold> - <left_val>0.7806490063667297</left_val> - <right_val>-0.1870959997177124</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 9 22 3 -1.</_> - <_>1 10 22 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0250129997730255</threshold> - <left_val>0.1528529971837997</left_val> - <right_val>-1.6021020412445068</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 4 18 -1.</_> - <_>0 2 2 9 2.</_> - <_>2 11 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0465480014681816</threshold> - <left_val>-0.1673820018768311</left_val> - <right_val>1.1902060508728027</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 0 4 23 -1.</_> - <_>19 0 2 23 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0176240000873804</threshold> - <left_val>-0.1028549969196320</left_val> - <right_val>0.3917590081691742</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 6 19 -1.</_> - <_>3 3 3 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1631959974765778</threshold> - <left_val>-0.0356240011751652</left_val> - <right_val>-1.6098170280456543</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 2 6 9 -1.</_> - <_>20 2 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0131379999220371</threshold> - <left_val>-0.0563590005040169</left_val> - <right_val>0.5415890216827393</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 10 6 -1.</_> - <_>0 7 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0156650003045797</threshold> - <left_val>0.2806310057640076</left_val> - <right_val>-0.3170860111713409</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 12 12 -1.</_> - <_>13 0 6 6 2.</_> - <_>7 6 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0805540010333061</threshold> - <left_val>0.1264040023088455</left_val> - <right_val>-1.0297529697418213</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 24 6 -1.</_> - <_>0 3 12 3 2.</_> - <_>12 6 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0353639982640743</threshold> - <left_val>0.0207529999315739</left_val> - <right_val>-0.7910559773445129</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 14 4 10 -1.</_> - <_>10 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0329869985580444</threshold> - <left_val>0.1905709952116013</left_val> - <right_val>-0.8383989930152893</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 9 4 15 -1.</_> - <_>8 14 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0121950004249811</threshold> - <left_val>0.0737290009856224</left_val> - <right_val>-0.6278070211410523</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 11 17 6 -1.</_> - <_>4 14 17 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0430659987032413</threshold> - <left_val>0.0473849996924400</left_val> - <right_val>1.5712939500808716</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 5 18 8 -1.</_> - <_>2 5 9 4 2.</_> - <_>11 9 9 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0303269997239113</threshold> - <left_val>-0.2731460034847260</left_val> - <right_val>0.3857200145721436</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 14 6 -1.</_> - <_>14 6 7 3 2.</_> - <_>7 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0354930013418198</threshold> - <left_val>0.0545939989387989</left_val> - <right_val>0.5258340239524841</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 14 6 -1.</_> - <_>3 6 7 3 2.</_> - <_>10 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0145969996228814</threshold> - <left_val>0.3815259933471680</left_val> - <right_val>-0.2833240032196045</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 5 3 18 -1.</_> - <_>17 5 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0126069998368621</threshold> - <left_val>0.1545509994029999</left_val> - <right_val>-0.3050149977207184</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 5 3 18 -1.</_> - <_>6 5 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0101720001548529</threshold> - <left_val>0.0236370004713535</left_val> - <right_val>-0.8721789717674255</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 10 14 4 -1.</_> - <_>10 12 14 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0288430005311966</threshold> - <left_val>0.1609099954366684</left_val> - <right_val>-0.2027759999036789</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 10 9 4 -1.</_> - <_>4 12 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.5100000463426113e-004</threshold> - <left_val>-0.6154540181159973</left_val> - <right_val>0.0809359997510910</right_val></_></_></trees> - <stage_threshold>-3.7160909175872803</stage_threshold> - <parent>10</parent> - <next>-1</next></_> - <_> - <!-- stage 12 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 18 9 -1.</_> - <_>2 3 18 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0483440011739731</threshold> - <left_val>-0.8490459918975830</left_val> - <right_val>0.5697439908981323</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 3 12 8 -1.</_> - <_>10 3 4 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0324600003659725</threshold> - <left_val>-0.8141729831695557</left_val> - <right_val>0.4478169977664948</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 8 5 -1.</_> - <_>5 1 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0333399996161461</threshold> - <left_val>-0.3642379939556122</left_val> - <right_val>0.6793739795684815</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 7 7 8 -1.</_> - <_>12 11 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.4019998535513878e-003</threshold> - <left_val>-1.1885459423065186</left_val> - <right_val>0.1923869997262955</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 22 4 -1.</_> - <_>0 14 22 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.6889997795224190e-003</threshold> - <left_val>0.3308529853820801</left_val> - <right_val>-0.7133409976959229</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 6 4 15 -1.</_> - <_>15 11 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0126980002969503</threshold> - <left_val>-0.5099080204963684</left_val> - <right_val>0.1137629970908165</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 7 8 -1.</_> - <_>5 11 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.0549997724592686e-003</threshold> - <left_val>-1.0470550060272217</left_val> - <right_val>0.2022259980440140</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 18 9 4 -1.</_> - <_>8 20 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.6420000940561295e-003</threshold> - <left_val>-0.5055940151214600</left_val> - <right_val>0.3644120097160339</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 22 4 -1.</_> - <_>1 4 22 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0169259998947382</threshold> - <left_val>-0.9954190254211426</left_val> - <right_val>0.1260219961404800</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 3 6 17 -1.</_> - <_>19 3 2 17 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0282359998673201</threshold> - <left_val>-0.0941379964351654</left_val> - <right_val>0.5778040289878845</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 2 8 18 -1.</_> - <_>8 11 8 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0104289995506406</threshold> - <left_val>0.2327290028333664</left_val> - <right_val>-0.5256969928741455</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 0 6 12 -1.</_> - <_>20 0 3 6 2.</_> - <_>17 6 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.8860003054141998e-003</threshold> - <left_val>-0.1031629964709282</left_val> - <right_val>0.4765760004520416</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 6 9 -1.</_> - <_>9 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0260150004178286</threshold> - <left_val>-1.0920000495389104e-003</left_val> - <right_val>-1.5581729412078857</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 5 9 12 -1.</_> - <_>15 11 9 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0255379993468523</threshold> - <left_val>-0.6545140147209168</left_val> - <right_val>0.1884319931268692</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 22 18 2 -1.</_> - <_>2 23 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.5310001112520695e-003</threshold> - <left_val>0.2814059853553772</left_val> - <right_val>-0.4457530081272125</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 10 12 6 -1.</_> - <_>16 10 6 3 2.</_> - <_>10 13 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.2449998483061790e-003</threshold> - <left_val>0.1561200022697449</left_val> - <right_val>-0.2137099951505661</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 4 11 -1.</_> - <_>2 1 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0210309997200966</threshold> - <left_val>-0.2917029857635498</left_val> - <right_val>0.5223410129547119</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 0 4 10 -1.</_> - <_>20 0 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0510630011558533</threshold> - <left_val>1.3661290407180786</left_val> - <right_val>0.0304659996181726</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 3 6 17 -1.</_> - <_>3 3 2 17 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0623300001025200</threshold> - <left_val>1.2207020521163940</left_val> - <right_val>-0.2243440002202988</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 15 9 6 -1.</_> - <_>15 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0329630002379417</threshold> - <left_val>-0.8201680183410645</left_val> - <right_val>0.1453189998865128</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 8 9 -1.</_> - <_>0 16 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0374180004000664</threshold> - <left_val>-1.2218099832534790</left_val> - <right_val>0.0194489993155003</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 8 6 12 -1.</_> - <_>16 12 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1240279972553253</threshold> - <left_val>0.1208230033516884</left_val> - <right_val>-0.9872930049896240</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 8 6 12 -1.</_> - <_>2 12 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.9229997247457504e-003</threshold> - <left_val>-1.1688489913940430</left_val> - <right_val>0.0211050007492304</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 4 15 -1.</_> - <_>10 7 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0598799996078014</threshold> - <left_val>-1.0689330101013184</left_val> - <right_val>0.1986020058393478</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 19 3 -1.</_> - <_>1 6 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.2620001845061779e-003</threshold> - <left_val>-0.3622959852218628</left_val> - <right_val>0.3800080120563507</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 8 9 7 -1.</_> - <_>14 8 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0176730006933212</threshold> - <left_val>0.4909409880638123</left_val> - <right_val>-0.1460669934749603</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 8 12 9 -1.</_> - <_>3 11 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0175790004432201</threshold> - <left_val>0.5872809886932373</left_val> - <right_val>-0.2777439951896668</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 18 3 -1.</_> - <_>3 7 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.1560001447796822e-003</threshold> - <left_val>-0.0751949995756149</left_val> - <right_val>0.6019309759140015</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 4 12 -1.</_> - <_>10 6 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0105999996885657</threshold> - <left_val>0.2763740122318268</left_val> - <right_val>-0.3779430091381073</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 9 18 14 -1.</_> - <_>3 9 9 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2088409960269928</threshold> - <left_val>-5.3599998354911804e-003</left_val> - <right_val>1.0317809581756592</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 4 9 -1.</_> - <_>2 0 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0264129992574453</threshold> - <left_val>0.8233640193939209</left_val> - <right_val>-0.2248059958219528</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 5 4 18 -1.</_> - <_>12 5 2 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0588920004665852</threshold> - <left_val>0.1309829950332642</left_val> - <right_val>-1.1853699684143066</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 5 4 18 -1.</_> - <_>10 5 2 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0115790003910661</threshold> - <left_val>-0.9066780209541321</left_val> - <right_val>0.0441269986331463</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 6 10 -1.</_> - <_>12 5 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0459880009293556</threshold> - <left_val>0.0101439999416471</left_val> - <right_val>1.0740900039672852</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 4 4 11 -1.</_> - <_>11 4 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0228380002081394</threshold> - <left_val>1.7791990041732788</left_val> - <right_val>-0.1731549948453903</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 16 18 3 -1.</_> - <_>4 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.1709995865821838e-003</threshold> - <left_val>0.5738630294799805</left_val> - <right_val>-0.0741060003638268</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 20 3 -1.</_> - <_>0 17 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.5359999164938927e-003</threshold> - <left_val>-0.3207289874553680</left_val> - <right_val>0.4018250107765198</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 9 6 12 -1.</_> - <_>9 13 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0494449995458126</threshold> - <left_val>0.1928800046443939</left_val> - <right_val>-1.2166700363159180</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 13 8 8 -1.</_> - <_>8 17 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.5139999818056822e-003</threshold> - <left_val>0.0695680007338524</left_val> - <right_val>-0.7132369875907898</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 10 3 12 -1.</_> - <_>13 16 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0309960003942251</threshold> - <left_val>-0.3886219859123230</left_val> - <right_val>0.1809879988431931</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 9 14 14 -1.</_> - <_>5 9 7 7 2.</_> - <_>12 16 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0864529982209206</threshold> - <left_val>-0.0257929991930723</left_val> - <right_val>-1.5453219413757324</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 10 -1.</_> - <_>12 0 12 5 2.</_> - <_>0 5 12 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1365260034799576</threshold> - <left_val>-1.9199420213699341</left_val> - <right_val>0.1661330014467239</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 11 18 2 -1.</_> - <_>1 12 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.7689999230206013e-003</threshold> - <left_val>-1.2822589874267578</left_val> - <right_val>-0.0159079991281033</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 5 5 12 -1.</_> - <_>19 9 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0178999993950129</threshold> - <left_val>-0.4040989875793457</left_val> - <right_val>0.2359160035848618</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 5 12 -1.</_> - <_>0 9 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0199699997901917</threshold> - <left_val>-0.7289190292358398</left_val> - <right_val>0.0562350004911423</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 6 8 18 -1.</_> - <_>20 6 4 9 2.</_> - <_>16 15 4 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0574930012226105</threshold> - <left_val>0.5783079862594605</left_val> - <right_val>-0.0157960001379251</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 8 18 -1.</_> - <_>0 6 4 9 2.</_> - <_>4 15 4 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0830560028553009</threshold> - <left_val>0.9151160120964050</left_val> - <right_val>-0.2112140059471130</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 5 12 12 -1.</_> - <_>18 5 6 6 2.</_> - <_>12 11 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0537710003554821</threshold> - <left_val>-0.5193129777908325</left_val> - <right_val>0.1857600063085556</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 6 9 -1.</_> - <_>9 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.3670001477003098e-003</threshold> - <left_val>0.2410970032215118</left_val> - <right_val>-0.3964860141277313</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 13 6 11 -1.</_> - <_>11 13 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0554069988429546</threshold> - <left_val>0.1677120029926300</left_val> - <right_val>-2.5664970874786377</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 12 12 -1.</_> - <_>0 5 6 6 2.</_> - <_>6 11 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0671809986233711</threshold> - <left_val>-1.3658570051193237</left_val> - <right_val>-0.0142320003360510</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 23 3 -1.</_> - <_>1 3 23 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0239000003784895</threshold> - <left_val>-1.7084569931030273</left_val> - <right_val>0.1650779992341995</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 15 19 3 -1.</_> - <_>1 16 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.5949999950826168e-003</threshold> - <left_val>-0.3137399852275848</left_val> - <right_val>0.3283790051937103</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 17 11 4 -1.</_> - <_>13 19 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0212949998676777</threshold> - <left_val>0.1495340019464493</left_val> - <right_val>-0.4857980012893677</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 8 5 -1.</_> - <_>4 13 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0246130004525185</threshold> - <left_val>0.7434639930725098</left_val> - <right_val>-0.2230519950389862</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 10 10 4 -1.</_> - <_>12 10 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0196260008960962</threshold> - <left_val>-0.4091829955577850</left_val> - <right_val>0.1889320015907288</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 9 9 -1.</_> - <_>4 9 9 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0532660000026226</threshold> - <left_val>0.8138160109519959</left_val> - <right_val>-0.2085369974374771</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 14 9 6 -1.</_> - <_>15 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.1290000341832638e-003</threshold> - <left_val>0.3299610018730164</left_val> - <right_val>-0.5993739962577820</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 12 9 6 -1.</_> - <_>1 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0224869996309280</threshold> - <left_val>-1.2551610469818115</left_val> - <right_val>-0.0204130001366138</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 20 8 -1.</_> - <_>13 10 10 4 2.</_> - <_>3 14 10 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0823109969496727</threshold> - <left_val>1.3821430206298828</left_val> - <right_val>0.0593089982867241</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 9 18 -1.</_> - <_>5 0 3 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1309700012207031</threshold> - <left_val>-0.0358439981937408</left_val> - <right_val>-1.5396369695663452</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 11 9 10 -1.</_> - <_>16 11 3 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0142930001020432</threshold> - <left_val>-0.1847520023584366</left_val> - <right_val>0.3745500147342682</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 8 5 -1.</_> - <_>5 2 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.3479999080300331e-003</threshold> - <left_val>-0.4490109980106354</left_val> - <right_val>0.1387699991464615</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 4 21 6 -1.</_> - <_>10 4 7 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0460550002753735</threshold> - <left_val>0.6783260107040405</left_val> - <right_val>-0.0170719996094704</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 10 14 -1.</_> - <_>7 0 5 7 2.</_> - <_>12 7 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0576939992606640</threshold> - <left_val>-0.0119559997692704</left_val> - <right_val>-1.2261159420013428</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 17 12 4 -1.</_> - <_>12 19 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.0609998181462288e-003</threshold> - <left_val>0.3395859897136688</left_val> - <right_val>6.2800000887364149e-004</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 23 4 -1.</_> - <_>0 8 23 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0521630011498928</threshold> - <left_val>-1.0621069669723511</left_val> - <right_val>-0.0137799996882677</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 10 8 10 -1.</_> - <_>17 10 4 5 2.</_> - <_>13 15 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0465729981660843</threshold> - <left_val>0.1453880071640015</left_val> - <right_val>-1.2384550571441650</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 18 3 -1.</_> - <_>0 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.5309998355805874e-003</threshold> - <left_val>-0.2446770071983337</left_val> - <right_val>0.5137709975242615</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 16 9 4 -1.</_> - <_>15 18 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0216150004416704</threshold> - <left_val>0.1307259947061539</left_val> - <right_val>-0.7099679708480835</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 9 4 -1.</_> - <_>0 18 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0178640000522137</threshold> - <left_val>-1.0474660396575928</left_val> - <right_val>4.9599999329075217e-004</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 11 6 6 -1.</_> - <_>13 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0371950007975101</threshold> - <left_val>-1.5126730203628540</left_val> - <right_val>0.1480139940977097</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 6 6 -1.</_> - <_>8 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.1100001069717109e-004</threshold> - <left_val>0.1397150009870529</left_val> - <right_val>-0.4686749875545502</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 24 6 -1.</_> - <_>12 3 12 3 2.</_> - <_>0 6 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0250429995357990</threshold> - <left_val>0.2863200008869171</left_val> - <right_val>-0.4179469943046570</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 4 18 3 -1.</_> - <_>2 5 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.3449996784329414e-003</threshold> - <left_val>-0.2733620107173920</left_val> - <right_val>0.4344469904899597</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 4 -1.</_> - <_>12 0 12 2 2.</_> - <_>0 2 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0323639996349812</threshold> - <left_val>0.1843889951705933</left_val> - <right_val>-0.9501929879188538</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 16 18 3 -1.</_> - <_>1 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.2299999408423901e-003</threshold> - <left_val>0.3258199989795685</left_val> - <right_val>-0.3081560134887695</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 15 9 6 -1.</_> - <_>15 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0514889992773533</threshold> - <left_val>0.1141600012779236</left_val> - <right_val>-1.9795479774475098</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 9 6 -1.</_> - <_>0 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0264490004628897</threshold> - <left_val>-1.1067299842834473</left_val> - <right_val>-8.5519999265670776e-003</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 17 18 3 -1.</_> - <_>6 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0154200000688434</threshold> - <left_val>0.8013870120048523</left_val> - <right_val>-0.0320350006222725</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 8 6 10 -1.</_> - <_>10 8 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0194569993764162</threshold> - <left_val>-0.2644949853420258</left_val> - <right_val>0.3875389993190765</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 6 9 -1.</_> - <_>12 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0336209982633591</threshold> - <left_val>0.0160520002245903</left_val> - <right_val>0.5884090065956116</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 8 5 8 -1.</_> - <_>8 12 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0289060007780790</threshold> - <left_val>0.0152160003781319</left_val> - <right_val>-0.9472360014915466</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 8 6 8 -1.</_> - <_>12 12 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.0300000323913991e-004</threshold> - <left_val>-0.3076600134372711</left_val> - <right_val>0.2123589962720871</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 6 11 -1.</_> - <_>8 5 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0491419993340969</threshold> - <left_val>-1.6058609485626221</left_val> - <right_val>-0.0310949999839067</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 6 8 9 -1.</_> - <_>13 9 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0764259994029999</threshold> - <left_val>0.0747589990496635</left_val> - <right_val>1.1639410257339478</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 7 21 6 -1.</_> - <_>1 9 21 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0238979998975992</threshold> - <left_val>-6.4320000819861889e-003</left_val> - <right_val>-1.1150749921798706</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 5 3 12 -1.</_> - <_>15 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.8970001041889191e-003</threshold> - <left_val>-0.2410569936037064</left_val> - <right_val>0.2085890024900436</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 9 11 12 -1.</_> - <_>6 13 11 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0894450023770332</threshold> - <left_val>1.9157789945602417</left_val> - <right_val>-0.1572110056877136</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 8 10 8 -1.</_> - <_>18 8 5 4 2.</_> - <_>13 12 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0150089999660850</threshold> - <left_val>-0.2517409920692444</left_val> - <right_val>0.1817989945411682</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 12 3 -1.</_> - <_>11 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0111459996551275</threshold> - <left_val>-0.6934949755668640</left_val> - <right_val>0.0449279993772507</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 11 18 4 -1.</_> - <_>12 11 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0945789963006973</threshold> - <left_val>0.1810210049152374</left_val> - <right_val>-0.7497860193252564</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 22 22 -1.</_> - <_>0 11 22 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.5503889918327332</threshold> - <left_val>-0.0309740006923676</left_val> - <right_val>-1.6746139526367188</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 2 6 8 -1.</_> - <_>11 6 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0413810014724731</threshold> - <left_val>0.0639100000262260</left_val> - <right_val>0.7656120061874390</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 6 9 -1.</_> - <_>11 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0247719995677471</threshold> - <left_val>0.0113800000399351</left_val> - <right_val>-0.8855940103530884</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 6 9 -1.</_> - <_>12 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0509990006685257</threshold> - <left_val>0.1489029973745346</left_val> - <right_val>-2.4634211063385010</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 3 6 14 -1.</_> - <_>8 3 3 7 2.</_> - <_>11 10 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0168939996510744</threshold> - <left_val>0.3887099921703339</left_val> - <right_val>-0.2988030016422272</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 18 8 -1.</_> - <_>9 10 6 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1216230019927025</threshold> - <left_val>-1.5542800426483154</left_val> - <right_val>0.1630080044269562</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 3 14 -1.</_> - <_>10 7 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.6049999762326479e-003</threshold> - <left_val>0.2184280008077622</left_val> - <right_val>-0.3731209933757782</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 16 20 -1.</_> - <_>4 13 16 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1157540008425713</threshold> - <left_val>-0.0470610000193119</left_val> - <right_val>0.5940369963645935</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 4 6 10 -1.</_> - <_>11 4 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0369039997458458</threshold> - <left_val>-0.2550860047340393</left_val> - <right_val>0.5539730191230774</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 16 4 -1.</_> - <_>5 2 16 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0114839999005198</threshold> - <left_val>-0.1812949925661087</left_val> - <right_val>0.4068279862403870</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 5 18 4 -1.</_> - <_>8 5 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0202339999377728</threshold> - <left_val>0.5431119799613953</left_val> - <right_val>-0.2382239997386932</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 6 9 -1.</_> - <_>15 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0287650004029274</threshold> - <left_val>-0.6917229890823364</left_val> - <right_val>0.1594330072402954</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 4 8 5 -1.</_> - <_>12 4 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.8320001699030399e-003</threshold> - <left_val>0.2944779992103577</left_val> - <right_val>-0.3400599956512451</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 10 10 4 -1.</_> - <_>12 10 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0554689988493919</threshold> - <left_val>0.9220079779624939</left_val> - <right_val>0.0940930023789406</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 10 10 4 -1.</_> - <_>7 10 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0148010002449155</threshold> - <left_val>-0.7953969836235046</left_val> - <right_val>0.0315219983458519</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 11 12 5 -1.</_> - <_>11 11 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.0940000005066395e-003</threshold> - <left_val>0.3309600055217743</left_val> - <right_val>-0.0508869998157024</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 8 10 -1.</_> - <_>3 10 4 5 2.</_> - <_>7 15 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0451240018010139</threshold> - <left_val>-1.3719749450683594</left_val> - <right_val>-0.0214089993387461</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 12 9 8 -1.</_> - <_>14 12 3 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0643770024180412</threshold> - <left_val>0.0639019981026649</left_val> - <right_val>0.9147830009460449</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 21 24 3 -1.</_> - <_>8 21 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0147270001471043</threshold> - <left_val>0.3605059981346130</left_val> - <right_val>-0.2861450016498566</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 20 18 4 -1.</_> - <_>9 20 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0450070016086102</threshold> - <left_val>-0.1561969965696335</left_val> - <right_val>0.5316029787063599</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 15 9 6 -1.</_> - <_>1 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1330000124871731e-003</threshold> - <left_val>0.1342290043830872</left_val> - <right_val>-0.4435890018939972</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 17 10 4 -1.</_> - <_>11 19 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0494510009884834</threshold> - <left_val>0.1057180017232895</left_val> - <right_val>-2.5589139461517334</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 4 12 -1.</_> - <_>9 18 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0291029997169971</threshold> - <left_val>-0.0100880004465580</left_val> - <right_val>-1.1073939800262451</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 9 6 -1.</_> - <_>12 6 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0347860008478165</threshold> - <left_val>-2.7719999197870493e-003</left_val> - <right_val>0.5670099854469299</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 13 6 9 -1.</_> - <_>1 16 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.1309998854994774e-003</threshold> - <left_val>-0.4688940048217773</left_val> - <right_val>0.1263639926910400</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 16 12 4 -1.</_> - <_>6 18 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0155250001698732</threshold> - <left_val>-8.4279999136924744e-003</left_val> - <right_val>0.8746920228004456</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 20 3 -1.</_> - <_>1 6 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.9249999206513166e-003</threshold> - <left_val>-0.3443430066108704</left_val> - <right_val>0.2085160017013550</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 9 9 -1.</_> - <_>8 4 9 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0535710006952286</threshold> - <left_val>1.4982949495315552</left_val> - <right_val>0.0573280006647110</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 19 9 4 -1.</_> - <_>2 21 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0192179996520281</threshold> - <left_val>-0.9923409819602966</left_val> - <right_val>-9.3919998034834862e-003</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 1 4 18 -1.</_> - <_>11 7 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0552829988300800</threshold> - <left_val>-0.5768229961395264</left_val> - <right_val>0.1686059981584549</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 2 8 12 -1.</_> - <_>7 2 4 6 2.</_> - <_>11 8 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0563360005617142</threshold> - <left_val>-0.0337750017642975</left_val> - <right_val>-1.3889650106430054</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 10 9 8 -1.</_> - <_>14 10 3 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0238240007311106</threshold> - <left_val>0.4018209874629974</left_val> - <right_val>1.8360000103712082e-003</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 12 5 -1.</_> - <_>9 11 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.7810000572353601e-003</threshold> - <left_val>0.1814599931240082</left_val> - <right_val>-0.4174340069293976</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 9 9 6 -1.</_> - <_>14 9 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0376890003681183</threshold> - <left_val>0.5468310117721558</left_val> - <right_val>0.0182199999690056</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 10 6 9 -1.</_> - <_>7 10 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0241449996829033</threshold> - <left_val>0.6835209727287293</left_val> - <right_val>-0.1965020000934601</right_val></_></_></trees> - <stage_threshold>-3.5645289421081543</stage_threshold> - <parent>11</parent> - <next>-1</next></_> - <_> - <!-- stage 13 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 5 12 -1.</_> - <_>4 11 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0274449996650219</threshold> - <left_val>-0.8998420238494873</left_val> - <right_val>0.5187649726867676</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 21 6 -1.</_> - <_>9 0 7 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1155410036444664</threshold> - <left_val>-0.5652440190315247</left_val> - <right_val>0.7055130004882813</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 10 6 -1.</_> - <_>7 8 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0222970005124807</threshold> - <left_val>0.3607999980449677</left_val> - <right_val>-0.6686459779739380</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 6 15 -1.</_> - <_>11 0 2 15 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0133250001817942</threshold> - <left_val>-0.5557339787483215</left_val> - <right_val>0.3578999936580658</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 2 18 2 -1.</_> - <_>2 3 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.8060001097619534e-003</threshold> - <left_val>-1.0713000297546387</left_val> - <right_val>0.1885000020265579</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 17 8 6 -1.</_> - <_>8 20 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.6819999329745770e-003</threshold> - <left_val>-0.7158430218696594</left_val> - <right_val>0.2634449899196625</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 18 2 -1.</_> - <_>3 1 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.3819999080151320e-003</threshold> - <left_val>-0.4693079888820648</left_val> - <right_val>0.2665840089321137</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 0 9 6 -1.</_> - <_>11 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0376430004835129</threshold> - <left_val>0.2109870016574860</left_val> - <right_val>-1.0804339647293091</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 18 3 -1.</_> - <_>0 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0138619998469949</threshold> - <left_val>0.6691200137138367</left_val> - <right_val>-0.2794280052185059</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 12 5 -1.</_> - <_>10 7 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7350001037120819e-003</threshold> - <left_val>-0.9533230066299439</left_val> - <right_val>0.2405129969120026</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 6 9 -1.</_> - <_>2 3 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0383369997143745</threshold> - <left_val>0.8143280148506165</left_val> - <right_val>-0.2491939961910248</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 2 4 9 -1.</_> - <_>20 2 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0346979983150959</threshold> - <left_val>1.2330100536346436</left_val> - <right_val>6.8600000813603401e-003</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 4 9 -1.</_> - <_>2 2 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0233609993010759</threshold> - <left_val>-0.3079470098018646</left_val> - <right_val>0.7071449756622315</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 4 -1.</_> - <_>12 1 12 2 2.</_> - <_>0 3 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0350579991936684</threshold> - <left_val>0.2120590060949326</left_val> - <right_val>-1.4399830102920532</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 9 6 -1.</_> - <_>0 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0132569996640086</threshold> - <left_val>-0.9026070237159729</left_val> - <right_val>0.0486100018024445</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 13 9 6 -1.</_> - <_>14 15 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0127400001510978</threshold> - <left_val>0.2265519946813583</left_val> - <right_val>-0.4464380145072937</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 19 3 -1.</_> - <_>0 16 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.6400000099092722e-003</threshold> - <left_val>-0.3981789946556091</left_val> - <right_val>0.3466539978981018</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 22 12 -1.</_> - <_>12 5 11 6 2.</_> - <_>1 11 11 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1006470024585724</threshold> - <left_val>0.1838359981775284</left_val> - <right_val>-1.3410769701004028</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 13 6 6 -1.</_> - <_>8 13 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.</threshold> - <left_val>0.1553640067577362</left_val> - <right_val>-0.5158249735832214</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 2 20 3 -1.</_> - <_>4 3 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0117089999839664</threshold> - <left_val>0.2165140062570572</left_val> - <right_val>-0.7270519733428955</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 14 6 10 -1.</_> - <_>10 14 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0359649993479252</threshold> - <left_val>-1.4789500236511230</left_val> - <right_val>-0.0243170000612736</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 12 16 6 -1.</_> - <_>14 12 8 3 2.</_> - <_>6 15 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0212360005825758</threshold> - <left_val>-0.1684409976005554</left_val> - <right_val>0.1952659934759140</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 13 8 9 -1.</_> - <_>2 16 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0148740001022816</threshold> - <left_val>0.0373359993100166</left_val> - <right_val>-0.8755729794502258</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 8 6 14 -1.</_> - <_>14 8 3 7 2.</_> - <_>11 15 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.1409997977316380e-003</threshold> - <left_val>0.3346650004386902</left_val> - <right_val>-0.2410970032215118</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 12 16 6 -1.</_> - <_>2 12 8 3 2.</_> - <_>10 15 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0234500002115965</threshold> - <left_val>5.5320002138614655e-003</left_val> - <right_val>-1.2509720325469971</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 16 16 8 -1.</_> - <_>5 20 16 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0250620003789663</threshold> - <left_val>0.4521239995956421</left_val> - <right_val>-0.0844699963927269</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 4 12 -1.</_> - <_>9 7 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.7400001464411616e-004</threshold> - <left_val>0.1524990051984787</left_val> - <right_val>-0.4848650097846985</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 2 8 10 -1.</_> - <_>12 2 4 5 2.</_> - <_>8 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0404839999973774</threshold> - <left_val>-1.3024920225143433</left_val> - <right_val>0.1798350065946579</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 12 6 -1.</_> - <_>6 6 6 3 2.</_> - <_>12 9 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0281709991395473</threshold> - <left_val>-0.2441090047359467</left_val> - <right_val>0.6227110028266907</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 7 6 9 -1.</_> - <_>12 7 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0456929989159107</threshold> - <left_val>0.0281220003962517</left_val> - <right_val>0.9239439964294434</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 8 12 -1.</_> - <_>0 0 4 6 2.</_> - <_>4 6 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0397070012986660</threshold> - <left_val>-0.2233279943466187</left_val> - <right_val>0.7767400145530701</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 8 6 9 -1.</_> - <_>18 11 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0505170002579689</threshold> - <left_val>0.2031999975442886</left_val> - <right_val>-1.0895930528640747</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 12 6 6 -1.</_> - <_>5 12 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0172669999301434</threshold> - <left_val>0.6859840154647827</left_val> - <right_val>-0.2330449968576431</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 21 21 3 -1.</_> - <_>10 21 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0801860019564629</threshold> - <left_val>-0.0102920001372695</left_val> - <right_val>0.6188110113143921</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 16 6 -1.</_> - <_>2 3 16 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0976760014891624</threshold> - <left_val>-0.2007029950618744</left_val> - <right_val>1.0088349580764771</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 6 7 6 -1.</_> - <_>13 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0155720002949238</threshold> - <left_val>0.4761529862880707</left_val> - <right_val>0.0456239990890026</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 4 14 -1.</_> - <_>6 11 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0153050003573298</threshold> - <left_val>-1.1077369451522827</left_val> - <right_val>4.5239999890327454e-003</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 7 6 9 -1.</_> - <_>11 7 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0164850000292063</threshold> - <left_val>1.0152939558029175</left_val> - <right_val>0.0163279995322227</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 6 14 -1.</_> - <_>7 8 3 7 2.</_> - <_>10 15 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0261419992893934</threshold> - <left_val>0.4172329902648926</left_val> - <right_val>-0.2864550054073334</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 8 4 16 -1.</_> - <_>18 16 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.8679995387792587e-003</threshold> - <left_val>0.2140499949455261</left_val> - <right_val>-0.1677280068397522</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 14 6 10 -1.</_> - <_>11 14 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0268869996070862</threshold> - <left_val>-1.1564220190048218</left_val> - <right_val>-0.0103240003809333</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 11 12 5 -1.</_> - <_>10 11 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.7789998613297939e-003</threshold> - <left_val>0.3535949885845184</left_val> - <right_val>-0.2961130142211914</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 23 3 -1.</_> - <_>0 13 23 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0159740000963211</threshold> - <left_val>-1.5374109745025635</left_val> - <right_val>-0.0299580004066229</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 6 12 -1.</_> - <_>15 0 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0208669994026423</threshold> - <left_val>0.2024410068988800</left_val> - <right_val>-0.7127019762992859</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 10 12 5 -1.</_> - <_>4 10 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0854820013046265</threshold> - <left_val>-0.0259329993277788</left_val> - <right_val>-1.5156569480895996</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 2 10 4 -1.</_> - <_>13 4 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0238729994744062</threshold> - <left_val>0.1680340021848679</left_val> - <right_val>-0.3880620002746582</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 6 12 -1.</_> - <_>7 0 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0391050018370152</threshold> - <left_val>-1.1958349943161011</left_val> - <right_val>-0.0203610006719828</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 9 6 -1.</_> - <_>14 6 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0779469981789589</threshold> - <left_val>-1.0898950099945068</left_val> - <right_val>0.1453029960393906</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 9 6 -1.</_> - <_>7 6 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0168760009109974</threshold> - <left_val>0.2804970145225525</left_val> - <right_val>-0.4133630096912384</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 11 18 13 -1.</_> - <_>12 11 6 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1187560036778450</threshold> - <left_val>-0.0434909984469414</left_val> - <right_val>0.4126369953155518</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 11 18 13 -1.</_> - <_>6 11 6 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1562419980764389</threshold> - <left_val>-0.2642959952354431</left_val> - <right_val>0.5512779951095581</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 16 12 6 -1.</_> - <_>16 16 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0459080003201962</threshold> - <left_val>0.6018919944763184</left_val> - <right_val>0.0189210008829832</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 21 3 -1.</_> - <_>0 7 21 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0103099998086691</threshold> - <left_val>0.3815299868583679</left_val> - <right_val>-0.2950789928436279</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 16 12 6 -1.</_> - <_>16 16 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0957690030336380</threshold> - <left_val>0.1324650049209595</left_val> - <right_val>-0.4626680016517639</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 6 14 -1.</_> - <_>5 14 6 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0136869996786118</threshold> - <left_val>0.1173869967460632</left_val> - <right_val>-0.5166410207748413</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 10 19 2 -1.</_> - <_>5 11 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.3990001063793898e-003</threshold> - <left_val>-0.3400759994983673</left_val> - <right_val>0.2095350027084351</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 14 4 -1.</_> - <_>5 6 14 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0332649983465672</threshold> - <left_val>-0.1705279946327210</left_val> - <right_val>1.4366799592971802</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 18 18 4 -1.</_> - <_>9 18 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0332060009241104</threshold> - <left_val>0.6129570007324219</left_val> - <right_val>-0.0415499992668629</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 4 9 -1.</_> - <_>9 0 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.7979998849332333e-003</threshold> - <left_val>-0.4855430126190186</left_val> - <right_val>0.1337269991636276</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 3 11 4 -1.</_> - <_>13 5 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0657920017838478</threshold> - <left_val>-4.0257668495178223</left_val> - <right_val>0.1087670028209686</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 9 6 -1.</_> - <_>5 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.1430000197142363e-003</threshold> - <left_val>-0.3917999863624573</left_val> - <right_val>0.2242709994316101</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 1 4 23 -1.</_> - <_>19 1 2 23 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0223639998584986</threshold> - <left_val>-0.0864299982786179</left_val> - <right_val>0.3778519928455353</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 4 23 -1.</_> - <_>3 1 2 23 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0574100017547607</threshold> - <left_val>1.1454069614410400</left_val> - <right_val>-0.1973659992218018</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 16 18 3 -1.</_> - <_>5 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.6550001502037048e-003</threshold> - <left_val>-0.0211050007492304</left_val> - <right_val>0.5845339894294739</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 11 4 -1.</_> - <_>0 5 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0123269995674491</threshold> - <left_val>0.0378170013427734</left_val> - <right_val>-0.6698700189590454</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 16 20 3 -1.</_> - <_>2 17 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.1869997084140778e-003</threshold> - <left_val>0.5636600255966187</left_val> - <right_val>-0.0768779963254929</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 3 13 4 -1.</_> - <_>5 5 13 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0366810001432896</threshold> - <left_val>-0.1734330058097839</left_val> - <right_val>1.1670149564743042</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 9 22 15 -1.</_> - <_>1 9 11 15 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.4022040069103241</threshold> - <left_val>1.2640819549560547</left_val> - <right_val>0.0433989986777306</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 4 14 3 -1.</_> - <_>10 4 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0221260003745556</threshold> - <left_val>0.6697810292243958</left_val> - <right_val>-0.2160529941320419</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 10 4 -1.</_> - <_>8 7 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0131569998338819</threshold> - <left_val>-0.4119859933853149</left_val> - <right_val>0.2021500021219254</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 10 4 -1.</_> - <_>11 7 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0128600001335144</threshold> - <left_val>-0.9158269762992859</left_val> - <right_val>0.0392329990863800</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 4 6 9 -1.</_> - <_>12 4 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0216279998421669</threshold> - <left_val>3.8719999138265848e-003</left_val> - <right_val>0.3566820025444031</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 12 9 6 -1.</_> - <_>4 12 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0118960002437234</threshold> - <left_val>-0.3730390071868897</left_val> - <right_val>0.1923509985208511</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 3 8 10 -1.</_> - <_>12 3 4 5 2.</_> - <_>8 8 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0195489991456270</threshold> - <left_val>-0.4237489998340607</left_val> - <right_val>0.2442959994077683</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 16 6 -1.</_> - <_>3 6 8 3 2.</_> - <_>11 9 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0644449964165688</threshold> - <left_val>-0.1655890047550201</left_val> - <right_val>1.2697030305862427</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 14 6 -1.</_> - <_>5 9 14 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1089849993586540</threshold> - <left_val>0.1489430069923401</left_val> - <right_val>-2.1534640789031982</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 9 6 -1.</_> - <_>4 5 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0340779982507229</threshold> - <left_val>1.3779460191726685</left_val> - <right_val>-0.1619849950075150</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 3 18 2 -1.</_> - <_>6 4 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.7489999085664749e-003</threshold> - <left_val>-0.3382860124111176</left_val> - <right_val>0.2115290015935898</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 9 6 -1.</_> - <_>10 6 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0109719997271895</threshold> - <left_val>0.7651789784431458</left_val> - <right_val>-0.1969259977340698</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 3 -1.</_> - <_>0 2 24 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0114850001409650</threshold> - <left_val>-0.6927120089530945</left_val> - <right_val>0.2165710031986237</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 10 6 -1.</_> - <_>0 19 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0259840004146099</threshold> - <left_val>-0.0119839999824762</left_val> - <right_val>-0.9969729781150818</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 18 18 3 -1.</_> - <_>3 19 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.2159999720752239e-003</threshold> - <left_val>-0.1020570024847984</left_val> - <right_val>0.4888440072536469</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 5 6 16 -1.</_> - <_>2 5 3 8 2.</_> - <_>5 13 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0476970002055168</threshold> - <left_val>1.0666010379791260</left_val> - <right_val>-0.1757629960775375</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 11 6 -1.</_> - <_>7 8 11 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0300001273863018e-004</threshold> - <left_val>0.1852480024099350</left_val> - <right_val>-0.7479000091552734</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 12 22 -1.</_> - <_>5 13 12 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1153960004448891</threshold> - <left_val>-0.2201970070600510</left_val> - <right_val>0.5450999736785889</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 7 4 10 -1.</_> - <_>10 12 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0160210002213717</threshold> - <left_val>0.2548750042915344</left_val> - <right_val>-0.5074009895324707</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 4 18 -1.</_> - <_>9 6 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0566320009529591</threshold> - <left_val>-0.0112560000270605</left_val> - <right_val>-0.9596809744834900</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 8 6 9 -1.</_> - <_>18 11 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0107260001823306</threshold> - <left_val>-0.2854470014572144</left_val> - <right_val>0.1699479967355728</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 15 10 -1.</_> - <_>9 7 5 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1242000013589859</threshold> - <left_val>-0.0361399985849857</left_val> - <right_val>-1.3132710456848145</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 6 9 -1.</_> - <_>12 5 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.3799999877810478e-003</threshold> - <left_val>0.3309270143508911</left_val> - <right_val>0.0133079998195171</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 9 6 10 -1.</_> - <_>11 9 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0119080003350973</threshold> - <left_val>-0.3483029901981354</left_val> - <right_val>0.2404190003871918</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 14 6 10 -1.</_> - <_>13 14 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0430079996585846</threshold> - <left_val>-1.4390469789505005</left_val> - <right_val>0.1559959948062897</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 14 6 10 -1.</_> - <_>9 14 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0331499986350536</threshold> - <left_val>-1.1805850267410278</left_val> - <right_val>-0.0123479999601841</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 8 16 9 -1.</_> - <_>4 11 16 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0213419999927282</threshold> - <left_val>2.2119441032409668</left_val> - <right_val>0.0627370029687881</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 11 20 3 -1.</_> - <_>2 12 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0122189996764064</threshold> - <left_val>-1.8709750175476074</left_val> - <right_val>-0.0454999990761280</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 4 13 -1.</_> - <_>13 0 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0168609991669655</threshold> - <left_val>-0.7691270112991333</left_val> - <right_val>0.1533000022172928</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 4 13 -1.</_> - <_>9 0 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.4999999441206455e-003</threshold> - <left_val>-0.6298739910125732</left_val> - <right_val>0.0516000017523766</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 1 18 7 -1.</_> - <_>9 1 6 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0450379997491837</threshold> - <left_val>0.8542889952659607</left_val> - <right_val>6.2600001692771912e-003</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 11 6 9 -1.</_> - <_>1 14 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0390579998493195</threshold> - <left_val>-0.0324589982628822</left_val> - <right_val>-1.3325669765472412</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 18 9 6 -1.</_> - <_>8 20 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.6720000468194485e-003</threshold> - <left_val>-0.1942359954118729</left_val> - <right_val>0.3732869923114777</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 9 15 6 -1.</_> - <_>3 11 15 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0163610000163317</threshold> - <left_val>2.0605869293212891</left_val> - <right_val>-0.1504269987344742</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 10 19 2 -1.</_> - <_>5 11 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.1719999648630619e-003</threshold> - <left_val>-0.1161099970340729</left_val> - <right_val>0.2545540034770966</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 7 16 -1.</_> - <_>8 14 7 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0457220003008842</threshold> - <left_val>-0.0163400005549192</left_val> - <right_val>-1.0449140071868896</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 14 9 6 -1.</_> - <_>9 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.1209999471902847e-003</threshold> - <left_val>-0.0419979989528656</left_val> - <right_val>0.3968099951744080</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 8 12 -1.</_> - <_>0 11 8 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.7800000205170363e-004</threshold> - <left_val>-0.6642259955406189</left_val> - <right_val>0.0334430001676083</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 18 3 -1.</_> - <_>6 5 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.1109998971223831e-003</threshold> - <left_val>-0.0582319982349873</left_val> - <right_val>0.3785730004310608</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 12 6 -1.</_> - <_>4 16 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0498640015721321</threshold> - <left_val>0.6101940274238586</left_val> - <right_val>-0.2100570052862167</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 13 9 4 -1.</_> - <_>13 15 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0250119995325804</threshold> - <left_val>-0.5710009932518005</left_val> - <right_val>0.1784839928150177</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 14 14 -1.</_> - <_>5 8 7 7 2.</_> - <_>12 15 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0309399999678135</threshold> - <left_val>0.0563630014657974</left_val> - <right_val>-0.6473100185394287</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 16 22 6 -1.</_> - <_>12 16 11 3 2.</_> - <_>1 19 11 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0462710000574589</threshold> - <left_val>0.1748239994049072</left_val> - <right_val>-0.9890940189361572</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 6 9 -1.</_> - <_>11 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.1870000530034304e-003</threshold> - <left_val>-0.6680480241775513</left_val> - <right_val>0.0322670005261898</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 10 10 -1.</_> - <_>14 5 5 5 2.</_> - <_>9 10 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0243519991636276</threshold> - <left_val>0.2944490015506744</left_val> - <right_val>-1.3599999947473407e-003</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 5 10 10 -1.</_> - <_>5 5 5 5 2.</_> - <_>10 10 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0119740003719926</threshold> - <left_val>-0.2834509909152985</left_val> - <right_val>0.4717119932174683</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 16 6 -1.</_> - <_>12 6 8 3 2.</_> - <_>4 9 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0130700003355742</threshold> - <left_val>-0.1083460003137589</left_val> - <right_val>0.5719329714775085</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 6 9 -1.</_> - <_>0 10 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0591630004346371</threshold> - <left_val>-0.0509390011429787</left_val> - <right_val>-1.9059720039367676</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 10 8 14 -1.</_> - <_>20 10 4 7 2.</_> - <_>16 17 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0410949997603893</threshold> - <left_val>0.4510459899902344</left_val> - <right_val>-9.7599998116493225e-003</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 6 12 -1.</_> - <_>9 18 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0839890018105507</threshold> - <left_val>-2.0349199771881104</left_val> - <right_val>-0.0510190017521381</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 10 8 12 -1.</_> - <_>12 10 4 6 2.</_> - <_>8 16 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0446190014481544</threshold> - <left_val>0.1704110056161881</left_val> - <right_val>-1.2278720140457153</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 0 4 9 -1.</_> - <_>10 0 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0244190003722906</threshold> - <left_val>-0.0217969994992018</left_val> - <right_val>-1.0822949409484863</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 4 8 16 -1.</_> - <_>14 4 4 8 2.</_> - <_>10 12 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.3870001100003719e-003</threshold> - <left_val>0.3046669960021973</left_val> - <right_val>-0.3706659972667694</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 10 10 6 -1.</_> - <_>7 12 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0246079992502928</threshold> - <left_val>-0.3116950094699860</left_val> - <right_val>0.2365729957818985</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 14 14 -1.</_> - <_>12 6 7 7 2.</_> - <_>5 13 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0851820036768913</threshold> - <left_val>-1.7982350587844849</left_val> - <right_val>0.1525429934263229</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 11 20 2 -1.</_> - <_>2 12 20 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0218449998646975</threshold> - <left_val>-0.0518880002200603</left_val> - <right_val>-1.9017189741134644</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 8 4 16 -1.</_> - <_>18 16 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0168290007859468</threshold> - <left_val>0.2102590054273605</left_val> - <right_val>0.0216569993644953</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 11 12 10 -1.</_> - <_>1 11 6 5 2.</_> - <_>7 16 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0325479991734028</threshold> - <left_val>-0.2029259949922562</left_val> - <right_val>0.6094400286674500</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 9 12 4 -1.</_> - <_>6 11 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.4709999561309814e-003</threshold> - <left_val>-0.9537119865417481</left_val> - <right_val>0.1856839954853058</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 6 7 -1.</_> - <_>12 12 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0554159991443157</threshold> - <left_val>-0.1440529972314835</left_val> - <right_val>2.1506340503692627</right_val></_></_> - <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 4 8 16 -1.</_> - <_>14 4 4 8 2.</_> - <_>10 12 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1063549965620041</threshold> - <left_val>-1.0911970138549805</left_val> - <right_val>0.1322800070047379</right_val></_></_> - <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 8 16 -1.</_> - <_>6 4 4 8 2.</_> - <_>10 12 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.9889995977282524e-003</threshold> - <left_val>0.1025340035557747</left_val> - <right_val>-0.5174490213394165</right_val></_></_> - <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 9 9 6 -1.</_> - <_>11 9 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0755679979920387</threshold> - <left_val>0.0589650012552738</left_val> - <right_val>1.2354209423065186</right_val></_></_> - <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 16 12 -1.</_> - <_>1 5 8 6 2.</_> - <_>9 11 8 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0928059965372086</threshold> - <left_val>-1.3431650400161743</left_val> - <right_val>-0.0344629995524883</right_val></_></_> - <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 9 6 8 -1.</_> - <_>9 9 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0494319982826710</threshold> - <left_val>0.0496019981801510</left_val> - <right_val>1.6054730415344238</right_val></_></_> - <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 3 18 -1.</_> - <_>7 0 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0117729995399714</threshold> - <left_val>-1.0261050462722778</left_val> - <right_val>-4.1559999808669090e-003</right_val></_></_> - <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 9 5 14 -1.</_> - <_>17 16 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0858860015869141</threshold> - <left_val>0.0846429988741875</left_val> - <right_val>0.9522079825401306</right_val></_></_> - <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 9 5 14 -1.</_> - <_>2 16 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0810310021042824</threshold> - <left_val>-0.1468710005283356</left_val> - <right_val>1.9359990358352661</right_val></_></_></trees> - <stage_threshold>-3.7025990486145020</stage_threshold> - <parent>12</parent> - <next>-1</next></_> - <_> - <!-- stage 14 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 4 10 6 -1.</_> - <_>7 7 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0338409990072250</threshold> - <left_val>0.6588950157165527</left_val> - <right_val>-0.6975529789924622</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 3 23 18 -1.</_> - <_>1 9 23 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0154100004583597</threshold> - <left_val>-0.9072840213775635</left_val> - <right_val>0.3047859966754913</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 21 3 -1.</_> - <_>8 1 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0549059994518757</threshold> - <left_val>-0.4977479875087738</left_val> - <right_val>0.5713260173797607</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 9 -1.</_> - <_>11 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0213900003582239</threshold> - <left_val>-0.4256519973278046</left_val> - <right_val>0.5809680223464966</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 18 12 6 -1.</_> - <_>3 18 6 3 2.</_> - <_>9 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.8849997371435165e-003</threshold> - <left_val>-0.4790599942207336</left_val> - <right_val>0.4301649928092957</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 8 8 16 -1.</_> - <_>20 8 4 8 2.</_> - <_>16 16 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0375449992716312</threshold> - <left_val>0.5086159706115723</left_val> - <right_val>-0.1998589932918549</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 19 24 4 -1.</_> - <_>8 19 8 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1592579931020737</threshold> - <left_val>-0.2326360046863556</left_val> - <right_val>1.0993319749832153</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 8 8 16 -1.</_> - <_>20 8 4 8 2.</_> - <_>16 16 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0689399987459183</threshold> - <left_val>0.4056900143623352</left_val> - <right_val>0.0568550005555153</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 8 16 -1.</_> - <_>0 8 4 8 2.</_> - <_>4 16 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0336950011551380</threshold> - <left_val>0.4513280093669891</left_val> - <right_val>-0.3333280086517334</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 12 8 10 -1.</_> - <_>8 17 8 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0633149966597557</threshold> - <left_val>-0.8501570224761963</left_val> - <right_val>0.2234169989824295</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 5 8 -1.</_> - <_>5 11 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.3699997738003731e-003</threshold> - <left_val>-0.9308220148086548</left_val> - <right_val>0.0592169985175133</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 1 19 2 -1.</_> - <_>4 2 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.5969997346401215e-003</threshold> - <left_val>-1.2794899940490723</left_val> - <right_val>0.1844729930162430</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 24 9 -1.</_> - <_>8 12 8 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1306799948215485</threshold> - <left_val>0.5842689871788025</left_val> - <right_val>-0.2600719928741455</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 13 8 -1.</_> - <_>6 4 13 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0574029982089996</threshold> - <left_val>-0.0537890009582043</left_val> - <right_val>0.7117559909820557</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 3 -1.</_> - <_>0 1 24 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.2340001352131367e-003</threshold> - <left_val>-0.8696219921112061</left_val> - <right_val>0.0752149969339371</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 3 4 11 -1.</_> - <_>20 3 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0310989990830421</threshold> - <left_val>-0.0750069990754128</left_val> - <right_val>0.9078159928321838</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 6 9 -1.</_> - <_>10 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0358540005981922</threshold> - <left_val>-0.2479549944400787</left_val> - <right_val>0.7227209806442261</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 11 12 8 -1.</_> - <_>12 11 6 4 2.</_> - <_>6 15 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0315349996089935</threshold> - <left_val>-1.1238329410552979</left_val> - <right_val>0.2098830044269562</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 12 6 -1.</_> - <_>0 8 6 3 2.</_> - <_>6 11 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0194370001554489</threshold> - <left_val>-1.4499390125274658</left_val> - <right_val>-0.0151000004261732</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 17 18 3 -1.</_> - <_>6 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.2420001961290836e-003</threshold> - <left_val>0.5386490225791931</left_val> - <right_val>-0.1137539967894554</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 9 6 -1.</_> - <_>0 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.1639997661113739e-003</threshold> - <left_val>0.0668890029191971</left_val> - <right_val>-0.7687289714813232</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 3 4 9 -1.</_> - <_>20 3 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0436530001461506</threshold> - <left_val>1.1413530111312866</left_val> - <right_val>0.0402170009911060</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 4 9 -1.</_> - <_>2 3 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0265699997544289</threshold> - <left_val>-0.2471909970045090</left_val> - <right_val>0.5929509997367859</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 9 19 -1.</_> - <_>18 0 3 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0322169996798038</threshold> - <left_val>-0.0400249995291233</left_val> - <right_val>0.3268800079822540</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 9 19 -1.</_> - <_>3 0 3 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0722360014915466</threshold> - <left_val>0.5872939825057983</left_val> - <right_val>-0.2539600133895874</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 11 6 8 -1.</_> - <_>13 11 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0314249992370605</threshold> - <left_val>0.1531510055065155</left_val> - <right_val>-0.5604209899902344</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 6 8 -1.</_> - <_>8 11 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.7699999413453043e-004</threshold> - <left_val>0.1695889979600906</left_val> - <right_val>-0.5262669920921326</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 19 3 -1.</_> - <_>5 12 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.7189999818801880e-003</threshold> - <left_val>-0.1494459956884384</left_val> - <right_val>0.2965869903564453</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 20 18 4 -1.</_> - <_>9 20 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0328750014305115</threshold> - <left_val>-0.3994350135326386</left_val> - <right_val>0.2515659928321838</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 16 6 -1.</_> - <_>6 8 16 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0145530002191663</threshold> - <left_val>0.2797259986400604</left_val> - <right_val>-0.4720380008220673</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 9 6 -1.</_> - <_>9 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0380179993808270</threshold> - <left_val>-2.9200001154094934e-003</left_val> - <right_val>-1.1300059556961060</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 3 4 14 -1.</_> - <_>10 10 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.8659999370574951e-003</threshold> - <left_val>0.4111180007457733</left_val> - <right_val>-0.2622080147266388</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 15 12 -1.</_> - <_>1 11 15 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0416069999337196</threshold> - <left_val>-1.4293819665908813</left_val> - <right_val>-0.0191329997032881</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 12 8 5 -1.</_> - <_>11 12 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0248029995709658</threshold> - <left_val>-0.2501359879970551</left_val> - <right_val>0.1597869992256165</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 6 9 -1.</_> - <_>7 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0100980000570416</threshold> - <left_val>0.0437389984726906</left_val> - <right_val>-0.6998609900474548</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 6 9 -1.</_> - <_>14 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0209470000118017</threshold> - <left_val>-0.9413779973983765</left_val> - <right_val>0.2320400029420853</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 5 12 8 -1.</_> - <_>5 5 6 4 2.</_> - <_>11 9 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0224580001085997</threshold> - <left_val>-0.2718580067157745</left_val> - <right_val>0.4531919956207275</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 12 11 6 -1.</_> - <_>13 14 11 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0371109992265701</threshold> - <left_val>-1.0314660072326660</left_val> - <right_val>0.1442179977893829</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 21 3 -1.</_> - <_>0 14 21 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0106480000540614</threshold> - <left_val>0.6310700178146362</left_val> - <right_val>-0.2552079856395721</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 8 12 -1.</_> - <_>12 1 4 6 2.</_> - <_>8 7 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0554229989647865</threshold> - <left_val>0.1620659977197647</left_val> - <right_val>-1.7722640037536621</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 6 12 -1.</_> - <_>1 0 3 6 2.</_> - <_>4 6 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0216019991785288</threshold> - <left_val>-0.2501609921455383</left_val> - <right_val>0.5411980152130127</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 2 21 2 -1.</_> - <_>2 3 21 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.7000000348780304e-005</threshold> - <left_val>-0.2900890111923218</left_val> - <right_val>0.3350799977779388</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 2 19 3 -1.</_> - <_>2 3 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0144060002639890</threshold> - <left_val>-7.8840004280209541e-003</left_val> - <right_val>-1.1677219867706299</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 10 6 14 -1.</_> - <_>20 10 3 7 2.</_> - <_>17 17 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1077739968895912</threshold> - <left_val>0.1129200011491776</left_val> - <right_val>-2.4940319061279297</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 6 14 -1.</_> - <_>1 10 3 7 2.</_> - <_>4 17 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0359439998865128</threshold> - <left_val>-0.1948059946298599</left_val> - <right_val>0.9575750231742859</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 14 14 -1.</_> - <_>14 6 7 7 2.</_> - <_>7 13 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.9510000497102737e-003</threshold> - <left_val>0.3092780113220215</left_val> - <right_val>-0.2553020119667053</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 9 6 -1.</_> - <_>0 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0209420006722212</threshold> - <left_val>-7.6319999061524868e-003</left_val> - <right_val>-1.0086350440979004</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 14 8 9 -1.</_> - <_>15 17 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0298779997974634</threshold> - <left_val>-0.4602769911289215</left_val> - <right_val>0.1950719952583313</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 22 4 -1.</_> - <_>1 1 11 2 2.</_> - <_>12 3 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0259719993919134</threshold> - <left_val>-0.0121879996731877</left_val> - <right_val>-1.0035500526428223</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 11 9 6 -1.</_> - <_>9 13 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0106030004099011</threshold> - <left_val>-0.0759690031409264</left_val> - <right_val>0.4166989922523499</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 18 3 -1.</_> - <_>0 16 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.5819996893405914e-003</threshold> - <left_val>-0.2664859890937805</left_val> - <right_val>0.3911150097846985</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 14 7 9 -1.</_> - <_>16 17 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0212709996849298</threshold> - <left_val>0.1827390044927597</left_val> - <right_val>-0.3605229854583740</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 16 4 -1.</_> - <_>12 3 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0745180025696754</threshold> - <left_val>-0.1893839985132217</left_val> - <right_val>0.9265800118446350</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 12 5 -1.</_> - <_>7 6 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.6569998376071453e-003</threshold> - <left_val>-0.1450619995594025</left_val> - <right_val>0.3329460024833679</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 4 9 -1.</_> - <_>11 6 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.7119999974966049e-003</threshold> - <left_val>-0.5246400237083435</left_val> - <right_val>0.0898799970746040</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 4 10 -1.</_> - <_>12 1 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.8500004969537258e-004</threshold> - <left_val>-0.3838199973106384</left_val> - <right_val>0.2439299970865250</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 4 10 -1.</_> - <_>10 1 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0282339993864298</threshold> - <left_val>-5.7879998348653316e-003</left_val> - <right_val>-1.2617139816284180</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 15 6 9 -1.</_> - <_>15 18 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0326780006289482</threshold> - <left_val>-0.5795329809188843</left_val> - <right_val>0.1695529967546463</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 15 6 9 -1.</_> - <_>3 18 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0225360002368689</threshold> - <left_val>0.0222810003906488</left_val> - <right_val>-0.8786960244178772</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 1 3 19 -1.</_> - <_>16 1 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0216579996049404</threshold> - <left_val>-0.6510850191116333</left_val> - <right_val>0.1296689957380295</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 3 6 9 -1.</_> - <_>3 3 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.6799998059868813e-003</threshold> - <left_val>-0.3396520018577576</left_val> - <right_val>0.2201330065727234</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 3 19 -1.</_> - <_>16 0 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0145920002833009</threshold> - <left_val>0.1507730036973953</left_val> - <right_val>-0.5045239925384522</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 3 12 4 -1.</_> - <_>12 3 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0278680007904768</threshold> - <left_val>-0.2504529953002930</left_val> - <right_val>0.4574199914932251</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 4 9 -1.</_> - <_>10 5 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.6940000504255295e-003</threshold> - <left_val>-0.1094850003719330</left_val> - <right_val>0.5575780272483826</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 3 19 -1.</_> - <_>7 0 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0100029995664954</threshold> - <left_val>-0.9736629724502564</left_val> - <right_val>0.0184679999947548</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 1 3 12 -1.</_> - <_>11 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.0719998069107533e-003</threshold> - <left_val>0.3822219967842102</left_val> - <right_val>-0.1692110002040863</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 10 5 -1.</_> - <_>11 7 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0225939992815256</threshold> - <left_val>-1.0391089916229248</left_val> - <right_val>5.1839998923242092e-003</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 3 3 18 -1.</_> - <_>12 3 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0395799987018108</threshold> - <left_val>-5.5109229087829590</left_val> - <right_val>0.1116399988532066</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 3 6 12 -1.</_> - <_>11 3 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0175379998981953</threshold> - <left_val>0.9548580050468445</left_val> - <right_val>-0.1858450025320053</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 7 19 3 -1.</_> - <_>3 8 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.0300003066658974e-003</threshold> - <left_val>0.0104360003024340</left_val> - <right_val>0.8211479783058167</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 7 18 3 -1.</_> - <_>2 8 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.9539995640516281e-003</threshold> - <left_val>0.2263289988040924</left_val> - <right_val>-0.3456819951534271</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 13 18 4 -1.</_> - <_>12 13 9 2 2.</_> - <_>3 15 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0270910002291203</threshold> - <left_val>0.1643009930849075</left_val> - <right_val>-1.3926379680633545</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 5 6 9 -1.</_> - <_>5 5 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0206259991973639</threshold> - <left_val>-0.8636609911918640</left_val> - <right_val>2.3880000226199627e-003</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 1 20 4 -1.</_> - <_>14 1 10 2 2.</_> - <_>4 3 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0719899982213974</threshold> - <left_val>-2.8192629814147949</left_val> - <right_val>0.1157049983739853</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 20 4 -1.</_> - <_>0 1 10 2 2.</_> - <_>10 3 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0269649997353554</threshold> - <left_val>-1.2946130037307739</left_val> - <right_val>-0.0246610008180141</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 15 6 6 -1.</_> - <_>10 15 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0473779998719692</threshold> - <left_val>-0.8130639791488648</left_val> - <right_val>0.1183139979839325</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 8 -1.</_> - <_>8 2 8 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1089560016989708</threshold> - <left_val>0.6593790054321289</left_val> - <right_val>-0.2084390074014664</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 5 18 3 -1.</_> - <_>5 6 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0135740004479885</threshold> - <left_val>7.4240001849830151e-003</left_val> - <right_val>0.5315219759941101</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 15 6 6 -1.</_> - <_>11 15 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.6920001991093159e-003</threshold> - <left_val>0.3065580129623413</left_val> - <right_val>-0.3108429908752441</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 12 8 5 -1.</_> - <_>11 12 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.9070001803338528e-003</threshold> - <left_val>0.2557649910449982</left_val> - <right_val>-0.0529320016503334</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 12 8 5 -1.</_> - <_>9 12 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0376130007207394</threshold> - <left_val>-1.4350049495697021</left_val> - <right_val>-0.0154480002820492</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 14 6 -1.</_> - <_>5 2 14 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.6329998448491096e-003</threshold> - <left_val>-0.1688439995050430</left_val> - <right_val>0.4212490022182465</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 4 15 -1.</_> - <_>10 7 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0320970006287098</threshold> - <left_val>-0.6497939825057983</left_val> - <right_val>0.0411100015044212</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 7 5 12 -1.</_> - <_>10 11 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0584959983825684</threshold> - <left_val>-0.0529639981687069</left_val> - <right_val>0.6336830258369446</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 9 8 14 -1.</_> - <_>7 9 4 7 2.</_> - <_>11 16 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0409019999206066</threshold> - <left_val>-0.9210109710693359</left_val> - <right_val>9.0640000998973846e-003</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 22 6 -1.</_> - <_>12 5 11 3 2.</_> - <_>1 8 11 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0199250001460314</threshold> - <left_val>0.5375999808311462</left_val> - <right_val>-0.0629969984292984</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 6 6 -1.</_> - <_>0 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.6020001173019409e-003</threshold> - <left_val>-0.5433350205421448</left_val> - <right_val>0.0841049998998642</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 17 9 4 -1.</_> - <_>12 19 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0168249998241663</threshold> - <left_val>0.1556369960308075</left_val> - <right_val>-0.4017120003700256</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 18 19 3 -1.</_> - <_>2 19 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.4790002331137657e-003</threshold> - <left_val>-0.2424529939889908</left_val> - <right_val>0.5150949954986572</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 17 9 4 -1.</_> - <_>12 19 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0195349995046854</threshold> - <left_val>-0.5111839771270752</left_val> - <right_val>0.1383199989795685</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 17 18 3 -1.</_> - <_>1 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0107460003346205</threshold> - <left_val>-0.2185499966144562</left_val> - <right_val>0.6282870173454285</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 17 9 4 -1.</_> - <_>12 19 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0379270017147064</threshold> - <left_val>0.1164029985666275</left_val> - <right_val>-2.7301959991455078</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 3 -1.</_> - <_>0 1 24 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0163909997791052</threshold> - <left_val>-0.0146359996870160</left_val> - <right_val>-1.0797250270843506</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 14 4 -1.</_> - <_>5 2 14 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0197850000113249</threshold> - <left_val>1.2166420221328735</left_val> - <right_val>0.0332750007510185</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 14 9 6 -1.</_> - <_>6 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0110670002177358</threshold> - <left_val>-0.2538830041885376</left_val> - <right_val>0.4403859972953796</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 13 6 9 -1.</_> - <_>14 16 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.2479999139904976e-003</threshold> - <left_val>0.2249680012464523</left_val> - <right_val>-0.2421649992465973</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 20 13 4 -1.</_> - <_>5 22 13 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0111419996246696</threshold> - <left_val>0.2501809895038605</left_val> - <right_val>-0.3081150054931641</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 9 6 12 -1.</_> - <_>9 13 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0106669999659061</threshold> - <left_val>-0.3272910118103027</left_val> - <right_val>0.2616829872131348</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 21 3 -1.</_> - <_>8 10 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1054529994726181</threshold> - <left_val>-0.0557500012218952</left_val> - <right_val>-1.9605729579925537</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 8 9 6 -1.</_> - <_>11 8 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0548279993236065</threshold> - <left_val>-1.9519999623298645e-003</left_val> - <right_val>0.7386609911918640</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 9 7 -1.</_> - <_>6 10 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0177609995007515</threshold> - <left_val>-0.3064720034599304</left_val> - <right_val>0.2634699940681458</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 10 10 8 -1.</_> - <_>17 10 5 4 2.</_> - <_>12 14 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0311859995126724</threshold> - <left_val>-0.2460090070962906</left_val> - <right_val>0.1708219945430756</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 24 3 -1.</_> - <_>8 15 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0572960004210472</threshold> - <left_val>0.4703350067138672</left_val> - <right_val>-0.2604829967021942</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 5 9 6 -1.</_> - <_>8 7 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0113120004534721</threshold> - <left_val>0.3862890005111694</left_val> - <right_val>-0.2881700098514557</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 13 6 9 -1.</_> - <_>4 16 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0305920001119375</threshold> - <left_val>-0.0488260015845299</left_val> - <right_val>-1.7638969421386719</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 17 9 4 -1.</_> - <_>12 19 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.8489999929443002e-003</threshold> - <left_val>0.2109989970922470</left_val> - <right_val>-0.0259409993886948</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 6 6 -1.</_> - <_>9 15 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0114190001040697</threshold> - <left_val>-0.1682959944009781</left_val> - <right_val>1.0278660058975220</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 9 14 10 -1.</_> - <_>16 9 7 5 2.</_> - <_>9 14 7 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0814030021429062</threshold> - <left_val>0.1153199970722199</left_val> - <right_val>-1.2482399940490723</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 9 14 10 -1.</_> - <_>1 9 7 5 2.</_> - <_>8 14 7 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0534959994256496</threshold> - <left_val>-0.0463039986789227</left_val> - <right_val>-1.7165969610214233</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 9 17 -1.</_> - <_>11 7 3 17 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0239480007439852</threshold> - <left_val>-0.4024659991264343</left_val> - <right_val>0.2056210041046143</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 4 6 20 -1.</_> - <_>3 4 3 10 2.</_> - <_>6 14 3 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7690000869333744e-003</threshold> - <left_val>-0.3315230011940002</left_val> - <right_val>0.2068340033292770</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 10 4 -1.</_> - <_>7 8 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0323439985513687</threshold> - <left_val>-0.7263280153274536</left_val> - <right_val>0.2007350027561188</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 7 4 9 -1.</_> - <_>12 7 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0378630012273788</threshold> - <left_val>-0.1563100069761276</left_val> - <right_val>1.6697460412979126</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 15 6 9 -1.</_> - <_>12 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0154400002211332</threshold> - <left_val>0.1948740035295487</left_val> - <right_val>-0.3538419902324677</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 8 6 16 -1.</_> - <_>3 8 3 8 2.</_> - <_>6 16 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0443760007619858</threshold> - <left_val>0.8209360241889954</left_val> - <right_val>-0.1819359958171845</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 17 9 4 -1.</_> - <_>12 19 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0231020003557205</threshold> - <left_val>-0.4304409921169281</left_val> - <right_val>0.1237540021538734</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 17 9 4 -1.</_> - <_>3 19 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0194000005722046</threshold> - <left_val>-0.0297260005027056</left_val> - <right_val>-1.1597590446472168</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 1 9 6 -1.</_> - <_>13 1 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1038570031523705</threshold> - <left_val>0.1114989966154099</left_val> - <right_val>-4.6835222244262695</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 4 10 -1.</_> - <_>5 12 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0189640000462532</threshold> - <left_val>2.1773819923400879</left_val> - <right_val>-0.1454440057277679</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 12 6 -1.</_> - <_>11 5 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0387509986758232</threshold> - <left_val>-0.0494460016489029</left_val> - <right_val>0.3401829898357391</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 9 8 -1.</_> - <_>9 4 3 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0227669999003410</threshold> - <left_val>-0.3280299901962280</left_val> - <right_val>0.3053140044212341</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 16 10 8 -1.</_> - <_>17 16 5 4 2.</_> - <_>12 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0313570015132427</threshold> - <left_val>1.1520819664001465</left_val> - <right_val>0.0273059997707605</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 16 10 8 -1.</_> - <_>2 16 5 4 2.</_> - <_>7 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.6909999847412109e-003</threshold> - <left_val>-0.3879950046539307</left_val> - <right_val>0.2151259928941727</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 4 -1.</_> - <_>12 0 12 2 2.</_> - <_>0 2 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0492849983274937</threshold> - <left_val>-1.6774909496307373</left_val> - <right_val>0.1577419936656952</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 9 6 -1.</_> - <_>0 8 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0395109988749027</threshold> - <left_val>-0.9764789938926697</left_val> - <right_val>-0.0105520002543926</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 24 6 -1.</_> - <_>12 4 12 3 2.</_> - <_>0 7 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0479979999363422</threshold> - <left_val>0.2084390074014664</left_val> - <right_val>-0.6899279952049255</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 11 4 -1.</_> - <_>5 2 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0514229983091354</threshold> - <left_val>-0.1666530072689056</left_val> - <right_val>1.2149239778518677</right_val></_></_> - <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 22 4 -1.</_> - <_>12 1 11 2 2.</_> - <_>1 3 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0142799997702241</threshold> - <left_val>0.2362769991159439</left_val> - <right_val>-0.4139679968357086</right_val></_></_> - <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 18 -1.</_> - <_>9 15 6 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0916119962930679</threshold> - <left_val>-0.9283090233802795</left_val> - <right_val>-0.0183450002223253</right_val></_></_> - <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 9 20 4 -1.</_> - <_>2 11 20 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.5080001950263977e-003</threshold> - <left_val>-0.7364720106124878</left_val> - <right_val>0.1949709951877594</right_val></_></_> - <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 14 14 -1.</_> - <_>5 9 14 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0357230007648468</threshold> - <left_val>0.1419779956340790</left_val> - <right_val>-0.4208930134773254</right_val></_></_> - <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 2 16 6 -1.</_> - <_>4 5 16 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0506380014121532</threshold> - <left_val>0.0116440001875162</left_val> - <right_val>0.7848659753799439</right_val></_></_> - <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 3 19 3 -1.</_> - <_>2 4 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0146139999851584</threshold> - <left_val>-1.1909500360488892</left_val> - <right_val>-0.0351280011236668</right_val></_></_> - <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 1 10 4 -1.</_> - <_>7 3 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0386629998683929</threshold> - <left_val>2.4314730167388916</left_val> - <right_val>0.0656479969620705</right_val></_></_> - <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 9 4 15 -1.</_> - <_>0 14 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0403469987213612</threshold> - <left_val>0.7175530195236206</left_val> - <right_val>-0.1910829991102219</right_val></_></_> - <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 10 21 3 -1.</_> - <_>2 11 21 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0239020008593798</threshold> - <left_val>0.1564619988203049</left_val> - <right_val>-0.7929480075836182</right_val></_></_></trees> - <stage_threshold>-3.4265899658203125</stage_threshold> - <parent>13</parent> - <next>-1</next></_> - <_> - <!-- stage 15 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 6 6 -1.</_> - <_>6 0 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.5640000179409981e-003</threshold> - <left_val>-0.8145070075988770</left_val> - <right_val>0.5887529850006104</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 14 9 -1.</_> - <_>6 7 14 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1329260021448135</threshold> - <left_val>0.9321339726448059</left_val> - <right_val>-0.2936730086803436</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 6 9 -1.</_> - <_>11 1 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.8400004208087921e-003</threshold> - <left_val>-0.5646290183067322</left_val> - <right_val>0.4164769947528839</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 8 9 9 -1.</_> - <_>15 11 9 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.0889998674392700e-003</threshold> - <left_val>-0.7923280000686646</left_val> - <right_val>0.1697500050067902</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 0 4 21 -1.</_> - <_>8 7 4 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0610390007495880</threshold> - <left_val>-1.4169000387191772</left_val> - <right_val>0.0250209998339415</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 22 19 2 -1.</_> - <_>3 23 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.6599999768659472e-004</threshold> - <left_val>0.3798249959945679</left_val> - <right_val>-0.4156709909439087</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 15 20 3 -1.</_> - <_>2 16 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.3889999613165855e-003</threshold> - <left_val>-0.4076859951019287</left_val> - <right_val>0.3554849922657013</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 0 4 13 -1.</_> - <_>19 0 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0210069995373487</threshold> - <left_val>-0.2408010065555573</left_val> - <right_val>0.8611270189285278</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 7 8 8 -1.</_> - <_>1 11 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.5559997931122780e-003</threshold> - <left_val>-0.8746719956398010</left_val> - <right_val>0.0985720008611679</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 14 6 9 -1.</_> - <_>14 17 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0247799996286631</threshold> - <left_val>0.1556620001792908</left_val> - <right_val>-0.6922979950904846</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 14 6 9 -1.</_> - <_>4 17 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0356200002133846</threshold> - <left_val>-1.1472270488739014</left_val> - <right_val>0.0363599993288517</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 5 4 10 -1.</_> - <_>14 5 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0198100004345179</threshold> - <left_val>0.1551620066165924</left_val> - <right_val>-0.6952009797096252</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 4 10 -1.</_> - <_>8 5 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0150199998170137</threshold> - <left_val>0.0419900007545948</left_val> - <right_val>-0.9662280082702637</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 5 6 6 -1.</_> - <_>14 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0231379996985197</threshold> - <left_val>0.4339689910411835</left_val> - <right_val>2.4160000029951334e-003</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 5 6 6 -1.</_> - <_>4 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0187430009245873</threshold> - <left_val>0.4348109960556030</left_val> - <right_val>-0.3252249956130981</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 21 -1.</_> - <_>8 2 8 21 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.4508000016212463</threshold> - <left_val>-0.0945739969611168</left_val> - <right_val>0.7242130041122437</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 6 13 -1.</_> - <_>3 2 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0118549996986985</threshold> - <left_val>-0.3813309967517853</left_val> - <right_val>0.3009839951992035</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 0 4 21 -1.</_> - <_>20 0 2 21 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0248300004750490</threshold> - <left_val>0.8930060267448425</left_val> - <right_val>-0.1029589995741844</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 4 20 -1.</_> - <_>2 4 2 20 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0447430014610291</threshold> - <left_val>0.8628029823303223</left_val> - <right_val>-0.2171649932861328</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 16 9 6 -1.</_> - <_>8 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0146000003442168</threshold> - <left_val>0.6006940007209778</left_val> - <right_val>-0.1590629965066910</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 6 9 -1.</_> - <_>9 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0245270002633333</threshold> - <left_val>-1.5872869491577148</left_val> - <right_val>-0.0218170005828142</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 12 7 9 -1.</_> - <_>16 15 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0230240002274513</threshold> - <left_val>0.1685339957475662</left_val> - <right_val>-0.3810690045356751</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 21 14 3 -1.</_> - <_>12 21 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0249170009046793</threshold> - <left_val>0.5081089735031128</left_val> - <right_val>-0.2727989852428436</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 5 6 9 -1.</_> - <_>11 5 3 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0130000300705433e-003</threshold> - <left_val>-0.4313879907131195</left_val> - <right_val>0.2643809914588928</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 4 10 -1.</_> - <_>12 5 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0156030002981424</threshold> - <left_val>-0.3162420094013214</left_val> - <right_val>0.5571590065956116</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 6 9 -1.</_> - <_>12 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0266859997063875</threshold> - <left_val>1.0553920269012451</left_val> - <right_val>0.0290740001946688</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 6 9 -1.</_> - <_>10 5 3 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.3940000208094716e-003</threshold> - <left_val>-0.7187380194664002</left_val> - <right_val>0.0653909966349602</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 14 10 4 -1.</_> - <_>14 16 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.4799998654052615e-004</threshold> - <left_val>0.2488439977169037</left_val> - <right_val>-0.2097820043563843</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 5 14 14 -1.</_> - <_>5 5 7 7 2.</_> - <_>12 12 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0318880006670952</threshold> - <left_val>-0.6884449720382690</left_val> - <right_val>0.0635899975895882</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 8 12 6 -1.</_> - <_>18 8 6 3 2.</_> - <_>12 11 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.9290000461041927e-003</threshold> - <left_val>-0.5915250182151794</left_val> - <right_val>0.2794359922409058</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 12 12 -1.</_> - <_>6 6 6 6 2.</_> - <_>12 12 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0311680007725954</threshold> - <left_val>0.0452239997684956</left_val> - <right_val>-0.8863919973373413</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 13 6 10 -1.</_> - <_>13 13 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0336630009114742</threshold> - <left_val>-0.6159020066261292</left_val> - <right_val>0.1574929952621460</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 20 8 -1.</_> - <_>1 10 10 4 2.</_> - <_>11 14 10 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0119669996201992</threshold> - <left_val>-0.3060669898986816</left_val> - <right_val>0.4229330122470856</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 13 9 6 -1.</_> - <_>15 15 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0346800014376640</threshold> - <left_val>-1.3734940290451050</left_val> - <right_val>0.1590870022773743</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 6 9 -1.</_> - <_>9 3 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.9290004000067711e-003</threshold> - <left_val>-0.5586019754409790</left_val> - <right_val>0.1211920008063316</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 1 5 14 -1.</_> - <_>10 8 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0595749989151955</threshold> - <left_val>4.9720001406967640e-003</left_val> - <right_val>0.8205540180206299</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 4 16 6 -1.</_> - <_>3 6 16 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0654280036687851</threshold> - <left_val>1.5651429891586304</left_val> - <right_val>-0.1681749969720841</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 3 8 9 -1.</_> - <_>16 6 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0928959995508194</threshold> - <left_val>-1.5794529914855957</left_val> - <right_val>0.1466179937124252</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 13 6 10 -1.</_> - <_>9 13 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0411840006709099</threshold> - <left_val>-1.5518720149993896</left_val> - <right_val>-0.0299699995666742</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 13 9 6 -1.</_> - <_>15 15 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0214479994028807</threshold> - <left_val>0.1719630062580109</left_val> - <right_val>-0.6934319734573364</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 9 6 -1.</_> - <_>0 15 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0255699995905161</threshold> - <left_val>-1.3061310052871704</left_val> - <right_val>-0.0243369992822409</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 16 9 6 -1.</_> - <_>13 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0412009991705418</threshold> - <left_val>-1.3821059465408325</left_val> - <right_val>0.1480180025100708</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 16 9 6 -1.</_> - <_>2 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0176689997315407</threshold> - <left_val>-0.7088999748229981</left_val> - <right_val>0.0365240015089512</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 16 18 3 -1.</_> - <_>5 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.0060001239180565e-003</threshold> - <left_val>-0.0409139990806580</left_val> - <right_val>0.8037310242652893</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 16 18 3 -1.</_> - <_>1 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0116529995575547</threshold> - <left_val>0.5754680037498474</left_val> - <right_val>-0.2499170005321503</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 18 3 -1.</_> - <_>5 1 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.4780001305043697e-003</threshold> - <left_val>-0.4928089976310730</left_val> - <right_val>0.1981090009212494</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 19 2 -1.</_> - <_>1 2 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.5499999113380909e-004</threshold> - <left_val>-0.4885810017585754</left_val> - <right_val>0.1356309950351715</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 2 6 11 -1.</_> - <_>16 2 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0305380001664162</threshold> - <left_val>-0.6027839779853821</left_val> - <right_val>0.1852200031280518</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 15 15 6 -1.</_> - <_>9 15 5 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0188469998538494</threshold> - <left_val>0.2356559932231903</left_val> - <right_val>-0.3513630032539368</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 2 6 11 -1.</_> - <_>16 2 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.1129996106028557e-003</threshold> - <left_val>-0.0813049972057343</left_val> - <right_val>0.2106959968805313</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 2 6 11 -1.</_> - <_>6 2 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0348300002515316</threshold> - <left_val>-1.2065670490264893</left_val> - <right_val>-0.0142519995570183</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 2 6 9 -1.</_> - <_>18 5 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0190210007131100</threshold> - <left_val>0.2334990054368973</left_val> - <right_val>-0.4566490054130554</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 22 4 -1.</_> - <_>1 2 11 2 2.</_> - <_>12 4 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0190040003508329</threshold> - <left_val>-0.8107579946517944</left_val> - <right_val>0.0131400004029274</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 21 12 -1.</_> - <_>9 0 7 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0890579968690872</threshold> - <left_val>0.6154239773750305</left_val> - <right_val>0.0329830013215542</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 18 3 -1.</_> - <_>0 13 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.8620000965893269e-003</threshold> - <left_val>-0.2958309948444367</left_val> - <right_val>0.2700369954109192</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 2 6 9 -1.</_> - <_>14 2 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0282409992069006</threshold> - <left_val>-0.6110270023345947</left_val> - <right_val>0.1735749989748001</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 18 3 -1.</_> - <_>3 11 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.2099999953061342e-004</threshold> - <left_val>-0.5332289934158325</left_val> - <right_val>0.0685390010476112</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 3 8 9 -1.</_> - <_>16 6 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1082910001277924</threshold> - <left_val>-1.2879559993743896</left_val> - <right_val>0.1180170029401779</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 7 18 3 -1.</_> - <_>3 8 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0158789996057749</threshold> - <left_val>-0.1707260012626648</left_val> - <right_val>1.1103910207748413</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 11 6 9 -1.</_> - <_>11 11 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.6859995499253273e-003</threshold> - <left_val>-0.1099509969353676</left_val> - <right_val>0.4601050019264221</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 6 9 -1.</_> - <_>11 8 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0252349991351366</threshold> - <left_val>1.0220669507980347</left_val> - <right_val>-0.1869429945945740</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 2 18 -1.</_> - <_>15 0 1 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0135089997202158</threshold> - <left_val>-0.7831659913063049</left_val> - <right_val>0.1420260071754456</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 2 18 -1.</_> - <_>8 0 1 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.7149998396635056e-003</threshold> - <left_val>-0.8806070089340210</left_val> - <right_val>0.0110600003972650</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 3 7 9 -1.</_> - <_>17 6 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0715800002217293</threshold> - <left_val>0.1136939972639084</left_val> - <right_val>-1.1032789945602417</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 18 9 6 -1.</_> - <_>3 20 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0135540002956986</threshold> - <left_val>-0.8109650015830994</left_val> - <right_val>3.4080001059919596e-003</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 18 21 3 -1.</_> - <_>3 19 21 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.9450000729411840e-003</threshold> - <left_val>-0.0728799998760223</left_val> - <right_val>0.3499810099601746</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 7 9 -1.</_> - <_>0 6 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0508330017328262</threshold> - <left_val>-1.2868590354919434</left_val> - <right_val>-0.0288420002907515</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 7 22 3 -1.</_> - <_>2 8 22 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.7989997118711472e-003</threshold> - <left_val>0.4761359989643097</left_val> - <right_val>-0.1469040066003799</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 24 16 -1.</_> - <_>0 3 12 8 2.</_> - <_>12 11 12 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2142439931631088</threshold> - <left_val>-0.0597020015120506</left_val> - <right_val>-2.4802260398864746</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 17 9 4 -1.</_> - <_>13 19 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0139629999175668</threshold> - <left_val>0.1742029935121536</left_val> - <right_val>-0.4391100108623505</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 5 12 8 -1.</_> - <_>5 5 6 4 2.</_> - <_>11 9 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0425020009279251</threshold> - <left_val>-0.1996529996395111</left_val> - <right_val>0.7065479755401611</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 14 6 -1.</_> - <_>12 6 7 3 2.</_> - <_>5 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0198279991745949</threshold> - <left_val>-0.0691360011696815</left_val> - <right_val>0.6164339780807495</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 16 14 6 -1.</_> - <_>5 16 7 3 2.</_> - <_>12 19 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0335600003600121</threshold> - <left_val>-1.2740780115127563</left_val> - <right_val>-0.0256730001419783</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 2 6 9 -1.</_> - <_>18 5 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0635429993271828</threshold> - <left_val>0.1240350008010864</left_val> - <right_val>-1.0776289701461792</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 9 -1.</_> - <_>0 5 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0219330005347729</threshold> - <left_val>0.0149520002305508</left_val> - <right_val>-0.7102349996566773</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 4 20 10 -1.</_> - <_>13 4 10 5 2.</_> - <_>3 9 10 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0784249976277351</threshold> - <left_val>0.6203399896621704</left_val> - <right_val>0.0336109995841980</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 13 9 8 -1.</_> - <_>5 13 3 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0143900001421571</threshold> - <left_val>-0.3632459938526154</left_val> - <right_val>0.1730830073356628</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 1 21 15 -1.</_> - <_>9 1 7 15 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0673099979758263</threshold> - <left_val>0.5237410068511963</left_val> - <right_val>0.0127999996766448</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 12 14 8 -1.</_> - <_>12 12 7 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1304749995470047</threshold> - <left_val>-0.1712249964475632</left_val> - <right_val>1.1235200166702271</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 12 4 -1.</_> - <_>6 7 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0462459996342659</threshold> - <left_val>-1.1908329725265503</left_val> - <right_val>0.1742559969425201</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 9 6 -1.</_> - <_>9 5 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0298420004546642</threshold> - <left_val>0.8393059968948364</left_val> - <right_val>-0.1806419938802719</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 11 6 6 -1.</_> - <_>13 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.8099999073892832e-004</threshold> - <left_val>0.3553279936313629</left_val> - <right_val>-0.2384230047464371</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 6 6 -1.</_> - <_>8 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0223789997398853</threshold> - <left_val>-0.8794389963150024</left_val> - <right_val>-7.8399997437372804e-004</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 18 2 -1.</_> - <_>6 5 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.5569999814033508e-003</threshold> - <left_val>-0.1425330042839050</left_val> - <right_val>0.2587620019912720</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 11 -1.</_> - <_>2 2 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0120130004361272</threshold> - <left_val>-0.2901549935340881</left_val> - <right_val>0.2605110108852387</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 0 6 15 -1.</_> - <_>20 0 2 15 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0243849996477365</threshold> - <left_val>-0.0314389988780022</left_val> - <right_val>0.5869590044021606</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 6 13 -1.</_> - <_>2 0 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0471809990704060</threshold> - <left_val>0.6943010091781616</left_val> - <right_val>-0.2181610018014908</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 6 9 -1.</_> - <_>14 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0248939990997314</threshold> - <left_val>-0.6459929943084717</left_val> - <right_val>0.1561159938573837</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 6 9 -1.</_> - <_>8 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0219449996948242</threshold> - <left_val>-0.0277420002967119</left_val> - <right_val>-1.1346880197525024</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 4 -1.</_> - <_>8 2 8 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1880989968776703</threshold> - <left_val>-0.0100760003551841</left_val> - <right_val>1.2429029941558838</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 13 18 4 -1.</_> - <_>12 13 9 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0778720006346703</threshold> - <left_val>0.8500800132751465</left_val> - <right_val>-0.1901549994945526</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 7 10 4 -1.</_> - <_>9 7 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0487690009176731</threshold> - <left_val>-2.0763080120086670</left_val> - <right_val>0.1217940002679825</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 12 3 -1.</_> - <_>11 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0171150006353855</threshold> - <left_val>-0.8568729758262634</left_val> - <right_val>7.8760003671050072e-003</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 14 19 3 -1.</_> - <_>4 15 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7499999850988388e-003</threshold> - <left_val>0.3864549994468689</left_val> - <right_val>-0.1139149963855743</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 4 20 -1.</_> - <_>10 10 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0987939983606339</threshold> - <left_val>-1.7233899831771851</left_val> - <right_val>-0.0560630001127720</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 15 9 6 -1.</_> - <_>8 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0219369996339083</threshold> - <left_val>0.5474939942359924</left_val> - <right_val>-0.0424819998443127</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 9 15 4 -1.</_> - <_>7 9 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0610969997942448</threshold> - <left_val>-0.0389450006186962</left_val> - <right_val>-1.0807880163192749</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 4 12 7 -1.</_> - <_>12 4 4 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0245639998465776</threshold> - <left_val>0.5831109881401062</left_val> - <right_val>-9.7599998116493225e-004</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 10 6 9 -1.</_> - <_>0 13 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0337520018219948</threshold> - <left_val>-0.0137959998100996</left_val> - <right_val>-0.8473029732704163</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 5 6 9 -1.</_> - <_>18 8 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0381990000605583</threshold> - <left_val>0.1511429995298386</left_val> - <right_val>-0.7947340011596680</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 18 16 6 -1.</_> - <_>0 18 8 3 2.</_> - <_>8 21 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0201179999858141</threshold> - <left_val>0.5157909989356995</left_val> - <right_val>-0.2144539952278137</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 18 14 6 -1.</_> - <_>16 18 7 3 2.</_> - <_>9 21 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0247349999845028</threshold> - <left_val>-0.0221050009131432</left_val> - <right_val>0.4291769862174988</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 20 20 4 -1.</_> - <_>1 20 10 2 2.</_> - <_>11 22 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0243570003658533</threshold> - <left_val>-0.8620129823684692</left_val> - <right_val>-3.6760000512003899e-003</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 8 20 6 -1.</_> - <_>12 8 10 3 2.</_> - <_>2 11 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0264420006424189</threshold> - <left_val>-0.4539749920368195</left_val> - <right_val>0.2246280014514923</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 6 9 -1.</_> - <_>9 8 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.4429999068379402e-003</threshold> - <left_val>0.1307300031185150</left_val> - <right_val>-0.3862270116806030</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 5 12 8 -1.</_> - <_>12 5 4 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1070170029997826</threshold> - <left_val>0.1315860003232956</left_val> - <right_val>-0.7930690050125122</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 5 12 8 -1.</_> - <_>8 5 4 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0451529994606972</threshold> - <left_val>-0.2529680132865906</left_val> - <right_val>0.4067240059375763</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 6 9 -1.</_> - <_>12 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0443499982357025</threshold> - <left_val>0.0226130001246929</left_val> - <right_val>0.7961810231208801</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 6 16 -1.</_> - <_>4 0 2 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0839999886229634e-003</threshold> - <left_val>-0.3915840089321137</left_val> - <right_val>0.1163910031318665</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 4 6 12 -1.</_> - <_>15 8 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0714330002665520</threshold> - <left_val>0.0824669972062111</left_val> - <right_val>1.2530590295791626</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 4 6 12 -1.</_> - <_>3 8 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0358380004763603</threshold> - <left_val>-0.1820330023765564</left_val> - <right_val>0.7707870006561279</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 12 9 6 -1.</_> - <_>15 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0208390001207590</threshold> - <left_val>-0.6174439787864685</left_val> - <right_val>0.1589139997959137</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 15 22 -1.</_> - <_>4 11 15 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.4252580106258392</threshold> - <left_val>-0.0489780008792877</left_val> - <right_val>-1.8422030210494995</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 12 9 6 -1.</_> - <_>15 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0114080002531409</threshold> - <left_val>0.1791819930076599</left_val> - <right_val>-0.1538349986076355</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 9 6 -1.</_> - <_>0 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0153649998828769</threshold> - <left_val>-0.8401650190353394</left_val> - <right_val>-1.0280000278726220e-003</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 15 9 6 -1.</_> - <_>15 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0152120003476739</threshold> - <left_val>-0.1899569928646088</left_val> - <right_val>0.1713099926710129</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 9 6 -1.</_> - <_>0 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0189720001071692</threshold> - <left_val>-0.7954199910163879</left_val> - <right_val>6.6800001077353954e-003</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 8 10 -1.</_> - <_>14 0 4 5 2.</_> - <_>10 5 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.3330000005662441e-003</threshold> - <left_val>-0.2353080064058304</left_val> - <right_val>0.2473009973764420</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 4 16 -1.</_> - <_>3 0 2 16 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0932480022311211</threshold> - <left_val>-0.0547580011188984</left_val> - <right_val>-1.8324300050735474</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 10 6 -1.</_> - <_>7 8 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0125550003722310</threshold> - <left_val>0.2638520002365112</left_val> - <right_val>-0.3852640092372894</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 12 4 10 -1.</_> - <_>10 17 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0270700007677078</threshold> - <left_val>-0.6692979931831360</left_val> - <right_val>0.0203409995883703</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 4 10 6 -1.</_> - <_>8 6 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0236770007759333</threshold> - <left_val>0.6726530194282532</left_val> - <right_val>-0.0143440002575517</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 22 18 2 -1.</_> - <_>12 22 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0142750004306436</threshold> - <left_val>0.3018639981746674</left_val> - <right_val>-0.2851440012454987</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 11 6 -1.</_> - <_>7 9 11 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0280969999730587</threshold> - <left_val>0.1476600021123886</left_val> - <right_val>-1.4078520536422729</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 12 10 -1.</_> - <_>0 0 6 5 2.</_> - <_>6 5 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0508400015532970</threshold> - <left_val>-0.1861360073089600</left_val> - <right_val>0.7995300292968750</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 1 12 6 -1.</_> - <_>16 1 6 3 2.</_> - <_>10 4 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0115059996023774</threshold> - <left_val>0.1911839991807938</left_val> - <right_val>-0.0850350037217140</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 16 9 4 -1.</_> - <_>7 18 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0146610001102090</threshold> - <left_val>0.4523929953575134</left_val> - <right_val>-0.2220519930124283</right_val></_></_> - <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 15 16 -1.</_> - <_>10 7 5 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2284249961376190</threshold> - <left_val>0.1348839998245239</left_val> - <right_val>-1.2894610166549683</right_val></_></_> - <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 10 12 13 -1.</_> - <_>11 10 6 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1110690012574196</threshold> - <left_val>-0.2075379937887192</left_val> - <right_val>0.5456159710884094</right_val></_></_> - <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 2 12 6 -1.</_> - <_>12 2 6 3 2.</_> - <_>6 5 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.2450000289827585e-003</threshold> - <left_val>0.3205370008945465</left_val> - <right_val>-0.1640350073575974</right_val></_></_> - <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 9 12 9 -1.</_> - <_>3 12 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0853099972009659</threshold> - <left_val>-0.2021050006151199</left_val> - <right_val>0.5329679846763611</right_val></_></_> - <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 2 8 6 -1.</_> - <_>16 5 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0220480002462864</threshold> - <left_val>0.1569859981536865</left_val> - <right_val>-0.1701409965753555</right_val></_></_> - <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 8 6 -1.</_> - <_>0 5 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0156769994646311</threshold> - <left_val>-0.6286349892616272</left_val> - <right_val>0.0407619997859001</right_val></_></_> - <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 24 11 -1.</_> - <_>0 3 12 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3311290144920349</threshold> - <left_val>0.1660930067300797</left_val> - <right_val>-1.0326379537582397</right_val></_></_> - <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 8 10 -1.</_> - <_>0 13 4 5 2.</_> - <_>4 18 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.8470000773668289e-003</threshold> - <left_val>-0.2507619857788086</left_val> - <right_val>0.3166059851646423</right_val></_></_> - <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 14 4 10 -1.</_> - <_>10 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0460800006985664</threshold> - <left_val>0.1535210013389587</left_val> - <right_val>-1.6333500146865845</right_val></_></_> - <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 4 21 -1.</_> - <_>10 9 4 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0377030000090599</threshold> - <left_val>0.5687379837036133</left_val> - <right_val>-0.2010259926319122</right_val></_></_></trees> - <stage_threshold>-3.5125269889831543</stage_threshold> - <parent>14</parent> - <next>-1</next></_> - <_> - <!-- stage 16 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 4 15 9 -1.</_> - <_>4 7 15 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0818089991807938</threshold> - <left_val>0.5712479948997498</left_val> - <right_val>-0.6743879914283752</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 6 -1.</_> - <_>8 1 8 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2176119983196259</threshold> - <left_val>-0.3861019909381867</left_val> - <right_val>0.9034399986267090</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 5 16 -1.</_> - <_>9 14 5 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0148780001327395</threshold> - <left_val>0.2224159985780716</left_val> - <right_val>-1.2779350280761719</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 21 18 3 -1.</_> - <_>9 21 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0524349994957447</threshold> - <left_val>-0.2869040071964264</left_val> - <right_val>0.7574229836463928</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 3 12 -1.</_> - <_>6 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.1429995372891426e-003</threshold> - <left_val>-0.6488040089607239</left_val> - <right_val>0.2226880043745041</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 4 9 -1.</_> - <_>11 6 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.9169999808073044e-003</threshold> - <left_val>-0.2925359904766083</left_val> - <right_val>0.3103019893169403</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 9 8 -1.</_> - <_>8 6 3 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0260840002447367</threshold> - <left_val>0.4553270041942596</left_val> - <right_val>-0.3850060105323792</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 20 2 -1.</_> - <_>4 4 20 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.9400000348687172e-003</threshold> - <left_val>-0.5126439929008484</left_val> - <right_val>0.2743229866027832</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 10 18 3 -1.</_> - <_>8 10 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0571300014853477</threshold> - <left_val>0.0157880000770092</left_val> - <right_val>-1.2133100032806396</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 15 10 6 -1.</_> - <_>7 17 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.1309998854994774e-003</threshold> - <left_val>0.3917460143566132</left_val> - <right_val>-0.3086679875850678</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 4 4 18 -1.</_> - <_>1 4 2 9 2.</_> - <_>3 13 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0404050014913082</threshold> - <left_val>1.1901949644088745</left_val> - <right_val>-0.2034710049629211</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 6 9 -1.</_> - <_>15 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0202970001846552</threshold> - <left_val>-0.6823949813842773</left_val> - <right_val>0.2045869976282120</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 6 9 -1.</_> - <_>7 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0171889998018742</threshold> - <left_val>-0.8493989706039429</left_val> - <right_val>0.0384330004453659</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 0 6 9 -1.</_> - <_>13 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0242159999907017</threshold> - <left_val>-1.1039420366287231</left_val> - <right_val>0.1597509980201721</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 9 6 -1.</_> - <_>9 7 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0568690001964569</threshold> - <left_val>-0.1959529966115952</left_val> - <right_val>1.1806850433349609</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 18 2 -1.</_> - <_>3 1 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.6199999158270657e-004</threshold> - <left_val>-0.4084779918193817</left_val> - <right_val>0.3293859958648682</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 10 20 4 -1.</_> - <_>0 10 10 2 2.</_> - <_>10 12 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.9790003150701523e-003</threshold> - <left_val>-0.2967300117015839</left_val> - <right_val>0.4154790043830872</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 4 12 -1.</_> - <_>10 8 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0526250004768372</threshold> - <left_val>-1.3069299459457397</left_val> - <right_val>0.1786260008811951</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 6 12 -1.</_> - <_>6 5 3 6 2.</_> - <_>9 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0137489996850491</threshold> - <left_val>0.2366580069065094</left_val> - <right_val>-0.4453659951686859</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 18 22 -1.</_> - <_>15 0 9 11 2.</_> - <_>6 11 9 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0305170007050037</threshold> - <left_val>0.2901830077171326</left_val> - <right_val>-0.1121010035276413</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 18 22 -1.</_> - <_>0 0 9 11 2.</_> - <_>9 11 9 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3003750145435333</threshold> - <left_val>-2.4237680435180664</left_val> - <right_val>-0.0428309999406338</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 2 6 11 -1.</_> - <_>20 2 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0359909981489182</threshold> - <left_val>0.8820649981498718</left_val> - <right_val>-0.0470129996538162</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 11 -1.</_> - <_>2 2 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0551120005548000</threshold> - <left_val>0.8011900186538696</left_val> - <right_val>-0.2049099951982498</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 0 6 9 -1.</_> - <_>13 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0337620005011559</threshold> - <left_val>0.1461759954690933</left_val> - <right_val>-1.1349489688873291</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 20 3 -1.</_> - <_>0 1 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.2710003480315208e-003</threshold> - <left_val>-0.8160489797592163</left_val> - <right_val>0.0189880002290010</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 2 20 2 -1.</_> - <_>2 3 20 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.4399999789893627e-003</threshold> - <left_val>-0.7098090052604675</left_val> - <right_val>0.2234369963407517</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 18 2 -1.</_> - <_>1 11 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.1059999018907547e-003</threshold> - <left_val>-0.7280859947204590</left_val> - <right_val>0.0402249991893768</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 7 6 9 -1.</_> - <_>18 10 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0536519996821880</threshold> - <left_val>0.1717090010643005</left_val> - <right_val>-1.1163710355758667</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 22 9 -1.</_> - <_>0 3 22 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1254139989614487</threshold> - <left_val>2.7680370807647705</left_val> - <right_val>-0.1461150050163269</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 3 6 9 -1.</_> - <_>17 6 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0925420001149178</threshold> - <left_val>0.1160980015993118</left_val> - <right_val>-3.9635529518127441</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 6 9 -1.</_> - <_>0 10 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0385139994323254</threshold> - <left_val>-7.6399999670684338e-003</left_val> - <right_val>-0.9878090023994446</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 24 6 -1.</_> - <_>0 8 24 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.0200000144541264e-003</threshold> - <left_val>0.2305999994277954</left_val> - <right_val>-0.7497029900550842</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 10 -1.</_> - <_>2 2 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.7599998116493225e-003</threshold> - <left_val>-0.3113799989223480</left_val> - <right_val>0.3028779923915863</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 6 9 -1.</_> - <_>12 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0240950006991625</threshold> - <left_val>-0.0495299994945526</left_val> - <right_val>0.5269010066986084</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 6 9 -1.</_> - <_>9 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0179820004850626</threshold> - <left_val>-1.1610640287399292</left_val> - <right_val>-5.7000000961124897e-003</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 6 9 -1.</_> - <_>17 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0105550000444055</threshold> - <left_val>-0.2718909978866577</left_val> - <right_val>0.2359769940376282</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 6 9 -1.</_> - <_>5 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.2889998555183411e-003</threshold> - <left_val>-0.5421910285949707</left_val> - <right_val>0.0819140002131462</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 17 9 6 -1.</_> - <_>15 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0239390004426241</threshold> - <left_val>0.1797579973936081</left_val> - <right_val>-0.6704949736595154</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 18 3 -1.</_> - <_>0 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0183659996837378</threshold> - <left_val>0.6266430020332336</left_val> - <right_val>-0.2097010016441345</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 14 9 6 -1.</_> - <_>15 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0157159995287657</threshold> - <left_val>0.2419369965791702</left_val> - <right_val>-1.0444309711456299</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 23 6 -1.</_> - <_>0 17 23 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0488040000200272</threshold> - <left_val>-0.9406059980392456</left_val> - <right_val>-3.7519999314099550e-003</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 15 18 3 -1.</_> - <_>5 16 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7130001261830330e-003</threshold> - <left_val>-0.0754320025444031</left_val> - <right_val>0.6157529950141907</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 9 6 -1.</_> - <_>0 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.7770001739263535e-003</threshold> - <left_val>0.0392850004136562</left_val> - <right_val>-0.8481029868125916</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 8 10 -1.</_> - <_>13 8 4 5 2.</_> - <_>9 13 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0147449998185039</threshold> - <left_val>0.1696899980306625</left_val> - <right_val>-0.5090640187263489</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 7 15 6 -1.</_> - <_>8 7 5 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0970790013670921</threshold> - <left_val>-0.0331030003726482</left_val> - <right_val>-1.2706379890441895</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 8 10 -1.</_> - <_>13 8 4 5 2.</_> - <_>9 13 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0482859984040260</threshold> - <left_val>0.0943299978971481</left_val> - <right_val>2.7203190326690674</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 6 12 -1.</_> - <_>8 0 3 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.7810002043843269e-003</threshold> - <left_val>-0.3953340053558350</left_val> - <right_val>0.1536380052566528</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 8 10 -1.</_> - <_>13 8 4 5 2.</_> - <_>9 13 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0398939996957779</threshold> - <left_val>-0.2276740074157715</left_val> - <right_val>0.1391399949789047</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 5 6 9 -1.</_> - <_>10 5 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0228480007499456</threshold> - <left_val>-0.2739199995994568</left_val> - <right_val>0.3419950008392334</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 18 -1.</_> - <_>12 6 2 9 2.</_> - <_>10 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7179999314248562e-003</threshold> - <left_val>-0.1087429970502853</left_val> - <right_val>0.4812540113925934</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 12 4 -1.</_> - <_>11 7 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0595999993383884</threshold> - <left_val>-0.0495220012962818</left_val> - <right_val>-2.0117089748382568</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 8 10 -1.</_> - <_>13 8 4 5 2.</_> - <_>9 13 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.9340001791715622e-003</threshold> - <left_val>0.1503749936819077</left_val> - <right_val>-0.1127189993858337</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 8 10 -1.</_> - <_>7 8 4 5 2.</_> - <_>11 13 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0157570000737906</threshold> - <left_val>-0.0208850000053644</left_val> - <right_val>-1.1651979684829712</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 10 6 14 -1.</_> - <_>14 10 3 7 2.</_> - <_>11 17 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0496900007128716</threshold> - <left_val>-0.8021349906921387</left_val> - <right_val>0.1437229961156845</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 6 19 -1.</_> - <_>12 5 3 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0523470006883144</threshold> - <left_val>-0.2083670049905777</left_val> - <right_val>0.6167759895324707</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 12 12 6 -1.</_> - <_>12 12 6 3 2.</_> - <_>6 15 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0224309992045164</threshold> - <left_val>0.2030590027570725</left_val> - <right_val>-0.7532619833946228</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 9 18 6 -1.</_> - <_>1 9 9 3 2.</_> - <_>10 12 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0411420017480850</threshold> - <left_val>-0.1811819970607758</left_val> - <right_val>1.0033359527587891</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 14 8 10 -1.</_> - <_>20 14 4 5 2.</_> - <_>16 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0216320008039474</threshold> - <left_val>0.4999899864196777</left_val> - <right_val>-0.0346629992127419</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 9 22 8 -1.</_> - <_>0 9 11 4 2.</_> - <_>11 13 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0828080028295517</threshold> - <left_val>1.1711900234222412</left_val> - <right_val>-0.1843360066413879</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 18 12 6 -1.</_> - <_>14 18 6 3 2.</_> - <_>8 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.5060000419616699e-003</threshold> - <left_val>-0.0632250010967255</left_val> - <right_val>0.2902489900588989</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 20 18 -1.</_> - <_>0 6 10 9 2.</_> - <_>10 15 10 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0789050012826920</threshold> - <left_val>-0.2327450066804886</left_val> - <right_val>0.5969579815864563</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 20 12 -1.</_> - <_>13 6 10 6 2.</_> - <_>3 12 10 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0902070030570030</threshold> - <left_val>-0.8221189975738525</left_val> - <right_val>0.1777220070362091</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 10 8 -1.</_> - <_>0 16 5 4 2.</_> - <_>5 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0292690005153418</threshold> - <left_val>0.6086069941520691</left_val> - <right_val>-0.2146890014410019</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 16 18 3 -1.</_> - <_>6 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.9499998353421688e-003</threshold> - <left_val>-0.0426659993827343</left_val> - <right_val>0.6051210165023804</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 11 19 3 -1.</_> - <_>0 12 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.0629996955394745e-003</threshold> - <left_val>-1.1508270502090454</left_val> - <right_val>-0.0272860005497932</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 6 6 9 -1.</_> - <_>14 9 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0195959992706776</threshold> - <left_val>-9.1880001127719879e-003</left_val> - <right_val>0.5685780048370361</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 7 22 4 -1.</_> - <_>1 7 11 2 2.</_> - <_>12 9 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0148849999532104</threshold> - <left_val>0.3765879869461060</left_val> - <right_val>-0.2714950144290924</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 6 7 12 -1.</_> - <_>13 10 7 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0252170003950596</threshold> - <left_val>-0.0999910011887550</left_val> - <right_val>0.2466470003128052</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 11 9 -1.</_> - <_>4 10 11 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0158559996634722</threshold> - <left_val>0.6682670116424561</left_val> - <right_val>-0.2061470001935959</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 10 10 8 -1.</_> - <_>17 10 5 4 2.</_> - <_>12 14 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0294410008937120</threshold> - <left_val>0.1583220064640045</left_val> - <right_val>-0.7606089711189270</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 12 9 7 -1.</_> - <_>5 12 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.5279997438192368e-003</threshold> - <left_val>0.3821229934692383</left_val> - <right_val>-0.2540780007839203</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 14 6 9 -1.</_> - <_>16 17 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0244219992309809</threshold> - <left_val>0.1510509997606278</left_val> - <right_val>-0.2875289916992188</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 12 6 12 -1.</_> - <_>3 16 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0338869988918304</threshold> - <left_val>-0.6800280213356018</left_val> - <right_val>0.0343270003795624</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 13 6 6 -1.</_> - <_>14 16 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.0810000132769346e-003</threshold> - <left_val>0.2541390061378479</left_val> - <right_val>-0.2685909867286682</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 0 6 9 -1.</_> - <_>10 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0303589999675751</threshold> - <left_val>-0.0308420006185770</left_val> - <right_val>-1.1476809978485107</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 6 23 -1.</_> - <_>11 1 2 23 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0210001170635223e-003</threshold> - <left_val>-0.3525379896163940</left_val> - <right_val>0.2986809909343720</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 9 6 -1.</_> - <_>0 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0276810005307198</threshold> - <left_val>-0.0381489992141724</left_val> - <right_val>-1.3262039422988892</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 17 18 3 -1.</_> - <_>4 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.9039996489882469e-003</threshold> - <left_val>-0.0237370003014803</left_val> - <right_val>0.7050300240516663</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 13 14 -1.</_> - <_>5 9 13 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0440310016274452</threshold> - <left_val>0.1067489981651306</left_val> - <right_val>-0.4526120126247406</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 8 12 -1.</_> - <_>19 0 4 6 2.</_> - <_>15 6 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0323709994554520</threshold> - <left_val>0.4667490124702454</left_val> - <right_val>-0.0615469999611378</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 8 12 -1.</_> - <_>0 0 4 6 2.</_> - <_>4 6 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0209330003708601</threshold> - <left_val>-0.2844789922237396</left_val> - <right_val>0.4384559988975525</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 2 8 7 -1.</_> - <_>8 2 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0252279993146658</threshold> - <left_val>-0.0225370004773140</left_val> - <right_val>0.7038909792900085</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 6 9 -1.</_> - <_>3 1 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.5520000644028187e-003</threshold> - <left_val>-0.3255490064620972</left_val> - <right_val>0.2402369976043701</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 8 6 12 -1.</_> - <_>17 8 3 6 2.</_> - <_>14 14 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0585579983890057</threshold> - <left_val>-1.2227720022201538</left_val> - <right_val>0.1166879981756210</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 8 6 12 -1.</_> - <_>4 8 3 6 2.</_> - <_>7 14 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0318999998271465</threshold> - <left_val>-0.0193050000816584</left_val> - <right_val>-1.0973169803619385</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 5 5 15 -1.</_> - <_>16 10 5 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0304450001567602</threshold> - <left_val>0.6558250188827515</left_val> - <right_val>0.0750909969210625</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 5 5 15 -1.</_> - <_>3 10 5 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0149330003187060</threshold> - <left_val>-0.5215579867362976</left_val> - <right_val>0.1152309998869896</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 4 6 9 -1.</_> - <_>18 7 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0490080006420612</threshold> - <left_val>-0.7830399870872498</left_val> - <right_val>0.1665720045566559</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 7 6 15 -1.</_> - <_>1 12 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0831589996814728</threshold> - <left_val>-2.6879999786615372e-003</left_val> - <right_val>-0.8528230190277100</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 15 12 8 -1.</_> - <_>17 15 6 4 2.</_> - <_>11 19 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0239029992371798</threshold> - <left_val>-0.0510109998285770</left_val> - <right_val>0.4199909865856171</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 4 -1.</_> - <_>0 2 12 2 2.</_> - <_>12 4 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0164289996027946</threshold> - <left_val>0.0192329995334148</left_val> - <right_val>-0.6504909992218018</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 1 2 19 -1.</_> - <_>15 1 1 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0118380002677441</threshold> - <left_val>-0.6240980029106140</left_val> - <right_val>0.1541119962930679</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 1 2 19 -1.</_> - <_>8 1 1 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6799999866634607e-004</threshold> - <left_val>0.1758919954299927</left_val> - <right_val>-0.3433870077133179</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>22 1 2 20 -1.</_> - <_>22 1 1 20 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0191939994692802</threshold> - <left_val>0.0434189997613430</left_val> - <right_val>0.7906919717788696</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 2 20 -1.</_> - <_>1 1 1 20 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0100320000201464</threshold> - <left_val>0.4564889967441559</left_val> - <right_val>-0.2249480038881302</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 11 6 12 -1.</_> - <_>20 11 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0140040004625916</threshold> - <left_val>0.3357099890708923</left_val> - <right_val>-4.8799999058246613e-003</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 11 6 12 -1.</_> - <_>2 11 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1031989976763725</threshold> - <left_val>-2.3378000259399414</left_val> - <right_val>-0.0589330010116100</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 18 14 -1.</_> - <_>3 13 18 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0956970006227493</threshold> - <left_val>-0.6615390181541443</left_val> - <right_val>0.2009859979152679</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 10 7 8 -1.</_> - <_>6 14 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0414809994399548</threshold> - <left_val>0.4593920111656189</left_val> - <right_val>-0.2231409996747971</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 9 12 12 -1.</_> - <_>7 13 12 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.4099999573081732e-003</threshold> - <left_val>-0.2689859867095947</left_val> - <right_val>0.2492299973964691</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 18 18 5 -1.</_> - <_>11 18 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1072499975562096</threshold> - <left_val>-0.1864019930362701</left_val> - <right_val>0.7276980280876160</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 21 20 3 -1.</_> - <_>4 22 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.1870000530034304e-003</threshold> - <left_val>-0.0246089994907379</left_val> - <right_val>0.2864390015602112</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 6 12 -1.</_> - <_>9 12 3 6 2.</_> - <_>12 18 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0291670002043247</threshold> - <left_val>-0.0346830002963543</left_val> - <right_val>-1.1162580251693726</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 18 3 -1.</_> - <_>4 7 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0112870000302792</threshold> - <left_val>6.3760001212358475e-003</left_val> - <right_val>0.6663209795951843</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 18 3 -1.</_> - <_>3 7 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0120010003447533</threshold> - <left_val>0.4242010116577148</left_val> - <right_val>-0.2627980113029480</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 4 6 9 -1.</_> - <_>18 7 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0126959998160601</threshold> - <left_val>-0.0219570007175207</left_val> - <right_val>0.1893679946660996</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 12 9 6 -1.</_> - <_>2 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0245970003306866</threshold> - <left_val>-0.0349639989435673</left_val> - <right_val>-1.0989320278167725</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 14 18 4 -1.</_> - <_>13 14 9 2 2.</_> - <_>4 16 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0459530018270016</threshold> - <left_val>0.1110979989171028</left_val> - <right_val>-2.9306049346923828</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 6 14 -1.</_> - <_>7 7 3 7 2.</_> - <_>10 14 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0272410009056330</threshold> - <left_val>0.2910169959068298</left_val> - <right_val>-0.2740789949893951</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 13 12 6 -1.</_> - <_>13 13 6 3 2.</_> - <_>7 16 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0400639995932579</threshold> - <left_val>0.1187790036201477</left_val> - <right_val>-0.6280180215835571</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 12 9 -1.</_> - <_>10 7 4 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0230550002306700</threshold> - <left_val>0.1481380015611649</left_val> - <right_val>-0.3700749874114990</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 12 6 6 -1.</_> - <_>12 12 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0237370003014803</threshold> - <left_val>-0.5372480154037476</left_val> - <right_val>0.1935819983482361</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 4 10 -1.</_> - <_>0 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0775220021605492</threshold> - <left_val>-0.0601940006017685</left_val> - <right_val>-1.9489669799804688</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 0 9 6 -1.</_> - <_>11 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0133450003340840</threshold> - <left_val>-0.4522959887981415</left_val> - <right_val>0.1874150037765503</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 9 12 6 -1.</_> - <_>2 12 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0217199996113777</threshold> - <left_val>1.2144249677658081</left_val> - <right_val>-0.1536580026149750</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 10 6 9 -1.</_> - <_>13 13 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0714749991893768</threshold> - <left_val>-2.3047130107879639</left_val> - <right_val>0.1099990010261536</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 10 6 9 -1.</_> - <_>5 13 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.4999999701976776e-003</threshold> - <left_val>-0.7185519933700562</left_val> - <right_val>0.0201009996235371</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 15 9 6 -1.</_> - <_>9 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0267409998923540</threshold> - <left_val>0.0735450014472008</left_val> - <right_val>0.9878600239753723</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 16 12 6 -1.</_> - <_>5 19 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0394079983234406</threshold> - <left_val>-1.2227380275726318</left_val> - <right_val>-0.0435069985687733</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 20 3 -1.</_> - <_>3 3 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0258889999240637</threshold> - <left_val>0.1340930014848709</left_val> - <right_val>-1.1770780086517334</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 5 12 6 -1.</_> - <_>6 5 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0489250011742115</threshold> - <left_val>-0.0308100003749132</left_val> - <right_val>-0.9347950220108032</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 0 3 24 -1.</_> - <_>12 0 1 24 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0368929989635944</threshold> - <left_val>0.1333370059728622</left_val> - <right_val>-1.4998290538787842</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 16 15 4 -1.</_> - <_>8 16 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0789299979805946</threshold> - <left_val>-0.1453880071640015</left_val> - <right_val>1.5631790161132813</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 6 12 -1.</_> - <_>9 18 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0290060006082058</threshold> - <left_val>0.1938370019197464</left_val> - <right_val>-0.6764280200004578</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 15 12 8 -1.</_> - <_>1 15 6 4 2.</_> - <_>7 19 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.3089998438954353e-003</threshold> - <left_val>-0.3746539950370789</left_val> - <right_val>0.1085750013589859</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 10 8 14 -1.</_> - <_>19 10 4 7 2.</_> - <_>15 17 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0658309981226921</threshold> - <left_val>0.8105940222740173</left_val> - <right_val>0.0302019994705915</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 9 8 14 -1.</_> - <_>1 9 4 7 2.</_> - <_>5 16 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0689650028944016</threshold> - <left_val>0.8377259969711304</left_val> - <right_val>-0.1714099943637848</right_val></_></_> - <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 11 9 10 -1.</_> - <_>9 16 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1166910007596016</threshold> - <left_val>-0.9464719891548157</left_val> - <right_val>0.1312319934368134</right_val></_></_> - <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 12 6 -1.</_> - <_>6 9 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.3060000492259860e-003</threshold> - <left_val>0.0460079982876778</left_val> - <right_val>-0.5201159715652466</right_val></_></_> - <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 15 6 9 -1.</_> - <_>12 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0445589981973171</threshold> - <left_val>-1.9423669576644897</left_val> - <right_val>0.1320070028305054</right_val></_></_> - <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 9 7 -1.</_> - <_>10 8 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0510330013930798</threshold> - <left_val>-0.2148099988698959</left_val> - <right_val>0.4867390096187592</right_val></_></_> - <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 4 8 10 -1.</_> - <_>14 4 4 5 2.</_> - <_>10 9 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0315780006349087</threshold> - <left_val>0.5998979806900024</left_val> - <right_val>7.9159997403621674e-003</right_val></_></_> - <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 6 9 -1.</_> - <_>4 9 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0210200008004904</threshold> - <left_val>-0.2206950038671494</left_val> - <right_val>0.5404620170593262</right_val></_></_> - <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 24 12 -1.</_> - <_>8 6 8 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1382420063018799</threshold> - <left_val>0.6295750141143799</left_val> - <right_val>-0.0217129997909069</right_val></_></_> - <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 7 6 14 -1.</_> - <_>6 7 3 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0522289983928204</threshold> - <left_val>-0.2336090058088303</left_val> - <right_val>0.4976080060005188</right_val></_></_> - <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 8 5 8 -1.</_> - <_>19 12 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0258840005844831</threshold> - <left_val>0.1804199963808060</left_val> - <right_val>-0.2203920036554337</right_val></_></_> - <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 5 8 -1.</_> - <_>0 12 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0121389999985695</threshold> - <left_val>-0.6973189711570740</left_val> - <right_val>0.0157120004296303</right_val></_></_> - <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 3 6 6 -1.</_> - <_>17 6 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0242379996925592</threshold> - <left_val>0.3459329903125763</left_val> - <right_val>0.0714699998497963</right_val></_></_> - <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 3 6 6 -1.</_> - <_>1 6 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0252720005810261</threshold> - <left_val>-0.8758329749107361</left_val> - <right_val>-9.8240002989768982e-003</right_val></_></_> - <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 2 6 9 -1.</_> - <_>18 5 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0125970002263784</threshold> - <left_val>0.2364999949932098</left_val> - <right_val>-0.2873120009899139</right_val></_></_> - <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 9 -1.</_> - <_>0 5 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0573309995234013</threshold> - <left_val>-0.0615309998393059</left_val> - <right_val>-2.2326040267944336</right_val></_></_> - <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 3 18 6 -1.</_> - <_>3 5 18 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0166710000485182</threshold> - <left_val>-0.1985010057687759</left_val> - <right_val>0.4081070125102997</right_val></_></_> - <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 3 9 6 -1.</_> - <_>2 5 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0228189993649721</threshold> - <left_val>0.9648759961128235</left_val> - <right_val>-0.2024569958448410</right_val></_></_> - <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 3 10 8 -1.</_> - <_>14 3 5 4 2.</_> - <_>9 7 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.7000001611886546e-005</threshold> - <left_val>-0.0589089989662170</left_val> - <right_val>0.2705540060997009</right_val></_></_> - <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 3 10 8 -1.</_> - <_>5 3 5 4 2.</_> - <_>10 7 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.6700001955032349e-003</threshold> - <left_val>-0.4531710147857666</left_val> - <right_val>0.0896280035376549</right_val></_></_> - <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 11 6 12 -1.</_> - <_>10 11 3 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0940859988331795</threshold> - <left_val>0.1160459965467453</left_val> - <right_val>-1.0951169729232788</right_val></_></_> - <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 11 6 11 -1.</_> - <_>11 11 3 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0622670017182827</threshold> - <left_val>1.8096530437469482</left_val> - <right_val>-0.1477320045232773</right_val></_></_> - <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 10 4 -1.</_> - <_>7 8 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0174160003662109</threshold> - <left_val>0.2306820005178452</left_val> - <right_val>-0.4241760075092316</right_val></_></_> - <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 7 -1.</_> - <_>12 6 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0220660008490086</threshold> - <left_val>0.4927029907703400</left_val> - <right_val>-0.2063090056180954</right_val></_></_> - <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 18 18 3 -1.</_> - <_>5 19 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0104040000587702</threshold> - <left_val>0.6092429757118225</left_val> - <right_val>0.0281300004571676</right_val></_></_> - <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 4 6 9 -1.</_> - <_>10 4 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3670003116130829e-003</threshold> - <left_val>0.4017120003700256</left_val> - <right_val>-0.2168170064687729</right_val></_></_> - <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 9 7 -1.</_> - <_>11 1 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0290399994701147</threshold> - <left_val>-0.8487650156021118</left_val> - <right_val>0.1424680054187775</right_val></_></_> - <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 11 6 6 -1.</_> - <_>9 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0210619997233152</threshold> - <left_val>-0.7919830083847046</left_val> - <right_val>-0.0125959999859333</right_val></_></_> - <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 12 4 11 -1.</_> - <_>14 12 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0370009988546371</threshold> - <left_val>-0.6748890280723572</left_val> - <right_val>0.1283040046691895</right_val></_></_> - <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 12 4 11 -1.</_> - <_>8 12 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0107359997928143</threshold> - <left_val>0.0367799997329712</left_val> - <right_val>-0.6339300274848938</right_val></_></_> - <_> - <!-- tree 155 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 0 12 18 -1.</_> - <_>12 0 4 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1636759936809540</threshold> - <left_val>0.1380389928817749</left_val> - <right_val>-0.4718900024890900</right_val></_></_> - <_> - <!-- tree 156 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 12 10 5 -1.</_> - <_>7 12 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0949179977178574</threshold> - <left_val>-0.1385570019483566</left_val> - <right_val>1.9492419958114624</right_val></_></_> - <_> - <!-- tree 157 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 20 22 3 -1.</_> - <_>2 21 22 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0352619998157024</threshold> - <left_val>0.1372189968824387</left_val> - <right_val>-2.1186530590057373</right_val></_></_> - <_> - <!-- tree 158 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 2 20 -1.</_> - <_>1 4 1 20 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0128110004588962</threshold> - <left_val>-0.2000810056924820</left_val> - <right_val>0.4950779974460602</right_val></_></_></trees> - <stage_threshold>-3.5939640998840332</stage_threshold> - <parent>15</parent> - <next>-1</next></_> - <_> - <!-- stage 17 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 4 -1.</_> - <_>8 2 8 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1390440016984940</threshold> - <left_val>-0.4658119976520538</left_val> - <right_val>0.7643160223960877</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 10 4 -1.</_> - <_>7 10 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0119169997051358</threshold> - <left_val>-0.9439899921417236</left_val> - <right_val>0.3972629904747009</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 8 10 -1.</_> - <_>6 7 4 5 2.</_> - <_>10 12 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0100069995969534</threshold> - <left_val>0.3271879851818085</left_val> - <right_val>-0.6336740255355835</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 6 14 -1.</_> - <_>17 0 3 7 2.</_> - <_>14 7 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.0479999519884586e-003</threshold> - <left_val>0.2742789983749390</left_val> - <right_val>-0.5744699835777283</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 11 5 8 -1.</_> - <_>4 15 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.2489999644458294e-003</threshold> - <left_val>0.2362930029630661</left_val> - <right_val>-0.6859350204467773</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 20 9 -1.</_> - <_>2 3 20 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0323820002377033</threshold> - <left_val>-0.5763019919395447</left_val> - <right_val>0.2749269902706146</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 12 8 -1.</_> - <_>6 7 6 4 2.</_> - <_>12 11 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0139579996466637</threshold> - <left_val>-0.6106150150299072</left_val> - <right_val>0.2454160004854202</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 17 6 6 -1.</_> - <_>9 20 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1159999994561076e-003</threshold> - <left_val>-0.5653910040855408</left_val> - <right_val>0.2717930078506470</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 10 10 4 -1.</_> - <_>7 12 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.7000000045518391e-005</threshold> - <left_val>-0.8023599982261658</left_val> - <right_val>0.1150910034775734</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 12 9 -1.</_> - <_>10 5 4 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.5700000696815550e-004</threshold> - <left_val>-0.8120589852333069</left_val> - <right_val>0.2384469956159592</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 6 8 -1.</_> - <_>8 11 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0460000745952129e-003</threshold> - <left_val>0.1390960067510605</left_val> - <right_val>-0.6616320013999939</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 4 4 17 -1.</_> - <_>18 4 2 17 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0143560003489256</threshold> - <left_val>-0.1648519933223724</left_val> - <right_val>0.4190169870853424</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 6 6 -1.</_> - <_>3 0 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0553749985992908</threshold> - <left_val>1.4425870180130005</left_val> - <right_val>-0.1882019937038422</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 4 4 17 -1.</_> - <_>18 4 2 17 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0935949981212616</threshold> - <left_val>0.1354829967021942</left_val> - <right_val>-0.9163609743118286</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 4 4 17 -1.</_> - <_>4 4 2 17 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0266249999403954</threshold> - <left_val>-0.3374829888343811</left_val> - <right_val>0.3923360109329224</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 18 19 3 -1.</_> - <_>5 19 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.7469998933374882e-003</threshold> - <left_val>-0.1161540001630783</left_val> - <right_val>0.4439930021762848</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 0 2 18 -1.</_> - <_>11 9 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0318860001862049</threshold> - <left_val>-0.9949830174446106</left_val> - <right_val>1.6120000509545207e-003</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 4 2 18 -1.</_> - <_>15 13 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0226000007241964</threshold> - <left_val>-0.4806739985942841</left_val> - <right_val>0.1700730025768280</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 4 2 18 -1.</_> - <_>7 13 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0252020005136728</threshold> - <left_val>0.0355800017714500</left_val> - <right_val>-0.8021540045738220</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 11 10 8 -1.</_> - <_>12 11 5 4 2.</_> - <_>7 15 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0310369990766048</threshold> - <left_val>-1.0895340442657471</left_val> - <right_val>0.1808190047740936</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 9 -1.</_> - <_>12 6 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0264759995043278</threshold> - <left_val>0.9567120075225830</left_val> - <right_val>-0.2104939967393875</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 6 9 -1.</_> - <_>12 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0138539997860789</threshold> - <left_val>-1.0370320081710815</left_val> - <right_val>0.2216670066118240</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 9 16 8 -1.</_> - <_>2 9 8 4 2.</_> - <_>10 13 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0629250034689903</threshold> - <left_val>0.9019939899444580</left_val> - <right_val>-0.1908529996871948</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 15 6 9 -1.</_> - <_>14 18 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0447509996592999</threshold> - <left_val>-1.0119110345840454</left_val> - <right_val>0.1469119936227799</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 6 9 -1.</_> - <_>10 7 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0204280000180006</threshold> - <left_val>0.6162449717521668</left_val> - <right_val>-0.2355269938707352</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 15 6 9 -1.</_> - <_>14 18 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.0329999327659607e-003</threshold> - <left_val>-0.0832799971103668</left_val> - <right_val>0.2172870039939880</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 12 12 6 -1.</_> - <_>3 14 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.7280003353953362e-003</threshold> - <left_val>0.0654589980840683</left_val> - <right_val>-0.6031870245933533</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 12 9 6 -1.</_> - <_>14 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0272020008414984</threshold> - <left_val>-0.9344739913940430</left_val> - <right_val>0.1527000069618225</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 12 9 6 -1.</_> - <_>1 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0164710003882647</threshold> - <left_val>-0.8417710065841675</left_val> - <right_val>0.0133320000022650</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 7 18 3 -1.</_> - <_>3 8 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0137440003454685</threshold> - <left_val>0.6056720018386841</left_val> - <right_val>-0.0920210033655167</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 7 22 6 -1.</_> - <_>1 9 22 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0291649997234344</threshold> - <left_val>-0.0281140003353357</left_val> - <right_val>-1.4014569520950317</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 4 6 6 -1.</_> - <_>18 7 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0374570004642010</threshold> - <left_val>0.1308059990406036</left_val> - <right_val>-0.4938249886035919</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 6 6 -1.</_> - <_>0 7 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0250700004398823</threshold> - <left_val>-1.1289390325546265</left_val> - <right_val>-0.0146000003442168</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 16 6 -1.</_> - <_>5 14 16 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0638120025396347</threshold> - <left_val>0.7587159872055054</left_val> - <right_val>-1.8200000049546361e-003</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 16 9 4 -1.</_> - <_>6 18 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3900002539157867e-003</threshold> - <left_val>0.2993640005588532</left_val> - <right_val>-0.2948780059814453</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 15 6 9 -1.</_> - <_>14 18 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.6000002445653081e-004</threshold> - <left_val>0.0197250004857779</left_val> - <right_val>0.1999389976263046</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 15 6 9 -1.</_> - <_>4 18 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0217409990727901</threshold> - <left_val>-0.8524789810180664</left_val> - <right_val>0.0491699986159801</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 1 6 23 -1.</_> - <_>17 1 2 23 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0178699996322393</threshold> - <left_val>-0.0599859990179539</left_val> - <right_val>0.1522250026464462</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 21 24 3 -1.</_> - <_>8 21 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0248310007154942</threshold> - <left_val>0.3560340106487274</left_val> - <right_val>-0.2625989913940430</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 20 24 4 -1.</_> - <_>8 20 8 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1571550071239471</threshold> - <left_val>1.5599999460391700e-004</left_val> - <right_val>1.0428730249404907</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 1 6 23 -1.</_> - <_>5 1 2 23 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0690269991755486</threshold> - <left_val>-0.0330069996416569</left_val> - <right_val>-1.1796669960021973</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 17 18 3 -1.</_> - <_>3 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0110219996422529</threshold> - <left_val>0.5898770093917847</left_val> - <right_val>-0.0576479993760586</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 18 3 -1.</_> - <_>0 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0138349998742342</threshold> - <left_val>0.5950279831886292</left_val> - <right_val>-0.2441859990358353</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 16 22 4 -1.</_> - <_>12 16 11 2 2.</_> - <_>1 18 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0309410002082586</threshold> - <left_val>-1.1723799705505371</left_val> - <right_val>0.1690700054168701</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 9 6 -1.</_> - <_>0 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0212580002844334</threshold> - <left_val>-0.0189009997993708</left_val> - <right_val>-1.0684759616851807</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 10 21 3 -1.</_> - <_>9 10 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0930799990892410</threshold> - <left_val>0.1630560010671616</left_val> - <right_val>-1.3375270366668701</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 18 12 6 -1.</_> - <_>2 18 6 3 2.</_> - <_>8 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0296359993517399</threshold> - <left_val>-0.2252479940652847</left_val> - <right_val>0.4540010094642639</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 24 4 -1.</_> - <_>0 7 24 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.2199999764561653e-004</threshold> - <left_val>0.2740910053253174</left_val> - <right_val>-0.3737139999866486</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 4 15 -1.</_> - <_>10 7 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0420980006456375</threshold> - <left_val>-0.7582880258560181</left_val> - <right_val>0.0171370003372431</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 7 6 12 -1.</_> - <_>10 13 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0225050002336502</threshold> - <left_val>-0.2275930047035217</left_val> - <right_val>0.2369869947433472</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 6 9 -1.</_> - <_>8 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0128629999235272</threshold> - <left_val>0.1925240010023117</left_val> - <right_val>-0.3212710022926331</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 0 6 9 -1.</_> - <_>13 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0278600007295609</threshold> - <left_val>0.1672369986772537</left_val> - <right_val>-1.0209059715270996</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 7 6 9 -1.</_> - <_>11 7 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0278079994022846</threshold> - <left_val>1.2824759483337402</left_val> - <right_val>-0.1722529977560043</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 1 20 3 -1.</_> - <_>2 2 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.1630001291632652e-003</threshold> - <left_val>-0.5407289862632752</left_val> - <right_val>0.2388570010662079</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 18 12 6 -1.</_> - <_>1 18 6 3 2.</_> - <_>7 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0204360000789166</threshold> - <left_val>0.6335539817810059</left_val> - <right_val>-0.2109059989452362</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 2 4 13 -1.</_> - <_>13 2 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0123079996556044</threshold> - <left_val>-0.4977819919586182</left_val> - <right_val>0.1740259975194931</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 12 4 -1.</_> - <_>12 7 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0404939986765385</threshold> - <left_val>-1.1848740577697754</left_val> - <right_val>-0.0338909998536110</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 1 4 13 -1.</_> - <_>10 1 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0296570006757975</threshold> - <left_val>0.0217409990727901</left_val> - <right_val>1.0069919824600220</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 3 18 -1.</_> - <_>7 0 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.8379999138414860e-003</threshold> - <left_val>0.0292179994285107</left_val> - <right_val>-0.5990629792213440</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 3 10 5 -1.</_> - <_>14 3 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0161649994552135</threshold> - <left_val>-0.2100079953670502</left_val> - <right_val>0.3763729929924011</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 15 12 8 -1.</_> - <_>10 15 4 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0501930005848408</threshold> - <left_val>2.5319999549537897e-003</left_val> - <right_val>-0.7166820168495178</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 10 6 9 -1.</_> - <_>11 10 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.9680000841617584e-003</threshold> - <left_val>-0.2192140072584152</left_val> - <right_val>0.3229869902133942</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 3 4 9 -1.</_> - <_>10 3 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0249799992889166</threshold> - <left_val>-9.6840001642704010e-003</left_val> - <right_val>-0.7757290005683899</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 0 6 14 -1.</_> - <_>20 0 3 7 2.</_> - <_>17 7 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0158099997788668</threshold> - <left_val>0.4463750123977661</left_val> - <right_val>-0.0617600008845329</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 6 14 -1.</_> - <_>1 0 3 7 2.</_> - <_>4 7 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0372069999575615</threshold> - <left_val>-0.2049539983272553</left_val> - <right_val>0.5772219896316528</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 6 16 -1.</_> - <_>17 0 3 8 2.</_> - <_>14 8 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0792649984359741</threshold> - <left_val>-0.7674540281295776</left_val> - <right_val>0.1255040019750595</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 4 4 10 -1.</_> - <_>9 4 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0171520002186298</threshold> - <left_val>-1.4121830463409424</left_val> - <right_val>-0.0517040006816387</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 17 18 6 -1.</_> - <_>12 17 9 3 2.</_> - <_>3 20 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0327400006353855</threshold> - <left_val>0.1933400034904480</left_val> - <right_val>-0.6363369822502136</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 20 22 4 -1.</_> - <_>12 20 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1175699979066849</threshold> - <left_val>0.8432540297508240</left_val> - <right_val>-0.1801860034465790</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 3 10 5 -1.</_> - <_>14 3 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1205720007419586</threshold> - <left_val>0.1253000050783157</left_val> - <right_val>-2.1213600635528564</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 10 5 -1.</_> - <_>5 3 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.2779999785125256e-003</threshold> - <left_val>-0.4660440087318420</left_val> - <right_val>0.0896439999341965</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 6 12 16 -1.</_> - <_>16 6 4 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0725449994206429</threshold> - <left_val>0.5182650089263916</left_val> - <right_val>0.0168239995837212</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 12 16 -1.</_> - <_>4 6 4 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1771059930324554</threshold> - <left_val>-0.0309100002050400</left_val> - <right_val>-1.1046639680862427</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 9 5 15 -1.</_> - <_>10 14 5 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.4229996427893639e-003</threshold> - <left_val>0.2444580048322678</left_val> - <right_val>-0.3861309885978699</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 18 21 2 -1.</_> - <_>1 19 21 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0130350003018975</threshold> - <left_val>0.9800440073013306</left_val> - <right_val>-0.1701650023460388</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 9 6 -1.</_> - <_>15 2 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0189120005816221</threshold> - <left_val>0.2024849951267242</left_val> - <right_val>-0.3854590058326721</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 1 12 4 -1.</_> - <_>12 1 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0214479994028807</threshold> - <left_val>-0.2571719884872437</left_val> - <right_val>0.3518120050430298</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 12 12 -1.</_> - <_>12 0 6 6 2.</_> - <_>6 6 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0633570030331612</threshold> - <left_val>0.1699479967355728</left_val> - <right_val>-0.9138380289077759</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 10 8 12 -1.</_> - <_>8 10 4 6 2.</_> - <_>12 16 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0324359983205795</threshold> - <left_val>-0.8568159937858582</left_val> - <right_val>-0.0216809995472431</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 16 10 8 -1.</_> - <_>19 16 5 4 2.</_> - <_>14 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0235649999231100</threshold> - <left_val>0.5611559748649597</left_val> - <right_val>-2.2400000307243317e-004</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 10 8 -1.</_> - <_>0 16 5 4 2.</_> - <_>5 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0187890008091927</threshold> - <left_val>-0.2545979917049408</left_val> - <right_val>0.3451290130615234</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 12 12 5 -1.</_> - <_>14 12 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0310420002788305</threshold> - <left_val>7.5719999149441719e-003</left_val> - <right_val>0.3480019867420197</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 16 10 8 -1.</_> - <_>6 16 5 4 2.</_> - <_>11 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0112269995734096</threshold> - <left_val>-0.6021980047225952</left_val> - <right_val>0.0428149998188019</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 12 6 -1.</_> - <_>13 6 6 3 2.</_> - <_>7 9 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0128459995612502</threshold> - <left_val>0.4202040135860443</left_val> - <right_val>-0.0538010001182556</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 4 18 -1.</_> - <_>9 6 2 9 2.</_> - <_>11 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0127919996157289</threshold> - <left_val>0.2272450029850006</left_val> - <right_val>-0.3239800035953522</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 9 6 14 -1.</_> - <_>13 9 3 7 2.</_> - <_>10 16 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0686519965529442</threshold> - <left_val>0.0935320034623146</left_val> - <right_val>10.</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 9 6 14 -1.</_> - <_>8 9 3 7 2.</_> - <_>11 16 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.2789999172091484e-003</threshold> - <left_val>-0.2692629992961884</left_val> - <right_val>0.3330320119857788</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 4 11 12 -1.</_> - <_>7 10 11 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0387790016829968</threshold> - <left_val>-0.7236530184745789</left_val> - <right_val>0.1780650019645691</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 8 6 16 -1.</_> - <_>4 8 3 8 2.</_> - <_>7 16 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.1820000410079956e-003</threshold> - <left_val>-0.3511939942836762</left_val> - <right_val>0.1658630073070526</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 3 4 21 -1.</_> - <_>17 10 4 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1751520037651062</threshold> - <left_val>0.1162310019135475</left_val> - <right_val>-1.5419290065765381</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 3 4 21 -1.</_> - <_>3 10 4 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1162799969315529</threshold> - <left_val>-9.1479998081922531e-003</left_val> - <right_val>-0.9984260201454163</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 1 8 18 -1.</_> - <_>14 1 4 9 2.</_> - <_>10 10 4 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0229640007019043</threshold> - <left_val>0.2056539952754974</left_val> - <right_val>0.0154320001602173</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 5 16 8 -1.</_> - <_>2 5 8 4 2.</_> - <_>10 9 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0514100007712841</threshold> - <left_val>0.5807240009307861</left_val> - <right_val>-0.2011840045452118</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 18 12 -1.</_> - <_>3 10 18 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2247419953346252</threshold> - <left_val>0.0187289994210005</left_val> - <right_val>1.0829299688339233</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 10 16 12 -1.</_> - <_>4 14 16 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.4860000535845757e-003</threshold> - <left_val>-0.3317129909992218</left_val> - <right_val>0.1990299969911575</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 4 8 20 -1.</_> - <_>19 4 4 10 2.</_> - <_>15 14 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1184630021452904</threshold> - <left_val>1.3711010217666626</left_val> - <right_val>0.0689269974827766</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 2 9 6 -1.</_> - <_>10 2 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0378109999001026</threshold> - <left_val>-9.3600002583116293e-004</left_val> - <right_val>-0.8399699926376343</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 4 8 20 -1.</_> - <_>19 4 4 10 2.</_> - <_>15 14 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0222020000219345</threshold> - <left_val>-0.0119639998301864</left_val> - <right_val>0.3667399883270264</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 4 8 20 -1.</_> - <_>1 4 4 10 2.</_> - <_>5 14 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0363660007715225</threshold> - <left_val>0.3786650002002716</left_val> - <right_val>-0.2771480083465576</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 8 8 14 -1.</_> - <_>15 8 4 7 2.</_> - <_>11 15 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1318469941616058</threshold> - <left_val>-2.7481179237365723</left_val> - <right_val>0.1066690012812614</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 8 14 -1.</_> - <_>5 8 4 7 2.</_> - <_>9 15 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0416559986770153</threshold> - <left_val>0.4752430021762848</left_val> - <right_val>-0.2324980050325394</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 13 5 8 -1.</_> - <_>10 17 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0331519991159439</threshold> - <left_val>-0.5792940258979797</left_val> - <right_val>0.1743440032005310</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 13 7 9 -1.</_> - <_>4 16 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0157699994742870</threshold> - <left_val>-0.0112840002402663</left_val> - <right_val>-0.8370140194892883</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 24 10 -1.</_> - <_>0 18 24 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0393630005419254</threshold> - <left_val>0.3482159972190857</left_val> - <right_val>-0.1745540052652359</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 2 8 11 -1.</_> - <_>8 2 4 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0678490027785301</threshold> - <left_val>1.4225699901580811</left_val> - <right_val>-0.1476559937000275</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 8 16 -1.</_> - <_>14 2 4 8 2.</_> - <_>10 10 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0267750006169081</threshold> - <left_val>0.2394700050354004</left_val> - <right_val>0.0132719995453954</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 6 -1.</_> - <_>0 2 12 3 2.</_> - <_>12 5 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0399190001189709</threshold> - <left_val>-8.9999996125698090e-003</left_val> - <right_val>-0.7593889832496643</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 12 9 -1.</_> - <_>6 3 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1006560027599335</threshold> - <left_val>-0.0186850000172853</left_val> - <right_val>0.7624530196189880</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 12 12 -1.</_> - <_>1 2 6 6 2.</_> - <_>7 8 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0810220018029213</threshold> - <left_val>-0.9043909907341003</left_val> - <right_val>-8.5880002006888390e-003</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 5 6 9 -1.</_> - <_>18 8 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0212580002844334</threshold> - <left_val>-0.2131959944963455</left_val> - <right_val>0.2191970050334930</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 8 10 -1.</_> - <_>4 3 4 5 2.</_> - <_>8 8 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0106309996917844</threshold> - <left_val>0.1959809958934784</left_val> - <right_val>-0.3576810061931610</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 21 18 3 -1.</_> - <_>6 22 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.1300002057105303e-004</threshold> - <left_val>-0.0927949994802475</left_val> - <right_val>0.2614589929580689</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 18 2 -1.</_> - <_>1 11 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.4650000743567944e-003</threshold> - <left_val>-0.5533609986305237</left_val> - <right_val>0.0273860003799200</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 22 3 -1.</_> - <_>1 11 22 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0188359990715981</threshold> - <left_val>0.1844609975814819</left_val> - <right_val>-0.6693429946899414</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 8 12 9 -1.</_> - <_>2 11 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0256319995969534</threshold> - <left_val>1.9382879734039307</left_val> - <right_val>-0.1470890045166016</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 8 12 6 -1.</_> - <_>18 8 6 3 2.</_> - <_>12 11 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.0939999744296074e-003</threshold> - <left_val>-0.2645159959793091</left_val> - <right_val>0.2073320001363754</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 12 6 -1.</_> - <_>0 8 6 3 2.</_> - <_>6 11 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.9199998183175921e-004</threshold> - <left_val>-0.5503159761428833</left_val> - <right_val>0.0503749996423721</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 15 6 9 -1.</_> - <_>12 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0495180003345013</threshold> - <left_val>-2.5615389347076416</left_val> - <right_val>0.1314170062541962</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 13 9 6 -1.</_> - <_>7 15 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0116809997707605</threshold> - <left_val>-0.2481980025768280</left_val> - <right_val>0.3998270034790039</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 7 12 -1.</_> - <_>9 14 7 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0345639996230602</threshold> - <left_val>0.1617880016565323</left_val> - <right_val>-0.7141889929771423</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 13 9 6 -1.</_> - <_>7 13 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.2909995689988136e-003</threshold> - <left_val>0.2218009978532791</left_val> - <right_val>-0.2918170094490051</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 15 18 4 -1.</_> - <_>12 15 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0223580002784729</threshold> - <left_val>0.3104409873485565</left_val> - <right_val>-2.7280000504106283e-003</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 4 16 -1.</_> - <_>7 4 2 16 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0308010000735521</threshold> - <left_val>-0.9567270278930664</left_val> - <right_val>-8.3400001749396324e-003</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 15 6 9 -1.</_> - <_>12 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0437790006399155</threshold> - <left_val>0.1255690008401871</left_val> - <right_val>-1.1759619712829590</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 15 6 9 -1.</_> - <_>10 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0430460013449192</threshold> - <left_val>-0.0588769987225533</left_val> - <right_val>-1.8568470478057861</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 11 12 10 -1.</_> - <_>15 11 6 5 2.</_> - <_>9 16 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0271889995783567</threshold> - <left_val>0.0428580008447170</left_val> - <right_val>0.3903670012950897</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 14 6 -1.</_> - <_>3 8 14 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.4149997457861900e-003</threshold> - <left_val>-0.0435670018196106</left_val> - <right_val>-1.1094470024108887</right_val></_></_> - <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 2 17 8 -1.</_> - <_>4 6 17 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0943119972944260</threshold> - <left_val>0.0402569994330406</left_val> - <right_val>0.9844229817390442</right_val></_></_> - <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 2 12 21 -1.</_> - <_>6 9 12 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1702509969472885</threshold> - <left_val>0.0295100007206202</left_val> - <right_val>-0.6950929760932922</right_val></_></_> - <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 9 9 -1.</_> - <_>8 4 9 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0471480004489422</threshold> - <left_val>1.0338569879531860</left_val> - <right_val>0.0676020011305809</right_val></_></_> - <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 24 3 -1.</_> - <_>12 7 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1118630021810532</threshold> - <left_val>-0.0686829984188080</left_val> - <right_val>-2.4985830783843994</right_val></_></_> - <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 9 10 -1.</_> - <_>11 11 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0143539998680353</threshold> - <left_val>-0.5948190093040466</left_val> - <right_val>0.1500169932842255</right_val></_></_> - <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 11 18 3 -1.</_> - <_>2 12 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0340240001678467</threshold> - <left_val>-0.0648230016231537</left_val> - <right_val>-2.1382639408111572</right_val></_></_> - <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 16 9 4 -1.</_> - <_>8 18 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0216019991785288</threshold> - <left_val>0.0553099997341633</left_val> - <right_val>0.7829290032386780</right_val></_></_> - <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 9 6 -1.</_> - <_>0 2 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0217719990760088</threshold> - <left_val>-7.1279997937381268e-003</left_val> - <right_val>-0.7214810252189636</right_val></_></_> - <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 11 24 6 -1.</_> - <_>0 13 24 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0824169963598251</threshold> - <left_val>0.1460949927568436</left_val> - <right_val>-1.3636670112609863</right_val></_></_> - <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 9 20 6 -1.</_> - <_>2 12 20 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0846719965338707</threshold> - <left_val>-0.1778469979763031</left_val> - <right_val>0.7285770177841187</right_val></_></_> - <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 5 16 12 -1.</_> - <_>12 5 8 6 2.</_> - <_>4 11 8 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0551280006766319</threshold> - <left_val>-0.5940240025520325</left_val> - <right_val>0.1935780048370361</right_val></_></_> - <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 4 15 -1.</_> - <_>10 7 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0648230016231537</threshold> - <left_val>-1.0783840417861938</left_val> - <right_val>-0.0407340005040169</right_val></_></_> - <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 3 10 4 -1.</_> - <_>7 5 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0227690003812313</threshold> - <left_val>0.7790020108222961</left_val> - <right_val>3.4960000775754452e-003</right_val></_></_> - <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 15 6 8 -1.</_> - <_>9 19 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0547560006380081</threshold> - <left_val>-0.0656839981675148</left_val> - <right_val>-1.8188409805297852</right_val></_></_> - <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 0 7 10 -1.</_> - <_>17 5 7 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.9000001025851816e-005</threshold> - <left_val>-0.0178919993340969</left_val> - <right_val>0.2076829969882965</right_val></_></_> - <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 7 10 -1.</_> - <_>0 5 7 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0983619987964630</threshold> - <left_val>-0.0559469982981682</left_val> - <right_val>-1.4153920412063599</right_val></_></_> - <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 1 6 12 -1.</_> - <_>19 1 3 6 2.</_> - <_>16 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.0930002257227898e-003</threshold> - <left_val>0.3413529992103577</left_val> - <right_val>-0.1208989992737770</right_val></_></_> - <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 19 8 -1.</_> - <_>1 4 19 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0502780005335808</threshold> - <left_val>-0.2628670036792755</left_val> - <right_val>0.2579729855060577</right_val></_></_> - <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 2 9 4 -1.</_> - <_>12 4 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.7870000600814819e-003</threshold> - <left_val>-0.1317860037088394</left_val> - <right_val>0.1735019981861115</right_val></_></_> - <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 9 4 -1.</_> - <_>3 4 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0139739997684956</threshold> - <left_val>0.0285180006176233</left_val> - <right_val>-0.6115220189094544</right_val></_></_> - <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 2 10 6 -1.</_> - <_>12 4 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0214499998837709</threshold> - <left_val>0.0261819995939732</left_val> - <right_val>0.3030659854412079</right_val></_></_> - <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 4 18 2 -1.</_> - <_>12 4 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0292140003293753</threshold> - <left_val>0.4494059979915619</left_val> - <right_val>-0.2280309945344925</right_val></_></_> - <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 4 9 -1.</_> - <_>12 1 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.8099999548867345e-004</threshold> - <left_val>-0.1987999975681305</left_val> - <right_val>0.2074449956417084</right_val></_></_> - <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 4 9 -1.</_> - <_>10 1 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.7109999898821115e-003</threshold> - <left_val>-0.5403720140457153</left_val> - <right_val>0.0678659975528717</right_val></_></_> - <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 8 10 -1.</_> - <_>14 5 4 5 2.</_> - <_>10 10 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.6660003289580345e-003</threshold> - <left_val>-0.0131280003115535</left_val> - <right_val>0.5229790210723877</right_val></_></_> - <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 12 13 -1.</_> - <_>10 4 4 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0636579990386963</threshold> - <left_val>0.0682990029454231</left_val> - <right_val>-0.4923509955406189</right_val></_></_> - <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 5 6 6 -1.</_> - <_>13 5 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0279680006206036</threshold> - <left_val>0.6818389892578125</left_val> - <right_val>0.0787810012698174</right_val></_></_> - <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 12 3 -1.</_> - <_>7 5 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0489539988338947</threshold> - <left_val>-0.2062239944934845</left_val> - <right_val>0.5038809776306152</right_val></_></_></trees> - <stage_threshold>-3.3933560848236084</stage_threshold> - <parent>16</parent> - <next>-1</next></_> - <_> - <!-- stage 18 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 10 6 -1.</_> - <_>7 7 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0293129999190569</threshold> - <left_val>0.7128469944000244</left_val> - <right_val>-0.5823069810867310</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 21 5 -1.</_> - <_>9 0 7 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1241509988903999</threshold> - <left_val>-0.3686349987983704</left_val> - <right_val>0.6006720066070557</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 9 9 -1.</_> - <_>0 11 9 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.9349996522068977e-003</threshold> - <left_val>-0.8600829839706421</left_val> - <right_val>0.2172469943761826</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 9 -1.</_> - <_>11 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0303659997880459</threshold> - <left_val>-0.2718699872493744</left_val> - <right_val>0.6124789714813232</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 6 7 -1.</_> - <_>3 3 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0252180006355047</threshold> - <left_val>-0.3474830090999603</left_val> - <right_val>0.5042769908905029</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 18 12 6 -1.</_> - <_>15 18 6 3 2.</_> - <_>9 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0100140003487468</threshold> - <left_val>-0.3189899921417236</left_val> - <right_val>0.4137679934501648</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 8 20 6 -1.</_> - <_>2 8 10 3 2.</_> - <_>12 11 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0167750008404255</threshold> - <left_val>-0.6904810070991516</left_val> - <right_val>0.0948309972882271</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 2 10 4 -1.</_> - <_>13 4 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.6950000319629908e-003</threshold> - <left_val>-0.2082979977130890</left_val> - <right_val>0.2373719960451126</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 5 5 18 -1.</_> - <_>4 11 5 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0422579981386662</threshold> - <left_val>-0.4936670064926148</left_val> - <right_val>0.1817059963941574</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 4 4 9 -1.</_> - <_>20 4 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0485050007700920</threshold> - <left_val>1.3429640531539917</left_val> - <right_val>0.0397690013051033</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 8 14 -1.</_> - <_>8 13 8 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0289929993450642</threshold> - <left_val>0.0464960001409054</left_val> - <right_val>-0.8164349794387817</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 6 -1.</_> - <_>12 1 12 3 2.</_> - <_>0 4 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0400890000164509</threshold> - <left_val>-0.7119780182838440</left_val> - <right_val>0.2255389988422394</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 4 9 -1.</_> - <_>2 4 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0410219989717007</threshold> - <left_val>1.0057929754257202</left_val> - <right_val>-0.1969020068645477</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 18 3 -1.</_> - <_>3 7 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0118380002677441</threshold> - <left_val>-0.0126000000163913</left_val> - <right_val>0.8076710104942322</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 17 16 6 -1.</_> - <_>3 19 16 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0213280003517866</threshold> - <left_val>-0.8202390074729919</left_val> - <right_val>0.0205249991267920</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 6 6 9 -1.</_> - <_>13 9 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0239049997180700</threshold> - <left_val>0.5421050190925598</left_val> - <right_val>-0.0747670009732246</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 14 6 -1.</_> - <_>5 6 7 3 2.</_> - <_>12 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0180089995265007</threshold> - <left_val>-0.3382770121097565</left_val> - <right_val>0.4235860109329224</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 5 8 10 -1.</_> - <_>17 5 4 5 2.</_> - <_>13 10 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0436140000820160</threshold> - <left_val>-1.1983489990234375</left_val> - <right_val>0.1556620001792908</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 2 20 3 -1.</_> - <_>2 3 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.2449998483061790e-003</threshold> - <left_val>-0.8902999758720398</left_val> - <right_val>0.0110039999708533</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 2 9 6 -1.</_> - <_>12 2 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0474850013852119</threshold> - <left_val>0.1666409969329834</left_val> - <right_val>-0.9076449871063232</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 6 9 -1.</_> - <_>10 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0142339998856187</threshold> - <left_val>0.6269519925117493</left_val> - <right_val>-0.2579120099544525</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 3 4 11 -1.</_> - <_>12 3 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.8010000716894865e-003</threshold> - <left_val>-0.2822999954223633</left_val> - <right_val>0.2662459909915924</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 3 4 11 -1.</_> - <_>10 3 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.4330000635236502e-003</threshold> - <left_val>-0.6377199888229370</left_val> - <right_val>0.0984229966998100</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 3 8 10 -1.</_> - <_>12 3 4 5 2.</_> - <_>8 8 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0292210001498461</threshold> - <left_val>-0.7676990032196045</left_val> - <right_val>0.2263450026512146</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 1 2 18 -1.</_> - <_>12 1 1 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.4949998632073402e-003</threshold> - <left_val>0.4560010135173798</left_val> - <right_val>-0.2652890086174011</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 2 9 6 -1.</_> - <_>12 2 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0300340000540018</threshold> - <left_val>-0.7655109763145447</left_val> - <right_val>0.1400929987430573</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 19 3 -1.</_> - <_>0 3 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.8360000625252724e-003</threshold> - <left_val>0.0467559993267059</left_val> - <right_val>-0.7235620021820068</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 14 9 6 -1.</_> - <_>9 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.8550001382827759e-003</threshold> - <left_val>-0.0491419993340969</left_val> - <right_val>0.5147269964218140</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 8 18 5 -1.</_> - <_>7 8 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0959739983081818</threshold> - <left_val>-0.0200689993798733</left_val> - <right_val>-1.0850950479507446</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 6 9 -1.</_> - <_>14 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0328769981861115</threshold> - <left_val>-0.9587529897689819</left_val> - <right_val>0.1454360038042069</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 6 9 -1.</_> - <_>8 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0133840003982186</threshold> - <left_val>-0.7001360058784485</left_val> - <right_val>0.0291579999029636</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 6 4 15 -1.</_> - <_>13 11 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0152359995990992</threshold> - <left_val>-0.2823570072650909</left_val> - <right_val>0.2536799907684326</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 18 3 -1.</_> - <_>1 6 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0120540000498295</threshold> - <left_val>-0.2530339956283569</left_val> - <right_val>0.4652670025825501</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 7 14 6 -1.</_> - <_>9 9 14 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0762950032949448</threshold> - <left_val>-0.6991580128669739</left_val> - <right_val>0.1321720033884049</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 16 18 3 -1.</_> - <_>2 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0120400004088879</threshold> - <left_val>0.4589459896087647</left_val> - <right_val>-0.2385649979114533</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 17 9 6 -1.</_> - <_>15 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0219160001724958</threshold> - <left_val>0.1826860010623932</left_val> - <right_val>-0.6162970066070557</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 12 6 -1.</_> - <_>0 8 6 3 2.</_> - <_>6 11 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7330000884830952e-003</threshold> - <left_val>-0.6325790286064148</left_val> - <right_val>0.0342190004885197</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 13 7 8 -1.</_> - <_>9 17 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0486520007252693</threshold> - <left_val>-1.0297729969024658</left_val> - <right_val>0.1738650053739548</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 17 20 3 -1.</_> - <_>2 18 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0104639995843172</threshold> - <left_val>0.3475730121135712</left_val> - <right_val>-0.2746410071849823</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 17 9 6 -1.</_> - <_>15 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.6550001502037048e-003</threshold> - <left_val>-0.2898029983043671</left_val> - <right_val>0.2403790056705475</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 15 4 -1.</_> - <_>4 2 15 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.5469996556639671e-003</threshold> - <left_val>-0.4434050023555756</left_val> - <right_val>0.1426739990711212</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 2 6 6 -1.</_> - <_>17 5 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0199139993637800</threshold> - <left_val>0.1774040013551712</left_val> - <right_val>-0.2409629970788956</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 6 9 -1.</_> - <_>0 6 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0220129992812872</threshold> - <left_val>-0.0108120003715158</left_val> - <right_val>-0.9469079971313477</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 17 9 6 -1.</_> - <_>15 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0521790012717247</threshold> - <left_val>1.6547499895095825</left_val> - <right_val>0.0964870005846024</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 9 6 -1.</_> - <_>0 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0196989998221397</threshold> - <left_val>-6.7560002207756042e-003</left_val> - <right_val>-0.8631150126457214</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 18 12 6 -1.</_> - <_>15 18 6 3 2.</_> - <_>9 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0230400003492832</threshold> - <left_val>-2.3519999813288450e-003</left_val> - <right_val>0.3853130042552948</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 15 6 9 -1.</_> - <_>3 18 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0150380004197359</threshold> - <left_val>-0.6190569996833801</left_val> - <right_val>0.0310779996216297</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 13 8 10 -1.</_> - <_>20 13 4 5 2.</_> - <_>16 18 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0499560013413429</threshold> - <left_val>0.7065749764442444</left_val> - <right_val>0.0478809997439384</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 24 4 -1.</_> - <_>8 14 8 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0692699998617172</threshold> - <left_val>0.3921290040016174</left_val> - <right_val>-0.2384800016880035</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 18 6 6 -1.</_> - <_>13 18 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.7399997711181641e-003</threshold> - <left_val>-0.0243090000003576</left_val> - <right_val>0.2538630068302155</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 8 10 -1.</_> - <_>0 13 4 5 2.</_> - <_>4 18 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0339239984750748</threshold> - <left_val>0.4693039953708649</left_val> - <right_val>-0.2332189977169037</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 24 6 -1.</_> - <_>0 17 24 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0162310004234314</threshold> - <left_val>0.3231920003890991</left_val> - <right_val>-0.2054560035467148</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 12 8 -1.</_> - <_>5 2 6 4 2.</_> - <_>11 6 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0501930005848408</threshold> - <left_val>-1.2277870178222656</left_val> - <right_val>-0.0407980009913445</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 9 9 6 -1.</_> - <_>11 9 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0569440014660358</threshold> - <left_val>0.0451840013265610</left_val> - <right_val>0.6019750237464905</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 16 4 -1.</_> - <_>4 5 16 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0409369990229607</threshold> - <left_val>-0.1677280068397522</left_val> - <right_val>0.8981930017471314</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 4 10 -1.</_> - <_>10 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.0839999672025442e-003</threshold> - <left_val>0.3371619880199432</left_val> - <right_val>-0.2724080085754395</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 4 5 8 -1.</_> - <_>8 8 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0326000005006790</threshold> - <left_val>-0.8544650077819824</left_val> - <right_val>0.0196649990975857</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 5 9 12 -1.</_> - <_>11 9 9 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0984809994697571</threshold> - <left_val>0.0547420009970665</left_val> - <right_val>0.6382730007171631</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 5 9 12 -1.</_> - <_>4 9 9 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0381850004196167</threshold> - <left_val>0.5227469801902771</left_val> - <right_val>-0.2338480055332184</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 6 6 9 -1.</_> - <_>14 9 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0459170006215572</threshold> - <left_val>0.6282920241355896</left_val> - <right_val>0.0328590013086796</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 4 20 12 -1.</_> - <_>2 8 20 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1195549964904785</threshold> - <left_val>-0.6157270073890686</left_val> - <right_val>0.0346800014376640</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 4 17 16 -1.</_> - <_>4 12 17 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1204439997673035</threshold> - <left_val>-0.8438000082969666</left_val> - <right_val>0.1653070002794266</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 7 6 -1.</_> - <_>8 10 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0706190019845963</threshold> - <left_val>-0.0632610023021698</left_val> - <right_val>-1.9863929748535156</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 9 23 2 -1.</_> - <_>1 10 23 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.4889996796846390e-003</threshold> - <left_val>-0.1766339987516403</left_val> - <right_val>0.3801119923591614</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 6 9 -1.</_> - <_>9 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0227109994739294</threshold> - <left_val>-0.0276059992611408</left_val> - <right_val>-0.9192140102386475</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 3 4 9 -1.</_> - <_>13 3 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.9700000090524554e-004</threshold> - <left_val>-0.2429320067167282</left_val> - <right_val>0.2287890017032623</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 6 13 -1.</_> - <_>10 1 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0346519984304905</threshold> - <left_val>-0.2370599955320358</left_val> - <right_val>0.5401099920272827</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 22 18 2 -1.</_> - <_>4 23 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.4700000435113907e-003</threshold> - <left_val>0.3907899856567383</left_val> - <right_val>-0.1269380003213882</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 9 6 -1.</_> - <_>6 10 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0236430000513792</threshold> - <left_val>-0.2666369974613190</left_val> - <right_val>0.3231259882450104</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 2 24 -1.</_> - <_>14 0 1 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0128130000084639</threshold> - <left_val>0.1754080057144165</left_val> - <right_val>-0.6078799962997437</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 0 2 24 -1.</_> - <_>9 0 1 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0112509997561574</threshold> - <left_val>-1.0852589607238770</left_val> - <right_val>-0.0280460007488728</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 18 10 -1.</_> - <_>9 2 6 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0415350012481213</threshold> - <left_val>0.7188739776611328</left_val> - <right_val>0.0279820002615452</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 13 15 6 -1.</_> - <_>9 13 5 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0934709981083870</threshold> - <left_val>-1.1906319856643677</left_val> - <right_val>-0.0448109991848469</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 21 18 3 -1.</_> - <_>9 21 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0272499993443489</threshold> - <left_val>0.6294249892234802</left_val> - <right_val>9.5039997249841690e-003</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 4 11 -1.</_> - <_>11 1 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0217599999159575</threshold> - <left_val>1.3233649730682373</left_val> - <right_val>-0.1502700001001358</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 7 10 4 -1.</_> - <_>9 7 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.6890004351735115e-003</threshold> - <left_val>-0.3394710123538971</left_val> - <right_val>0.1708579957485199</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 10 18 -1.</_> - <_>12 0 5 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0693959966301918</threshold> - <left_val>-0.2565779983997345</left_val> - <right_val>0.4765209853649139</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 6 16 -1.</_> - <_>14 1 2 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0312089994549751</threshold> - <left_val>0.1415400058031082</left_val> - <right_val>-0.3494200110435486</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 1 6 16 -1.</_> - <_>8 1 2 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0497270002961159</threshold> - <left_val>-1.1675560474395752</left_val> - <right_val>-0.0407579988241196</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 2 6 6 -1.</_> - <_>18 5 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0203019995242357</threshold> - <left_val>-0.3948639929294586</left_val> - <right_val>0.1581490039825440</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 5 18 2 -1.</_> - <_>3 6 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0153670003637671</threshold> - <left_val>0.4930000007152557</left_val> - <right_val>-0.2009209990501404</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 2 6 6 -1.</_> - <_>18 5 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0507350005209446</threshold> - <left_val>1.8736059665679932</left_val> - <right_val>0.0867300033569336</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 6 -1.</_> - <_>0 5 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0207260008901358</threshold> - <left_val>-0.8893839716911316</left_val> - <right_val>-7.3199998587369919e-003</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 11 11 6 -1.</_> - <_>13 13 11 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0309939999133348</threshold> - <left_val>-1.1664899587631226</left_val> - <right_val>0.1427460014820099</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 10 4 -1.</_> - <_>10 7 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.4269999489188194e-003</threshold> - <left_val>-0.6681510210037231</left_val> - <right_val>4.4120000675320625e-003</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 9 10 7 -1.</_> - <_>11 9 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0457439981400967</threshold> - <left_val>-0.4795520007610321</left_val> - <right_val>0.1512199938297272</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 9 10 7 -1.</_> - <_>8 9 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0166989993304014</threshold> - <left_val>0.1204859986901283</left_val> - <right_val>-0.4523589909076691</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 4 6 6 -1.</_> - <_>16 4 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.2210000790655613e-003</threshold> - <left_val>-0.0776150003075600</left_val> - <right_val>0.2784659862518311</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 10 8 -1.</_> - <_>5 6 5 4 2.</_> - <_>10 10 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0244340002536774</threshold> - <left_val>-0.1998710036277771</left_val> - <right_val>0.6725370287895203</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 21 16 3 -1.</_> - <_>7 21 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0796779990196228</threshold> - <left_val>0.9222239851951599</left_val> - <right_val>0.0925579965114594</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 21 16 3 -1.</_> - <_>9 21 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0445300005376339</threshold> - <left_val>-0.2669050097465515</left_val> - <right_val>0.3332050144672394</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 5 22 14 -1.</_> - <_>13 5 11 7 2.</_> - <_>2 12 11 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1252830028533936</threshold> - <left_val>-0.5425310134887695</left_val> - <right_val>0.1397629976272583</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 8 10 -1.</_> - <_>3 10 4 5 2.</_> - <_>7 15 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0179719999432564</threshold> - <left_val>0.0182199999690056</left_val> - <right_val>-0.6804850101470947</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 0 6 12 -1.</_> - <_>20 0 3 6 2.</_> - <_>17 6 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0191840007901192</threshold> - <left_val>-0.0125839998945594</left_val> - <right_val>0.5412669777870178</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 6 18 -1.</_> - <_>7 2 2 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0400240011513233</threshold> - <left_val>-0.1763879954814911</left_val> - <right_val>0.7881039977073669</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 6 9 -1.</_> - <_>15 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0135589996352792</threshold> - <left_val>0.2073760032653809</left_val> - <right_val>-0.4774430096149445</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 7 9 -1.</_> - <_>0 15 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0162209998816252</threshold> - <left_val>0.0230769999325275</left_val> - <right_val>-0.6118209958076477</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 13 8 10 -1.</_> - <_>19 13 4 5 2.</_> - <_>15 18 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0112290000542998</threshold> - <left_val>-0.0177280008792877</left_val> - <right_val>0.4176419973373413</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 6 12 -1.</_> - <_>1 0 3 6 2.</_> - <_>4 6 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0391930006444454</threshold> - <left_val>-0.1894849985837936</left_val> - <right_val>0.7401930093765259</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 3 12 -1.</_> - <_>12 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.5539996400475502e-003</threshold> - <left_val>0.4094710052013397</left_val> - <right_val>-0.1350889950990677</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 13 8 10 -1.</_> - <_>1 13 4 5 2.</_> - <_>5 18 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0278789997100830</threshold> - <left_val>-0.2035070061683655</left_val> - <right_val>0.6162539720535278</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 21 19 2 -1.</_> - <_>3 22 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0236009992659092</threshold> - <left_val>-1.6967060565948486</left_val> - <right_val>0.1463319957256317</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 3 4 13 -1.</_> - <_>8 3 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0269300006330013</threshold> - <left_val>-0.0304019991308451</left_val> - <right_val>-1.0909470319747925</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 10 18 3 -1.</_> - <_>5 11 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.8999999631196260e-004</threshold> - <left_val>-0.2007600069046021</left_val> - <right_val>0.2231409996747971</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 3 5 12 -1.</_> - <_>9 7 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0411249995231628</threshold> - <left_val>-0.4524219930171967</left_val> - <right_val>0.0573920011520386</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 2 4 15 -1.</_> - <_>11 7 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.6789998672902584e-003</threshold> - <left_val>0.2382490038871765</left_val> - <right_val>-0.2126210033893585</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 1 16 4 -1.</_> - <_>4 3 16 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0478649996221066</threshold> - <left_val>-0.1819480061531067</left_val> - <right_val>0.6191840171813965</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 18 3 -1.</_> - <_>6 1 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.1679999083280563e-003</threshold> - <left_val>-0.2739320099353790</left_val> - <right_val>0.2501730024814606</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 1 10 8 -1.</_> - <_>5 1 5 4 2.</_> - <_>10 5 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.6230002343654633e-003</threshold> - <left_val>-0.4628030061721802</left_val> - <right_val>0.0423979982733727</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 18 12 6 -1.</_> - <_>17 18 6 3 2.</_> - <_>11 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.4350000359117985e-003</threshold> - <left_val>0.4179680049419403</left_val> - <right_val>-1.7079999670386314e-003</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 15 12 3 -1.</_> - <_>11 15 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.8769999733194709e-003</threshold> - <left_val>0.1460230052471161</left_val> - <right_val>-0.3372110128402710</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 22 4 -1.</_> - <_>1 10 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0862260013818741</threshold> - <left_val>0.7514340281486511</left_val> - <right_val>0.0107119996100664</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 9 9 6 -1.</_> - <_>10 9 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0468339994549751</threshold> - <left_val>-0.1911959946155548</left_val> - <right_val>0.4841490089893341</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 11 12 5 -1.</_> - <_>10 11 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.2000002041459084e-005</threshold> - <left_val>0.3522039949893951</left_val> - <right_val>-0.1733330041170120</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 10 7 -1.</_> - <_>11 7 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0163439996540546</threshold> - <left_val>-0.6439769864082336</left_val> - <right_val>9.0680001303553581e-003</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 2 8 10 -1.</_> - <_>11 2 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0457039996981621</threshold> - <left_val>0.0182160008698702</left_val> - <right_val>0.3197079896926880</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 8 10 -1.</_> - <_>9 2 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0273829996585846</threshold> - <left_val>1.0564049482345581</left_val> - <right_val>-0.1727640032768250</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 18 6 -1.</_> - <_>15 4 9 3 2.</_> - <_>6 7 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0276020001620054</threshold> - <left_val>0.2971549928188324</left_val> - <right_val>-9.4600003212690353e-003</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 10 9 -1.</_> - <_>0 8 10 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.6939999125897884e-003</threshold> - <left_val>-0.2166029959917069</left_val> - <right_val>0.4738520085811615</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 7 21 6 -1.</_> - <_>2 9 21 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.0500001311302185e-004</threshold> - <left_val>0.2404879927635193</left_val> - <right_val>-0.2677600085735321</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 22 16 -1.</_> - <_>0 4 11 8 2.</_> - <_>11 12 11 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1105419993400574</threshold> - <left_val>-0.0335390008985996</left_val> - <right_val>-1.0233880281448364</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 6 22 -1.</_> - <_>9 11 6 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0687659978866577</threshold> - <left_val>-4.3239998631179333e-003</left_val> - <right_val>0.5715339779853821</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 3 12 -1.</_> - <_>9 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.7999999690800905e-003</threshold> - <left_val>0.0775749981403351</left_val> - <right_val>-0.4209269881248474</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 12 18 -1.</_> - <_>18 0 6 9 2.</_> - <_>12 9 6 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1923200041055679</threshold> - <left_val>0.0820219963788986</left_val> - <right_val>2.8810169696807861</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 12 18 -1.</_> - <_>0 0 6 9 2.</_> - <_>6 9 6 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1574209928512573</threshold> - <left_val>-0.1370819956064224</left_val> - <right_val>2.0890059471130371</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 22 4 -1.</_> - <_>12 1 11 2 2.</_> - <_>1 3 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0493870005011559</threshold> - <left_val>-1.8610910177230835</left_val> - <right_val>0.1433209925889969</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 18 4 -1.</_> - <_>3 2 18 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0519290007650852</threshold> - <left_val>-0.1873700022697449</left_val> - <right_val>0.5423160195350647</right_val></_></_> - <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 5 22 6 -1.</_> - <_>2 7 22 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0499650016427040</threshold> - <left_val>0.1417530030012131</left_val> - <right_val>-1.5625779628753662</right_val></_></_> - <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 6 9 -1.</_> - <_>5 3 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0426330007612705</threshold> - <left_val>1.6059479713439941</left_val> - <right_val>-0.1471289992332459</right_val></_></_> - <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 14 6 9 -1.</_> - <_>12 14 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0375539995729923</threshold> - <left_val>-0.8097490072250366</left_val> - <right_val>0.1325699985027313</right_val></_></_> - <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 14 6 9 -1.</_> - <_>10 14 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0371749997138977</threshold> - <left_val>-1.3945020437240601</left_val> - <right_val>-0.0570550002157688</right_val></_></_> - <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 18 18 3 -1.</_> - <_>5 19 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0139459995552897</threshold> - <left_val>0.0334270000457764</left_val> - <right_val>0.5747479796409607</right_val></_></_> - <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 6 13 -1.</_> - <_>9 0 3 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.4800000614486635e-004</threshold> - <left_val>-0.5532749891281128</left_val> - <right_val>0.0219529997557402</right_val></_></_> - <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 4 12 4 -1.</_> - <_>7 4 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0319930016994476</threshold> - <left_val>0.0203409995883703</left_val> - <right_val>0.3745920062065125</right_val></_></_> - <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 12 6 -1.</_> - <_>9 2 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.2799999937415123e-003</threshold> - <left_val>0.4442870020866394</left_val> - <right_val>-0.2299969941377640</right_val></_></_> - <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 1 18 3 -1.</_> - <_>4 2 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.8550003021955490e-003</threshold> - <left_val>0.1831579953432083</left_val> - <right_val>-0.4096499979496002</right_val></_></_> - <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 6 12 -1.</_> - <_>0 12 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0933569967746735</threshold> - <left_val>-0.0636610016226768</left_val> - <right_val>-1.6929290294647217</right_val></_></_> - <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 15 6 9 -1.</_> - <_>11 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0172099992632866</threshold> - <left_val>0.2015389949083328</left_val> - <right_val>-0.4606109857559204</right_val></_></_> - <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 10 6 13 -1.</_> - <_>11 10 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.4319999441504478e-003</threshold> - <left_val>-0.3200399875640869</left_val> - <right_val>0.1531219929456711</right_val></_></_> - <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 17 18 2 -1.</_> - <_>6 18 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0140549996867776</threshold> - <left_val>0.8688240051269531</left_val> - <right_val>0.0325750000774860</right_val></_></_> - <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 4 6 9 -1.</_> - <_>11 4 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.7180000953376293e-003</threshold> - <left_val>0.6368669867515564</left_val> - <right_val>-0.1842550039291382</right_val></_></_> - <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 6 9 -1.</_> - <_>12 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0280050002038479</threshold> - <left_val>0.1735749989748001</left_val> - <right_val>-0.4788359999656677</right_val></_></_> - <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 10 8 -1.</_> - <_>5 6 5 4 2.</_> - <_>10 10 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0188849996775389</threshold> - <left_val>0.2410160005092621</left_val> - <right_val>-0.2654759883880615</right_val></_></_> - <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 9 5 8 -1.</_> - <_>14 13 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0185850001871586</threshold> - <left_val>0.5423250198364258</left_val> - <right_val>0.0536330007016659</right_val></_></_> - <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 9 5 8 -1.</_> - <_>5 13 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0364370010793209</threshold> - <left_val>2.3908898830413818</left_val> - <right_val>-0.1363469958305359</right_val></_></_> - <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 11 9 6 -1.</_> - <_>14 13 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0324550010263920</threshold> - <left_val>0.1591069996356964</left_val> - <right_val>-0.6758149862289429</right_val></_></_> - <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 23 15 -1.</_> - <_>0 7 23 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0597819983959198</threshold> - <left_val>-2.3479999508708715e-003</left_val> - <right_val>-0.7305369973182678</right_val></_></_> - <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 0 8 12 -1.</_> - <_>16 6 8 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.8209995776414871e-003</threshold> - <left_val>-0.1144409999251366</left_val> - <right_val>0.3057030141353607</right_val></_></_> - <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 15 6 9 -1.</_> - <_>4 18 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0351639986038208</threshold> - <left_val>-1.0511469841003418</left_val> - <right_val>-0.0331030003726482</right_val></_></_> - <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 18 9 4 -1.</_> - <_>8 20 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.7429999317973852e-003</threshold> - <left_val>-0.2013539969921112</left_val> - <right_val>0.3275409936904907</right_val></_></_> - <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 18 3 -1.</_> - <_>0 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.1059997901320457e-003</threshold> - <left_val>-0.2138350009918213</left_val> - <right_val>0.4336209893226624</right_val></_></_> - <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 11 11 6 -1.</_> - <_>13 13 11 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0889429971575737</threshold> - <left_val>0.1094089969992638</left_val> - <right_val>-4.7609338760375977</right_val></_></_> - <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 11 11 6 -1.</_> - <_>0 13 11 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0300549995154142</threshold> - <left_val>-1.7169300317764282</left_val> - <right_val>-0.0609190016984940</right_val></_></_> - <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 9 24 6 -1.</_> - <_>12 9 12 3 2.</_> - <_>0 12 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0217349994927645</threshold> - <left_val>0.6477890014648438</left_val> - <right_val>-0.0328309983015060</right_val></_></_> - <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 16 8 8 -1.</_> - <_>6 20 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0376489982008934</threshold> - <left_val>-0.0100600002333522</left_val> - <right_val>-0.7656909823417664</right_val></_></_> - <_> - <!-- tree 155 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 16 14 6 -1.</_> - <_>10 18 14 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.7189999818801880e-003</threshold> - <left_val>0.1988890022039414</left_val> - <right_val>-0.0824790000915527</right_val></_></_> - <_> - <!-- tree 156 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 21 3 -1.</_> - <_>1 2 21 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0105480002239347</threshold> - <left_val>-0.8661360144615173</left_val> - <right_val>-0.0259860008955002</right_val></_></_> - <_> - <!-- tree 157 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 3 -1.</_> - <_>0 2 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1296630054712296</threshold> - <left_val>0.1391199976205826</left_val> - <right_val>-2.2271950244903564</right_val></_></_> - <_> - <!-- tree 158 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 15 8 5 -1.</_> - <_>6 15 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0176769997924566</threshold> - <left_val>0.3396770060062408</left_val> - <right_val>-0.2398959994316101</right_val></_></_> - <_> - <!-- tree 159 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 11 21 3 -1.</_> - <_>9 11 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0770519971847534</threshold> - <left_val>-2.5017969608306885</left_val> - <right_val>0.1284199953079224</right_val></_></_> - <_> - <!-- tree 160 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 18 12 6 -1.</_> - <_>1 18 6 3 2.</_> - <_>7 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0192300006747246</threshold> - <left_val>0.5064120292663574</left_val> - <right_val>-0.1975159943103790</right_val></_></_> - <_> - <!-- tree 161 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 14 4 10 -1.</_> - <_>10 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0512229986488819</threshold> - <left_val>-2.9333369731903076</left_val> - <right_val>0.1385850012302399</right_val></_></_> - <_> - <!-- tree 162 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 4 10 -1.</_> - <_>7 12 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.0830000285059214e-003</threshold> - <left_val>-0.6004359722137451</left_val> - <right_val>0.0297180004417896</right_val></_></_> - <_> - <!-- tree 163 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 6 12 -1.</_> - <_>9 12 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0254180002957582</threshold> - <left_val>0.3391579985618591</left_val> - <right_val>-0.1439200043678284</right_val></_></_> - <_> - <!-- tree 164 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 1 9 6 -1.</_> - <_>10 1 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0239059999585152</threshold> - <left_val>-1.1082680225372314</left_val> - <right_val>-0.0473770014941692</right_val></_></_> - <_> - <!-- tree 165 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 14 19 2 -1.</_> - <_>3 15 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.3740001060068607e-003</threshold> - <left_val>0.4453369975090027</left_val> - <right_val>-0.0670529976487160</right_val></_></_> - <_> - <!-- tree 166 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 10 10 -1.</_> - <_>7 7 5 5 2.</_> - <_>12 12 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0376989990472794</threshold> - <left_val>-1.0406579971313477</left_val> - <right_val>-0.0417900010943413</right_val></_></_> - <_> - <!-- tree 167 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 12 18 12 -1.</_> - <_>3 12 9 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2165510058403015</threshold> - <left_val>0.0338630005717278</left_val> - <right_val>0.8201730251312256</right_val></_></_> - <_> - <!-- tree 168 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 0 6 12 -1.</_> - <_>10 0 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0134009998291731</threshold> - <left_val>0.5290349721908569</left_val> - <right_val>-0.1913300007581711</right_val></_></_></trees> - <stage_threshold>-3.2396929264068604</stage_threshold> - <parent>17</parent> - <next>-1</next></_> - <_> - <!-- stage 19 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 17 9 -1.</_> - <_>3 3 17 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0712689980864525</threshold> - <left_val>-0.5363119840621948</left_val> - <right_val>0.6071529984474182</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 12 11 -1.</_> - <_>10 0 4 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0561110004782677</threshold> - <left_val>-0.5014160275459290</left_val> - <right_val>0.4397610127925873</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 6 13 -1.</_> - <_>4 0 3 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0404639989137650</threshold> - <left_val>-0.3292219936847687</left_val> - <right_val>0.5483469963073731</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 16 6 -1.</_> - <_>5 11 16 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0631550028920174</threshold> - <left_val>-0.3170169889926910</left_val> - <right_val>0.4615299999713898</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 8 5 12 -1.</_> - <_>8 14 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0103209996595979</threshold> - <left_val>0.1069499999284744</left_val> - <right_val>-0.9824389815330505</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 21 18 3 -1.</_> - <_>9 21 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0626069977879524</threshold> - <left_val>-0.1432970017194748</left_val> - <right_val>0.7109500169754028</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 6 6 -1.</_> - <_>3 0 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0394160002470016</threshold> - <left_val>0.9438019990921021</left_val> - <right_val>-0.2157209962606430</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 20 3 -1.</_> - <_>2 1 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.3960001096129417e-003</threshold> - <left_val>-0.5461199879646301</left_val> - <right_val>0.2530379891395569</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 15 10 -1.</_> - <_>9 6 5 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1077319979667664</threshold> - <left_val>0.0124960001558065</left_val> - <right_val>-1.0809199810028076</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 9 -1.</_> - <_>11 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0169820003211498</threshold> - <left_val>-0.3153640031814575</left_val> - <right_val>0.5123999714851379</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 6 9 -1.</_> - <_>11 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0312169995158911</threshold> - <left_val>-4.5199999585747719e-003</left_val> - <right_val>-1.2443480491638184</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 6 9 -1.</_> - <_>16 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0231069996953011</threshold> - <left_val>-0.7649289965629578</left_val> - <right_val>0.2064059972763062</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 16 9 6 -1.</_> - <_>7 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0112039996311069</threshold> - <left_val>0.2409269958734512</left_val> - <right_val>-0.3514209985733032</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 6 9 -1.</_> - <_>16 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.7479998320341110e-003</threshold> - <left_val>-0.0970079973340034</left_val> - <right_val>0.2063809931278229</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 6 9 -1.</_> - <_>6 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0173589996993542</threshold> - <left_val>-0.7902029752731323</left_val> - <right_val>0.0218529999256134</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 1 6 16 -1.</_> - <_>19 1 2 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0188519991934299</threshold> - <left_val>-0.1039460003376007</left_val> - <right_val>0.5484420061111450</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 6 16 -1.</_> - <_>3 1 2 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.2249998338520527e-003</threshold> - <left_val>-0.4040940105915070</left_val> - <right_val>0.2676379978656769</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 13 6 9 -1.</_> - <_>14 16 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0189159996807575</threshold> - <left_val>0.2050800025463104</left_val> - <right_val>-1.0206340551376343</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 6 9 -1.</_> - <_>0 3 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0311569999903440</threshold> - <left_val>1.2400000123307109e-003</left_val> - <right_val>-0.8729349970817566</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 6 6 -1.</_> - <_>9 5 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0209519993513823</threshold> - <left_val>-5.5559999309480190e-003</left_val> - <right_val>0.8035619854927063</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 9 6 -1.</_> - <_>6 10 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0112910000607371</threshold> - <left_val>-0.3647840023040772</left_val> - <right_val>0.2276789993047714</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 7 3 16 -1.</_> - <_>14 15 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0570110008120537</threshold> - <left_val>-1.4295619726181030</left_val> - <right_val>0.1432200074195862</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 10 14 12 -1.</_> - <_>4 10 7 6 2.</_> - <_>11 16 7 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0721940025687218</threshold> - <left_val>-0.0418500006198883</left_val> - <right_val>-1.9111829996109009</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 12 6 -1.</_> - <_>7 8 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0198740009218454</threshold> - <left_val>0.2642549872398377</left_val> - <right_val>-0.3261770009994507</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 2 4 20 -1.</_> - <_>9 2 2 20 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0166929997503757</threshold> - <left_val>-0.8390780091285706</left_val> - <right_val>4.0799999260343611e-004</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 13 6 9 -1.</_> - <_>14 16 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0398349985480309</threshold> - <left_val>-0.4885849952697754</left_val> - <right_val>0.1643610000610352</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 9 -1.</_> - <_>12 6 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0270099993795156</threshold> - <left_val>-0.1886249929666519</left_val> - <right_val>0.8341940045356751</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 13 6 9 -1.</_> - <_>14 16 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.9420002140104771e-003</threshold> - <left_val>0.2323150038719177</left_val> - <right_val>-0.0723600015044212</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 20 14 4 -1.</_> - <_>5 22 14 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0228330008685589</threshold> - <left_val>-0.0358840003609657</left_val> - <right_val>-1.1549400091171265</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 4 16 12 -1.</_> - <_>4 10 16 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0688880011439323</threshold> - <left_val>-1.7837309837341309</left_val> - <right_val>0.1515900045633316</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 9 -1.</_> - <_>11 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0430970005691051</threshold> - <left_val>-0.2160809934139252</left_val> - <right_val>0.5062410235404968</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 21 4 -1.</_> - <_>3 2 21 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.6239995434880257e-003</threshold> - <left_val>-0.1779559999704361</left_val> - <right_val>0.2895790040493012</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 13 6 9 -1.</_> - <_>4 16 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0145610002800822</threshold> - <left_val>-0.0114080002531409</left_val> - <right_val>-0.8940200209617615</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 16 5 8 -1.</_> - <_>16 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0115010002627969</threshold> - <left_val>0.3017199933528900</left_val> - <right_val>-0.0436590015888214</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 16 16 -1.</_> - <_>4 0 8 8 2.</_> - <_>12 8 8 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1097149997949600</threshold> - <left_val>-0.9514709711074829</left_val> - <right_val>-0.0199730005115271</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 14 6 -1.</_> - <_>13 6 7 3 2.</_> - <_>6 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0452280007302761</threshold> - <left_val>0.0331109985709190</left_val> - <right_val>0.9661980271339417</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 4 15 -1.</_> - <_>10 10 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0270479992032051</threshold> - <left_val>0.9796360135078430</left_val> - <right_val>-0.1726190000772476</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 15 12 8 -1.</_> - <_>15 15 6 4 2.</_> - <_>9 19 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0180309992283583</threshold> - <left_val>-0.0208010002970696</left_val> - <right_val>0.2738589942455292</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 12 4 -1.</_> - <_>12 7 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0505249984562397</threshold> - <left_val>-0.0568029992282391</left_val> - <right_val>-1.7775089740753174</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 14 6 -1.</_> - <_>12 6 7 3 2.</_> - <_>5 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0299239996820688</threshold> - <left_val>0.6532920002937317</left_val> - <right_val>-0.0235370006412268</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 18 10 -1.</_> - <_>3 6 9 5 2.</_> - <_>12 11 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0380580015480518</threshold> - <left_val>0.0263170003890991</left_val> - <right_val>-0.7066569924354553</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 18 21 -1.</_> - <_>12 0 6 21 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1856389939785004</threshold> - <left_val>-5.6039998307824135e-003</left_val> - <right_val>0.3287369906902313</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 21 -1.</_> - <_>8 0 8 21 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.0670000016689301e-003</threshold> - <left_val>0.3420479893684387</left_val> - <right_val>-0.3017159998416901</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 18 18 3 -1.</_> - <_>6 19 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0101089999079704</threshold> - <left_val>-7.3600001633167267e-003</left_val> - <right_val>0.5798159837722778</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 9 6 -1.</_> - <_>0 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0115670002996922</threshold> - <left_val>-0.5272219777107239</left_val> - <right_val>0.0464479997754097</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 19 2 -1.</_> - <_>4 4 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.5649999305605888e-003</threshold> - <left_val>-0.5852910280227661</left_val> - <right_val>0.1910189986228943</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 24 2 -1.</_> - <_>0 4 24 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0105820000171661</threshold> - <left_val>0.0210730005055666</left_val> - <right_val>-0.6889259815216065</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 14 9 4 -1.</_> - <_>15 16 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0203040000051260</threshold> - <left_val>-0.3640069961547852</left_val> - <right_val>0.1533879935741425</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 9 4 -1.</_> - <_>0 16 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.3529999889433384e-003</threshold> - <left_val>0.0361640006303787</left_val> - <right_val>-0.5982509851455689</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 15 18 2 -1.</_> - <_>6 16 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4690000098198652e-003</threshold> - <left_val>-0.1470769941806793</left_val> - <right_val>0.3750799894332886</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 17 18 3 -1.</_> - <_>3 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.6449999362230301e-003</threshold> - <left_val>-0.2170850038528442</left_val> - <right_val>0.5193679928779602</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 3 23 -1.</_> - <_>13 0 1 23 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0243260003626347</threshold> - <left_val>-1.0846769809722900</left_val> - <right_val>0.1408479958772659</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 8 6 -1.</_> - <_>6 3 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0744189992547035</threshold> - <left_val>-0.1551380008459091</left_val> - <right_val>1.1822769641876221</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 16 18 3 -1.</_> - <_>6 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0170779991894960</threshold> - <left_val>0.0442310012876987</left_val> - <right_val>0.9156110286712647</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 3 23 -1.</_> - <_>10 0 1 23 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0245779994875193</threshold> - <left_val>-1.5504100322723389</left_val> - <right_val>-0.0547459982335567</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 7 4 10 -1.</_> - <_>10 12 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0302050001919270</threshold> - <left_val>0.1666280031204224</left_val> - <right_val>-1.0001239776611328</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 10 12 -1.</_> - <_>7 12 10 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0121360002085567</threshold> - <left_val>-0.7707909941673279</left_val> - <right_val>-4.8639997839927673e-003</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 9 6 14 -1.</_> - <_>17 9 3 7 2.</_> - <_>14 16 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0867170020937920</threshold> - <left_val>0.1106169968843460</left_val> - <right_val>-1.6857999563217163</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 10 9 -1.</_> - <_>2 3 10 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0423090010881424</threshold> - <left_val>1.1075930595397949</left_val> - <right_val>-0.1543859988451004</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 1 5 12 -1.</_> - <_>11 7 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.6420000940561295e-003</threshold> - <left_val>0.2745189964771271</left_val> - <right_val>-0.1845619976520538</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 4 12 10 -1.</_> - <_>1 4 6 5 2.</_> - <_>7 9 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0566620007157326</threshold> - <left_val>-0.8062559962272644</left_val> - <right_val>-0.0169280003756285</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 1 9 4 -1.</_> - <_>15 3 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0234750006347895</threshold> - <left_val>0.1418769955635071</left_val> - <right_val>-0.2550089955329895</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 8 10 -1.</_> - <_>1 2 4 5 2.</_> - <_>5 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0208030007779598</threshold> - <left_val>0.1982630044221878</left_val> - <right_val>-0.3117119967937470</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 1 5 12 -1.</_> - <_>10 5 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.2599998675286770e-003</threshold> - <left_val>-0.0505909994244576</left_val> - <right_val>0.4192380011081696</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 14 24 -1.</_> - <_>11 0 7 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3416000008583069</threshold> - <left_val>-0.1667490005493164</left_val> - <right_val>0.9274860024452210</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 17 10 4 -1.</_> - <_>7 19 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.2029999680817127e-003</threshold> - <left_val>-0.1262589991092682</left_val> - <right_val>0.4044530093669891</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 14 4 10 -1.</_> - <_>10 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0326920002698898</threshold> - <left_val>-0.0326349996030331</left_val> - <right_val>-0.9893980026245117</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 15 6 9 -1.</_> - <_>15 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.1100000594742596e-004</threshold> - <left_val>-0.0645340010523796</left_val> - <right_val>0.2547369897365570</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 21 18 3 -1.</_> - <_>3 22 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.2100001852959394e-004</threshold> - <left_val>-0.3661859929561615</left_val> - <right_val>0.1197310015559197</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 15 6 9 -1.</_> - <_>15 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0544909983873367</threshold> - <left_val>0.1207349970936775</left_val> - <right_val>-1.0291390419006348</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 15 6 9 -1.</_> - <_>7 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0101410001516342</threshold> - <left_val>-0.5217720270156860</left_val> - <right_val>0.0337349995970726</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 18 -1.</_> - <_>12 6 2 9 2.</_> - <_>10 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0188159998506308</threshold> - <left_val>0.6518179774284363</left_val> - <right_val>1.3399999588727951e-003</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 3 6 11 -1.</_> - <_>9 3 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.3480002097785473e-003</threshold> - <left_val>0.1737069934606552</left_val> - <right_val>-0.3413200080394745</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 1 9 4 -1.</_> - <_>15 3 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0108470004051924</threshold> - <left_val>-0.1969989985227585</left_val> - <right_val>0.1504549980163574</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 14 8 -1.</_> - <_>5 8 14 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0499260015785694</threshold> - <left_val>-0.5088850259780884</left_val> - <right_val>0.0307620000094175</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 15 9 -1.</_> - <_>8 4 15 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0121600003913045</threshold> - <left_val>-0.0692519992589951</left_val> - <right_val>0.1874549984931946</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 2 8 10 -1.</_> - <_>7 2 4 5 2.</_> - <_>11 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.2189998999238014e-003</threshold> - <left_val>-0.4084909856319428</left_val> - <right_val>0.0799549967050552</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 2 6 12 -1.</_> - <_>12 2 3 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.1580000650137663e-003</threshold> - <left_val>-0.2112459987401962</left_val> - <right_val>0.2236640006303787</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 2 6 12 -1.</_> - <_>9 2 3 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.1439998894929886e-003</threshold> - <left_val>-0.4990029931068420</left_val> - <right_val>0.0629170015454292</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 12 4 -1.</_> - <_>7 7 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.3730000294744968e-003</threshold> - <left_val>-0.2055329978466034</left_val> - <right_val>0.2209669947624207</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 3 12 10 -1.</_> - <_>10 3 4 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0518120005726814</threshold> - <left_val>0.1809680014848709</left_val> - <right_val>-0.4349580109119415</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 16 6 -1.</_> - <_>13 6 8 3 2.</_> - <_>5 9 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0183400008827448</threshold> - <left_val>0.0152000002563000</left_val> - <right_val>0.3799169957637787</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 1 18 9 -1.</_> - <_>9 1 6 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1749079972505570</threshold> - <left_val>-0.2092079967260361</left_val> - <right_val>0.4001300036907196</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 8 18 5 -1.</_> - <_>9 8 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0539939999580383</threshold> - <left_val>0.2475160062313080</left_val> - <right_val>-0.2671290040016174</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 22 -1.</_> - <_>0 0 12 11 2.</_> - <_>12 11 12 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3203319907188416</threshold> - <left_val>-1.9094380140304565</left_val> - <right_val>-0.0669609978795052</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 16 9 6 -1.</_> - <_>14 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0270600002259016</threshold> - <left_val>-0.7137129902839661</left_val> - <right_val>0.1590459942817688</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 24 8 -1.</_> - <_>0 20 24 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0774639993906021</threshold> - <left_val>-0.1697019934654236</left_val> - <right_val>0.7755299806594849</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 19 22 4 -1.</_> - <_>12 19 11 2 2.</_> - <_>1 21 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0237719994038343</threshold> - <left_val>0.1902189999818802</left_val> - <right_val>-0.6016209721565247</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 16 9 6 -1.</_> - <_>1 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0115010002627969</threshold> - <left_val>7.7039999887347221e-003</left_val> - <right_val>-0.6173030138015747</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 10 4 -1.</_> - <_>7 8 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0326160006225109</threshold> - <left_val>0.1715919971466065</left_val> - <right_val>-0.7097820043563843</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 15 6 9 -1.</_> - <_>11 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0443830005824566</threshold> - <left_val>-2.2606229782104492</left_val> - <right_val>-0.0732769966125488</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 18 12 6 -1.</_> - <_>16 18 6 3 2.</_> - <_>10 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0584760010242462</threshold> - <left_val>2.4087750911712646</left_val> - <right_val>0.0830919966101646</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 18 12 6 -1.</_> - <_>2 18 6 3 2.</_> - <_>8 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0193039998412132</threshold> - <left_val>-0.2708230018615723</left_val> - <right_val>0.2736999988555908</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 3 16 9 -1.</_> - <_>8 6 16 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0447059981524944</threshold> - <left_val>0.3135559856891632</left_val> - <right_val>-0.0624920018017292</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 10 6 -1.</_> - <_>0 7 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0603349991142750</threshold> - <left_val>-1.4515119791030884</left_val> - <right_val>-0.0587610006332397</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 5 18 3 -1.</_> - <_>5 6 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0116670001298189</threshold> - <left_val>-0.0180849991738796</left_val> - <right_val>0.5047969818115234</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 6 9 6 -1.</_> - <_>2 9 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0280099995434284</threshold> - <left_val>-0.2330289930105209</left_val> - <right_val>0.3070870041847229</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 2 10 9 -1.</_> - <_>14 5 10 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0653970018029213</threshold> - <left_val>0.1413590013980866</left_val> - <right_val>-0.5001090168952942</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 18 3 -1.</_> - <_>3 7 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.6239997074007988e-003</threshold> - <left_val>-0.2205460071563721</left_val> - <right_val>0.3919120132923126</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 2 15 6 -1.</_> - <_>9 4 15 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.5510000996291637e-003</threshold> - <left_val>-0.1138150021433830</left_val> - <right_val>0.2003230005502701</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 8 15 6 -1.</_> - <_>4 10 15 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0318470001220703</threshold> - <left_val>0.0254769995808601</left_val> - <right_val>-0.5332639813423157</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 24 4 -1.</_> - <_>12 5 12 2 2.</_> - <_>0 7 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0330550000071526</threshold> - <left_val>0.1780769973993301</left_val> - <right_val>-0.6279389858245850</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 6 12 -1.</_> - <_>9 8 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0476009994745255</threshold> - <left_val>-0.1474789977073669</left_val> - <right_val>1.4204180240631104</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 0 6 9 -1.</_> - <_>13 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0195719990879297</threshold> - <left_val>-0.5269349813461304</left_val> - <right_val>0.1583860069513321</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 6 12 -1.</_> - <_>0 12 3 6 2.</_> - <_>3 18 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0547300018370152</threshold> - <left_val>0.8823159933090210</left_val> - <right_val>-0.1662780046463013</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 12 10 6 -1.</_> - <_>14 14 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0226860009133816</threshold> - <left_val>-0.4838689863681793</left_val> - <right_val>0.1500010043382645</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 7 18 9 -1.</_> - <_>2 10 18 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1071320027112961</threshold> - <left_val>-0.2133619934320450</left_val> - <right_val>0.4233390092849731</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 14 10 9 -1.</_> - <_>11 17 10 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0363800004124641</threshold> - <left_val>-0.0741980001330376</left_val> - <right_val>0.1458940058946610</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 10 8 -1.</_> - <_>7 6 5 4 2.</_> - <_>12 10 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0139359999448061</threshold> - <left_val>-0.2491160035133362</left_val> - <right_val>0.2677119970321655</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 14 6 -1.</_> - <_>13 6 7 3 2.</_> - <_>6 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0209919996559620</threshold> - <left_val>8.7959999218583107e-003</left_val> - <right_val>0.4306499958038330</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 13 9 7 -1.</_> - <_>7 13 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0491189993917942</threshold> - <left_val>-0.1759199947118759</left_val> - <right_val>0.6928290128707886</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 10 6 12 -1.</_> - <_>17 10 3 6 2.</_> - <_>14 16 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0363159999251366</threshold> - <left_val>0.1314529925584793</left_val> - <right_val>-0.3359729945659638</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 10 6 12 -1.</_> - <_>4 10 3 6 2.</_> - <_>7 16 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0412280000746250</threshold> - <left_val>-0.0456920005381107</left_val> - <right_val>-1.3515930175781250</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 9 8 6 -1.</_> - <_>13 9 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0156720001250505</threshold> - <left_val>0.1754409968852997</left_val> - <right_val>-0.0605500005185604</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 3 4 14 -1.</_> - <_>10 3 2 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0162860006093979</threshold> - <left_val>-1.1308189630508423</left_val> - <right_val>-0.0395330004394054</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 0 3 18 -1.</_> - <_>18 0 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.0229999683797359e-003</threshold> - <left_val>-0.2245430052280426</left_val> - <right_val>0.2362809926271439</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 12 16 12 -1.</_> - <_>12 12 8 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1378629952669144</threshold> - <left_val>0.4537689983844757</left_val> - <right_val>-0.2109870016574860</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 6 14 -1.</_> - <_>17 0 2 14 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.6760001033544540e-003</threshold> - <left_val>-0.1510509997606278</left_val> - <right_val>0.2078170031309128</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 6 14 -1.</_> - <_>5 0 2 14 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0248399991542101</threshold> - <left_val>-0.6835029721260071</left_val> - <right_val>-8.0040004104375839e-003</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 2 12 20 -1.</_> - <_>16 2 4 20 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1396439969539642</threshold> - <left_val>0.6501129865646362</left_val> - <right_val>0.0465440005064011</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 12 20 -1.</_> - <_>4 2 4 20 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0821539983153343</threshold> - <left_val>0.4488719999790192</left_val> - <right_val>-0.2359199970960617</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 0 6 17 -1.</_> - <_>18 0 2 17 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.8449999410659075e-003</threshold> - <left_val>-0.0881730020046234</left_val> - <right_val>0.2734679877758026</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 6 17 -1.</_> - <_>4 0 2 17 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.6579999402165413e-003</threshold> - <left_val>-0.4686659872531891</left_val> - <right_val>0.0770019963383675</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 6 9 6 -1.</_> - <_>15 8 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0158980004489422</threshold> - <left_val>0.2926839888095856</left_val> - <right_val>-0.0219410005956888</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 9 6 -1.</_> - <_>0 8 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0509460009634495</threshold> - <left_val>-1.2093789577484131</left_val> - <right_val>-0.0421099998056889</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 1 6 13 -1.</_> - <_>20 1 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0168379992246628</threshold> - <left_val>-0.0455959998071194</left_val> - <right_val>0.5018069744110107</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 6 13 -1.</_> - <_>2 1 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0159189999103546</threshold> - <left_val>-0.2690429985523224</left_val> - <right_val>0.2651630043983460</right_val></_></_> - <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 0 4 9 -1.</_> - <_>16 0 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.6309999413788319e-003</threshold> - <left_val>-0.1304610073566437</left_val> - <right_val>0.3180710077285767</right_val></_></_> - <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 10 12 7 -1.</_> - <_>9 10 4 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0861449986696243</threshold> - <left_val>1.9443659782409668</left_val> - <right_val>-0.1397829949855804</right_val></_></_> - <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 9 12 6 -1.</_> - <_>12 11 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0331409983336926</threshold> - <left_val>0.1526679992675781</left_val> - <right_val>-0.0308660008013248</right_val></_></_> - <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 9 12 6 -1.</_> - <_>0 11 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.9679999463260174e-003</threshold> - <left_val>-0.7120230197906494</left_val> - <right_val>-0.0138440001755953</right_val></_></_> - <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 14 9 -1.</_> - <_>5 10 14 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0240080002695322</threshold> - <left_val>0.9200779795646668</left_val> - <right_val>0.0467239990830421</right_val></_></_> - <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 20 3 -1.</_> - <_>0 16 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.7320003658533096e-003</threshold> - <left_val>-0.2256730049848557</left_val> - <right_val>0.3193179965019226</right_val></_></_> - <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 10 8 10 -1.</_> - <_>12 10 4 5 2.</_> - <_>8 15 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0277869999408722</threshold> - <left_val>-0.7233710289001465</left_val> - <right_val>0.1701859980821610</right_val></_></_> - <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 13 9 -1.</_> - <_>5 7 13 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1945530027151108</threshold> - <left_val>1.2461860179901123</left_val> - <right_val>-0.1473619937896729</right_val></_></_> - <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 6 18 -1.</_> - <_>10 8 6 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1086969971656799</threshold> - <left_val>-1.4465179443359375</left_val> - <right_val>0.1214530020952225</right_val></_></_> - <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 6 9 -1.</_> - <_>8 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0194949992001057</threshold> - <left_val>-0.7815309762954712</left_val> - <right_val>-0.0237329993396997</right_val></_></_> - <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 9 12 4 -1.</_> - <_>6 11 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.0650000553578138e-003</threshold> - <left_val>-0.8547139763832092</left_val> - <right_val>0.1668699979782105</right_val></_></_> - <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 15 12 -1.</_> - <_>3 6 15 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0591939985752106</threshold> - <left_val>-0.1485369950532913</left_val> - <right_val>1.1273469924926758</right_val></_></_> - <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 12 5 -1.</_> - <_>16 0 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0542079992592335</threshold> - <left_val>0.5472699999809265</left_val> - <right_val>0.0355239994823933</right_val></_></_> - <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 18 3 -1.</_> - <_>6 15 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0393249988555908</threshold> - <left_val>0.3664259910583496</left_val> - <right_val>-0.2054399996995926</right_val></_></_> - <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 24 5 -1.</_> - <_>8 14 8 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0822789967060089</threshold> - <left_val>-0.0350079983472824</left_val> - <right_val>0.5399420261383057</right_val></_></_> - <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 1 3 18 -1.</_> - <_>6 1 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.4479999020695686e-003</threshold> - <left_val>-0.6153749823570252</left_val> - <right_val>-3.5319998860359192e-003</right_val></_></_> - <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 4 14 -1.</_> - <_>10 0 2 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.3770000599324703e-003</threshold> - <left_val>-0.0655910000205040</left_val> - <right_val>0.4196139872074127</right_val></_></_> - <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 3 4 9 -1.</_> - <_>11 3 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.0779998786747456e-003</threshold> - <left_val>-0.3412950038909912</left_val> - <right_val>0.1253679990768433</right_val></_></_> - <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 2 12 6 -1.</_> - <_>14 2 6 3 2.</_> - <_>8 5 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0155819999054074</threshold> - <left_val>-0.3024039864540100</left_val> - <right_val>0.2151100039482117</right_val></_></_> - <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 17 4 -1.</_> - <_>0 6 17 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7399999089539051e-003</threshold> - <left_val>0.0765530019998550</left_val> - <right_val>-0.4106050133705139</right_val></_></_> - <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 16 5 8 -1.</_> - <_>16 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0706000030040741</threshold> - <left_val>-0.9735620021820068</left_val> - <right_val>0.1124180033802986</right_val></_></_> - <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 16 5 8 -1.</_> - <_>3 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0117060001939535</threshold> - <left_val>0.1856070011854172</left_val> - <right_val>-0.2975519895553589</right_val></_></_> - <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 18 18 2 -1.</_> - <_>6 19 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.1499997284263372e-004</threshold> - <left_val>-0.0596500001847744</left_val> - <right_val>0.2482469975948334</right_val></_></_> - <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 12 5 -1.</_> - <_>4 0 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0368660017848015</threshold> - <left_val>0.3275170028209686</left_val> - <right_val>-0.2305960059165955</right_val></_></_> - <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 3 6 12 -1.</_> - <_>17 3 3 6 2.</_> - <_>14 9 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0325269997119904</threshold> - <left_val>-0.2932029962539673</left_val> - <right_val>0.1542769968509674</right_val></_></_> - <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 6 12 -1.</_> - <_>2 12 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0748139992356300</threshold> - <left_val>-1.2143570184707642</left_val> - <right_val>-0.0522440001368523</right_val></_></_> - <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 3 21 3 -1.</_> - <_>2 4 21 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0414699986577034</threshold> - <left_val>0.1306249946355820</left_val> - <right_val>-2.3274369239807129</right_val></_></_> - <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 6 12 -1.</_> - <_>4 3 3 6 2.</_> - <_>7 9 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0288800001144409</threshold> - <left_val>-0.6607459783554077</left_val> - <right_val>-9.0960003435611725e-003</right_val></_></_> - <_> - <!-- tree 155 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 8 12 6 -1.</_> - <_>18 8 6 3 2.</_> - <_>12 11 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0463819988071918</threshold> - <left_val>0.1663019955158234</left_val> - <right_val>-0.6694949865341187</right_val></_></_> - <_> - <!-- tree 156 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 16 9 -1.</_> - <_>8 15 8 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2542499899864197</threshold> - <left_val>-0.0546419993042946</left_val> - <right_val>-1.2676080465316772</right_val></_></_> - <_> - <!-- tree 157 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 13 18 5 -1.</_> - <_>6 13 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.4000001139938831e-003</threshold> - <left_val>0.2027679979801178</left_val> - <right_val>0.0146679999306798</right_val></_></_> - <_> - <!-- tree 158 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 6 15 6 -1.</_> - <_>6 6 5 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0828059986233711</threshold> - <left_val>-0.7871360182762146</left_val> - <right_val>-0.0244689993560314</right_val></_></_> - <_> - <!-- tree 159 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 9 9 6 -1.</_> - <_>14 9 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0114380000159144</threshold> - <left_val>0.2862339913845062</left_val> - <right_val>-0.0308940000832081</right_val></_></_> - <_> - <!-- tree 160 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 15 11 -1.</_> - <_>8 0 5 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1291339993476868</threshold> - <left_val>1.7292929887771606</left_val> - <right_val>-0.1429390013217926</right_val></_></_> - <_> - <!-- tree 161 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 3 3 18 -1.</_> - <_>15 9 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0385529994964600</threshold> - <left_val>0.0192329995334148</left_val> - <right_val>0.3773260116577148</right_val></_></_> - <_> - <!-- tree 162 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 3 3 18 -1.</_> - <_>6 9 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1019140034914017</threshold> - <left_val>-0.0745339989662170</left_val> - <right_val>-3.3868899345397949</right_val></_></_> - <_> - <!-- tree 163 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 10 8 -1.</_> - <_>14 5 5 4 2.</_> - <_>9 9 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0190680008381605</threshold> - <left_val>0.3181410133838654</left_val> - <right_val>0.0192610006779432</right_val></_></_> - <_> - <!-- tree 164 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 4 16 8 -1.</_> - <_>4 4 8 4 2.</_> - <_>12 8 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0607750006020069</threshold> - <left_val>0.7693629860877991</left_val> - <right_val>-0.1764400005340576</right_val></_></_> - <_> - <!-- tree 165 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 12 3 -1.</_> - <_>7 7 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0246799997985363</threshold> - <left_val>0.1839649975299835</left_val> - <right_val>-0.3086880147457123</right_val></_></_> - <_> - <!-- tree 166 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 9 13 -1.</_> - <_>8 0 3 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0267590004950762</threshold> - <left_val>-0.2345490008592606</left_val> - <right_val>0.3305659890174866</right_val></_></_> - <_> - <!-- tree 167 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 0 6 9 -1.</_> - <_>13 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0149699999019504</threshold> - <left_val>0.1721359938383102</left_val> - <right_val>-0.1824889928102493</right_val></_></_> - <_> - <!-- tree 168 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 6 9 -1.</_> - <_>9 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0261429995298386</threshold> - <left_val>-0.0464639998972416</left_val> - <right_val>-1.1318379640579224</right_val></_></_> - <_> - <!-- tree 169 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 10 9 -1.</_> - <_>8 4 10 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0375120006501675</threshold> - <left_val>0.8040400147438049</left_val> - <right_val>0.0696600005030632</right_val></_></_> - <_> - <!-- tree 170 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 18 2 -1.</_> - <_>0 3 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.3229997865855694e-003</threshold> - <left_val>-0.8188440203666687</left_val> - <right_val>-0.0182249993085861</right_val></_></_> - <_> - <!-- tree 171 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 13 14 6 -1.</_> - <_>17 13 7 3 2.</_> - <_>10 16 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0178130008280277</threshold> - <left_val>0.1495780050754547</left_val> - <right_val>-0.1866720020771027</right_val></_></_> - <_> - <!-- tree 172 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 14 6 -1.</_> - <_>0 13 7 3 2.</_> - <_>7 16 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0340100005269051</threshold> - <left_val>-0.7285230159759522</left_val> - <right_val>-0.0166159998625517</right_val></_></_> - <_> - <!-- tree 173 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 2 3 21 -1.</_> - <_>21 2 1 21 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0159530006349087</threshold> - <left_val>0.5694400072097778</left_val> - <right_val>0.0138320000842214</right_val></_></_> - <_> - <!-- tree 174 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 9 5 12 -1.</_> - <_>0 13 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0197439994663000</threshold> - <left_val>0.0405250005424023</left_val> - <right_val>-0.4177339971065521</right_val></_></_> - <_> - <!-- tree 175 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 6 12 6 -1.</_> - <_>12 8 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1037480011582375</threshold> - <left_val>-1.9825149774551392</left_val> - <right_val>0.1196020022034645</right_val></_></_> - <_> - <!-- tree 176 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 8 20 3 -1.</_> - <_>1 9 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0192850008606911</threshold> - <left_val>0.5023059844970703</left_val> - <right_val>-0.1974589973688126</right_val></_></_> - <_> - <!-- tree 177 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 19 3 -1.</_> - <_>5 8 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0127800004556775</threshold> - <left_val>0.4019500017166138</left_val> - <right_val>-0.0269579999148846</right_val></_></_> - <_> - <!-- tree 178 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 12 9 6 -1.</_> - <_>1 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0163529999554157</threshold> - <left_val>-0.7660880088806152</left_val> - <right_val>-0.0242090001702309</right_val></_></_> - <_> - <!-- tree 179 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 10 14 12 -1.</_> - <_>6 14 14 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1276369988918304</threshold> - <left_val>0.8657850027084351</left_val> - <right_val>0.0642059966921806</right_val></_></_> - <_> - <!-- tree 180 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 14 18 -1.</_> - <_>5 12 14 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0190689992159605</threshold> - <left_val>-0.5592979788780212</left_val> - <right_val>-1.6880000475794077e-003</right_val></_></_> - <_> - <!-- tree 181 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 12 9 7 -1.</_> - <_>14 12 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0324809998273849</threshold> - <left_val>0.0407220013439655</left_val> - <right_val>0.4892509877681732</right_val></_></_> - <_> - <!-- tree 182 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 15 18 4 -1.</_> - <_>1 17 18 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.4849998131394386e-003</threshold> - <left_val>-0.1923190057277679</left_val> - <right_val>0.5113970041275024</right_val></_></_> - <_> - <!-- tree 183 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 14 6 9 -1.</_> - <_>11 17 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.0470000132918358e-003</threshold> - <left_val>0.1870680004358292</left_val> - <right_val>-0.1611360013484955</right_val></_></_> - <_> - <!-- tree 184 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 18 4 -1.</_> - <_>0 8 9 2 2.</_> - <_>9 10 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0412679985165596</threshold> - <left_val>-0.0488179996609688</left_val> - <right_val>-1.1326299905776978</right_val></_></_> - <_> - <!-- tree 185 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 20 6 -1.</_> - <_>13 10 10 3 2.</_> - <_>3 13 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0763589963316917</threshold> - <left_val>1.4169390201568604</left_val> - <right_val>0.0873199999332428</right_val></_></_> - <_> - <!-- tree 186 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 20 6 -1.</_> - <_>1 10 10 3 2.</_> - <_>11 13 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0728349983692169</threshold> - <left_val>1.3189860582351685</left_val> - <right_val>-0.1481910049915314</right_val></_></_> - <_> - <!-- tree 187 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 9 24 2 -1.</_> - <_>0 9 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0595769993960857</threshold> - <left_val>0.0483769997954369</left_val> - <right_val>0.8561180233955383</right_val></_></_> - <_> - <!-- tree 188 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 12 20 8 -1.</_> - <_>1 12 10 4 2.</_> - <_>11 16 10 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0202639997005463</threshold> - <left_val>-0.2104409933090210</left_val> - <right_val>0.3385899960994721</right_val></_></_> - <_> - <!-- tree 189 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 12 9 7 -1.</_> - <_>14 12 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0803010016679764</threshold> - <left_val>-1.2464400529861450</left_val> - <right_val>0.1185709983110428</right_val></_></_> - <_> - <!-- tree 190 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 12 9 7 -1.</_> - <_>7 12 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0178350005298853</threshold> - <left_val>0.2578229904174805</left_val> - <right_val>-0.2456479966640472</right_val></_></_> - <_> - <!-- tree 191 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 12 8 5 -1.</_> - <_>12 12 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0114310001954436</threshold> - <left_val>0.2294979989528656</left_val> - <right_val>-0.2949759960174561</right_val></_></_> - <_> - <!-- tree 192 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 12 8 5 -1.</_> - <_>8 12 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0255410000681877</threshold> - <left_val>-0.8625299930572510</left_val> - <right_val>-7.0400000549852848e-004</right_val></_></_> - <_> - <!-- tree 193 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 10 4 10 -1.</_> - <_>13 10 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.6899997657164931e-004</threshold> - <left_val>0.3151139914989471</left_val> - <right_val>-0.1434900015592575</right_val></_></_> - <_> - <!-- tree 194 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 15 20 2 -1.</_> - <_>11 15 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0144539996981621</threshold> - <left_val>0.2514849901199341</left_val> - <right_val>-0.2823289930820465</right_val></_></_> - <_> - <!-- tree 195 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 10 6 6 -1.</_> - <_>9 10 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.6730001494288445e-003</threshold> - <left_val>0.2660140097141266</left_val> - <right_val>-0.2819080054759979</right_val></_></_></trees> - <stage_threshold>-3.2103500366210937</stage_threshold> - <parent>18</parent> - <next>-1</next></_> - <_> - <!-- stage 20 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 21 3 -1.</_> - <_>7 1 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0547089986503124</threshold> - <left_val>-0.5414429903030396</left_val> - <right_val>0.6104300022125244</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 13 9 -1.</_> - <_>6 7 13 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1083879992365837</threshold> - <left_val>0.7173990011215210</left_val> - <right_val>-0.4119609892368317</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 12 5 -1.</_> - <_>10 5 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0229969993233681</threshold> - <left_val>-0.5826979875564575</left_val> - <right_val>0.2964560091495514</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 10 10 6 -1.</_> - <_>10 12 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.7540000155568123e-003</threshold> - <left_val>-0.7424389719963074</left_val> - <right_val>0.1418330073356628</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 12 5 8 -1.</_> - <_>6 16 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.1520000882446766e-003</threshold> - <left_val>0.1787990033626556</left_val> - <right_val>-0.6854860186576843</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 6 9 -1.</_> - <_>15 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0225590001791716</threshold> - <left_val>-1.0775549411773682</left_val> - <right_val>0.1238899976015091</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 10 18 6 -1.</_> - <_>8 10 6 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0830250009894371</threshold> - <left_val>0.0245009995996952</left_val> - <right_val>-1.0251879692077637</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 2 9 4 -1.</_> - <_>11 4 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.6740000620484352e-003</threshold> - <left_val>-0.4528310000896454</left_val> - <right_val>0.2123019993305206</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 20 21 3 -1.</_> - <_>8 20 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0764850005507469</threshold> - <left_val>-0.2697269916534424</left_val> - <right_val>0.4858019948005676</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 22 2 -1.</_> - <_>1 11 22 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.4910001344978809e-003</threshold> - <left_val>-0.4887120127677918</left_val> - <right_val>0.3161639869213104</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 18 3 -1.</_> - <_>0 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0104149999096990</threshold> - <left_val>0.4151290059089661</left_val> - <right_val>-0.3004480004310608</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 6 9 -1.</_> - <_>15 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0276079997420311</threshold> - <left_val>0.1620379984378815</left_val> - <right_val>-0.9986850023269653</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 6 9 -1.</_> - <_>7 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0232720002532005</threshold> - <left_val>-1.1024399995803833</left_val> - <right_val>0.0211249999701977</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 2 6 20 -1.</_> - <_>20 2 2 20 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0556199997663498</threshold> - <left_val>0.6503310203552246</left_val> - <right_val>-0.0279380008578300</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 20 -1.</_> - <_>2 2 2 20 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0406319983303547</threshold> - <left_val>0.4211730062961578</left_val> - <right_val>-0.2676379978656769</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 7 6 14 -1.</_> - <_>14 7 3 7 2.</_> - <_>11 14 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.3560001328587532e-003</threshold> - <left_val>0.3527779877185822</left_val> - <right_val>-0.3785400092601776</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 4 9 -1.</_> - <_>2 1 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0170070007443428</threshold> - <left_val>-0.2918950021266937</left_val> - <right_val>0.4105379879474640</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 14 9 4 -1.</_> - <_>12 16 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0370340012013912</threshold> - <left_val>-1.3216309547424316</left_val> - <right_val>0.1296650022268295</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 13 9 4 -1.</_> - <_>1 15 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0196330007165670</threshold> - <left_val>-0.8770229816436768</left_val> - <right_val>1.0799999581649899e-003</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 15 6 -1.</_> - <_>7 8 15 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0235469993203878</threshold> - <left_val>0.2610610127449036</left_val> - <right_val>-0.2148140072822571</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 2 3 18 -1.</_> - <_>8 8 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0433529987931252</threshold> - <left_val>-0.9908969998359680</left_val> - <right_val>-9.9560003727674484e-003</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 12 6 -1.</_> - <_>12 6 6 3 2.</_> - <_>6 9 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0221839994192123</threshold> - <left_val>0.6345440149307251</left_val> - <right_val>-0.0565470010042191</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 19 20 4 -1.</_> - <_>2 19 10 2 2.</_> - <_>12 21 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0165309999138117</threshold> - <left_val>0.0246649999171495</left_val> - <right_val>-0.7332680225372315</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 15 6 9 -1.</_> - <_>14 18 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0327440015971661</threshold> - <left_val>-0.5629720091819763</left_val> - <right_val>0.1664029955863953</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 5 18 14 -1.</_> - <_>3 5 9 7 2.</_> - <_>12 12 9 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0714159980416298</threshold> - <left_val>-3.0000001424923539e-004</left_val> - <right_val>-0.9328640103340149</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 6 4 18 -1.</_> - <_>17 6 2 9 2.</_> - <_>15 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.0999999772757292e-004</threshold> - <left_val>-0.0953800007700920</left_val> - <right_val>0.2518469989299774</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 4 18 -1.</_> - <_>5 6 2 9 2.</_> - <_>7 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.4090000018477440e-003</threshold> - <left_val>-0.6549680233001709</left_val> - <right_val>0.0673009976744652</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 0 6 9 -1.</_> - <_>13 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0172540005296469</threshold> - <left_val>-0.4649299979209900</left_val> - <right_val>0.1607089936733246</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 6 9 -1.</_> - <_>9 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0186410006135702</threshold> - <left_val>-1.0594010353088379</left_val> - <right_val>-0.0196170005947351</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 5 6 9 -1.</_> - <_>13 5 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.1979997232556343e-003</threshold> - <left_val>0.5071619749069214</left_val> - <right_val>-0.1533920019865036</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 6 6 -1.</_> - <_>12 5 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0185380000621080</threshold> - <left_val>-0.3049820065498352</left_val> - <right_val>0.7350620031356812</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 1 16 6 -1.</_> - <_>12 1 8 3 2.</_> - <_>4 4 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0503350012004375</threshold> - <left_val>-1.1140480041503906</left_val> - <right_val>0.1800010055303574</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 13 6 11 -1.</_> - <_>11 13 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0235290005803108</threshold> - <left_val>-0.8690789937973023</left_val> - <right_val>-0.0124599998816848</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 1 6 12 -1.</_> - <_>20 1 3 6 2.</_> - <_>17 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0271000005304813</threshold> - <left_val>0.6594290137290955</left_val> - <right_val>-0.0353239998221397</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 17 18 3 -1.</_> - <_>1 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.5879998728632927e-003</threshold> - <left_val>-0.2295340001583099</left_val> - <right_val>0.4242509901523590</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 13 10 8 -1.</_> - <_>7 17 10 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0233600009232759</threshold> - <left_val>0.1835619956254959</left_val> - <right_val>-0.9858729839324951</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 18 10 6 -1.</_> - <_>6 20 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0129469996318221</threshold> - <left_val>-0.3314740061759949</left_val> - <right_val>0.2132319957017899</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 14 9 4 -1.</_> - <_>9 16 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.6559999249875546e-003</threshold> - <left_val>-0.1195140033960342</left_val> - <right_val>0.2975279986858368</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 6 12 -1.</_> - <_>1 1 3 6 2.</_> - <_>4 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0225709993392229</threshold> - <left_val>0.3849940001964569</left_val> - <right_val>-0.2443449944257736</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 4 5 12 -1.</_> - <_>19 8 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0638139992952347</threshold> - <left_val>-0.8938350081443787</left_val> - <right_val>0.1421750038862228</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 8 8 -1.</_> - <_>4 0 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0499450005590916</threshold> - <left_val>0.5386440157890320</left_val> - <right_val>-0.2048529982566834</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 5 19 3 -1.</_> - <_>3 6 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.8319998681545258e-003</threshold> - <left_val>-0.0566789992153645</left_val> - <right_val>0.3997099995613098</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 12 6 -1.</_> - <_>1 5 6 3 2.</_> - <_>7 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0558359995484352</threshold> - <left_val>-1.5239470005035400</left_val> - <right_val>-0.0511830002069473</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 1 21 8 -1.</_> - <_>9 1 7 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3195700049400330</threshold> - <left_val>0.0745740011334419</left_val> - <right_val>1.2447799444198608</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 1 16 8 -1.</_> - <_>4 5 16 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0809559971094131</threshold> - <left_val>-0.1966550052165985</left_val> - <right_val>0.5988969802856445</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 18 3 -1.</_> - <_>6 1 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0149119999259710</threshold> - <left_val>-0.6402059793472290</left_val> - <right_val>0.1580760031938553</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 4 10 14 -1.</_> - <_>4 11 10 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0467090010643005</threshold> - <left_val>0.0852390006184578</left_val> - <right_val>-0.4548720121383667</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 6 4 10 -1.</_> - <_>15 11 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.0539999976754189e-003</threshold> - <left_val>-0.4318400025367737</left_val> - <right_val>0.2245260030031204</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 18 18 3 -1.</_> - <_>9 18 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0343759991228580</threshold> - <left_val>0.4020250141620636</left_val> - <right_val>-0.2390359938144684</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 18 12 6 -1.</_> - <_>12 18 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0349240005016327</threshold> - <left_val>0.5287010073661804</left_val> - <right_val>0.0397090017795563</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 15 6 9 -1.</_> - <_>6 15 3 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.0030000489205122e-003</threshold> - <left_val>-0.3875429928302765</left_val> - <right_val>0.1419260054826737</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 7 6 8 -1.</_> - <_>15 11 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0141329998150468</threshold> - <left_val>0.8752840161323547</left_val> - <right_val>0.0855079963803291</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 7 6 8 -1.</_> - <_>3 11 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.7940000444650650e-003</threshold> - <left_val>-1.1649219989776611</left_val> - <right_val>-0.0339430011808872</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 9 18 6 -1.</_> - <_>14 9 9 3 2.</_> - <_>5 12 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0528860017657280</threshold> - <left_val>1.0930680036544800</left_val> - <right_val>0.0511870011687279</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 13 12 6 -1.</_> - <_>1 15 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.1079999860376120e-003</threshold> - <left_val>0.1369619965553284</left_val> - <right_val>-0.3384999930858612</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 15 10 6 -1.</_> - <_>14 17 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0183530002832413</threshold> - <left_val>0.1366160064935684</left_val> - <right_val>-0.4077779948711395</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 10 6 -1.</_> - <_>0 17 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0126719996333122</threshold> - <left_val>-0.0149360001087189</left_val> - <right_val>-0.8170750141143799</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 13 6 9 -1.</_> - <_>15 16 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0129249999299645</threshold> - <left_val>0.1762509942054749</left_val> - <right_val>-0.3249169886112213</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 13 6 9 -1.</_> - <_>3 16 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0179210007190704</threshold> - <left_val>-0.5274540185928345</left_val> - <right_val>0.0444430001080036</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 8 8 -1.</_> - <_>9 5 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.9160000374540687e-003</threshold> - <left_val>-0.1097859963774681</left_val> - <right_val>0.2206750065088272</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 18 12 6 -1.</_> - <_>1 18 6 3 2.</_> - <_>7 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0146979996934533</threshold> - <left_val>0.3906779885292053</left_val> - <right_val>-0.2222499996423721</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 19 10 4 -1.</_> - <_>13 21 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0149729996919632</threshold> - <left_val>-0.2545090019702911</left_val> - <right_val>0.1779000014066696</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 19 10 4 -1.</_> - <_>1 21 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0146369999274611</threshold> - <left_val>-0.0251250006258488</left_val> - <right_val>-0.8712130188941956</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 19 18 3 -1.</_> - <_>6 20 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0109740002080798</threshold> - <left_val>0.7908279895782471</left_val> - <right_val>0.0201210007071495</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 14 4 10 -1.</_> - <_>8 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.1599998995661736e-003</threshold> - <left_val>-0.4790689945220947</left_val> - <right_val>0.0522320009768009</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 6 -1.</_> - <_>0 2 24 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.6179997734725475e-003</threshold> - <left_val>-0.1724459975957871</left_val> - <right_val>0.3452779948711395</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 6 9 -1.</_> - <_>0 4 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0234769992530346</threshold> - <left_val>3.7760001141577959e-003</left_val> - <right_val>-0.6533370018005371</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 9 20 6 -1.</_> - <_>14 9 10 3 2.</_> - <_>4 12 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0317669995129108</threshold> - <left_val>0.0163640007376671</left_val> - <right_val>0.5872370004653931</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 15 19 8 -1.</_> - <_>1 19 19 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0184199996292591</threshold> - <left_val>0.1999389976263046</left_val> - <right_val>-0.3205649852752686</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 10 6 -1.</_> - <_>14 2 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0195439998060465</threshold> - <left_val>0.1845020055770874</left_val> - <right_val>-0.2379360049962997</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 21 14 -1.</_> - <_>8 10 7 14 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.4115949869155884</threshold> - <left_val>-0.0603820011019707</left_val> - <right_val>-1.6072119474411011</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 10 8 8 -1.</_> - <_>10 10 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0415959991514683</threshold> - <left_val>-0.3275620043277741</left_val> - <right_val>0.1505800038576126</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 8 10 4 -1.</_> - <_>11 8 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0103359995409846</threshold> - <left_val>-0.6239439845085144</left_val> - <right_val>0.0131120001897216</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 4 9 -1.</_> - <_>10 5 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0123929996043444</threshold> - <left_val>-0.0331149995326996</left_val> - <right_val>0.5557990074157715</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 6 10 -1.</_> - <_>9 5 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.7270000949501991e-003</threshold> - <left_val>0.1988320052623749</left_val> - <right_val>-0.3763560056686401</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 4 4 13 -1.</_> - <_>14 4 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0162950009107590</threshold> - <left_val>0.2037300020456314</left_val> - <right_val>-0.4280079901218414</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 4 13 -1.</_> - <_>8 4 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0104839997366071</threshold> - <left_val>-0.5684700012207031</left_val> - <right_val>0.0441990010440350</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 9 6 -1.</_> - <_>11 7 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0124319996684790</threshold> - <left_val>0.7464190125465393</left_val> - <right_val>0.0436789989471436</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 16 6 -1.</_> - <_>3 6 8 3 2.</_> - <_>11 9 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0503749996423721</threshold> - <left_val>0.8509010076522827</left_val> - <right_val>-0.1777379959821701</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 16 14 -1.</_> - <_>13 4 8 7 2.</_> - <_>5 11 8 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0495480000972748</threshold> - <left_val>0.1678490042686462</left_val> - <right_val>-0.2987749874591827</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 4 -1.</_> - <_>0 0 12 2 2.</_> - <_>12 2 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0410850010812283</threshold> - <left_val>-1.3302919864654541</left_val> - <right_val>-0.0491820015013218</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 9 6 -1.</_> - <_>12 1 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0069999843835831e-003</threshold> - <left_val>-0.0605389997363091</left_val> - <right_val>0.1848320066928864</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 1 14 4 -1.</_> - <_>11 1 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0501429997384548</threshold> - <left_val>0.7644770145416260</left_val> - <right_val>-0.1835699975490570</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 14 7 9 -1.</_> - <_>10 17 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.7879998609423637e-003</threshold> - <left_val>0.2265599966049194</left_val> - <right_val>-0.0631569996476173</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 3 8 10 -1.</_> - <_>8 3 4 5 2.</_> - <_>12 8 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0501709990203381</threshold> - <left_val>-1.5899070501327515</left_val> - <right_val>-0.0612550005316734</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 3 12 5 -1.</_> - <_>11 3 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1021609976887703</threshold> - <left_val>0.1207180023193359</left_val> - <right_val>-1.4120110273361206</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 2 4 13 -1.</_> - <_>10 2 2 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0143729997798800</threshold> - <left_val>-1.3116970062255859</left_val> - <right_val>-0.0519360005855560</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 2 3 19 -1.</_> - <_>12 2 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0102819995954633</threshold> - <left_val>-2.1639999467879534e-003</left_val> - <right_val>0.4424720108509064</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 9 6 -1.</_> - <_>10 7 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0118140000849962</threshold> - <left_val>0.6537809967994690</left_val> - <right_val>-0.1872369945049286</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 22 20 2 -1.</_> - <_>4 22 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0721149966120720</threshold> - <left_val>0.0718469992280006</left_val> - <right_val>0.8149629831314087</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 24 4 -1.</_> - <_>0 16 12 2 2.</_> - <_>12 18 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0190019998699427</threshold> - <left_val>-0.6742720007896423</left_val> - <right_val>-4.3200000072829425e-004</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 3 12 5 -1.</_> - <_>11 3 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.6990001574158669e-003</threshold> - <left_val>0.3331150114536285</left_val> - <right_val>0.0557940006256104</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 8 14 -1.</_> - <_>1 10 4 7 2.</_> - <_>5 17 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0581570006906986</threshold> - <left_val>0.4557229876518250</left_val> - <right_val>-0.2030510008335114</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 16 6 6 -1.</_> - <_>11 19 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1360000353306532e-003</threshold> - <left_val>-0.0446869991719723</left_val> - <right_val>0.2268189936876297</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 10 24 -1.</_> - <_>6 0 5 12 2.</_> - <_>11 12 5 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0494149997830391</threshold> - <left_val>0.2669459879398346</left_val> - <right_val>-0.2611699998378754</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 14 14 -1.</_> - <_>14 5 7 7 2.</_> - <_>7 12 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1191380023956299</threshold> - <left_val>-0.8301799893379211</left_val> - <right_val>0.1324850022792816</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 10 8 -1.</_> - <_>7 8 5 4 2.</_> - <_>12 12 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0183039996773005</threshold> - <left_val>-0.6749920248985291</left_val> - <right_val>0.0170920006930828</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 9 6 -1.</_> - <_>12 1 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.9199997708201408e-003</threshold> - <left_val>-0.0722870007157326</left_val> - <right_val>0.1442580074071884</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 24 3 -1.</_> - <_>12 6 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0519259981811047</threshold> - <left_val>0.0309219993650913</left_val> - <right_val>-0.5586060285568237</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 3 12 5 -1.</_> - <_>11 3 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0667240023612976</threshold> - <left_val>0.1366640031337738</left_val> - <right_val>-0.2941100001335144</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 13 22 4 -1.</_> - <_>1 13 11 2 2.</_> - <_>12 15 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0137780001387000</threshold> - <left_val>-0.5944390296936035</left_val> - <right_val>0.0153000000864267</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 12 6 -1.</_> - <_>9 14 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0177609995007515</threshold> - <left_val>0.4049650132656097</left_val> - <right_val>-3.3559999428689480e-003</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 9 6 -1.</_> - <_>0 7 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0422349981963634</threshold> - <left_val>-1.0897940397262573</left_val> - <right_val>-0.0402249991893768</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 23 6 -1.</_> - <_>1 7 23 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0135249998420477</threshold> - <left_val>0.2892189919948578</left_val> - <right_val>-0.2519479990005493</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 6 19 12 -1.</_> - <_>1 10 19 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0111060002818704</threshold> - <left_val>0.6531280279159546</left_val> - <right_val>-0.1805370002985001</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 6 21 -1.</_> - <_>9 8 6 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1228459998965263</threshold> - <left_val>-1.9570649862289429</left_val> - <right_val>0.1481540054082871</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 19 18 3 -1.</_> - <_>9 19 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0477159991860390</threshold> - <left_val>-0.2287559956312180</left_val> - <right_val>0.3423370122909546</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 14 6 9 -1.</_> - <_>11 14 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0318170003592968</threshold> - <left_val>0.1597629934549332</left_val> - <right_val>-1.0091969966888428</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 4 12 -1.</_> - <_>11 6 2 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.2570000514388084e-003</threshold> - <left_val>-0.3888129889965057</left_val> - <right_val>0.0842100009322166</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 0 6 9 -1.</_> - <_>18 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0613729991018772</threshold> - <left_val>1.7152810096740723</left_val> - <right_val>0.0593249984085560</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 6 9 -1.</_> - <_>4 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7030000928789377e-003</threshold> - <left_val>-0.3816170096397400</left_val> - <right_val>0.0851270034909248</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 1 4 22 -1.</_> - <_>15 1 2 11 2.</_> - <_>13 12 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0685440003871918</threshold> - <left_val>-3.0925889015197754</left_val> - <right_val>0.1178800016641617</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 8 8 12 -1.</_> - <_>1 14 8 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1037250012159348</threshold> - <left_val>-0.1376930028200150</left_val> - <right_val>1.9009410142898560</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 7 7 9 -1.</_> - <_>14 10 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0157990008592606</threshold> - <left_val>-0.0626600012183189</left_val> - <right_val>0.2591769993305206</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 12 18 4 -1.</_> - <_>3 12 9 2 2.</_> - <_>12 14 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.8040001466870308e-003</threshold> - <left_val>-0.5629159808158875</left_val> - <right_val>0.0439230017364025</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 1 4 22 -1.</_> - <_>15 1 2 11 2.</_> - <_>13 12 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.0229995548725128e-003</threshold> - <left_val>0.2528710067272186</left_val> - <right_val>-0.0412259995937347</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 1 4 22 -1.</_> - <_>7 1 2 11 2.</_> - <_>9 12 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0637549981474876</threshold> - <left_val>-2.6178569793701172</left_val> - <right_val>-0.0740059986710548</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 20 4 -1.</_> - <_>14 7 10 2 2.</_> - <_>4 9 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0389549992978573</threshold> - <left_val>0.0590329989790916</left_val> - <right_val>0.8594560027122498</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 10 6 7 -1.</_> - <_>12 10 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0398029983043671</threshold> - <left_val>0.9360049962997437</left_val> - <right_val>-0.1563940048217773</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 10 4 -1.</_> - <_>7 7 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0503019988536835</threshold> - <left_val>0.1372590065002441</left_val> - <right_val>-2.5549728870391846</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 4 15 -1.</_> - <_>0 8 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0462500005960464</threshold> - <left_val>-0.0139640001580119</left_val> - <right_val>-0.7102620005607605</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 8 12 -1.</_> - <_>19 0 4 6 2.</_> - <_>15 6 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0621960014104843</threshold> - <left_val>0.0595260001718998</left_val> - <right_val>1.6509100198745728</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 8 12 -1.</_> - <_>1 0 4 6 2.</_> - <_>5 6 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0647760033607483</threshold> - <left_val>0.7136899828910828</left_val> - <right_val>-0.1727000027894974</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 5 6 16 -1.</_> - <_>16 5 2 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0275229997932911</threshold> - <left_val>0.1463160067796707</left_val> - <right_val>-0.0814289972186089</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 5 6 16 -1.</_> - <_>6 5 2 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.9900001138448715e-004</threshold> - <left_val>-0.3714450001716614</left_val> - <right_val>0.1015269979834557</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 6 16 -1.</_> - <_>17 0 2 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.3299999088048935e-003</threshold> - <left_val>-0.2375629991292954</left_val> - <right_val>0.2679840028285980</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 6 16 -1.</_> - <_>5 0 2 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0472970008850098</threshold> - <left_val>-0.0276820007711649</left_val> - <right_val>-0.8491029739379883</right_val></_></_> - <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 24 3 -1.</_> - <_>0 3 24 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0125089995563030</threshold> - <left_val>0.1873019933700562</left_val> - <right_val>-0.5600110292434692</right_val></_></_> - <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 1 10 4 -1.</_> - <_>7 3 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0458990000188351</threshold> - <left_val>-0.1560119986534119</left_val> - <right_val>0.9707300066947937</right_val></_></_> - <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 23 8 -1.</_> - <_>1 4 23 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1985339969396591</threshold> - <left_val>0.1489550024271011</left_val> - <right_val>-1.1015529632568359</right_val></_></_> - <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 17 19 3 -1.</_> - <_>1 18 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0166749991476536</threshold> - <left_val>-0.1661529988050461</left_val> - <right_val>0.8221099972724915</right_val></_></_> - <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 18 18 2 -1.</_> - <_>6 19 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.9829999655485153e-003</threshold> - <left_val>-0.0712499991059303</left_val> - <right_val>0.2881090044975281</right_val></_></_> - <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 17 9 6 -1.</_> - <_>1 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0224479995667934</threshold> - <left_val>-0.0209810007363558</left_val> - <right_val>-0.7841650247573853</right_val></_></_> - <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 15 6 9 -1.</_> - <_>15 18 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0139130000025034</threshold> - <left_val>-0.1816579997539520</left_val> - <right_val>0.2049179971218109</right_val></_></_> - <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 15 6 9 -1.</_> - <_>3 18 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.7659999951720238e-003</threshold> - <left_val>-0.4559589922428131</left_val> - <right_val>0.0635769963264465</right_val></_></_> - <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 14 20 6 -1.</_> - <_>4 17 20 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0132090002298355</threshold> - <left_val>0.2663230001926422</left_val> - <right_val>-0.1779599934816361</right_val></_></_> - <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 10 6 14 -1.</_> - <_>0 10 3 7 2.</_> - <_>3 17 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0490529984235764</threshold> - <left_val>-0.1547680050134659</left_val> - <right_val>1.1069979667663574</right_val></_></_> - <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 18 18 3 -1.</_> - <_>6 19 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0202639997005463</threshold> - <left_val>0.0689150020480156</left_val> - <right_val>0.6986749768257141</right_val></_></_> - <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 12 9 7 -1.</_> - <_>7 12 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0168280005455017</threshold> - <left_val>0.2760719954967499</left_val> - <right_val>-0.2513920068740845</right_val></_></_> - <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 10 18 5 -1.</_> - <_>12 10 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1693949997425079</threshold> - <left_val>-3.0767529010772705</left_val> - <right_val>0.1161750033497810</right_val></_></_> - <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 10 18 5 -1.</_> - <_>6 10 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1133610010147095</threshold> - <left_val>-1.4639229774475098</left_val> - <right_val>-0.0514470003545284</right_val></_></_> - <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 18 9 -1.</_> - <_>9 2 6 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0776859968900681</threshold> - <left_val>0.8843020200729370</left_val> - <right_val>0.0433069989085197</right_val></_></_> - <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 10 10 -1.</_> - <_>4 6 5 5 2.</_> - <_>9 11 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0155680002644658</threshold> - <left_val>0.1367249935865402</left_val> - <right_val>-0.3450550138950348</right_val></_></_> - <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 14 4 9 -1.</_> - <_>20 14 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0660189986228943</threshold> - <left_val>-1.0300110578536987</left_val> - <right_val>0.1160139963030815</right_val></_></_> - <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 4 9 -1.</_> - <_>2 14 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.3699999377131462e-003</threshold> - <left_val>0.0764290019869804</left_val> - <right_val>-0.4400250017642975</right_val></_></_> - <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 1 4 20 -1.</_> - <_>13 1 2 10 2.</_> - <_>11 11 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0354029983282089</threshold> - <left_val>0.1197950020432472</left_val> - <right_val>-0.7266830205917358</right_val></_></_> - <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 21 12 3 -1.</_> - <_>12 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0390510000288486</threshold> - <left_val>0.6737530231475830</left_val> - <right_val>-0.1819600015878677</right_val></_></_> - <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 1 4 20 -1.</_> - <_>13 1 2 10 2.</_> - <_>11 11 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.7899995744228363e-003</threshold> - <left_val>0.2126459926366806</left_val> - <right_val>0.0367560014128685</right_val></_></_> - <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 16 10 8 -1.</_> - <_>1 16 5 4 2.</_> - <_>6 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0230470001697540</threshold> - <left_val>0.4474219977855682</left_val> - <right_val>-0.2098670005798340</right_val></_></_> - <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 1 4 20 -1.</_> - <_>13 1 2 10 2.</_> - <_>11 11 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.1169999856501818e-003</threshold> - <left_val>0.0375440008938313</left_val> - <right_val>0.2780820131301880</right_val></_></_> - <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 3 19 -1.</_> - <_>2 0 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0131360003724694</threshold> - <left_val>-0.1984239965677261</left_val> - <right_val>0.5433570146560669</right_val></_></_> - <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 1 4 20 -1.</_> - <_>13 1 2 10 2.</_> - <_>11 11 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0147820003330708</threshold> - <left_val>0.1353060007095337</left_val> - <right_val>-0.1115360036492348</right_val></_></_> - <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 6 9 -1.</_> - <_>2 1 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0601390004158020</threshold> - <left_val>0.8403930068016052</left_val> - <right_val>-0.1671160012483597</right_val></_></_> - <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 7 19 4 -1.</_> - <_>3 9 19 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0519989989697933</threshold> - <left_val>0.1737200021743774</left_val> - <right_val>-0.7854760289192200</right_val></_></_> - <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 14 9 6 -1.</_> - <_>7 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0247920006513596</threshold> - <left_val>-0.1773920059204102</left_val> - <right_val>0.6675260066986084</right_val></_></_> - <_> - <!-- tree 155 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 1 7 6 -1.</_> - <_>17 4 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0120149999856949</threshold> - <left_val>-0.1426369994878769</left_val> - <right_val>0.1607050001621246</right_val></_></_> - <_> - <!-- tree 156 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 14 8 -1.</_> - <_>5 4 14 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0986559987068176</threshold> - <left_val>1.0429769754409790</left_val> - <right_val>-0.1577019989490509</right_val></_></_> - <_> - <!-- tree 157 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 1 8 6 -1.</_> - <_>16 4 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1175829991698265</threshold> - <left_val>0.1095570027828217</left_val> - <right_val>-4.4920377731323242</right_val></_></_> - <_> - <!-- tree 158 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 8 6 -1.</_> - <_>0 4 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0189229995012283</threshold> - <left_val>-0.7854340076446533</left_val> - <right_val>0.0129840001463890</right_val></_></_> - <_> - <!-- tree 159 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 18 4 -1.</_> - <_>15 0 9 2 2.</_> - <_>6 2 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0283909998834133</threshold> - <left_val>-0.6056990027427673</left_val> - <right_val>0.1290349960327148</right_val></_></_> - <_> - <!-- tree 160 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 9 6 -1.</_> - <_>0 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0131829995661974</threshold> - <left_val>-0.0144159998744726</left_val> - <right_val>-0.7321050167083740</right_val></_></_> - <_> - <!-- tree 161 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 7 18 8 -1.</_> - <_>9 7 6 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1165300011634827</threshold> - <left_val>-2.0442469120025635</left_val> - <right_val>0.1405310034751892</right_val></_></_> - <_> - <!-- tree 162 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 11 6 9 -1.</_> - <_>4 11 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.8880000356584787e-003</threshold> - <left_val>-0.4186159968376160</left_val> - <right_val>0.0787049978971481</right_val></_></_> - <_> - <!-- tree 163 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 6 9 -1.</_> - <_>12 5 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0312290005385876</threshold> - <left_val>0.0246329996734858</left_val> - <right_val>0.4187040030956268</right_val></_></_> - <_> - <!-- tree 164 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 18 -1.</_> - <_>10 6 2 9 2.</_> - <_>12 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0251989997923374</threshold> - <left_val>-0.1755779981613159</left_val> - <right_val>0.6471059918403626</right_val></_></_> - <_> - <!-- tree 165 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 1 4 20 -1.</_> - <_>13 1 2 10 2.</_> - <_>11 11 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0281240008771420</threshold> - <left_val>-0.2200559973716736</left_val> - <right_val>0.1412100046873093</right_val></_></_> - <_> - <!-- tree 166 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 4 20 -1.</_> - <_>9 1 2 10 2.</_> - <_>11 11 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0364990010857582</threshold> - <left_val>-0.0684269964694977</left_val> - <right_val>-2.3410849571228027</right_val></_></_> - <_> - <!-- tree 167 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 9 18 6 -1.</_> - <_>14 9 9 3 2.</_> - <_>5 12 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0722929984331131</threshold> - <left_val>1.2898750305175781</left_val> - <right_val>0.0848750025033951</right_val></_></_> - <_> - <!-- tree 168 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 6 9 -1.</_> - <_>8 4 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0416710004210472</threshold> - <left_val>-1.1630970239639282</left_val> - <right_val>-0.0537529997527599</right_val></_></_> - <_> - <!-- tree 169 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 16 8 6 -1.</_> - <_>10 16 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0477030016481876</threshold> - <left_val>0.0701010003685951</left_val> - <right_val>0.7367650270462036</right_val></_></_> - <_> - <!-- tree 170 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 18 8 -1.</_> - <_>0 0 9 4 2.</_> - <_>9 4 9 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0657930001616478</threshold> - <left_val>-0.1775529980659485</left_val> - <right_val>0.6978049874305725</right_val></_></_> - <_> - <!-- tree 171 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 14 12 -1.</_> - <_>13 5 7 6 2.</_> - <_>6 11 7 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0139049999415874</threshold> - <left_val>0.2193679958581924</left_val> - <right_val>-0.2039079964160919</right_val></_></_> - <_> - <!-- tree 172 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 15 7 -1.</_> - <_>9 3 5 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0277309995144606</threshold> - <left_val>0.6186789870262146</left_val> - <right_val>-0.1780409961938858</right_val></_></_> - <_> - <!-- tree 173 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 12 10 6 -1.</_> - <_>14 14 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0158799998462200</threshold> - <left_val>-0.4648410081863403</left_val> - <right_val>0.1882860064506531</right_val></_></_> - <_> - <!-- tree 174 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 11 4 10 -1.</_> - <_>0 16 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0741280019283295</threshold> - <left_val>-0.1285810023546219</left_val> - <right_val>3.2792479991912842</right_val></_></_> - <_> - <!-- tree 175 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 22 3 -1.</_> - <_>1 11 22 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.9000002481043339e-004</threshold> - <left_val>-0.3011760115623474</left_val> - <right_val>0.2381879985332489</right_val></_></_> - <_> - <!-- tree 176 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 9 6 10 -1.</_> - <_>10 9 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0179650001227856</threshold> - <left_val>-0.2228499948978424</left_val> - <right_val>0.2995400130748749</right_val></_></_> - <_> - <!-- tree 177 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 2 6 12 -1.</_> - <_>16 2 3 6 2.</_> - <_>13 8 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.5380000006407499e-003</threshold> - <left_val>0.2506439983844757</left_val> - <right_val>-0.1366560012102127</right_val></_></_> - <_> - <!-- tree 178 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 18 -1.</_> - <_>10 6 2 9 2.</_> - <_>12 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.0680001303553581e-003</threshold> - <left_val>0.2901749908924103</left_val> - <right_val>-0.2892970144748688</right_val></_></_> - <_> - <!-- tree 179 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 10 16 -1.</_> - <_>12 8 5 8 2.</_> - <_>7 16 5 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0491699986159801</threshold> - <left_val>0.1915639936923981</left_val> - <right_val>-0.6832870244979858</right_val></_></_> - <_> - <!-- tree 180 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 8 12 -1.</_> - <_>8 1 4 6 2.</_> - <_>12 7 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0306809991598129</threshold> - <left_val>-0.7567700147628784</left_val> - <right_val>-0.0132799996063113</right_val></_></_> - <_> - <!-- tree 181 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 1 12 14 -1.</_> - <_>13 1 6 7 2.</_> - <_>7 8 6 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1001740023493767</threshold> - <left_val>0.0844539999961853</left_val> - <right_val>1.0888710021972656</right_val></_></_> - <_> - <!-- tree 182 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 14 12 6 -1.</_> - <_>2 16 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.1950001139193773e-003</threshold> - <left_val>-0.2691940069198608</left_val> - <right_val>0.1953790038824081</right_val></_></_> - <_> - <!-- tree 183 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 16 6 6 -1.</_> - <_>11 19 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0355030000209808</threshold> - <left_val>0.1363230049610138</left_val> - <right_val>-0.5691720247268677</right_val></_></_> - <_> - <!-- tree 184 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 16 6 6 -1.</_> - <_>7 19 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.5900000259280205e-004</threshold> - <left_val>-0.4044399857521057</left_val> - <right_val>0.1407479941844940</right_val></_></_> - <_> - <!-- tree 185 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 4 4 10 -1.</_> - <_>13 4 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0252589993178844</threshold> - <left_val>0.1624320000410080</left_val> - <right_val>-0.5574179887771606</right_val></_></_> - <_> - <!-- tree 186 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 19 19 3 -1.</_> - <_>0 20 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.1549999043345451e-003</threshold> - <left_val>0.3113259971141815</left_val> - <right_val>-0.2275609970092773</right_val></_></_> - <_> - <!-- tree 187 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 8 6 8 -1.</_> - <_>12 12 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.5869999770075083e-003</threshold> - <left_val>-0.2686769962310791</left_val> - <right_val>0.1956540048122406</right_val></_></_> - <_> - <!-- tree 188 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 8 22 -1.</_> - <_>8 12 8 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0162049997597933</threshold> - <left_val>0.1548649966716766</left_val> - <right_val>-0.3405779898166657</right_val></_></_> - <_> - <!-- tree 189 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 8 6 8 -1.</_> - <_>12 12 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0296240001916885</threshold> - <left_val>1.1466799974441528</left_val> - <right_val>0.0905579999089241</right_val></_></_> - <_> - <!-- tree 190 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 8 6 8 -1.</_> - <_>6 12 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.5930000226944685e-003</threshold> - <left_val>-0.7125750184059143</left_val> - <right_val>-7.0400000549852848e-004</right_val></_></_> - <_> - <!-- tree 191 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 5 6 9 -1.</_> - <_>14 8 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0540190003812313</threshold> - <left_val>0.4153749942779541</left_val> - <right_val>0.0272460002452135</right_val></_></_> - <_> - <!-- tree 192 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 24 4 -1.</_> - <_>0 8 24 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0662110000848770</threshold> - <left_val>-1.3340090513229370</left_val> - <right_val>-0.0473529994487762</right_val></_></_> - <_> - <!-- tree 193 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 12 10 6 -1.</_> - <_>14 14 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0279409997165203</threshold> - <left_val>0.1444630026817322</left_val> - <right_val>-0.5151839852333069</right_val></_></_> - <_> - <!-- tree 194 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 10 6 -1.</_> - <_>0 14 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0289570000022650</threshold> - <left_val>-0.0499660000205040</left_val> - <right_val>-1.1929039955139160</right_val></_></_> - <_> - <!-- tree 195 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 19 3 -1.</_> - <_>4 7 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0204249992966652</threshold> - <left_val>0.6388130187988281</left_val> - <right_val>0.0381410010159016</right_val></_></_> - <_> - <!-- tree 196 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 6 19 3 -1.</_> - <_>1 7 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0124169997870922</threshold> - <left_val>-0.2154700011014938</left_val> - <right_val>0.4947769939899445</right_val></_></_></trees> - <stage_threshold>-3.2772979736328125</stage_threshold> - <parent>19</parent> - <next>-1</next></_> - <_> - <!-- stage 21 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 16 9 -1.</_> - <_>4 3 16 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0432740002870560</threshold> - <left_val>-0.8049439787864685</left_val> - <right_val>0.3989729881286621</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 5 -1.</_> - <_>8 1 8 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1861550062894821</threshold> - <left_val>-0.3165529966354370</left_val> - <right_val>0.6887729763984680</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 6 15 -1.</_> - <_>3 11 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0318609997630119</threshold> - <left_val>-0.6426619887351990</left_val> - <right_val>0.2555089890956879</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 9 -1.</_> - <_>11 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0140220001339912</threshold> - <left_val>-0.4592660069465637</left_val> - <right_val>0.3117119967937470</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 18 3 -1.</_> - <_>0 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.3029997982084751e-003</threshold> - <left_val>0.4602690041065216</left_val> - <right_val>-0.2743850052356720</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 22 18 2 -1.</_> - <_>6 23 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.4310001432895660e-003</threshold> - <left_val>0.3660860061645508</left_val> - <right_val>-0.2720580101013184</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 12 6 9 -1.</_> - <_>2 15 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0168229993432760</threshold> - <left_val>0.0234769992530346</left_val> - <right_val>-0.8844379782676697</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 12 6 9 -1.</_> - <_>18 15 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0260390006005764</threshold> - <left_val>0.1748879998922348</left_val> - <right_val>-0.5456470251083374</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 6 9 -1.</_> - <_>0 15 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0267200004309416</threshold> - <left_val>-0.9639649987220764</left_val> - <right_val>0.0235249996185303</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 14 4 10 -1.</_> - <_>11 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0170419998466969</threshold> - <left_val>-0.7084879875183106</left_val> - <right_val>0.2146809995174408</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 16 -1.</_> - <_>9 14 6 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.9569999575614929e-003</threshold> - <left_val>0.0736010000109673</left_val> - <right_val>-0.6822559833526611</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 10 10 -1.</_> - <_>7 12 10 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.8679999522864819e-003</threshold> - <left_val>-0.7493500113487244</left_val> - <right_val>0.2380339950323105</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 3 6 13 -1.</_> - <_>3 3 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0437749996781349</threshold> - <left_val>0.6832330226898193</left_val> - <right_val>-0.2138029932975769</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 1 6 13 -1.</_> - <_>18 1 3 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0516330003738403</threshold> - <left_val>-0.1256649941205978</left_val> - <right_val>0.6752380132675171</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 1 6 9 -1.</_> - <_>7 1 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.1780003383755684e-003</threshold> - <left_val>0.0706899985671043</left_val> - <right_val>-0.8066589832305908</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 2 6 11 -1.</_> - <_>18 2 3 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0528419986367226</threshold> - <left_val>0.9543390274047852</left_val> - <right_val>0.0165480002760887</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 11 -1.</_> - <_>3 2 3 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0525839999318123</threshold> - <left_val>-0.2841440141201019</left_val> - <right_val>0.4712980091571808</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 15 6 -1.</_> - <_>9 14 15 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0126590002328157</threshold> - <left_val>0.3844540119171143</left_val> - <right_val>-0.0622880011796951</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 2 20 3 -1.</_> - <_>2 3 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0116940001025796</threshold> - <left_val>5.6000000768108293e-005</left_val> - <right_val>-1.0173139572143555</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 9 -1.</_> - <_>10 6 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0239189993590117</threshold> - <left_val>0.8492130041122437</left_val> - <right_val>5.7399999350309372e-003</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 12 14 -1.</_> - <_>5 6 6 7 2.</_> - <_>11 13 6 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0616739988327026</threshold> - <left_val>-0.9257140159606934</left_val> - <right_val>-1.7679999582469463e-003</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 6 9 -1.</_> - <_>11 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.8279999494552612e-003</threshold> - <left_val>-0.5437229871749878</left_val> - <right_val>0.2493239939212799</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 9 6 -1.</_> - <_>10 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0352579988539219</threshold> - <left_val>-7.3719997890293598e-003</left_val> - <right_val>-0.9396399855613709</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 6 9 -1.</_> - <_>12 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0184380002319813</threshold> - <left_val>0.7213670015335083</left_val> - <right_val>0.0104919997975230</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 1 12 20 -1.</_> - <_>4 1 6 10 2.</_> - <_>10 11 6 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0383890010416508</threshold> - <left_val>0.1927260011434555</left_val> - <right_val>-0.3583210110664368</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 18 3 -1.</_> - <_>6 7 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0997209995985031</threshold> - <left_val>0.1135419979691505</left_val> - <right_val>-1.6304190158843994</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 18 3 -1.</_> - <_>9 7 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0844620019197464</threshold> - <left_val>-0.0534209981560707</left_val> - <right_val>-1.6981120109558105</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 20 18 3 -1.</_> - <_>9 20 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0402700006961823</threshold> - <left_val>-0.1078319996595383</left_val> - <right_val>0.5192660093307495</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 9 -1.</_> - <_>11 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0589359998703003</threshold> - <left_val>-0.1805370002985001</left_val> - <right_val>0.9511979818344116</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 2 12 15 -1.</_> - <_>10 2 4 15 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1495700031518936</threshold> - <left_val>0.1678529977798462</left_val> - <right_val>-1.1591869592666626</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 3 18 3 -1.</_> - <_>2 4 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.9399998756125569e-004</threshold> - <left_val>0.2049140036106110</left_val> - <right_val>-0.3311820030212402</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 4 4 18 -1.</_> - <_>21 4 2 9 2.</_> - <_>19 13 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0333690010011196</threshold> - <left_val>0.9346809983253479</left_val> - <right_val>-2.9639999847859144e-003</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 19 3 -1.</_> - <_>0 2 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.3759996816515923e-003</threshold> - <left_val>3.7000000011175871e-003</left_val> - <right_val>-0.7754979729652405</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 15 4 -1.</_> - <_>5 2 15 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0431939996778965</threshold> - <left_val>-2.2040000185370445e-003</left_val> - <right_val>0.7458969950675964</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 14 5 -1.</_> - <_>12 2 7 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0675550028681755</threshold> - <left_val>0.7229210138320923</left_val> - <right_val>-0.1840420067310333</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 22 14 -1.</_> - <_>1 2 11 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3116860091686249</threshold> - <left_val>1.0014270544052124</left_val> - <right_val>0.0340030007064343</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 15 6 9 -1.</_> - <_>10 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0297439992427826</threshold> - <left_val>-0.0463560000061989</left_val> - <right_val>-1.2781809568405151</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 17 18 3 -1.</_> - <_>6 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0107370000332594</threshold> - <left_val>0.0148120000958443</left_val> - <right_val>0.6664999723434448</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 3 18 -1.</_> - <_>9 12 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0288410000503063</threshold> - <left_val>-0.9422259926795960</left_val> - <right_val>-0.0207969993352890</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 20 3 -1.</_> - <_>2 1 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.7649998925626278e-003</threshold> - <left_val>-0.4354189932346344</left_val> - <right_val>0.2338600009679794</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 5 12 -1.</_> - <_>5 8 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0284109991043806</threshold> - <left_val>-0.1761579960584641</left_val> - <right_val>0.8576530218124390</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 12 5 -1.</_> - <_>12 6 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0290079992264509</threshold> - <left_val>0.5797809958457947</left_val> - <right_val>0.0285659991204739</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 6 12 -1.</_> - <_>9 12 3 6 2.</_> - <_>12 18 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0249659996479750</threshold> - <left_val>-0.0227290000766516</left_val> - <right_val>-0.9677309989929199</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 14 8 10 -1.</_> - <_>18 14 4 5 2.</_> - <_>14 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0120360003784299</threshold> - <left_val>-0.1421470046043396</left_val> - <right_val>0.5168799757957459</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 14 8 10 -1.</_> - <_>2 14 4 5 2.</_> - <_>6 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0425140000879765</threshold> - <left_val>0.9727380275726318</left_val> - <right_val>-0.1811980009078980</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 18 12 6 -1.</_> - <_>16 18 6 3 2.</_> - <_>10 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0102760000154376</threshold> - <left_val>-0.0830999985337257</left_val> - <right_val>0.3176279962062836</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 3 6 9 -1.</_> - <_>1 6 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0691919997334480</threshold> - <left_val>-2.0668580532073975</left_val> - <right_val>-0.0601739995181561</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 3 3 20 -1.</_> - <_>12 3 1 20 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.6769999898970127e-003</threshold> - <left_val>0.4413180053234100</left_val> - <right_val>0.0232090000063181</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 14 6 -1.</_> - <_>4 6 7 3 2.</_> - <_>11 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0139239998534322</threshold> - <left_val>0.2860670089721680</left_val> - <right_val>-0.2915270030498505</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 12 13 -1.</_> - <_>10 5 4 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0153339998796582</threshold> - <left_val>-0.5741450190544128</left_val> - <right_val>0.2306330054998398</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 4 15 -1.</_> - <_>5 9 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0102390004321933</threshold> - <left_val>0.3447920083999634</left_val> - <right_val>-0.2608039975166321</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 16 15 4 -1.</_> - <_>14 16 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0509889982640743</threshold> - <left_val>0.5615410208702087</left_val> - <right_val>0.0612189993262291</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 6 14 -1.</_> - <_>7 8 3 7 2.</_> - <_>10 15 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0306899994611740</threshold> - <left_val>-0.1477279961109161</left_val> - <right_val>1.6378489732742310</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 10 6 -1.</_> - <_>7 8 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0112239997833967</threshold> - <left_val>0.2400619983673096</left_val> - <right_val>-0.4486489892005920</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 5 18 3 -1.</_> - <_>2 6 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.2899999320507050e-003</threshold> - <left_val>0.4311949908733368</left_val> - <right_val>-0.2380899935960770</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 1 15 8 -1.</_> - <_>5 5 15 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0785909965634346</threshold> - <left_val>0.0198650006204844</left_val> - <right_val>0.8085380196571350</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 1 8 18 -1.</_> - <_>7 10 8 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0101789999753237</threshold> - <left_val>0.1819320023059845</left_val> - <right_val>-0.3287779986858368</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 10 24 3 -1.</_> - <_>0 11 24 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0312270000576973</threshold> - <left_val>0.1497389972209930</left_val> - <right_val>-1.4180339574813843</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 13 -1.</_> - <_>2 2 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0401969999074936</threshold> - <left_val>-0.1976049989461899</left_val> - <right_val>0.5850819945335388</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 0 8 10 -1.</_> - <_>20 0 4 5 2.</_> - <_>16 5 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0161380004137754</threshold> - <left_val>5.0000002374872565e-004</left_val> - <right_val>0.3905000090599060</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 1 10 9 -1.</_> - <_>5 4 10 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0455190017819405</threshold> - <left_val>1.2646820545196533</left_val> - <right_val>-0.1563259959220886</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 18 3 -1.</_> - <_>5 7 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0181300006806850</threshold> - <left_val>0.6514850258827210</left_val> - <right_val>0.0102359997108579</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 3 -1.</_> - <_>0 2 24 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0140019999817014</threshold> - <left_val>-1.0344820022583008</left_val> - <right_val>-0.0321829989552498</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 4 6 11 -1.</_> - <_>13 4 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0388160012662411</threshold> - <left_val>-0.4787429869174957</left_val> - <right_val>0.1629070043563843</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 8 10 -1.</_> - <_>0 0 4 5 2.</_> - <_>4 5 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0316560007631779</threshold> - <left_val>-0.2098339945077896</left_val> - <right_val>0.5457590222358704</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 16 18 3 -1.</_> - <_>4 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0108399996533990</threshold> - <left_val>0.5189880132675171</left_val> - <right_val>-0.0150800002738833</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 16 18 3 -1.</_> - <_>2 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0120329996570945</threshold> - <left_val>-0.2110760062932968</left_val> - <right_val>0.7593700289726257</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 18 10 -1.</_> - <_>12 0 9 5 2.</_> - <_>3 5 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0707729980349541</threshold> - <left_val>0.1804880052804947</left_val> - <right_val>-0.7404850125312805</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 3 20 21 -1.</_> - <_>12 3 10 21 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.5313979983329773</threshold> - <left_val>-0.1449169963598251</left_val> - <right_val>1.5360039472579956</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 14 3 -1.</_> - <_>6 7 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0147740002721548</threshold> - <left_val>-0.2815369963645935</left_val> - <right_val>0.2040729969739914</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 9 12 6 -1.</_> - <_>0 9 6 3 2.</_> - <_>6 12 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.2410000674426556e-003</threshold> - <left_val>-0.4487630128860474</left_val> - <right_val>0.0539890006184578</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 14 21 4 -1.</_> - <_>10 14 7 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0499680005013943</threshold> - <left_val>0.0415140017867088</left_val> - <right_val>0.2941710054874420</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 21 4 -1.</_> - <_>7 14 7 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0477019995450974</threshold> - <left_val>0.3967429995536804</left_val> - <right_val>-0.2830179929733276</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 21 18 3 -1.</_> - <_>11 21 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0913110002875328</threshold> - <left_val>2.1994259357452393</left_val> - <right_val>0.0879649966955185</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 21 18 3 -1.</_> - <_>7 21 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0380700007081032</threshold> - <left_val>-0.2802560031414032</left_val> - <right_val>0.2515619993209839</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 4 4 18 -1.</_> - <_>21 4 2 9 2.</_> - <_>19 13 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0155389998108149</threshold> - <left_val>0.3415749967098236</left_val> - <right_val>0.0179249998182058</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 7 18 3 -1.</_> - <_>3 8 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0154459998011589</threshold> - <left_val>0.2868019938468933</left_val> - <right_val>-0.2513589859008789</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 4 4 18 -1.</_> - <_>21 4 2 9 2.</_> - <_>19 13 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0573880001902580</threshold> - <left_val>0.6383000016212463</left_val> - <right_val>0.0885979980230331</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 15 10 6 -1.</_> - <_>7 17 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.9440000914037228e-003</threshold> - <left_val>0.0790169984102249</left_val> - <right_val>-0.4077489972114563</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 13 11 9 -1.</_> - <_>9 16 11 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0699689984321594</threshold> - <left_val>-0.4464420080184937</left_val> - <right_val>0.1721960008144379</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 4 10 -1.</_> - <_>0 11 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0250649992376566</threshold> - <left_val>-0.9827020168304443</left_val> - <right_val>-0.0353880003094673</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 16 9 6 -1.</_> - <_>15 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0172160007059574</threshold> - <left_val>0.2270590066909790</left_val> - <right_val>-0.8055009841918945</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 4 18 -1.</_> - <_>1 5 2 9 2.</_> - <_>3 14 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0442790016531944</threshold> - <left_val>0.8395199775695801</left_val> - <right_val>-0.1742960065603256</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 8 10 -1.</_> - <_>13 8 4 5 2.</_> - <_>9 13 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0439889989793301</threshold> - <left_val>0.1155719980597496</left_val> - <right_val>-1.9666889905929565</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 8 10 -1.</_> - <_>7 8 4 5 2.</_> - <_>11 13 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0159070007503033</threshold> - <left_val>-0.0375760011374950</left_val> - <right_val>-1.0311100482940674</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 12 5 -1.</_> - <_>13 8 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0927549973130226</threshold> - <left_val>-1.3530019521713257</left_val> - <right_val>0.1214129999279976</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 9 7 -1.</_> - <_>10 8 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0710370019078255</threshold> - <left_val>-0.1768430024385452</left_val> - <right_val>0.7448520064353943</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 12 5 -1.</_> - <_>13 8 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0577620007097721</threshold> - <left_val>0.1283559948205948</left_val> - <right_val>-0.4444420039653778</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 9 7 -1.</_> - <_>10 6 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0164320003241301</threshold> - <left_val>0.8015270233154297</left_val> - <right_val>-0.1749169975519180</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 12 5 -1.</_> - <_>13 8 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0239390004426241</threshold> - <left_val>0.1614499986171722</left_val> - <right_val>-0.1236450001597405</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 4 18 -1.</_> - <_>10 11 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0126360002905130</threshold> - <left_val>0.1541199982166290</left_val> - <right_val>-0.3329379856586456</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 5 14 12 -1.</_> - <_>5 11 14 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0543479993939400</threshold> - <left_val>-1.8400700092315674</left_val> - <right_val>0.1483599990606308</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 11 4 -1.</_> - <_>0 3 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0132619999349117</threshold> - <left_val>-0.8083879947662354</left_val> - <right_val>-0.0277260001748800</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 10 6 10 -1.</_> - <_>11 10 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.1340001411736012e-003</threshold> - <left_val>-0.1378500014543533</left_val> - <right_val>0.3285849988460541</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 17 11 6 -1.</_> - <_>2 19 11 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0289910007268190</threshold> - <left_val>-0.0255169998854399</left_val> - <right_val>-0.8338720202445984</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 16 9 6 -1.</_> - <_>15 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0219860002398491</threshold> - <left_val>-0.7373999953269959</left_val> - <right_val>0.1788710057735443</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 18 2 -1.</_> - <_>1 11 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.3269998170435429e-003</threshold> - <left_val>-0.4544929862022400</left_val> - <right_val>0.0687910020351410</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 12 13 -1.</_> - <_>10 4 4 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0860479995608330</threshold> - <left_val>0.2100850045681000</left_val> - <right_val>-0.3780890107154846</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 18 18 3 -1.</_> - <_>0 19 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.5549997165799141e-003</threshold> - <left_val>0.4013499915599823</left_val> - <right_val>-0.2107409983873367</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 18 18 3 -1.</_> - <_>6 19 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7790001630783081e-003</threshold> - <left_val>-0.0216489993035793</left_val> - <right_val>0.4542149901390076</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 9 6 -1.</_> - <_>0 18 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.3959998078644276e-003</threshold> - <left_val>-0.4981859922409058</left_val> - <right_val>0.0759079977869987</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 15 9 6 -1.</_> - <_>13 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9469999074935913e-003</threshold> - <left_val>0.1785770058631897</left_val> - <right_val>-0.2845489978790283</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 15 9 6 -1.</_> - <_>2 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.2589999027550220e-003</threshold> - <left_val>0.0466249994933605</left_val> - <right_val>-0.5520629882812500</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 1 6 16 -1.</_> - <_>13 1 3 16 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0414769984781742</threshold> - <left_val>0.1755049973726273</left_val> - <right_val>-0.2070399969816208</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 1 6 16 -1.</_> - <_>8 1 3 16 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.7449999041855335e-003</threshold> - <left_val>-0.4639259874820709</left_val> - <right_val>0.0693039968609810</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 5 6 10 -1.</_> - <_>13 5 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0305649992078543</threshold> - <left_val>0.0517349988222122</left_val> - <right_val>0.7555050253868103</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 6 10 -1.</_> - <_>9 5 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.4780001305043697e-003</threshold> - <left_val>0.1489389985799789</left_val> - <right_val>-0.3190680146217346</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 6 24 -1.</_> - <_>12 0 2 24 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0890889987349510</threshold> - <left_val>0.1373880058526993</left_val> - <right_val>-1.1379710435867310</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 4 4 20 -1.</_> - <_>3 4 2 10 2.</_> - <_>5 14 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.3230001144111156e-003</threshold> - <left_val>-0.2882919907569885</left_val> - <right_val>0.1908860057592392</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 6 9 -1.</_> - <_>16 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0182050000876188</threshold> - <left_val>-0.3017860054969788</left_val> - <right_val>0.1679580062627792</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 6 9 -1.</_> - <_>6 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0258280001580715</threshold> - <left_val>-0.9813799858093262</left_val> - <right_val>-0.0198609996587038</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 5 18 5 -1.</_> - <_>10 5 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1093619987368584</threshold> - <left_val>0.0487900003790855</left_val> - <right_val>0.5311830043792725</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 6 9 -1.</_> - <_>7 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0114249996840954</threshold> - <left_val>0.2370599955320358</left_val> - <right_val>-0.2792530059814453</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 2 15 8 -1.</_> - <_>12 2 5 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0575659982860088</threshold> - <left_val>0.4725539982318878</left_val> - <right_val>0.0651710033416748</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 2 15 8 -1.</_> - <_>7 2 5 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1027830019593239</threshold> - <left_val>-0.2076510041952133</left_val> - <right_val>0.5094770193099976</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 4 9 -1.</_> - <_>10 0 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0270419996231794</threshold> - <left_val>0.1642120033502579</left_val> - <right_val>-1.4508620500564575</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 4 6 12 -1.</_> - <_>3 4 3 6 2.</_> - <_>6 10 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0136350002139807</threshold> - <left_val>-0.5654389858245850</left_val> - <right_val>0.0237889997661114</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 0 8 18 -1.</_> - <_>16 0 4 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3215819895267487</threshold> - <left_val>-3.5602829456329346</left_val> - <right_val>0.1180130019783974</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 8 18 -1.</_> - <_>4 0 4 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2045810073614121</threshold> - <left_val>-0.0370160005986691</left_val> - <right_val>-1.0225499868392944</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 24 6 -1.</_> - <_>0 9 24 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0703470036387444</threshold> - <left_val>-0.5649189949035645</left_val> - <right_val>0.1852519959211350</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 14 3 -1.</_> - <_>11 7 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0378310009837151</threshold> - <left_val>-0.0299019999802113</left_val> - <right_val>-0.8292149901390076</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 8 8 15 -1.</_> - <_>10 8 4 15 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0702980011701584</threshold> - <left_val>-0.5317230224609375</left_val> - <right_val>0.1443019956350327</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 10 14 -1.</_> - <_>12 0 5 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0632210001349449</threshold> - <left_val>-0.2204120010137558</left_val> - <right_val>0.4795219898223877</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 10 8 10 -1.</_> - <_>17 10 4 5 2.</_> - <_>13 15 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0363930016756058</threshold> - <left_val>0.1422269940376282</left_val> - <right_val>-0.6119390130043030</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 4 9 -1.</_> - <_>5 0 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0099998004734516e-003</threshold> - <left_val>-0.3456079959869385</left_val> - <right_val>0.1173869967460632</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 1 6 8 -1.</_> - <_>16 1 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0491060018539429</threshold> - <left_val>0.9598410129547119</left_val> - <right_val>0.0649349987506866</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 1 6 8 -1.</_> - <_>5 1 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0715830028057098</threshold> - <left_val>1.7385669946670532</left_val> - <right_val>-0.1425289958715439</right_val></_></_> - <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 18 12 -1.</_> - <_>3 10 18 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0380089990794659</threshold> - <left_val>1.3872820138931274</left_val> - <right_val>0.0661880001425743</right_val></_></_> - <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 12 16 4 -1.</_> - <_>4 14 16 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.1570000573992729e-003</threshold> - <left_val>0.0536770001053810</left_val> - <right_val>-0.5404800176620483</right_val></_></_> - <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 9 16 15 -1.</_> - <_>4 14 16 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0194589998573065</threshold> - <left_val>-0.0936200022697449</left_val> - <right_val>0.3913100063800812</right_val></_></_> - <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 8 10 -1.</_> - <_>3 10 4 5 2.</_> - <_>7 15 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0112939998507500</threshold> - <left_val>0.0372239984571934</left_val> - <right_val>-0.5425180196762085</right_val></_></_> - <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 18 16 6 -1.</_> - <_>16 18 8 3 2.</_> - <_>8 21 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0334950014948845</threshold> - <left_val>0.9530789852142334</left_val> - <right_val>0.0376969985663891</right_val></_></_> - <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 16 12 5 -1.</_> - <_>6 16 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0920350030064583</threshold> - <left_val>-0.1348839998245239</left_val> - <right_val>2.2897069454193115</right_val></_></_> - <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 14 9 4 -1.</_> - <_>14 16 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.7529999390244484e-003</threshold> - <left_val>0.2282419949769974</left_val> - <right_val>-0.5998370051383972</right_val></_></_> - <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 14 9 6 -1.</_> - <_>7 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0128480000421405</threshold> - <left_val>-0.2200520038604736</left_val> - <right_val>0.3722189962863922</right_val></_></_> - <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 10 16 12 -1.</_> - <_>4 14 16 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1431619971990585</threshold> - <left_val>1.2855789661407471</left_val> - <right_val>0.0472370013594627</right_val></_></_> - <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 19 6 -1.</_> - <_>0 15 19 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0968799963593483</threshold> - <left_val>-3.9550929069519043</left_val> - <right_val>-0.0729039981961250</right_val></_></_> - <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 13 9 6 -1.</_> - <_>10 15 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.8459998369216919e-003</threshold> - <left_val>0.3767499923706055</left_val> - <right_val>-0.0464840009808540</right_val></_></_> - <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 3 23 -1.</_> - <_>6 0 1 23 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0159000009298325</threshold> - <left_val>-0.0244570001959801</left_val> - <right_val>-0.8003479838371277</right_val></_></_> - <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 24 6 -1.</_> - <_>0 10 24 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0703720003366470</threshold> - <left_val>0.1701900064945221</left_val> - <right_val>-0.6306899785995483</right_val></_></_> - <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 5 12 -1.</_> - <_>0 9 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0379539988934994</threshold> - <left_val>-0.9366719722747803</left_val> - <right_val>-0.0412140004336834</right_val></_></_> - <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 19 18 -1.</_> - <_>3 9 19 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.5159789919853210</threshold> - <left_val>0.1308059990406036</left_val> - <right_val>-1.5802290439605713</right_val></_></_> - <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 11 6 12 -1.</_> - <_>9 11 3 6 2.</_> - <_>12 17 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0328430011868477</threshold> - <left_val>-1.1441620588302612</left_val> - <right_val>-0.0491739995777607</right_val></_></_> - <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 24 8 -1.</_> - <_>12 5 12 4 2.</_> - <_>0 9 12 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0363570004701614</threshold> - <left_val>0.4960640072822571</left_val> - <right_val>-0.0344589985907078</right_val></_></_> - <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 18 9 4 -1.</_> - <_>6 20 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.8080001510679722e-003</threshold> - <left_val>-0.3099780082702637</left_val> - <right_val>0.1705480068922043</right_val></_></_> - <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 8 10 6 -1.</_> - <_>8 10 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0161140002310276</threshold> - <left_val>-0.3790459930896759</left_val> - <right_val>0.1607899963855743</right_val></_></_> - <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 7 20 3 -1.</_> - <_>2 8 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.4530003368854523e-003</threshold> - <left_val>-0.1865549981594086</left_val> - <right_val>0.5636770129203796</right_val></_></_> - <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 7 20 -1.</_> - <_>12 10 7 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1375239938497543</threshold> - <left_val>-0.5898990035057068</left_val> - <right_val>0.1174950003623962</right_val></_></_> - <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 7 20 -1.</_> - <_>5 10 7 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1768800020217896</threshold> - <left_val>-0.1542489975690842</left_val> - <right_val>0.9291110038757324</right_val></_></_> - <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 2 2 18 -1.</_> - <_>14 11 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.9309996217489243e-003</threshold> - <left_val>0.3219070136547089</left_val> - <right_val>-0.1639260053634644</right_val></_></_> - <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 10 12 -1.</_> - <_>10 8 5 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1097180023789406</threshold> - <left_val>-0.1587650030851364</left_val> - <right_val>1.0186259746551514</right_val></_></_> - <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 9 12 8 -1.</_> - <_>12 9 6 4 2.</_> - <_>6 13 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0302930008620024</threshold> - <left_val>0.7558730244636536</left_val> - <right_val>0.0317949987947941</right_val></_></_> - <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 3 14 -1.</_> - <_>7 14 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0231180004775524</threshold> - <left_val>-0.8845149874687195</left_val> - <right_val>-9.5039997249841690e-003</right_val></_></_> - <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 2 12 16 -1.</_> - <_>17 2 6 8 2.</_> - <_>11 10 6 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.0900000128895044e-003</threshold> - <left_val>0.2383829951286316</left_val> - <right_val>-0.1160620003938675</right_val></_></_> - <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 6 9 -1.</_> - <_>9 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0333920009434223</threshold> - <left_val>-1.8738139867782593</left_val> - <right_val>-0.0685029998421669</right_val></_></_> - <_> - <!-- tree 155 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 14 9 4 -1.</_> - <_>13 16 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0131900003179908</threshold> - <left_val>0.1291989982128143</left_val> - <right_val>-0.6751220226287842</right_val></_></_> - <_> - <!-- tree 156 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 22 4 -1.</_> - <_>0 12 11 2 2.</_> - <_>11 14 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0146610001102090</threshold> - <left_val>-0.0248290002346039</left_val> - <right_val>-0.7439680099487305</right_val></_></_> - <_> - <!-- tree 157 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 12 22 6 -1.</_> - <_>12 12 11 3 2.</_> - <_>1 15 11 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0132480002939701</threshold> - <left_val>0.4682019948959351</left_val> - <right_val>-0.0241650007665157</right_val></_></_> - <_> - <!-- tree 158 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 9 6 -1.</_> - <_>9 6 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0162189994007349</threshold> - <left_val>0.4008379876613617</left_val> - <right_val>-0.2125570029020309</right_val></_></_> - <_> - <!-- tree 159 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 4 9 -1.</_> - <_>10 0 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0290520004928112</threshold> - <left_val>-1.5650019645690918</left_val> - <right_val>0.1437589973211289</right_val></_></_> - <_> - <!-- tree 160 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 8 18 7 -1.</_> - <_>9 8 6 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1015319973230362</threshold> - <left_val>-1.9220689535140991</left_val> - <right_val>-0.0695599988102913</right_val></_></_> - <_> - <!-- tree 161 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 24 6 -1.</_> - <_>0 8 24 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0377539992332459</threshold> - <left_val>0.1339679956436157</left_val> - <right_val>-2.2639141082763672</right_val></_></_> - <_> - <!-- tree 162 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 11 24 10 -1.</_> - <_>8 11 8 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2855559885501862</threshold> - <left_val>1.0215270519256592</left_val> - <right_val>-0.1523219943046570</right_val></_></_> - <_> - <!-- tree 163 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 3 18 21 -1.</_> - <_>9 3 6 21 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1536069959402084</threshold> - <left_val>-0.0974090024828911</left_val> - <right_val>0.4166240096092224</right_val></_></_> - <_> - <!-- tree 164 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 12 4 10 -1.</_> - <_>9 12 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.1199999901000410e-004</threshold> - <left_val>0.1127189993858337</left_val> - <right_val>-0.4165399968624115</right_val></_></_> - <_> - <!-- tree 165 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 16 10 8 -1.</_> - <_>15 16 5 4 2.</_> - <_>10 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0205979999154806</threshold> - <left_val>0.6054049730300903</left_val> - <right_val>0.0624679997563362</right_val></_></_> - <_> - <!-- tree 166 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 6 9 -1.</_> - <_>10 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0373539999127388</threshold> - <left_val>-0.1891900002956390</left_val> - <right_val>0.4646469950675964</right_val></_></_> - <_> - <!-- tree 167 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 10 6 12 -1.</_> - <_>15 10 3 6 2.</_> - <_>12 16 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0572750009596348</threshold> - <left_val>0.1156530007719994</left_val> - <right_val>-1.3213009834289551</right_val></_></_> - <_> - <!-- tree 168 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 10 6 12 -1.</_> - <_>6 10 3 6 2.</_> - <_>9 16 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.1029999740421772e-003</threshold> - <left_val>-0.2806150019168854</left_val> - <right_val>0.1931339949369431</right_val></_></_> - <_> - <!-- tree 169 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 12 6 12 -1.</_> - <_>19 12 3 6 2.</_> - <_>16 18 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0546449981629848</threshold> - <left_val>0.7242850065231323</left_val> - <right_val>0.0754479989409447</right_val></_></_> - <_> - <!-- tree 170 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 12 6 12 -1.</_> - <_>2 12 3 6 2.</_> - <_>5 18 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0253490004688501</threshold> - <left_val>-0.1948180049657822</left_val> - <right_val>0.4603280127048492</right_val></_></_> - <_> - <!-- tree 171 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 15 6 9 -1.</_> - <_>12 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0243110004812479</threshold> - <left_val>0.1556410044431686</left_val> - <right_val>-0.4991390109062195</right_val></_></_> - <_> - <!-- tree 172 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 15 6 9 -1.</_> - <_>10 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0359620004892349</threshold> - <left_val>-0.0585730001330376</left_val> - <right_val>-1.5418399572372437</right_val></_></_> - <_> - <!-- tree 173 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 20 10 4 -1.</_> - <_>14 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1000069975852966</threshold> - <left_val>-1.6100039482116699</left_val> - <right_val>0.1145050004124641</right_val></_></_> - <_> - <!-- tree 174 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 20 10 4 -1.</_> - <_>5 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0844359993934631</threshold> - <left_val>-0.0614069998264313</left_val> - <right_val>-1.4673349857330322</right_val></_></_> - <_> - <!-- tree 175 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 17 9 6 -1.</_> - <_>11 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0159479994326830</threshold> - <left_val>0.1628790050745010</left_val> - <right_val>-0.1102640032768250</right_val></_></_> - <_> - <!-- tree 176 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 14 4 -1.</_> - <_>3 4 14 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0338240005075932</threshold> - <left_val>-0.1793269962072372</left_val> - <right_val>0.5721840262413025</right_val></_></_> - <_> - <!-- tree 177 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 1 10 4 -1.</_> - <_>10 3 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0619960017502308</threshold> - <left_val>4.6511812210083008</left_val> - <right_val>0.0945340022444725</right_val></_></_> - <_> - <!-- tree 178 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 10 4 -1.</_> - <_>5 15 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0698769986629486</threshold> - <left_val>-0.1698590070009232</left_val> - <right_val>0.8702899813652039</right_val></_></_> - <_> - <!-- tree 179 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 2 3 19 -1.</_> - <_>20 2 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0279169995337725</threshold> - <left_val>0.9104250073432922</left_val> - <right_val>0.0568270012736321</right_val></_></_> - <_> - <!-- tree 180 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 12 9 8 -1.</_> - <_>7 12 3 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0127640003338456</threshold> - <left_val>0.2206670045852661</left_val> - <right_val>-0.2776910066604614</right_val></_></_></trees> - <stage_threshold>-3.3196411132812500</stage_threshold> - <parent>20</parent> - <next>-1</next></_> - <_> - <!-- stage 22 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 5 12 -1.</_> - <_>4 11 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0216620005667210</threshold> - <left_val>-0.8986889719963074</left_val> - <right_val>0.2943629920482636</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 3 -1.</_> - <_>8 1 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1004450023174286</threshold> - <left_val>-0.3765920102596283</left_val> - <right_val>0.6089100241661072</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 8 12 4 -1.</_> - <_>6 10 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0260039996355772</threshold> - <left_val>-0.3812850117683411</left_val> - <right_val>0.3921740055084229</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 3 4 10 -1.</_> - <_>19 3 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0284410007297993</threshold> - <left_val>-0.1818230003118515</left_val> - <right_val>0.5892720222473145</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 9 6 -1.</_> - <_>3 6 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0386120006442070</threshold> - <left_val>-0.2239959985017777</left_val> - <right_val>0.6377999782562256</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 0 6 22 -1.</_> - <_>20 0 2 22 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0465949997305870</threshold> - <left_val>0.7081220149993897</left_val> - <right_val>-0.1466619968414307</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 6 22 -1.</_> - <_>2 0 2 22 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0427919998764992</threshold> - <left_val>0.4768039882183075</left_val> - <right_val>-0.2923319935798645</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 15 19 3 -1.</_> - <_>5 16 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.7960000336170197e-003</threshold> - <left_val>-0.1851029992103577</left_val> - <right_val>0.5262669920921326</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 7 4 15 -1.</_> - <_>10 12 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0423489995300770</threshold> - <left_val>0.0392449982464314</left_val> - <right_val>-0.8919770121574402</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 9 -1.</_> - <_>11 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0195989999920130</threshold> - <left_val>-0.2335840016603470</left_val> - <right_val>0.4414649903774262</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 21 18 3 -1.</_> - <_>0 22 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.7400001939386129e-004</threshold> - <left_val>-0.4606359899044037</left_val> - <right_val>0.1768960058689117</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 3 10 15 -1.</_> - <_>7 8 10 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.3629999272525311e-003</threshold> - <left_val>0.3349319994449616</left_val> - <right_val>-0.2989340126514435</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 7 18 3 -1.</_> - <_>1 8 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0169730000197887</threshold> - <left_val>-0.1640869975090027</left_val> - <right_val>1.5993679761886597</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 2 9 6 -1.</_> - <_>11 2 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0360639989376068</threshold> - <left_val>0.2260169982910156</left_val> - <right_val>-0.5318610072135925</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 10 24 14 -1.</_> - <_>0 17 24 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0708649978041649</threshold> - <left_val>0.1522050052881241</left_val> - <right_val>-0.4191460013389587</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 9 8 10 -1.</_> - <_>17 9 4 5 2.</_> - <_>13 14 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0630759969353676</threshold> - <left_val>-1.4874019622802734</left_val> - <right_val>0.1295370012521744</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 4 9 -1.</_> - <_>12 5 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0296700000762939</threshold> - <left_val>-0.1914590001106262</left_val> - <right_val>0.9818490147590637</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 9 8 10 -1.</_> - <_>17 9 4 5 2.</_> - <_>13 14 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0378739982843399</threshold> - <left_val>0.1345950067043304</left_val> - <right_val>-0.5631629824638367</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 11 10 10 -1.</_> - <_>7 11 5 5 2.</_> - <_>12 16 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0332890003919601</threshold> - <left_val>-1.0828030109405518</left_val> - <right_val>-0.0115040000528097</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 13 18 4 -1.</_> - <_>13 13 9 2 2.</_> - <_>4 15 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0316089987754822</threshold> - <left_val>-0.5922449827194214</left_val> - <right_val>0.1339479982852936</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 19 2 -1.</_> - <_>0 1 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0740000288933516e-003</threshold> - <left_val>-0.4918580055236816</left_val> - <right_val>0.0944460034370422</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 18 24 6 -1.</_> - <_>8 18 8 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0715560019016266</threshold> - <left_val>0.5971019864082336</left_val> - <right_val>-0.0395530015230179</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 8 16 -1.</_> - <_>6 12 8 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0811700001358986</threshold> - <left_val>-1.1817820072174072</left_val> - <right_val>-0.0282540004700422</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 10 4 -1.</_> - <_>7 10 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.4860001653432846e-003</threshold> - <left_val>-0.6102809906005859</left_val> - <right_val>0.2261909991502762</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 6 9 -1.</_> - <_>0 6 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0421760007739067</threshold> - <left_val>-1.1435619592666626</left_val> - <right_val>-0.0290019996464252</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 15 7 9 -1.</_> - <_>13 18 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0656400024890900</threshold> - <left_val>-1.6470279693603516</left_val> - <right_val>0.1281030029058456</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 18 12 6 -1.</_> - <_>3 18 6 3 2.</_> - <_>9 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0181889999657869</threshold> - <left_val>-0.3114939928054810</left_val> - <right_val>0.2573960125446320</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 14 6 9 -1.</_> - <_>12 17 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0515200011432171</threshold> - <left_val>-0.6920689940452576</left_val> - <right_val>0.1527079939842224</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 15 15 8 -1.</_> - <_>2 19 15 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0471509993076324</threshold> - <left_val>-0.7186830043792725</left_val> - <right_val>2.6879999786615372e-003</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 16 -1.</_> - <_>9 14 6 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0174889992922544</threshold> - <left_val>0.2237119972705841</left_val> - <right_val>-0.5538179874420166</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 7 12 -1.</_> - <_>6 10 7 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0252640005201101</threshold> - <left_val>1.0319819450378418</left_val> - <right_val>-0.1749649941921234</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 6 6 9 -1.</_> - <_>14 9 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0407450012862682</threshold> - <left_val>0.4496159851551056</left_val> - <right_val>0.0393490009009838</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 14 6 9 -1.</_> - <_>5 17 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0376669988036156</threshold> - <left_val>-0.8547570109367371</left_val> - <right_val>-0.0124639999121428</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 8 6 9 -1.</_> - <_>12 8 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0134110003709793</threshold> - <left_val>0.5784559845924377</left_val> - <right_val>-0.0174679998308420</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 4 18 -1.</_> - <_>6 6 2 9 2.</_> - <_>8 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.8999997640494257e-005</threshold> - <left_val>-0.3774920105934143</left_val> - <right_val>0.1396179944276810</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 9 6 12 -1.</_> - <_>17 9 3 6 2.</_> - <_>14 15 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0114150000736117</threshold> - <left_val>-0.2618660032749176</left_val> - <right_val>0.2371249943971634</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 9 6 12 -1.</_> - <_>4 9 3 6 2.</_> - <_>7 15 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0372000001370907</threshold> - <left_val>-0.0286260005086660</left_val> - <right_val>-1.2945239543914795</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 15 9 6 -1.</_> - <_>14 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.4050000831484795e-003</threshold> - <left_val>0.2053139954805374</left_val> - <right_val>-0.1874749958515167</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 20 18 4 -1.</_> - <_>0 20 9 2 2.</_> - <_>9 22 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0224830005317926</threshold> - <left_val>0.6702719926834106</left_val> - <right_val>-0.1959400027990341</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 18 9 6 -1.</_> - <_>13 20 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0232749991118908</threshold> - <left_val>0.1740539968013763</left_val> - <right_val>-0.3274630010128021</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 18 9 6 -1.</_> - <_>2 20 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0139170000329614</threshold> - <left_val>-0.8395429849624634</left_val> - <right_val>-6.3760001212358475e-003</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 16 18 3 -1.</_> - <_>6 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.5429999269545078e-003</threshold> - <left_val>-0.0341949984431267</left_val> - <right_val>0.5899819731712341</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 18 3 -1.</_> - <_>0 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0115390000864863</threshold> - <left_val>0.4214279949665070</left_val> - <right_val>-0.2351049929857254</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 2 4 22 -1.</_> - <_>21 2 2 11 2.</_> - <_>19 13 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0525019988417625</threshold> - <left_val>0.0693039968609810</left_val> - <right_val>0.7322649955749512</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 2 4 22 -1.</_> - <_>1 2 2 11 2.</_> - <_>3 13 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0527159981429577</threshold> - <left_val>-0.1568810045719147</left_val> - <right_val>1.0907289981842041</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 2 24 -1.</_> - <_>15 0 1 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0117260003462434</threshold> - <left_val>-0.7093430161476135</left_val> - <right_val>0.1682880073785782</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 20 16 4 -1.</_> - <_>11 20 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0959459990262985</threshold> - <left_val>-0.1619289964437485</left_val> - <right_val>1.0072519779205322</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 4 18 -1.</_> - <_>13 6 2 9 2.</_> - <_>11 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0158719997853041</threshold> - <left_val>0.3900839984416962</left_val> - <right_val>-0.0537770017981529</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 9 10 14 -1.</_> - <_>7 9 5 7 2.</_> - <_>12 16 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0348180010914803</threshold> - <left_val>0.0171799995005131</left_val> - <right_val>-0.9394180178642273</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 6 6 9 -1.</_> - <_>14 9 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0347919985651970</threshold> - <left_val>0.0504629984498024</left_val> - <right_val>0.5446569919586182</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 7 9 -1.</_> - <_>3 9 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0162840001285076</threshold> - <left_val>-0.2698130011558533</left_val> - <right_val>0.4036529958248138</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 4 4 20 -1.</_> - <_>22 4 2 10 2.</_> - <_>20 14 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0443190000951290</threshold> - <left_val>0.8439999818801880</left_val> - <right_val>0.0328829996287823</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 6 9 -1.</_> - <_>7 9 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.5689997971057892e-003</threshold> - <left_val>0.1530939936637878</left_val> - <right_val>-0.3495979905128479</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 10 14 -1.</_> - <_>12 0 5 7 2.</_> - <_>7 7 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0658420026302338</threshold> - <left_val>-0.9271119832992554</left_val> - <right_val>0.1680099964141846</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 1 18 6 -1.</_> - <_>11 1 9 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0733370035886765</threshold> - <left_val>0.5161449909210205</left_val> - <right_val>-0.2023600041866303</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 2 24 -1.</_> - <_>15 0 1 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0164500009268522</threshold> - <left_val>0.1395059973001480</left_val> - <right_val>-0.4930129945278168</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 2 24 -1.</_> - <_>8 0 1 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.2630004510283470e-003</threshold> - <left_val>-0.9010199904441834</left_val> - <right_val>-0.0161160007119179</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 12 6 7 -1.</_> - <_>13 12 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.9139998629689217e-003</threshold> - <left_val>0.1985819935798645</left_val> - <right_val>-0.1673129945993424</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 12 6 7 -1.</_> - <_>8 12 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.4699998842552304e-004</threshold> - <left_val>0.0940050035715103</left_val> - <right_val>-0.4157089889049530</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 5 18 19 -1.</_> - <_>9 5 6 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2053290009498596</threshold> - <left_val>-0.0600220002233982</left_val> - <right_val>0.7099360227584839</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 9 6 -1.</_> - <_>8 6 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0168830007314682</threshold> - <left_val>0.2439219951629639</left_val> - <right_val>-0.3055180013179779</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 9 6 -1.</_> - <_>12 5 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0191110000014305</threshold> - <left_val>0.6122990250587463</left_val> - <right_val>0.0242529995739460</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 16 10 8 -1.</_> - <_>3 16 5 4 2.</_> - <_>8 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0259629990905523</threshold> - <left_val>0.9076499938964844</left_val> - <right_val>-0.1672209948301315</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 8 5 15 -1.</_> - <_>19 13 5 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0217620003968477</threshold> - <left_val>-0.3138470053672791</left_val> - <right_val>0.2013459950685501</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 5 15 -1.</_> - <_>0 13 5 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0241199992597103</threshold> - <left_val>-0.6658840179443359</left_val> - <right_val>7.4559999629855156e-003</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 4 4 20 -1.</_> - <_>22 4 2 10 2.</_> - <_>20 14 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0471299998462200</threshold> - <left_val>0.0595339983701706</left_val> - <right_val>0.8780450224876404</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 4 20 -1.</_> - <_>0 4 2 10 2.</_> - <_>2 14 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0459849983453751</threshold> - <left_val>0.8006799817085266</left_val> - <right_val>-0.1725230067968369</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 10 4 -1.</_> - <_>7 7 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0265079997479916</threshold> - <left_val>0.1877409964799881</left_val> - <right_val>-0.6085060238838196</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 19 14 4 -1.</_> - <_>11 19 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0486150011420250</threshold> - <left_val>0.5864409804344177</left_val> - <right_val>-0.1942770034074783</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 11 12 3 -1.</_> - <_>10 11 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0185620002448559</threshold> - <left_val>-0.2558790147304535</left_val> - <right_val>0.1632619947195053</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 3 -1.</_> - <_>0 2 24 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0126780001446605</threshold> - <left_val>-0.0142280003055930</left_val> - <right_val>-0.7673810124397278</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 2 14 20 -1.</_> - <_>14 2 7 10 2.</_> - <_>7 12 7 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1919999960809946e-003</threshold> - <left_val>0.2049500048160553</left_val> - <right_val>-0.1140429973602295</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 6 9 -1.</_> - <_>2 13 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0490889996290207</threshold> - <left_val>-1.0740849971771240</left_val> - <right_val>-0.0389409996569157</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 4 19 -1.</_> - <_>13 0 2 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0174369998276234</threshold> - <left_val>-0.5797380208969116</left_val> - <right_val>0.1858450025320053</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 11 14 3 -1.</_> - <_>8 11 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0147700002416968</threshold> - <left_val>-0.6615030169487000</left_val> - <right_val>5.3119999356567860e-003</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 1 16 20 -1.</_> - <_>15 1 8 10 2.</_> - <_>7 11 8 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2290520071983337</threshold> - <left_val>-0.4830510020256043</left_val> - <right_val>0.1232639998197556</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 10 21 9 -1.</_> - <_>7 10 7 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1270709931850433</threshold> - <left_val>0.5745260119438171</left_val> - <right_val>-0.1942040026187897</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 19 15 5 -1.</_> - <_>11 19 5 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0103390002623200</threshold> - <left_val>-0.0546419993042946</left_val> - <right_val>0.2450180053710938</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 10 6 6 -1.</_> - <_>11 10 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.9010001607239246e-003</threshold> - <left_val>0.1218060031533241</left_val> - <right_val>-0.3879739940166473</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 1 16 20 -1.</_> - <_>15 1 8 10 2.</_> - <_>7 11 8 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2902539968490601</threshold> - <left_val>0.1096619963645935</left_val> - <right_val>-30.</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 16 20 -1.</_> - <_>1 1 8 10 2.</_> - <_>9 11 8 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2380499988794327</threshold> - <left_val>-1.7352679967880249</left_val> - <right_val>-0.0638099983334541</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 4 3 12 -1.</_> - <_>16 10 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0624810010194778</threshold> - <left_val>0.1352300047874451</left_val> - <right_val>-0.7030109763145447</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 3 12 -1.</_> - <_>5 10 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.7109997831285000e-003</threshold> - <left_val>-0.4698410034179688</left_val> - <right_val>0.0603419989347458</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 10 8 -1.</_> - <_>12 6 5 4 2.</_> - <_>7 10 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0278159994632006</threshold> - <left_val>0.6980760097503662</left_val> - <right_val>1.3719999697059393e-003</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 9 6 6 -1.</_> - <_>4 12 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0170200001448393</threshold> - <left_val>1.6870440244674683</left_val> - <right_val>-0.1431480050086975</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 12 4 -1.</_> - <_>6 7 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0497549995779991</threshold> - <left_val>0.7949770092964172</left_val> - <right_val>7.7199999941512942e-004</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 2 5 15 -1.</_> - <_>9 7 5 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0747329965233803</threshold> - <left_val>-1.0132360458374023</left_val> - <right_val>-0.0193889997899532</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 9 6 -1.</_> - <_>15 2 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0320090018212795</threshold> - <left_val>0.1441210061311722</left_val> - <right_val>-0.4213910102844238</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 11 10 -1.</_> - <_>6 5 11 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0944639965891838</threshold> - <left_val>0.5068259835243225</left_val> - <right_val>-0.2047889977693558</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 7 4 12 -1.</_> - <_>12 13 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0154269998893142</threshold> - <left_val>-0.1581130027770996</left_val> - <right_val>0.1780689954757690</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 2 9 4 -1.</_> - <_>7 4 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.0540001355111599e-003</threshold> - <left_val>-0.5436670184135437</left_val> - <right_val>0.0312350001186132</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 13 6 -1.</_> - <_>6 2 13 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.0080000869929790e-003</threshold> - <left_val>-0.1737679988145828</left_val> - <right_val>0.3044170141220093</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 18 -1.</_> - <_>10 6 2 9 2.</_> - <_>12 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0100919995456934</threshold> - <left_val>0.2510380148887634</left_val> - <right_val>-0.2622410058975220</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 8 6 9 -1.</_> - <_>12 8 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0388180017471313</threshold> - <left_val>0.9322670102119446</left_val> - <right_val>0.0726599991321564</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 18 10 6 -1.</_> - <_>3 20 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0346519984304905</threshold> - <left_val>-0.0339349992573261</left_val> - <right_val>-0.8570790290832520</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 14 20 3 -1.</_> - <_>4 15 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.6729999594390392e-003</threshold> - <left_val>0.3496930003166199</left_val> - <right_val>-0.0485179983079433</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 15 9 6 -1.</_> - <_>2 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.8499997723847628e-004</threshold> - <left_val>0.0665730014443398</left_val> - <right_val>-0.4497379958629608</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 4 19 -1.</_> - <_>13 0 2 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0353170000016689</threshold> - <left_val>0.1427579969167709</left_val> - <right_val>-0.4672639966011047</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 4 19 -1.</_> - <_>9 0 2 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0235699992626905</threshold> - <left_val>-1.0286079645156860</left_val> - <right_val>-0.0452880002558231</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 4 22 2 -1.</_> - <_>1 5 22 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.9109999993816018e-003</threshold> - <left_val>-0.1965219974517822</left_val> - <right_val>0.2866100072860718</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 9 6 -1.</_> - <_>0 2 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0166590008884668</threshold> - <left_val>-0.7753220200538635</left_val> - <right_val>-8.3280000835657120e-003</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 24 18 -1.</_> - <_>0 9 24 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.6606220006942749</threshold> - <left_val>0.1323249936103821</left_val> - <right_val>-3.5266680717468262</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 16 8 -1.</_> - <_>3 6 16 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1097059994935989</threshold> - <left_val>-0.1554719954729080</left_val> - <right_val>1.4674140214920044</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 6 18 6 -1.</_> - <_>3 8 18 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0135009996592999</threshold> - <left_val>0.1523340046405792</left_val> - <right_val>-1.3020930290222168</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 1 6 10 -1.</_> - <_>5 1 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0228719990700483</threshold> - <left_val>-0.7132599949836731</left_val> - <right_val>-8.7040001526474953e-003</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 9 6 -1.</_> - <_>16 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0818210020661354</threshold> - <left_val>1.1127580404281616</left_val> - <right_val>0.0832199975848198</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 9 6 -1.</_> - <_>5 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0527280010282993</threshold> - <left_val>0.9316509962081909</left_val> - <right_val>-0.1710399985313416</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 4 15 -1.</_> - <_>10 7 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0252420008182526</threshold> - <left_val>-0.1973379999399185</left_val> - <right_val>0.2535940110683441</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 7 10 -1.</_> - <_>6 5 7 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0438189990818501</threshold> - <left_val>0.4181520044803619</left_val> - <right_val>-0.2458550035953522</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 2 20 4 -1.</_> - <_>12 2 10 2 2.</_> - <_>2 4 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0181889999657869</threshold> - <left_val>-0.5174319744110107</left_val> - <right_val>0.2017419934272766</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 11 19 3 -1.</_> - <_>2 12 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0234660003334284</threshold> - <left_val>-0.0430710017681122</left_val> - <right_val>-1.0636579990386963</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 8 6 9 -1.</_> - <_>12 8 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0342160016298294</threshold> - <left_val>0.0537809990346432</left_val> - <right_val>0.4970720112323761</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 8 6 9 -1.</_> - <_>10 8 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0256929993629456</threshold> - <left_val>-0.2380010038614273</left_val> - <right_val>0.4165149927139282</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 8 4 9 -1.</_> - <_>13 8 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0265650004148483</threshold> - <left_val>-0.8857480287551880</left_val> - <right_val>0.1336590051651001</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 11 9 9 -1.</_> - <_>6 11 3 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0609420016407967</threshold> - <left_val>-0.2066970020532608</left_val> - <right_val>0.5830900073051453</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 9 18 5 -1.</_> - <_>9 9 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1447450071573257</threshold> - <left_val>0.1328230053186417</left_val> - <right_val>-3.1449348926544189</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 4 2 20 -1.</_> - <_>2 14 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0534109994769096</threshold> - <left_val>-0.1732520014047623</left_val> - <right_val>0.6919069886207581</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 17 8 6 -1.</_> - <_>14 20 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0114080002531409</threshold> - <left_val>0.0548220016062260</left_val> - <right_val>0.3024039864540100</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 21 18 2 -1.</_> - <_>3 22 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.3179999552667141e-003</threshold> - <left_val>0.1582089960575104</left_val> - <right_val>-0.3197320103645325</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 15 6 -1.</_> - <_>10 4 5 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0296950004994869</threshold> - <left_val>0.7127479910850525</left_val> - <right_val>0.0581360012292862</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 15 12 6 -1.</_> - <_>2 17 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0272499993443489</threshold> - <left_val>-0.1575410068035126</left_val> - <right_val>0.9214379787445068</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 8 6 9 -1.</_> - <_>17 11 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.6200000904500484e-003</threshold> - <left_val>-0.3454839885234833</left_val> - <right_val>0.2022099941968918</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 12 20 4 -1.</_> - <_>2 12 10 2 2.</_> - <_>12 14 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0125789996236563</threshold> - <left_val>-0.5565029978752136</left_val> - <right_val>0.0203889999538660</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 24 6 -1.</_> - <_>0 19 24 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0888490006327629</threshold> - <left_val>-3.6100010871887207</left_val> - <right_val>0.1316419988870621</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 16 9 4 -1.</_> - <_>7 18 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0192569997161627</threshold> - <left_val>0.5190899968147278</left_val> - <right_val>-0.1928430050611496</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 1 4 22 -1.</_> - <_>17 1 2 11 2.</_> - <_>15 12 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0166669990867376</threshold> - <left_val>-0.0874999985098839</left_val> - <right_val>0.1581249982118607</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 1 4 22 -1.</_> - <_>5 1 2 11 2.</_> - <_>7 12 2 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0129319997504354</threshold> - <left_val>0.0274059996008873</left_val> - <right_val>-0.5512390136718750</right_val></_></_> - <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 13 8 9 -1.</_> - <_>11 16 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0134319998323917</threshold> - <left_val>0.2345779985189438</left_val> - <right_val>-0.0432350002229214</right_val></_></_> - <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 1 6 9 -1.</_> - <_>8 1 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0188100002706051</threshold> - <left_val>-0.0396809987723827</left_val> - <right_val>-0.9437329769134522</right_val></_></_> - <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 4 3 18 -1.</_> - <_>11 10 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.4349998719990253e-003</threshold> - <left_val>0.4570370018482208</left_val> - <right_val>-4.0520001202821732e-003</right_val></_></_> - <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 12 6 -1.</_> - <_>5 8 6 3 2.</_> - <_>11 11 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0242490004748106</threshold> - <left_val>-0.7624800205230713</left_val> - <right_val>-0.0198570005595684</right_val></_></_> - <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 7 5 8 -1.</_> - <_>15 11 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0296679995954037</threshold> - <left_val>-3.7412509918212891</left_val> - <right_val>0.1125060021877289</right_val></_></_> - <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 5 8 -1.</_> - <_>4 11 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.1150000654160976e-003</threshold> - <left_val>-0.6378179788589478</left_val> - <right_val>0.0112239997833967</right_val></_></_> - <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 6 6 12 -1.</_> - <_>15 6 3 6 2.</_> - <_>12 12 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.7819997891783714e-003</threshold> - <left_val>0.1937440037727356</left_val> - <right_val>-0.0820420011878014</right_val></_></_> - <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 6 12 -1.</_> - <_>6 6 3 6 2.</_> - <_>9 12 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0166069995611906</threshold> - <left_val>-0.1619209945201874</left_val> - <right_val>1.1334990262985229</right_val></_></_> - <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 9 14 8 -1.</_> - <_>12 9 7 4 2.</_> - <_>5 13 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0382280014455318</threshold> - <left_val>0.0211050007492304</left_val> - <right_val>0.7626420259475708</right_val></_></_> - <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 3 14 -1.</_> - <_>9 8 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0570940002799034</threshold> - <left_val>-1.6974929571151733</left_val> - <right_val>-0.0597620010375977</right_val></_></_> - <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 6 6 12 -1.</_> - <_>12 10 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0538830012083054</threshold> - <left_val>1.1850190162658691</left_val> - <right_val>0.0909669995307922</right_val></_></_> - <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 5 4 18 -1.</_> - <_>4 5 2 9 2.</_> - <_>6 14 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.6110000908374786e-003</threshold> - <left_val>-0.4094119966030121</left_val> - <right_val>0.0838209986686707</right_val></_></_> - <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 16 18 -1.</_> - <_>4 12 16 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2971439957618713</threshold> - <left_val>0.1552989929914475</left_val> - <right_val>-1.0995409488677979</right_val></_></_> - <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 7 20 -1.</_> - <_>5 14 7 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0890630036592484</threshold> - <left_val>0.4894720017910004</left_val> - <right_val>-0.2004120051860809</right_val></_></_> - <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 8 8 12 -1.</_> - <_>14 14 8 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0561930015683174</threshold> - <left_val>-0.2458139955997467</left_val> - <right_val>0.1436550021171570</right_val></_></_> - <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 10 6 14 -1.</_> - <_>9 10 3 7 2.</_> - <_>12 17 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0370049998164177</threshold> - <left_val>-0.0481689982116222</left_val> - <right_val>-1.2310709953308105</right_val></_></_> - <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 9 6 -1.</_> - <_>12 5 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.4840003401041031e-003</threshold> - <left_val>0.4337260127067566</left_val> - <right_val>0.0137799996882677</right_val></_></_> - <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 4 3 18 -1.</_> - <_>10 4 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.4379999376833439e-003</threshold> - <left_val>0.1894969940185547</left_val> - <right_val>-0.3229419887065888</right_val></_></_> - <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 4 22 14 -1.</_> - <_>12 4 11 7 2.</_> - <_>1 11 11 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0716399997472763</threshold> - <left_val>-0.4397900104522705</left_val> - <right_val>0.2273019999265671</right_val></_></_> - <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 7 18 2 -1.</_> - <_>2 8 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.2260002121329308e-003</threshold> - <left_val>-0.2054840028285980</left_val> - <right_val>0.5093330144882202</right_val></_></_> - <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 6 6 12 -1.</_> - <_>12 10 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.1360001564025879e-003</threshold> - <left_val>0.3115719854831696</left_val> - <right_val>0.0706809982657433</right_val></_></_> - <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 9 7 -1.</_> - <_>9 5 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0155950002372265</threshold> - <left_val>-0.3093479871749878</left_val> - <right_val>0.1562770009040833</right_val></_></_> - <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 7 4 12 -1.</_> - <_>12 13 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0259959995746613</threshold> - <left_val>0.1382160037755966</left_val> - <right_val>-0.1761659979820252</right_val></_></_> - <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 4 12 -1.</_> - <_>8 13 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0120850000530481</threshold> - <left_val>-0.5107020139694214</left_val> - <right_val>0.0584409981966019</right_val></_></_> - <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 2 10 22 -1.</_> - <_>7 13 10 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0678360015153885</threshold> - <left_val>0.4775710105895996</left_val> - <right_val>-0.0714460015296936</right_val></_></_> - <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 3 20 -1.</_> - <_>1 1 1 20 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0147150000557303</threshold> - <left_val>0.4523890018463135</left_val> - <right_val>-0.1986140012741089</right_val></_></_> - <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 13 18 4 -1.</_> - <_>13 13 9 2 2.</_> - <_>4 15 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0251189991831779</threshold> - <left_val>0.1295489966869354</left_val> - <right_val>-0.8626639842987061</right_val></_></_> - <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 13 18 4 -1.</_> - <_>2 13 9 2 2.</_> - <_>11 15 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0188260003924370</threshold> - <left_val>-0.0415700003504753</left_val> - <right_val>-1.1354700326919556</right_val></_></_> - <_> - <!-- tree 155 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 15 9 6 -1.</_> - <_>15 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0212639998644590</threshold> - <left_val>-0.3473800122737885</left_val> - <right_val>0.1577949970960617</right_val></_></_> - <_> - <!-- tree 156 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 9 6 -1.</_> - <_>0 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.4609996303915977e-003</threshold> - <left_val>4.8639997839927673e-003</left_val> - <right_val>-0.6165480017662048</right_val></_></_> - <_> - <!-- tree 157 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 18 24 -1.</_> - <_>15 0 9 12 2.</_> - <_>6 12 9 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2295770049095154</threshold> - <left_val>0.0813729986548424</left_val> - <right_val>0.6984140276908875</right_val></_></_> - <_> - <!-- tree 158 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 6 12 -1.</_> - <_>6 10 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0380619987845421</threshold> - <left_val>1.1616369485855103</left_val> - <right_val>-0.1497669965028763</right_val></_></_> - <_> - <!-- tree 159 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 10 4 -1.</_> - <_>8 9 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0134849995374680</threshold> - <left_val>-0.3203639984130859</left_val> - <right_val>0.1736509948968887</right_val></_></_> - <_> - <!-- tree 160 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 9 18 6 -1.</_> - <_>1 9 9 3 2.</_> - <_>10 12 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0362389981746674</threshold> - <left_val>-0.1815849989652634</left_val> - <right_val>0.6195669770240784</right_val></_></_> - <_> - <!-- tree 161 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 18 3 -1.</_> - <_>6 7 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7210001870989799e-003</threshold> - <left_val>7.9600000753998756e-004</left_val> - <right_val>0.4244140088558197</right_val></_></_> - <_> - <!-- tree 162 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 9 8 -1.</_> - <_>10 7 3 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0965259969234467</threshold> - <left_val>-0.1469680070877075</left_val> - <right_val>1.2525680065155029</right_val></_></_> - <_> - <!-- tree 163 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 12 6 12 -1.</_> - <_>12 12 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0356569997966290</threshold> - <left_val>-0.3978169858455658</left_val> - <right_val>0.1419139951467514</right_val></_></_> - <_> - <!-- tree 164 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 14 18 3 -1.</_> - <_>3 15 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0107720000669360</threshold> - <left_val>-0.1819400042295456</left_val> - <right_val>0.5976219773292542</right_val></_></_> - <_> - <!-- tree 165 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 17 9 7 -1.</_> - <_>18 17 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0792799964547157</threshold> - <left_val>0.1464249938726425</left_val> - <right_val>-0.7883689999580383</right_val></_></_> - <_> - <!-- tree 166 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 12 10 6 -1.</_> - <_>1 14 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0328410007059574</threshold> - <left_val>-0.0624080002307892</left_val> - <right_val>-1.4227490425109863</right_val></_></_> - <_> - <!-- tree 167 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 17 9 7 -1.</_> - <_>18 17 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0277810003608465</threshold> - <left_val>0.3403309881687164</left_val> - <right_val>0.0306700002402067</right_val></_></_> - <_> - <!-- tree 168 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 3 3 19 -1.</_> - <_>11 3 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.0339999832212925e-003</threshold> - <left_val>0.3108470141887665</left_val> - <right_val>-0.2259570062160492</right_val></_></_> - <_> - <!-- tree 169 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 17 9 7 -1.</_> - <_>18 17 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.4260002002120018e-003</threshold> - <left_val>-0.0389369986951351</left_val> - <right_val>0.3170210123062134</right_val></_></_> - <_> - <!-- tree 170 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 1 11 9 -1.</_> - <_>6 4 11 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1121399998664856</threshold> - <left_val>-0.1757829934358597</left_val> - <right_val>0.6505659818649292</right_val></_></_> - <_> - <!-- tree 171 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 17 9 7 -1.</_> - <_>18 17 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1187810003757477</threshold> - <left_val>-1.0092990398406982</left_val> - <right_val>0.1106970012187958</right_val></_></_> - <_> - <!-- tree 172 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 11 6 -1.</_> - <_>6 8 11 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0415849983692169</threshold> - <left_val>-0.5380640029907227</left_val> - <right_val>0.0199050009250641</right_val></_></_> - <_> - <!-- tree 173 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 7 8 5 -1.</_> - <_>16 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0279660001397133</threshold> - <left_val>0.4814319908618927</left_val> - <right_val>0.0335909985005856</right_val></_></_> - <_> - <!-- tree 174 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 4 20 19 -1.</_> - <_>12 4 10 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1250640004873276</threshold> - <left_val>0.2635219991207123</left_val> - <right_val>-0.2573789954185486</right_val></_></_> - <_> - <!-- tree 175 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 1 21 6 -1.</_> - <_>9 1 7 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2366690039634705</threshold> - <left_val>0.0365080013871193</left_val> - <right_val>0.9065560102462769</right_val></_></_> - <_> - <!-- tree 176 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 12 14 -1.</_> - <_>6 5 6 7 2.</_> - <_>12 12 6 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0294759999960661</threshold> - <left_val>-0.6004880070686340</left_val> - <right_val>9.5880003646016121e-003</right_val></_></_> - <_> - <!-- tree 177 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 6 9 -1.</_> - <_>11 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0377929992973804</threshold> - <left_val>0.1550620049238205</left_val> - <right_val>-0.9573349952697754</right_val></_></_> - <_> - <!-- tree 178 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 11 8 5 -1.</_> - <_>6 11 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0720440000295639</threshold> - <left_val>-0.1452589929103851</left_val> - <right_val>1.3676730394363403</right_val></_></_> - <_> - <!-- tree 179 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 7 8 5 -1.</_> - <_>16 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.7759999334812164e-003</threshold> - <left_val>0.0129159996286035</left_val> - <right_val>0.2164089977741242</right_val></_></_> - <_> - <!-- tree 180 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 8 5 -1.</_> - <_>4 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0521540008485317</threshold> - <left_val>-0.0163599997758865</left_val> - <right_val>-0.8835629820823669</right_val></_></_> - <_> - <!-- tree 181 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 17 9 7 -1.</_> - <_>18 17 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0437909997999668</threshold> - <left_val>0.3582960069179535</left_val> - <right_val>0.0651310011744499</right_val></_></_> - <_> - <!-- tree 182 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 8 10 -1.</_> - <_>8 6 4 5 2.</_> - <_>12 11 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0383789986371994</threshold> - <left_val>1.1961040496826172</left_val> - <right_val>-0.1497150063514710</right_val></_></_> - <_> - <!-- tree 183 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 15 9 9 -1.</_> - <_>18 15 3 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0988389998674393</threshold> - <left_val>-0.6183400154113770</left_val> - <right_val>0.1278620064258575</right_val></_></_> - <_> - <!-- tree 184 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 9 9 -1.</_> - <_>3 15 3 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1219070032238960</threshold> - <left_val>-1.8276120424270630</left_val> - <right_val>-0.0648629963397980</right_val></_></_> - <_> - <!-- tree 185 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 10 9 7 -1.</_> - <_>15 10 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1198170036077499</threshold> - <left_val>-30.</left_val> - <right_val>0.1132330000400543</right_val></_></_> - <_> - <!-- tree 186 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 9 7 -1.</_> - <_>6 10 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0309100002050400</threshold> - <left_val>-0.2393400073051453</left_val> - <right_val>0.3633289933204651</right_val></_></_> - <_> - <!-- tree 187 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 15 10 8 -1.</_> - <_>18 15 5 4 2.</_> - <_>13 19 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0108009995892644</threshold> - <left_val>-0.0351400002837181</left_val> - <right_val>0.2770789861679077</right_val></_></_> - <_> - <!-- tree 188 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 6 12 -1.</_> - <_>0 1 3 6 2.</_> - <_>3 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0568449981510639</threshold> - <left_val>-0.1552429944276810</left_val> - <right_val>1.0802700519561768</right_val></_></_> - <_> - <!-- tree 189 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 6 12 -1.</_> - <_>13 0 3 6 2.</_> - <_>10 6 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0280000278726220e-003</threshold> - <left_val>-0.0612029992043972</left_val> - <right_val>0.2050800025463104</right_val></_></_> - <_> - <!-- tree 190 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 10 12 -1.</_> - <_>7 0 5 6 2.</_> - <_>12 6 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0282739996910095</threshold> - <left_val>-0.6477800011634827</left_val> - <right_val>0.0239170007407665</right_val></_></_> - <_> - <!-- tree 191 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 1 16 8 -1.</_> - <_>4 1 8 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1601359993219376</threshold> - <left_val>1.0892050266265869</left_val> - <right_val>0.0583890005946159</right_val></_></_> - <_> - <!-- tree 192 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 21 19 3 -1.</_> - <_>0 22 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.9629998393356800e-003</threshold> - <left_val>-0.2580629885196686</left_val> - <right_val>0.2083459943532944</right_val></_></_> - <_> - <!-- tree 193 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 9 18 4 -1.</_> - <_>15 9 9 2 2.</_> - <_>6 11 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0469370000064373</threshold> - <left_val>0.1388629972934723</left_val> - <right_val>-1.5662620067596436</right_val></_></_> - <_> - <!-- tree 194 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 4 9 6 -1.</_> - <_>3 6 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0242860000580549</threshold> - <left_val>-0.2072830051183701</left_val> - <right_val>0.5243099927902222</right_val></_></_> - <_> - <!-- tree 195 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 6 15 -1.</_> - <_>9 6 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0702020004391670</threshold> - <left_val>0.1479689925909042</left_val> - <right_val>-1.3095090389251709</right_val></_></_> - <_> - <!-- tree 196 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 9 6 6 -1.</_> - <_>8 9 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.8120002076029778e-003</threshold> - <left_val>0.0279060006141663</left_val> - <right_val>-0.5086460113525391</right_val></_></_> - <_> - <!-- tree 197 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 1 14 9 -1.</_> - <_>5 4 14 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0562009997665882</threshold> - <left_val>1.2618130445480347</left_val> - <right_val>0.0638019964098930</right_val></_></_> - <_> - <!-- tree 198 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 8 20 -1.</_> - <_>3 0 4 10 2.</_> - <_>7 10 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1098280027508736</threshold> - <left_val>-0.1285009980201721</left_val> - <right_val>3.0776169300079346</right_val></_></_></trees> - <stage_threshold>-3.2573320865631104</stage_threshold> - <parent>21</parent> - <next>-1</next></_> - <_> - <!-- stage 23 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 7 9 -1.</_> - <_>5 3 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0209100004285574</threshold> - <left_val>-0.6855940222740173</left_val> - <right_val>0.3898429870605469</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 12 5 -1.</_> - <_>10 6 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0350320003926754</threshold> - <left_val>-0.4772439897060394</left_val> - <right_val>0.4502719938755035</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 8 14 -1.</_> - <_>4 1 4 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0397990010678768</threshold> - <left_val>-0.4701110124588013</left_val> - <right_val>0.4270249903202057</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 12 22 4 -1.</_> - <_>2 14 22 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.8409998416900635e-003</threshold> - <left_val>0.2561430037021637</left_val> - <right_val>-0.6655629873275757</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 17 6 6 -1.</_> - <_>8 20 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.3439999204128981e-003</threshold> - <left_val>-0.4808349907398224</left_val> - <right_val>0.2801379859447479</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 1 6 7 -1.</_> - <_>18 1 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0253129992634058</threshold> - <left_val>-0.2394820004701614</left_val> - <right_val>0.4419179856777191</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 6 6 -1.</_> - <_>3 0 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0321930013597012</threshold> - <left_val>0.7608669996261597</left_val> - <right_val>-0.2505910098552704</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 17 18 -1.</_> - <_>4 12 17 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0754090026021004</threshold> - <left_val>-0.3497459888458252</left_val> - <right_val>0.3438029885292053</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 12 6 -1.</_> - <_>6 0 6 3 2.</_> - <_>12 3 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0184690002351999</threshold> - <left_val>-0.7908560037612915</left_val> - <right_val>0.0347880013287067</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 18 4 -1.</_> - <_>13 7 9 2 2.</_> - <_>4 9 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0128020001575351</threshold> - <left_val>0.4710780084133148</left_val> - <right_val>-0.0600060001015663</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 12 10 6 -1.</_> - <_>4 14 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0265980008989573</threshold> - <left_val>0.6711609959602356</left_val> - <right_val>-0.2425750046968460</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 9 10 12 -1.</_> - <_>12 9 5 6 2.</_> - <_>7 15 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0219889990985394</threshold> - <left_val>0.2471749931573868</left_val> - <right_val>-0.4830169975757599</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 3 -1.</_> - <_>8 1 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1465409994125366</threshold> - <left_val>-0.2150409966707230</left_val> - <right_val>0.7205590009689331</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 11 6 6 -1.</_> - <_>13 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.5310001112520695e-003</threshold> - <left_val>0.2793099880218506</left_val> - <right_val>-0.3433989882469177</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 6 6 -1.</_> - <_>8 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.4010001048445702e-003</threshold> - <left_val>0.0558619983494282</left_val> - <right_val>-0.8214359879493713</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 19 3 -1.</_> - <_>3 11 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.6390003561973572e-003</threshold> - <left_val>-0.9962059855461121</left_val> - <right_val>0.1887499988079071</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 9 -1.</_> - <_>0 5 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0391930006444454</threshold> - <left_val>-1.1945559978485107</left_val> - <right_val>-0.0291980002075434</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 16 10 6 -1.</_> - <_>14 18 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0248550008982420</threshold> - <left_val>0.1498759984970093</left_val> - <right_val>-0.5413780212402344</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 10 6 -1.</_> - <_>0 18 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0349950008094311</threshold> - <left_val>-1.4210180044174194</left_val> - <right_val>-0.0423140004277229</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 13 9 6 -1.</_> - <_>14 15 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0183789990842342</threshold> - <left_val>-0.2824259996414185</left_val> - <right_val>0.1558180004358292</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 18 3 -1.</_> - <_>0 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0135920001193881</threshold> - <left_val>0.4731709957122803</left_val> - <right_val>-0.2193720042705536</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 16 18 3 -1.</_> - <_>6 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.2629999592900276e-003</threshold> - <left_val>-0.0597140006721020</left_val> - <right_val>0.6062589883804321</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 18 9 6 -1.</_> - <_>0 20 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0184780005365610</threshold> - <left_val>-0.8564720153808594</left_val> - <right_val>-0.0137839997187257</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 13 9 6 -1.</_> - <_>14 15 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0142360003665090</threshold> - <left_val>0.1665479987859726</left_val> - <right_val>-0.2771399915218353</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 2 6 9 -1.</_> - <_>8 2 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0325470007956028</threshold> - <left_val>-1.1728240251541138</left_val> - <right_val>-0.0401850007474422</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 8 4 12 -1.</_> - <_>15 8 2 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.6410000864416361e-003</threshold> - <left_val>0.2651430070400238</left_val> - <right_val>-0.0563430003821850</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 13 8 8 -1.</_> - <_>8 17 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.7799999164417386e-004</threshold> - <left_val>0.0365560017526150</left_val> - <right_val>-0.5507519841194153</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 20 18 3 -1.</_> - <_>10 20 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0473719984292984</threshold> - <left_val>-0.0426140017807484</left_val> - <right_val>0.4819490015506744</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 4 12 -1.</_> - <_>7 8 2 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.0790001191198826e-003</threshold> - <left_val>0.2869899868965149</left_val> - <right_val>-0.3292300105094910</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 12 3 -1.</_> - <_>7 7 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0431459993124008</threshold> - <left_val>-1.4065419435501099</left_val> - <right_val>0.1283639967441559</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 9 -1.</_> - <_>12 6 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0205920003354549</threshold> - <left_val>-0.2143529951572418</left_val> - <right_val>0.5398179888725281</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 20 18 3 -1.</_> - <_>11 20 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0223670005798340</threshold> - <left_val>0.3371829986572266</left_val> - <right_val>0.0452120006084442</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 20 18 3 -1.</_> - <_>7 20 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0500399991869926</threshold> - <left_val>-0.2512170076370239</left_val> - <right_val>0.4175049960613251</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 1 6 20 -1.</_> - <_>21 1 3 10 2.</_> - <_>18 11 3 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0617949999868870</threshold> - <left_val>0.0400849990546703</left_val> - <right_val>0.6877980232238770</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 6 20 -1.</_> - <_>0 1 3 10 2.</_> - <_>3 11 3 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0418619997799397</threshold> - <left_val>0.5302739739418030</left_val> - <right_val>-0.2290199995040894</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 3 4 18 -1.</_> - <_>15 3 2 9 2.</_> - <_>13 12 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.1959998887032270e-003</threshold> - <left_val>0.2516149878501892</left_val> - <right_val>-0.2151460051536560</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 6 12 -1.</_> - <_>0 6 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0242550000548363</threshold> - <left_val>7.2320001199841499e-003</left_val> - <right_val>-0.7251909971237183</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 9 12 6 -1.</_> - <_>18 9 6 3 2.</_> - <_>12 12 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0173039995133877</threshold> - <left_val>-0.4995819926261902</left_val> - <right_val>0.1839450001716614</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 3 4 18 -1.</_> - <_>7 3 2 9 2.</_> - <_>9 12 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.1470001451671124e-003</threshold> - <left_val>0.0852119997143745</left_val> - <right_val>-0.4636470079421997</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 6 9 -1.</_> - <_>16 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0143699999898672</threshold> - <left_val>-0.5225890278816223</left_val> - <right_val>0.2389259934425354</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 9 12 6 -1.</_> - <_>0 9 6 3 2.</_> - <_>6 12 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.0399999171495438e-003</threshold> - <left_val>-0.6325039863586426</left_val> - <right_val>0.0325510017573833</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 4 8 20 -1.</_> - <_>18 4 4 10 2.</_> - <_>14 14 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1237310022115707</threshold> - <left_val>1.2856210470199585</left_val> - <right_val>0.0765450000762939</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 4 8 20 -1.</_> - <_>2 4 4 10 2.</_> - <_>6 14 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0822219997644424</threshold> - <left_val>0.8320819735527039</left_val> - <right_val>-0.1859059929847717</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 13 9 6 -1.</_> - <_>14 15 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0656590014696121</threshold> - <left_val>0.1129880025982857</left_val> - <right_val>-30.</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 13 9 6 -1.</_> - <_>1 15 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0315829999744892</threshold> - <left_val>-1.3485900163650513</left_val> - <right_val>-0.0470970012247562</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 15 18 3 -1.</_> - <_>9 15 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0796360000967979</threshold> - <left_val>-1.3533639907836914</left_val> - <right_val>0.1566880047321320</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 13 9 6 -1.</_> - <_>5 15 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0188800003379583</threshold> - <left_val>0.4030030071735382</left_val> - <right_val>-0.2514890134334564</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 18 3 -1.</_> - <_>5 1 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.0149997696280479e-003</threshold> - <left_val>-0.2628709971904755</left_val> - <right_val>0.1858250051736832</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 2 6 7 -1.</_> - <_>11 2 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0122180003672838</threshold> - <left_val>0.5869240164756775</left_val> - <right_val>-0.1942770034074783</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 9 6 -1.</_> - <_>12 1 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2710000155493617e-003</threshold> - <left_val>-0.1668899953365326</left_val> - <right_val>0.2300689965486527</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 1 9 6 -1.</_> - <_>9 1 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0297439992427826</threshold> - <left_val>0.0125200003385544</left_val> - <right_val>-0.6672359704971314</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 14 6 -1.</_> - <_>12 6 7 3 2.</_> - <_>5 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0281750001013279</threshold> - <left_val>-0.0170600004494190</left_val> - <right_val>0.6457939743995667</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 2 6 13 -1.</_> - <_>10 2 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0303450003266335</threshold> - <left_val>-0.2417870014905930</left_val> - <right_val>0.3487890064716339</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 11 12 6 -1.</_> - <_>12 11 6 3 2.</_> - <_>6 14 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0173259992152452</threshold> - <left_val>-0.5359939932823181</left_val> - <right_val>0.2099599987268448</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 1 18 15 -1.</_> - <_>9 1 6 15 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0841780006885529</threshold> - <left_val>0.7509329915046692</left_val> - <right_val>-0.1759320050477982</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 6 7 -1.</_> - <_>13 0 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.4950000271201134e-003</threshold> - <left_val>-0.1618809998035431</left_val> - <right_val>0.3065750002861023</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 3 16 6 -1.</_> - <_>3 6 16 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0564949996769428</threshold> - <left_val>-0.1731880009174347</left_val> - <right_val>1.0016150474548340</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 3 12 -1.</_> - <_>12 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.2939997985959053e-003</threshold> - <left_val>0.2341759949922562</left_val> - <right_val>-0.0653470009565353</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 6 9 -1.</_> - <_>9 7 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0149450004100800</threshold> - <left_val>0.2501890063285828</left_val> - <right_val>-0.3059119880199432</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 0 4 24 -1.</_> - <_>13 0 2 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0549190007150173</threshold> - <left_val>0.1312199980020523</left_val> - <right_val>-0.9376509785652161</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 4 24 -1.</_> - <_>9 0 2 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0197219997644424</threshold> - <left_val>-0.8397849798202515</left_val> - <right_val>-0.0234730001538992</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 9 5 12 -1.</_> - <_>11 13 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0671589970588684</threshold> - <left_val>2.3586840629577637</left_val> - <right_val>0.0829709991812706</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 15 9 6 -1.</_> - <_>7 17 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0143259996548295</threshold> - <left_val>0.1881449967622757</left_val> - <right_val>-0.3122160136699677</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 7 18 6 -1.</_> - <_>5 9 18 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0298410002142191</threshold> - <left_val>0.1482509970664978</left_val> - <right_val>-0.8468170166015625</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 9 5 12 -1.</_> - <_>8 13 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0518830008804798</threshold> - <left_val>-0.0437310002744198</left_val> - <right_val>-1.3366169929504395</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 17 17 6 -1.</_> - <_>4 19 17 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0411270000040531</threshold> - <left_val>0.1766009926795960</left_val> - <right_val>-0.6090409755706787</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 18 14 -1.</_> - <_>0 3 9 7 2.</_> - <_>9 10 9 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1286509931087494</threshold> - <left_val>-0.9870100021362305</left_val> - <right_val>-0.0377850010991097</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 24 2 -1.</_> - <_>0 2 24 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.4170000106096268e-003</threshold> - <left_val>-0.1611959934234619</left_val> - <right_val>0.3267570137977600</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 15 18 3 -1.</_> - <_>0 16 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.7030002139508724e-003</threshold> - <left_val>-0.2384150028228760</left_val> - <right_val>0.2931939959526062</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 6 9 -1.</_> - <_>11 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0455200001597404</threshold> - <left_val>0.1442459970712662</left_val> - <right_val>-1.5010160207748413</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 3 14 12 -1.</_> - <_>3 9 14 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0787009969353676</threshold> - <left_val>-1.0394560098648071</left_val> - <right_val>-0.0453759990632534</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 3 12 -1.</_> - <_>12 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.8619997948408127e-003</threshold> - <left_val>0.1963360011577606</left_val> - <right_val>-0.1447239965200424</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 0 6 9 -1.</_> - <_>10 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0134589998051524</threshold> - <left_val>-0.9063469767570496</left_val> - <right_val>-0.0380490012466908</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 6 10 -1.</_> - <_>12 6 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0288270004093647</threshold> - <left_val>-0.0294739995151758</left_val> - <right_val>0.6005839705467224</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 6 9 -1.</_> - <_>7 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0273659992963076</threshold> - <left_val>-0.9980400204658508</left_val> - <right_val>-0.0386530011892319</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 21 7 -1.</_> - <_>9 0 7 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0729179978370667</threshold> - <left_val>0.7336149811744690</left_val> - <right_val>0.0574400015175343</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 11 12 5 -1.</_> - <_>10 11 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0139889996498823</threshold> - <left_val>0.2789260149002075</left_val> - <right_val>-0.2651630043983460</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 9 8 -1.</_> - <_>11 7 3 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0432429984211922</threshold> - <left_val>4.7760000452399254e-003</left_val> - <right_val>0.3592590093612671</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 18 -1.</_> - <_>9 6 3 9 2.</_> - <_>12 15 3 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0295330006629229</threshold> - <left_val>-0.2008399963378906</left_val> - <right_val>0.5120289921760559</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 14 8 10 -1.</_> - <_>19 14 4 5 2.</_> - <_>15 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0318970009684563</threshold> - <left_val>0.6472169756889343</left_val> - <right_val>-1.3760000001639128e-003</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 14 8 10 -1.</_> - <_>1 14 4 5 2.</_> - <_>5 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0378689989447594</threshold> - <left_val>-0.1836380064487457</left_val> - <right_val>0.6134309768676758</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 0 8 10 -1.</_> - <_>15 0 4 5 2.</_> - <_>11 5 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0224179998040199</threshold> - <left_val>-0.2918789982795715</left_val> - <right_val>0.1819480061531067</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 8 10 -1.</_> - <_>5 0 4 5 2.</_> - <_>9 5 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0589589998126030</threshold> - <left_val>-0.0664519965648651</left_val> - <right_val>-1.9290030002593994</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 1 12 5 -1.</_> - <_>6 1 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0312229990959167</threshold> - <left_val>-0.0127320000901818</left_val> - <right_val>0.6156079769134522</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 12 18 2 -1.</_> - <_>10 12 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0374849997460842</threshold> - <left_val>-0.2085690051317215</left_val> - <right_val>0.4436399936676025</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 8 20 6 -1.</_> - <_>12 8 10 3 2.</_> - <_>2 11 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0209660008549690</threshold> - <left_val>-0.3571279942989349</left_val> - <right_val>0.2425220012664795</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 9 7 -1.</_> - <_>10 6 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0254779998213053</threshold> - <left_val>1.0846560001373291</left_val> - <right_val>-0.1505440026521683</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 8 16 -1.</_> - <_>14 5 4 8 2.</_> - <_>10 13 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.2570000775158405e-003</threshold> - <left_val>0.2130260020494461</left_val> - <right_val>-0.1830819994211197</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 9 16 8 -1.</_> - <_>3 9 8 4 2.</_> - <_>11 13 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0509830005466938</threshold> - <left_val>0.5173680186271668</left_val> - <right_val>-0.1883309930562973</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 10 4 -1.</_> - <_>7 8 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0206400007009506</threshold> - <left_val>-0.4403020143508911</left_val> - <right_val>0.2274599969387054</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 12 10 8 -1.</_> - <_>7 12 5 4 2.</_> - <_>12 16 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0106729995459318</threshold> - <left_val>0.0350599996745586</left_val> - <right_val>-0.5166500210762024</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 19 15 4 -1.</_> - <_>14 19 5 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0318959988653660</threshold> - <left_val>0.0132280001416802</left_val> - <right_val>0.3491519987583160</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 18 9 -1.</_> - <_>7 0 6 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0238249991089106</threshold> - <left_val>0.3411880135536194</left_val> - <right_val>-0.2151020020246506</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 4 10 8 -1.</_> - <_>18 4 5 4 2.</_> - <_>13 8 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.0680001042783260e-003</threshold> - <left_val>0.3293739855289459</left_val> - <right_val>-0.2852379977703095</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 16 18 4 -1.</_> - <_>9 16 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0238819997757673</threshold> - <left_val>-0.2533380091190338</left_val> - <right_val>0.2629610002040863</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 7 10 12 -1.</_> - <_>13 7 5 6 2.</_> - <_>8 13 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0279660001397133</threshold> - <left_val>0.1404909938573837</left_val> - <right_val>-0.4988709986209869</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 10 12 -1.</_> - <_>6 7 5 6 2.</_> - <_>11 13 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0146030001342297</threshold> - <left_val>-0.0153959998860955</left_val> - <right_val>-0.7695800065994263</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 18 7 -1.</_> - <_>10 6 6 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1087239980697632</threshold> - <left_val>0.1906960010528565</left_val> - <right_val>-0.3239310085773468</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 18 3 -1.</_> - <_>0 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0140380002558231</threshold> - <left_val>0.3492470085620880</left_val> - <right_val>-0.2235870063304901</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 17 18 3 -1.</_> - <_>3 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0440000593662262e-003</threshold> - <left_val>-0.0383290015161037</left_val> - <right_val>0.5117729902267456</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 4 6 10 -1.</_> - <_>4 4 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.9769999459385872e-003</threshold> - <left_val>-0.4288829863071442</left_val> - <right_val>0.0491739995777607</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 0 8 24 -1.</_> - <_>16 0 4 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0851830020546913</threshold> - <left_val>0.6662459969520569</left_val> - <right_val>7.8079998493194580e-003</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 8 15 -1.</_> - <_>8 0 4 15 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.1559998858720064e-003</threshold> - <left_val>-0.4913519918918610</left_val> - <right_val>0.0695559978485107</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 0 8 24 -1.</_> - <_>16 0 4 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3638449907302856</threshold> - <left_val>0.1299709975719452</left_val> - <right_val>-1.8949509859085083</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 4 18 9 -1.</_> - <_>7 4 6 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2208250015974045</threshold> - <left_val>-0.0572119988501072</left_val> - <right_val>-1.4281120300292969</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 12 9 6 -1.</_> - <_>15 14 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0161400008946657</threshold> - <left_val>-0.5758939981460571</left_val> - <right_val>0.1806250065565109</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 9 18 6 -1.</_> - <_>3 9 9 3 2.</_> - <_>12 12 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0483300015330315</threshold> - <left_val>0.9730849862098694</left_val> - <right_val>-0.1651300042867661</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 5 6 9 -1.</_> - <_>18 8 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0175299998372793</threshold> - <left_val>0.1793269962072372</left_val> - <right_val>-0.2794890105724335</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 6 9 -1.</_> - <_>0 8 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0343099981546402</threshold> - <left_val>-0.8107249736785889</left_val> - <right_val>-0.0165960006415844</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 18 4 -1.</_> - <_>13 7 9 2 2.</_> - <_>4 9 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.5830002054572105e-003</threshold> - <left_val>0.2790899872779846</left_val> - <right_val>-7.4519999325275421e-003</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 1 12 20 -1.</_> - <_>2 1 6 10 2.</_> - <_>8 11 6 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1289640069007874</threshold> - <left_val>-0.1350850015878677</left_val> - <right_val>2.5411539077758789</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 0 6 23 -1.</_> - <_>17 0 3 23 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0303610004484653</threshold> - <left_val>-0.0684190019965172</left_val> - <right_val>0.2873409986495972</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 6 2 18 -1.</_> - <_>1 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0440860018134117</threshold> - <left_val>-0.1813589930534363</left_val> - <right_val>0.6541320085525513</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 8 10 6 -1.</_> - <_>8 10 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.0159999150782824e-003</threshold> - <left_val>-0.1569049954414368</left_val> - <right_val>0.2696380019187927</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 20 6 -1.</_> - <_>0 6 10 3 2.</_> - <_>10 9 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0263369996100664</threshold> - <left_val>0.2917560040950775</left_val> - <right_val>-0.2527410089969635</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 12 12 5 -1.</_> - <_>15 12 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0278660003095865</threshold> - <left_val>0.4438750147819519</left_val> - <right_val>0.0550380013883114</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 3 19 -1.</_> - <_>1 4 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0117250001057982</threshold> - <left_val>-0.1934649944305420</left_val> - <right_val>0.4665670096874237</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 1 3 18 -1.</_> - <_>20 1 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.5689999563619494e-003</threshold> - <left_val>-8.2360003143548965e-003</left_val> - <right_val>0.2570089995861054</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 1 3 18 -1.</_> - <_>3 1 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.5550000611692667e-003</threshold> - <left_val>-0.4243089854717255</left_val> - <right_val>0.0711740031838417</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 18 3 -1.</_> - <_>9 10 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0316950008273125</threshold> - <left_val>-0.8539350032806397</left_val> - <right_val>0.1691620051860809</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 4 10 9 -1.</_> - <_>9 4 5 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0320970006287098</threshold> - <left_val>0.8378490209579468</left_val> - <right_val>-0.1759729981422424</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 13 14 7 -1.</_> - <_>7 13 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1554419994354248</threshold> - <left_val>0.0995500013232231</left_val> - <right_val>2.3873300552368164</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 13 14 7 -1.</_> - <_>10 13 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0880459994077683</threshold> - <left_val>-0.1872529983520508</left_val> - <right_val>0.6238430142402649</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 15 9 6 -1.</_> - <_>11 15 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6720000421628356e-003</threshold> - <left_val>0.2500869929790497</left_val> - <right_val>-0.0651189982891083</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 14 8 10 -1.</_> - <_>4 14 4 5 2.</_> - <_>8 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.3409996479749680e-003</threshold> - <left_val>-0.3537890017032623</left_val> - <right_val>0.1071500033140183</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 14 4 10 -1.</_> - <_>10 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0371380001306534</threshold> - <left_val>0.1638700067996979</left_val> - <right_val>-0.9171839952468872</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 8 5 16 -1.</_> - <_>3 16 5 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0801839977502823</threshold> - <left_val>-0.1481299996376038</left_val> - <right_val>1.4895190000534058</right_val></_></_> - <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 10 9 6 -1.</_> - <_>15 12 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.9100002767518163e-004</threshold> - <left_val>-0.2132689952850342</left_val> - <right_val>0.1967640072107315</right_val></_></_> - <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 10 9 6 -1.</_> - <_>0 12 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.0400001928210258e-003</threshold> - <left_val>-0.7131869792938232</left_val> - <right_val>1.8240000354126096e-003</right_val></_></_> - <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 12 9 -1.</_> - <_>6 10 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1196239963173866</threshold> - <left_val>0.0330989994108677</left_val> - <right_val>1.0441709756851196</right_val></_></_> - <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 10 5 8 -1.</_> - <_>9 14 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.5280000194907188e-003</threshold> - <left_val>-0.2730849981307983</left_val> - <right_val>0.2722980082035065</right_val></_></_> - <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 3 12 -1.</_> - <_>12 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0296390000730753</threshold> - <left_val>0.3622579872608185</left_val> - <right_val>0.0567950010299683</right_val></_></_> - <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 15 6 9 -1.</_> - <_>10 15 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0266500003635883</threshold> - <left_val>-0.0480410009622574</left_val> - <right_val>-0.9672350287437439</right_val></_></_> - <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 6 7 6 -1.</_> - <_>16 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0444220006465912</threshold> - <left_val>0.1305290013551712</left_val> - <right_val>-0.3507730066776276</right_val></_></_> - <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 1 4 22 -1.</_> - <_>10 1 2 22 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0243599992245436</threshold> - <left_val>-1.0766899585723877</left_val> - <right_val>-0.0512229986488819</right_val></_></_> - <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 14 3 -1.</_> - <_>6 6 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0197349991649389</threshold> - <left_val>0.0262380000203848</left_val> - <right_val>0.2807050049304962</right_val></_></_> - <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 18 19 3 -1.</_> - <_>0 19 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.4930001497268677e-003</threshold> - <left_val>-0.2611129879951477</left_val> - <right_val>0.2101140022277832</right_val></_></_> - <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 0 6 24 -1.</_> - <_>17 0 3 24 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2320030033588409</threshold> - <left_val>-1.7748440504074097</left_val> - <right_val>0.1148260012269020</right_val></_></_> - <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 15 6 -1.</_> - <_>5 13 5 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0256140008568764</threshold> - <left_val>0.2990080118179321</left_val> - <right_val>-0.2250249981880188</right_val></_></_> - <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 10 14 -1.</_> - <_>14 6 5 7 2.</_> - <_>9 13 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.4949998632073402e-003</threshold> - <left_val>0.1956380009651184</left_val> - <right_val>-0.0997629985213280</right_val></_></_> - <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 6 8 10 -1.</_> - <_>1 6 4 5 2.</_> - <_>5 11 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.9840000681579113e-003</threshold> - <left_val>-0.4302150011062622</left_val> - <right_val>0.0812610015273094</right_val></_></_> - <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 12 5 -1.</_> - <_>7 6 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0358130000531673</threshold> - <left_val>-0.5098739862442017</left_val> - <right_val>0.1634590029716492</right_val></_></_> - <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 9 6 -1.</_> - <_>10 7 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0141690000891685</threshold> - <left_val>0.7797809839248657</left_val> - <right_val>-0.1747629940509796</right_val></_></_> - <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 8 14 14 -1.</_> - <_>14 8 7 7 2.</_> - <_>7 15 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1264210045337677</threshold> - <left_val>-0.6304789781570435</left_val> - <right_val>0.1272830069065094</right_val></_></_> - <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 8 14 14 -1.</_> - <_>3 8 7 7 2.</_> - <_>10 15 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0686779990792274</threshold> - <left_val>-0.0464479997754097</left_val> - <right_val>-1.1128979921340942</right_val></_></_> - <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 13 4 -1.</_> - <_>9 10 13 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0858649984002113</threshold> - <left_val>0.1183540001511574</left_val> - <right_val>-4.8235158920288086</right_val></_></_> - <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 6 12 -1.</_> - <_>3 2 3 6 2.</_> - <_>6 8 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0155119998380542</threshold> - <left_val>-0.0174679998308420</left_val> - <right_val>-0.6369339823722839</right_val></_></_> - <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 10 17 6 -1.</_> - <_>6 13 17 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0810910016298294</threshold> - <left_val>0.0861330032348633</left_val> - <right_val>2.4559431076049805</right_val></_></_> - <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 17 6 -1.</_> - <_>1 13 17 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0184950008988380</threshold> - <left_val>0.0402290001511574</left_val> - <right_val>-0.5085819959640503</right_val></_></_> - <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 7 8 9 -1.</_> - <_>16 10 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0863209962844849</threshold> - <left_val>-1.9006760120391846</left_val> - <right_val>0.1101910024881363</right_val></_></_> - <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 7 8 9 -1.</_> - <_>0 10 8 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0723550021648407</threshold> - <left_val>-0.0621119998395443</left_val> - <right_val>-1.4165179729461670</right_val></_></_> - <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 9 24 10 -1.</_> - <_>12 9 12 5 2.</_> - <_>0 14 12 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0781790018081665</threshold> - <left_val>0.8884930014610291</left_val> - <right_val>0.0423699989914894</right_val></_></_> - <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 15 8 -1.</_> - <_>8 2 5 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0966819971799850</threshold> - <left_val>-0.2209420055150986</left_val> - <right_val>0.3357509970664978</right_val></_></_> - <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 2 18 8 -1.</_> - <_>10 2 6 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0398759990930557</threshold> - <left_val>0.5780479907989502</left_val> - <right_val>0.0453479997813702</right_val></_></_> - <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 1 18 4 -1.</_> - <_>0 1 9 2 2.</_> - <_>9 3 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.5349997282028198e-003</threshold> - <left_val>-0.5417569875717163</left_val> - <right_val>3.2399999909102917e-003</right_val></_></_> - <_> - <!-- tree 155 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>20 2 3 18 -1.</_> - <_>21 2 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0600000647827983e-004</threshold> - <left_val>-0.0815490037202835</left_val> - <right_val>0.3583790063858032</right_val></_></_> - <_> - <!-- tree 156 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 3 3 19 -1.</_> - <_>2 3 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0121079999953508</threshold> - <left_val>-0.2028039991855621</left_val> - <right_val>0.4376800060272217</right_val></_></_> - <_> - <!-- tree 157 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 8 6 16 -1.</_> - <_>20 8 2 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0208739992231131</threshold> - <left_val>0.4146989881992340</left_val> - <right_val>-0.0455680005252361</right_val></_></_> - <_> - <!-- tree 158 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 6 16 -1.</_> - <_>2 8 2 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0578880012035370</threshold> - <left_val>-0.0290099997073412</left_val> - <right_val>-0.9182230234146118</right_val></_></_> - <_> - <!-- tree 159 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 18 11 6 -1.</_> - <_>8 20 11 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.3200000103097409e-004</threshold> - <left_val>-0.1177240014076233</left_val> - <right_val>0.2000000029802322</right_val></_></_> - <_> - <!-- tree 160 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 12 5 -1.</_> - <_>8 6 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0171370003372431</threshold> - <left_val>0.3300479948520660</left_val> - <right_val>-0.2305520027875900</right_val></_></_> - <_> - <!-- tree 161 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 12 5 -1.</_> - <_>11 6 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0306550003588200</threshold> - <left_val>-0.0215450003743172</left_val> - <right_val>0.2687819898128510</right_val></_></_> - <_> - <!-- tree 162 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 3 9 6 -1.</_> - <_>9 3 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.8699999721720815e-004</threshold> - <left_val>-0.4410069882869721</left_val> - <right_val>0.0491579994559288</right_val></_></_> - <_> - <!-- tree 163 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 12 5 -1.</_> - <_>7 6 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0880369991064072</threshold> - <left_val>0.1178200021386147</left_val> - <right_val>-2.8293309211730957</right_val></_></_> - <_> - <!-- tree 164 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 8 6 7 -1.</_> - <_>12 8 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0390289984643459</threshold> - <left_val>0.9177719950675964</left_val> - <right_val>-0.1582739949226379</right_val></_></_> - <_> - <!-- tree 165 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 2 9 6 -1.</_> - <_>11 2 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0801059976220131</threshold> - <left_val>0.1128920018672943</left_val> - <right_val>-1.9937280416488647</right_val></_></_> - <_> - <!-- tree 166 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 14 6 9 -1.</_> - <_>8 17 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0395389981567860</threshold> - <left_val>-0.1435739994049072</left_val> - <right_val>1.3085240125656128</right_val></_></_> - <_> - <!-- tree 167 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 2 9 6 -1.</_> - <_>11 2 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0206840001046658</threshold> - <left_val>0.2004809975624085</left_val> - <right_val>-0.0441869981586933</right_val></_></_> - <_> - <!-- tree 168 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 16 20 -1.</_> - <_>4 3 8 10 2.</_> - <_>12 13 8 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0670379996299744</threshold> - <left_val>0.3261860013008118</left_val> - <right_val>-0.2055040001869202</right_val></_></_> - <_> - <!-- tree 169 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 10 12 -1.</_> - <_>12 6 5 6 2.</_> - <_>7 12 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0468150004744530</threshold> - <left_val>0.1582529991865158</left_val> - <right_val>-0.9553509950637817</right_val></_></_> - <_> - <!-- tree 170 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 7 12 -1.</_> - <_>0 6 7 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0784439966082573</threshold> - <left_val>-0.0746510028839111</left_val> - <right_val>-2.1161499023437500</right_val></_></_> - <_> - <!-- tree 171 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 17 11 6 -1.</_> - <_>12 19 11 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0663800016045570</threshold> - <left_val>0.1164190024137497</left_val> - <right_val>-1.6113519668579102</right_val></_></_> - <_> - <!-- tree 172 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 12 8 -1.</_> - <_>4 7 6 4 2.</_> - <_>10 11 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0300539992749691</threshold> - <left_val>-0.1656260043382645</left_val> - <right_val>0.7002540230751038</right_val></_></_> - <_> - <!-- tree 173 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 11 8 10 -1.</_> - <_>12 11 4 5 2.</_> - <_>8 16 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0171199999749660</threshold> - <left_val>0.2262769937515259</left_val> - <right_val>-0.4011499881744385</right_val></_></_> - <_> - <!-- tree 174 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 4 9 -1.</_> - <_>11 1 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0200730003416538</threshold> - <left_val>-0.1938969939947128</left_val> - <right_val>0.4442029893398285</right_val></_></_> - <_> - <!-- tree 175 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 3 22 -1.</_> - <_>15 0 1 22 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0331019982695580</threshold> - <left_val>0.1163749992847443</left_val> - <right_val>-1.5771679878234863</right_val></_></_> - <_> - <!-- tree 176 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 0 3 22 -1.</_> - <_>8 0 1 22 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0148820001631975</threshold> - <left_val>-0.8968030214309692</left_val> - <right_val>-0.0420100018382072</right_val></_></_> - <_> - <!-- tree 177 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 7 18 4 -1.</_> - <_>13 7 9 2 2.</_> - <_>4 9 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0102810002863407</threshold> - <left_val>0.3560299873352051</left_val> - <right_val>-0.0131240002810955</right_val></_></_> - <_> - <!-- tree 178 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 4 15 -1.</_> - <_>10 7 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0286950003355742</threshold> - <left_val>-0.4603959918022156</left_val> - <right_val>0.0268019996583462</right_val></_></_> - <_> - <!-- tree 179 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 3 12 -1.</_> - <_>12 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.7189998440444469e-003</threshold> - <left_val>0.2378879934549332</left_val> - <right_val>-0.0655189976096153</right_val></_></_> - <_> - <!-- tree 180 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 18 13 -1.</_> - <_>9 0 9 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3220160007476807</threshold> - <left_val>-0.0284899994730949</left_val> - <right_val>-0.8423460125923157</right_val></_></_> - <_> - <!-- tree 181 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 0 3 24 -1.</_> - <_>17 0 1 24 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0170450005680323</threshold> - <left_val>-0.5093880295753479</left_val> - <right_val>0.1605760008096695</right_val></_></_> - <_> - <!-- tree 182 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 3 24 -1.</_> - <_>6 0 1 24 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.3469998314976692e-003</threshold> - <left_val>-0.5415499806404114</left_val> - <right_val>4.7320001758635044e-003</right_val></_></_> - <_> - <!-- tree 183 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 15 5 8 -1.</_> - <_>10 19 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0300019998103380</threshold> - <left_val>-0.8878579735755920</left_val> - <right_val>0.1362179964780808</right_val></_></_> - <_> - <!-- tree 184 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 18 18 2 -1.</_> - <_>2 19 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0112929996103048</threshold> - <left_val>0.8061519861221314</left_val> - <right_val>-0.1615950018167496</right_val></_></_> - <_> - <!-- tree 185 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 8 20 3 -1.</_> - <_>2 9 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.7749998047947884e-003</threshold> - <left_val>0.0129680000245571</left_val> - <right_val>0.5507990121841431</right_val></_></_> - <_> - <!-- tree 186 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 6 9 6 -1.</_> - <_>7 8 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.0710001960396767e-003</threshold> - <left_val>-0.0457280017435551</left_val> - <right_val>-1.0766259431838989</right_val></_></_> - <_> - <!-- tree 187 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 19 10 -1.</_> - <_>3 7 19 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1934410035610199</threshold> - <left_val>0.0712620019912720</left_val> - <right_val>1.1694519519805908</right_val></_></_> - <_> - <!-- tree 188 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 7 19 3 -1.</_> - <_>2 8 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.3750001825392246e-003</threshold> - <left_val>-0.1973620057106018</left_val> - <right_val>0.3820689916610718</right_val></_></_> - <_> - <!-- tree 189 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 6 9 4 -1.</_> - <_>15 8 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0682760030031204</threshold> - <left_val>-5.4372339248657227</left_val> - <right_val>0.1115190014243126</right_val></_></_> - <_> - <!-- tree 190 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 2 18 8 -1.</_> - <_>8 2 6 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0349330008029938</threshold> - <left_val>0.4479340016841888</left_val> - <right_val>-0.1865790039300919</right_val></_></_> - <_> - <!-- tree 191 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 9 14 4 -1.</_> - <_>10 9 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.1219998858869076e-003</threshold> - <left_val>-0.0148719996213913</left_val> - <right_val>0.1841389983892441</right_val></_></_> - <_> - <!-- tree 192 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 4 6 16 -1.</_> - <_>7 4 3 16 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0953119993209839</threshold> - <left_val>-0.1511709988117218</left_val> - <right_val>0.9499149918556213</right_val></_></_> - <_> - <!-- tree 193 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 8 9 16 -1.</_> - <_>18 8 3 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0628490000963211</threshold> - <left_val>0.4647360146045685</left_val> - <right_val>0.0384050011634827</right_val></_></_> - <_> - <!-- tree 194 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 9 16 -1.</_> - <_>3 8 3 16 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1704069972038269</threshold> - <left_val>-1.6499999761581421</left_val> - <right_val>-0.0632369965314865</right_val></_></_> - <_> - <!-- tree 195 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 0 6 14 -1.</_> - <_>20 0 2 14 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0105839995667338</threshold> - <left_val>-0.0383489988744259</left_val> - <right_val>0.4191380143165588</right_val></_></_> - <_> - <!-- tree 196 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 6 14 -1.</_> - <_>2 0 2 14 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0415790006518364</threshold> - <left_val>0.3446190059185028</left_val> - <right_val>-0.2118770033121109</right_val></_></_> - <_> - <!-- tree 197 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 0 6 22 -1.</_> - <_>17 0 2 22 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1271860003471375</threshold> - <left_val>0.1239819973707199</left_val> - <right_val>-2.1254889965057373</right_val></_></_> - <_> - <!-- tree 198 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 6 22 -1.</_> - <_>5 0 2 22 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0825570002198219</threshold> - <left_val>-0.0620240010321140</left_val> - <right_val>-1.4875819683074951</right_val></_></_> - <_> - <!-- tree 199 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 2 12 20 -1.</_> - <_>16 2 4 20 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0852930024266243</threshold> - <left_val>0.0170879997313023</left_val> - <right_val>0.3207660019397736</right_val></_></_> - <_> - <!-- tree 200 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 2 12 20 -1.</_> - <_>4 2 4 20 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0555440001189709</threshold> - <left_val>-0.2741400003433228</left_val> - <right_val>0.1897639930248261</right_val></_></_> - <_> - <!-- tree 201 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 4 9 -1.</_> - <_>11 6 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.5650000683963299e-003</threshold> - <left_val>-0.1792020052671433</left_val> - <right_val>0.2796730101108551</right_val></_></_> - <_> - <!-- tree 202 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 6 16 -1.</_> - <_>12 0 3 16 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0129979997873306</threshold> - <left_val>-0.3229750096797943</left_val> - <right_val>0.2694180011749268</right_val></_></_> - <_> - <!-- tree 203 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 1 3 12 -1.</_> - <_>12 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0578919984400272</threshold> - <left_val>0.1264439970254898</left_val> - <right_val>-0.6071349978446960</right_val></_></_> - <_> - <!-- tree 204 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 4 18 6 -1.</_> - <_>3 4 9 3 2.</_> - <_>12 7 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0228240005671978</threshold> - <left_val>-0.4968209862709045</left_val> - <right_val>0.0223769992589951</right_val></_></_> - <_> - <!-- tree 205 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 5 16 8 -1.</_> - <_>13 5 8 4 2.</_> - <_>5 9 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0483120009303093</threshold> - <left_val>0.0436070002615452</left_val> - <right_val>0.4853779971599579</right_val></_></_> - <_> - <!-- tree 206 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 10 6 -1.</_> - <_>0 15 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0257140006870031</threshold> - <left_val>-0.0429509989917278</left_val> - <right_val>-0.9302350282669067</right_val></_></_> - <_> - <!-- tree 207 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 14 9 6 -1.</_> - <_>8 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.9269998930394650e-003</threshold> - <left_val>-2.9680000152438879e-003</left_val> - <right_val>0.3429630100727081</right_val></_></_> - <_> - <!-- tree 208 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 2 9 6 -1.</_> - <_>9 2 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0344469994306564</threshold> - <left_val>-1.5299769639968872</left_val> - <right_val>-0.0610149987041950</right_val></_></_> - <_> - <!-- tree 209 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 1 10 8 -1.</_> - <_>19 1 5 4 2.</_> - <_>14 5 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0293879993259907</threshold> - <left_val>0.0375959984958172</left_val> - <right_val>0.6417239904403687</right_val></_></_> - <_> - <!-- tree 210 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 3 12 -1.</_> - <_>9 7 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.4319998919963837e-003</threshold> - <left_val>0.0990889966487885</left_val> - <right_val>-0.3968810141086578</right_val></_></_></trees> - <stage_threshold>-3.3703000545501709</stage_threshold> - <parent>22</parent> - <next>-1</next></_> - <_> - <!-- stage 24 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 12 9 -1.</_> - <_>6 7 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0959440022706985</threshold> - <left_val>0.6241909861564636</left_val> - <right_val>-0.4587520062923431</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 12 6 -1.</_> - <_>10 5 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0168340001255274</threshold> - <left_val>-0.9307280182838440</left_val> - <right_val>0.2156360000371933</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 1 8 5 -1.</_> - <_>5 1 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0260499995201826</threshold> - <left_val>-0.4053229987621307</left_val> - <right_val>0.4225659966468811</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 12 6 8 -1.</_> - <_>12 16 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.6500001442618668e-004</threshold> - <left_val>0.0952880010008812</left_val> - <right_val>-0.6329810023307800</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 12 12 6 -1.</_> - <_>3 14 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.6940002143383026e-003</threshold> - <left_val>0.3724380135536194</left_val> - <right_val>-0.3033240139484406</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 18 12 6 -1.</_> - <_>15 18 6 3 2.</_> - <_>9 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0188740007579327</threshold> - <left_val>-0.2335720062255859</left_val> - <right_val>0.4033069908618927</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 13 6 6 -1.</_> - <_>4 16 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6300000424962491e-004</threshold> - <left_val>0.0428869985044003</left_val> - <right_val>-0.7779679894447327</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 3 7 18 -1.</_> - <_>11 12 7 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0762590020895004</threshold> - <left_val>-0.4962849915027618</left_val> - <right_val>0.1633539944887161</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 9 18 3 -1.</_> - <_>9 9 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0501490011811256</threshold> - <left_val>0.0327470004558563</left_val> - <right_val>-0.8004789948463440</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 3 19 2 -1.</_> - <_>5 4 19 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.9239999130368233e-003</threshold> - <left_val>-0.5000280141830444</left_val> - <right_val>0.2548060119152069</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 2 12 6 -1.</_> - <_>4 2 6 3 2.</_> - <_>10 5 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0162439998239279</threshold> - <left_val>0.0389130003750324</left_val> - <right_val>-0.7072489857673645</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 6 9 -1.</_> - <_>11 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0378119982779026</threshold> - <left_val>-0.0662679970264435</left_val> - <right_val>0.7386879920959473</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 6 9 -1.</_> - <_>10 6 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0123199997469783</threshold> - <left_val>0.4869639873504639</left_val> - <right_val>-0.2448559999465942</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 9 5 15 -1.</_> - <_>16 14 5 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0580039992928505</threshold> - <left_val>0.1345909982919693</left_val> - <right_val>-0.1323210000991821</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 9 5 15 -1.</_> - <_>3 14 5 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.8630000092089176e-003</threshold> - <left_val>-0.4417290091514587</left_val> - <right_val>0.1400559991598129</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 6 14 6 -1.</_> - <_>13 6 7 3 2.</_> - <_>6 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0456909984350204</threshold> - <left_val>0.0312179997563362</left_val> - <right_val>0.8981829881668091</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 3 14 -1.</_> - <_>8 13 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0213210005313158</threshold> - <left_val>0.0120080001652241</left_val> - <right_val>-0.8606619834899902</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 24 5 -1.</_> - <_>8 16 8 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1567910015583038</threshold> - <left_val>0.0140559999272227</left_val> - <right_val>0.8533290028572083</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 20 20 3 -1.</_> - <_>10 20 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0103289997205138</threshold> - <left_val>0.2902280092239380</left_val> - <right_val>-0.2947880029678345</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 10 18 2 -1.</_> - <_>5 11 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.4290001019835472e-003</threshold> - <left_val>-0.4043990075588226</left_val> - <right_val>0.1940020024776459</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 6 10 -1.</_> - <_>2 6 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0233389995992184</threshold> - <left_val>0.3294520080089569</left_val> - <right_val>-0.2571269869804382</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 1 20 3 -1.</_> - <_>2 2 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.8970001302659512e-003</threshold> - <left_val>-0.5335299968719482</left_val> - <right_val>0.2163520008325577</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 13 6 11 -1.</_> - <_>11 13 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0344030000269413</threshold> - <left_val>-1.4425489902496338</left_val> - <right_val>-0.0446829982101917</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 15 6 8 -1.</_> - <_>9 19 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0212350003421307</threshold> - <left_val>-0.7901750206947327</left_val> - <right_val>0.1908410042524338</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 6 9 -1.</_> - <_>9 15 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.0620001014322042e-003</threshold> - <left_val>-0.2693119943141937</left_val> - <right_val>0.3148800134658814</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 18 2 -1.</_> - <_>5 12 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.2190002277493477e-003</threshold> - <left_val>-0.5446439981460571</left_val> - <right_val>0.1657460033893585</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 6 15 6 -1.</_> - <_>2 8 15 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0143349999561906</threshold> - <left_val>0.0221050009131432</left_val> - <right_val>-0.6234250068664551</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 18 3 -1.</_> - <_>6 1 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.2120001316070557e-003</threshold> - <left_val>-0.4988499879837036</left_val> - <right_val>0.1923709958791733</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 3 18 -1.</_> - <_>6 0 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3350000679492950e-003</threshold> - <left_val>-0.7913119792938232</left_val> - <right_val>-0.0141439996659756</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 3 6 10 -1.</_> - <_>20 3 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0379379987716675</threshold> - <left_val>0.7984129786491394</left_val> - <right_val>-0.0337990000844002</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 6 10 -1.</_> - <_>2 3 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.7059999778866768e-003</threshold> - <left_val>-0.3316340148448944</left_val> - <right_val>0.2072629928588867</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 8 9 -1.</_> - <_>10 5 4 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.4499998912215233e-003</threshold> - <left_val>-0.2725630104541779</left_val> - <right_val>0.1840219944715500</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 5 8 9 -1.</_> - <_>10 5 4 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.2189999260008335e-003</threshold> - <left_val>-0.5309600234031677</left_val> - <right_val>0.0526079982519150</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 2 20 3 -1.</_> - <_>3 3 20 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.5399999991059303e-003</threshold> - <left_val>-0.5648540258407593</left_val> - <right_val>0.1926939934492111</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 13 4 -1.</_> - <_>5 4 13 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0449699983000755</threshold> - <left_val>-0.1741150021553040</left_val> - <right_val>0.9538260102272034</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>17 0 7 14 -1.</_> - <_>17 7 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0142090003937483</threshold> - <left_val>-0.0919490009546280</left_val> - <right_val>0.2483610063791275</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 7 14 -1.</_> - <_>0 7 7 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1638019979000092</threshold> - <left_val>-0.0584970004856586</left_val> - <right_val>-1.6404409408569336</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 11 10 6 -1.</_> - <_>9 11 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.5579999200999737e-003</threshold> - <left_val>0.2344799935817719</left_val> - <right_val>-0.0927340015769005</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 10 6 -1.</_> - <_>10 11 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.8499999791383743e-003</threshold> - <left_val>0.1788070052862167</left_val> - <right_val>-0.3584409952163696</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 6 3 18 -1.</_> - <_>11 12 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0252219997346401</threshold> - <left_val>-0.4290300011634827</left_val> - <right_val>0.2024450004100800</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 18 3 -1.</_> - <_>0 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0194150004535913</threshold> - <left_val>0.5801630020141602</left_val> - <right_val>-0.1880639940500259</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 16 18 3 -1.</_> - <_>6 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0144199999049306</threshold> - <left_val>0.0328469984233379</left_val> - <right_val>0.8198050260543823</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 9 10 -1.</_> - <_>4 11 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0515829995274544</threshold> - <left_val>0.0691760033369064</left_val> - <right_val>-0.4586629867553711</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 7 15 4 -1.</_> - <_>9 9 15 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0379600003361702</threshold> - <left_val>-1.2553000450134277</left_val> - <right_val>0.1433289945125580</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 6 12 6 -1.</_> - <_>5 6 6 3 2.</_> - <_>11 9 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0295609999448061</threshold> - <left_val>0.5315179824829102</left_val> - <right_val>-0.2059649974107742</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 1 12 9 -1.</_> - <_>6 4 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0391109995543957</threshold> - <left_val>1.1658719778060913</left_val> - <right_val>0.0538970008492470</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 9 6 12 -1.</_> - <_>7 9 3 6 2.</_> - <_>10 15 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0291590001434088</threshold> - <left_val>0.3930760025978088</left_val> - <right_val>-0.2218450009822846</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 5 13 6 -1.</_> - <_>11 7 13 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0836170017719269</threshold> - <left_val>-0.7374449968338013</left_val> - <right_val>0.1426820009946823</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 11 22 13 -1.</_> - <_>12 11 11 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.4200400114059448</threshold> - <left_val>-0.1427740007638931</left_val> - <right_val>1.7894840240478516</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 8 6 6 -1.</_> - <_>18 11 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0600050017237663</threshold> - <left_val>0.1197670027613640</left_val> - <right_val>-1.8886189460754395</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 6 6 -1.</_> - <_>0 11 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0189810004085302</threshold> - <left_val>-1.4148449897766113</left_val> - <right_val>-0.0565229989588261</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 6 24 3 -1.</_> - <_>0 7 24 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.0049998573958874e-003</threshold> - <left_val>0.4417079985141754</left_val> - <right_val>-0.1020080000162125</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 10 6 -1.</_> - <_>0 7 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0582140013575554</threshold> - <left_val>-1.3918470144271851</left_val> - <right_val>-0.0482689999043942</right_val></_></_> - <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 7 18 3 -1.</_> - <_>6 8 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0122710000723600</threshold> - <left_val>0.5131769776344299</left_val> - <right_val>-0.0936969965696335</right_val></_></_> - <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 10 6 -1.</_> - <_>0 2 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0465859994292259</threshold> - <left_val>-0.0574840009212494</left_val> - <right_val>-1.4283169507980347</right_val></_></_> - <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 0 3 19 -1.</_> - <_>20 0 1 19 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2110000243410468e-003</threshold> - <left_val>-0.0808919966220856</left_val> - <right_val>0.3233320116996765</right_val></_></_> - <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 6 12 16 -1.</_> - <_>4 6 6 8 2.</_> - <_>10 14 6 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0886420011520386</threshold> - <left_val>-0.8644909858703613</left_val> - <right_val>-0.0331469997763634</right_val></_></_> - <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>19 6 4 18 -1.</_> - <_>21 6 2 9 2.</_> - <_>19 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0231849998235703</threshold> - <left_val>0.5216220021247864</left_val> - <right_val>-0.0161680001765490</right_val></_></_> - <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 6 4 18 -1.</_> - <_>1 6 2 9 2.</_> - <_>3 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0430900007486343</threshold> - <left_val>-0.1615380048751831</left_val> - <right_val>1.0915000438690186</right_val></_></_> - <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 21 18 3 -1.</_> - <_>3 22 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.0599999697878957e-004</threshold> - <left_val>-0.1709149926900864</left_val> - <right_val>0.3123669922351837</right_val></_></_> - <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 19 9 4 -1.</_> - <_>0 21 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9159999042749405e-003</threshold> - <left_val>-6.7039998248219490e-003</left_val> - <right_val>-0.6881039738655090</right_val></_></_> - <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 18 12 6 -1.</_> - <_>18 18 6 3 2.</_> - <_>12 21 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0177529994398355</threshold> - <left_val>0.6329280138015747</left_val> - <right_val>-4.2360001243650913e-003</right_val></_></_> - <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 18 9 4 -1.</_> - <_>7 20 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.2299999408423901e-003</threshold> - <left_val>-0.3363719880580902</left_val> - <right_val>0.1279059946537018</right_val></_></_> - <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 16 10 8 -1.</_> - <_>17 16 5 4 2.</_> - <_>12 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0227700006216764</threshold> - <left_val>-0.0347039997577667</left_val> - <right_val>0.3914180099964142</right_val></_></_> - <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 16 10 8 -1.</_> - <_>2 16 5 4 2.</_> - <_>7 20 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0215349998325109</threshold> - <left_val>0.6476510167121887</left_val> - <right_val>-0.2009779959917069</right_val></_></_> - <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 0 10 12 -1.</_> - <_>19 0 5 6 2.</_> - <_>14 6 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0617589987814426</threshold> - <left_val>0.0542970001697540</left_val> - <right_val>0.9070010185241699</right_val></_></_> - <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 10 12 -1.</_> - <_>0 0 5 6 2.</_> - <_>5 6 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0780699998140335</threshold> - <left_val>0.6552339792251587</left_val> - <right_val>-0.1975439935922623</right_val></_></_> - <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 14 9 6 -1.</_> - <_>15 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0113150002434850</threshold> - <left_val>0.1938530057668686</left_val> - <right_val>-0.5170729756355286</right_val></_></_> - <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 9 6 -1.</_> - <_>0 16 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0255900006741285</threshold> - <left_val>-0.9309650063514710</left_val> - <right_val>-0.0315469987690449</right_val></_></_> - <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 14 10 6 -1.</_> - <_>14 16 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0380589999258518</threshold> - <left_val>-0.6832690238952637</left_val> - <right_val>0.1270910054445267</right_val></_></_> - <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 10 6 -1.</_> - <_>0 16 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.7970003262162209e-003</threshold> - <left_val>0.0155239999294281</left_val> - <right_val>-0.6334789991378784</right_val></_></_> - <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 18 18 2 -1.</_> - <_>5 19 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0138419996947050</threshold> - <left_val>1.0060529708862305</left_val> - <right_val>0.0628129988908768</right_val></_></_> - <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 18 18 3 -1.</_> - <_>0 19 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.3459997549653053e-003</threshold> - <left_val>-0.2338320016860962</left_val> - <right_val>0.3098269999027252</right_val></_></_> - <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 5 18 12 -1.</_> - <_>12 5 9 6 2.</_> - <_>3 11 9 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0714399963617325</threshold> - <left_val>-0.7250540256500244</left_val> - <right_val>0.1714829951524735</right_val></_></_> - <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 3 7 9 -1.</_> - <_>5 6 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0100060002878308</threshold> - <left_val>-0.2207199931144714</left_val> - <right_val>0.3526619970798492</right_val></_></_> - <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 19 15 -1.</_> - <_>4 5 19 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1100530028343201</threshold> - <left_val>0.1666200011968613</left_val> - <right_val>-0.7431899905204773</right_val></_></_> - <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 0 16 4 -1.</_> - <_>3 2 16 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0353109985589981</threshold> - <left_val>-0.2398270070552826</left_val> - <right_val>0.4143599867820740</right_val></_></_> - <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 12 16 12 -1.</_> - <_>4 12 8 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1117469966411591</threshold> - <left_val>0.5104539990425110</left_val> - <right_val>2.2319999989122152e-003</right_val></_></_> - <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 3 12 15 -1.</_> - <_>10 3 6 15 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1136780008673668</threshold> - <left_val>0.9047520160675049</left_val> - <right_val>-0.1661529988050461</right_val></_></_> - <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 4 2 19 -1.</_> - <_>16 4 1 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0166679993271828</threshold> - <left_val>0.1402450054883957</left_val> - <right_val>-0.5217850208282471</right_val></_></_> - <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 2 19 -1.</_> - <_>7 4 1 19 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.0340001732110977e-003</threshold> - <left_val>-0.6617839932441711</left_val> - <right_val>3.7640000227838755e-003</right_val></_></_> - <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 14 8 10 -1.</_> - <_>17 14 4 5 2.</_> - <_>13 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0330969989299774</threshold> - <left_val>0.8018590211868286</left_val> - <right_val>0.0593850016593933</right_val></_></_> - <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 14 8 10 -1.</_> - <_>3 14 4 5 2.</_> - <_>7 19 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0125479996204376</threshold> - <left_val>-0.3354550004005432</left_val> - <right_val>0.1457860022783279</right_val></_></_> - <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 6 3 18 -1.</_> - <_>12 12 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0420739986002445</threshold> - <left_val>-0.5550910234451294</left_val> - <right_val>0.1326660066843033</right_val></_></_> - <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 11 12 6 -1.</_> - <_>5 11 6 3 2.</_> - <_>11 14 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0252219997346401</threshold> - <left_val>-0.0616319999098778</left_val> - <right_val>-1.3678770065307617</right_val></_></_> - <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 8 10 -1.</_> - <_>14 5 4 5 2.</_> - <_>10 10 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0242689996957779</threshold> - <left_val>0.3418509960174561</left_val> - <right_val>-7.4160001240670681e-003</right_val></_></_> - <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 4 12 10 -1.</_> - <_>6 4 6 5 2.</_> - <_>12 9 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0122800003737211</threshold> - <left_val>0.2774580121040344</left_val> - <right_val>-0.3103390038013458</right_val></_></_> - <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 8 18 10 -1.</_> - <_>15 8 9 5 2.</_> - <_>6 13 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1137709990143776</threshold> - <left_val>1.1719540357589722</left_val> - <right_val>0.0836810022592545</right_val></_></_> - <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 18 10 -1.</_> - <_>0 8 9 5 2.</_> - <_>9 13 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0847719982266426</threshold> - <left_val>0.8169479966163635</left_val> - <right_val>-0.1783750057220459</right_val></_></_> - <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 6 3 18 -1.</_> - <_>12 12 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0245520006865263</threshold> - <left_val>-0.1862729936838150</left_val> - <right_val>0.1434009969234467</right_val></_></_> - <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 14 18 3 -1.</_> - <_>0 15 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.0269995853304863e-003</threshold> - <left_val>0.3265919983386993</left_val> - <right_val>-0.2354129999876022</right_val></_></_> - <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 6 3 18 -1.</_> - <_>12 12 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0111779998987913</threshold> - <left_val>0.1976120024919510</left_val> - <right_val>-0.0217010006308556</right_val></_></_> - <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 6 3 18 -1.</_> - <_>9 12 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0293669998645782</threshold> - <left_val>-0.9341480135917664</left_val> - <right_val>-0.0217049997299910</right_val></_></_> - <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 14 18 3 -1.</_> - <_>6 15 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.3640000298619270e-003</threshold> - <left_val>0.0255730003118515</left_val> - <right_val>0.4641279876232147</right_val></_></_> - <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 5 18 3 -1.</_> - <_>0 6 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0140260001644492</threshold> - <left_val>-0.2122859954833984</left_val> - <right_val>0.4007880091667175</right_val></_></_> - <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 5 22 3 -1.</_> - <_>2 6 22 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0133419996127486</threshold> - <left_val>0.7420269846916199</left_val> - <right_val>0.0290019996464252</right_val></_></_> - <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 21 10 -1.</_> - <_>7 0 7 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2842279970645905</threshold> - <left_val>-0.1924359947443008</left_val> - <right_val>0.4363119900226593</right_val></_></_> - <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 3 18 17 -1.</_> - <_>12 3 6 17 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2372400015592575</threshold> - <left_val>0.6973639726638794</left_val> - <right_val>0.0693079978227615</right_val></_></_> - <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 18 17 -1.</_> - <_>6 3 6 17 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1116970032453537</threshold> - <left_val>0.3914720118045807</left_val> - <right_val>-0.2092200070619583</right_val></_></_> - <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 24 11 -1.</_> - <_>8 12 8 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1278750002384186</threshold> - <left_val>-0.0725559964776039</left_val> - <right_val>0.3608820140361786</right_val></_></_> - <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 10 16 6 -1.</_> - <_>4 13 16 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0629009976983070</threshold> - <left_val>0.9542499780654907</left_val> - <right_val>-0.1540279984474182</right_val></_></_> - <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 8 6 8 -1.</_> - <_>12 12 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0174390003085136</threshold> - <left_val>-0.0511349998414516</left_val> - <right_val>0.2775030136108398</right_val></_></_> - <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 14 8 7 -1.</_> - <_>10 14 4 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2319999514147639e-003</threshold> - <left_val>0.0756279975175858</left_val> - <right_val>-0.3645609915256500</right_val></_></_> - <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 10 6 14 -1.</_> - <_>18 10 3 7 2.</_> - <_>15 17 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0274950005114079</threshold> - <left_val>0.0518440008163452</left_val> - <right_val>0.4156259894371033</right_val></_></_> - <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 6 14 -1.</_> - <_>3 10 3 7 2.</_> - <_>6 17 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0435439981520176</threshold> - <left_val>0.7196999788284302</left_val> - <right_val>-0.1713220030069351</right_val></_></_> - <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 12 18 2 -1.</_> - <_>6 13 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0110259996727109</threshold> - <left_val>0.1435460001230240</left_val> - <right_val>-0.6540300250053406</right_val></_></_> - <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 10 6 -1.</_> - <_>5 10 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0208659991621971</threshold> - <left_val>0.0400890000164509</left_val> - <right_val>-0.4574329853057861</right_val></_></_> - <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 11 9 4 -1.</_> - <_>12 13 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0223040003329515</threshold> - <left_val>0.5385500192642212</left_val> - <right_val>0.0716629996895790</right_val></_></_> - <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 11 9 6 -1.</_> - <_>0 13 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0324920006096363</threshold> - <left_val>-0.0459919981658459</left_val> - <right_val>-1.0047069787979126</right_val></_></_> - <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 2 3 18 -1.</_> - <_>12 2 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0122699998319149</threshold> - <left_val>0.0343349985778332</left_val> - <right_val>0.4243179857730866</right_val></_></_> - <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 2 3 18 -1.</_> - <_>11 2 1 18 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.3820000290870667e-003</threshold> - <left_val>-0.2585060000419617</left_val> - <right_val>0.2626349925994873</right_val></_></_> - <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 12 6 10 -1.</_> - <_>11 12 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0373539999127388</threshold> - <left_val>0.1569249927997589</left_val> - <right_val>-1.0429090261459351</right_val></_></_> - <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 10 6 9 -1.</_> - <_>1 13 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0141110001131892</threshold> - <left_val>-0.7317770123481751</left_val> - <right_val>-0.0202769991010427</right_val></_></_> - <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 9 16 6 -1.</_> - <_>14 9 8 3 2.</_> - <_>6 12 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0570669993758202</threshold> - <left_val>0.0833600014448166</left_val> - <right_val>1.5661499500274658</right_val></_></_> - <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 8 9 6 -1.</_> - <_>1 10 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.9680001102387905e-003</threshold> - <left_val>-0.3531819880008698</left_val> - <right_val>0.1469839960336685</right_val></_></_> - <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 7 16 6 -1.</_> - <_>7 9 16 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0244929995387793</threshold> - <left_val>0.2832590043544769</left_val> - <right_val>-3.4640000667423010e-003</right_val></_></_> - <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 0 18 3 -1.</_> - <_>0 1 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0112549997866154</threshold> - <left_val>-0.8401749730110169</left_val> - <right_val>-0.0362519994378090</right_val></_></_> - <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 0 6 9 -1.</_> - <_>12 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0345330014824867</threshold> - <left_val>0.1499850004911423</left_val> - <right_val>-0.8736709952354431</right_val></_></_> - <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 5 6 6 -1.</_> - <_>12 5 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0243030004203320</threshold> - <left_val>-0.1878750026226044</left_val> - <right_val>0.5948399901390076</right_val></_></_> - <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 18 -1.</_> - <_>12 6 2 9 2.</_> - <_>10 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.8790001571178436e-003</threshold> - <left_val>0.4431569874286652</left_val> - <right_val>-0.0565709993243217</right_val></_></_> - <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 0 6 9 -1.</_> - <_>10 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0351420007646084</threshold> - <left_val>-0.0564949996769428</left_val> - <right_val>-1.3617190122604370</right_val></_></_> - <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 6 9 -1.</_> - <_>9 4 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.6259998343884945e-003</threshold> - <left_val>-0.3116169869899750</left_val> - <right_val>0.2544769942760468</right_val></_></_> - <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 0 18 9 -1.</_> - <_>1 3 18 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0831310003995895</threshold> - <left_val>1.6424349546432495</left_val> - <right_val>-0.1442939937114716</right_val></_></_> - <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 3 24 3 -1.</_> - <_>0 4 24 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0140159996226430</threshold> - <left_val>-0.7781950235366821</left_val> - <right_val>0.1717330068349838</right_val></_></_> - <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 14 9 4 -1.</_> - <_>6 16 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2450000504031777e-003</threshold> - <left_val>-0.2319139987230301</left_val> - <right_val>0.2852790057659149</right_val></_></_> - <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 9 8 10 -1.</_> - <_>12 9 4 5 2.</_> - <_>8 14 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0168030001223087</threshold> - <left_val>-0.3596509993076325</left_val> - <right_val>0.2041299939155579</right_val></_></_> - <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 13 9 -1.</_> - <_>5 5 13 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0767479985952377</threshold> - <left_val>0.7805050015449524</left_val> - <right_val>-0.1561280041933060</right_val></_></_> - <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 4 16 9 -1.</_> - <_>4 7 16 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2367199957370758</threshold> - <left_val>1.1813700199127197</left_val> - <right_val>0.0781119987368584</right_val></_></_> - <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 4 14 9 -1.</_> - <_>4 7 14 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1005740016698837</threshold> - <left_val>-0.4710409939289093</left_val> - <right_val>0.0791729986667633</right_val></_></_> - <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 5 9 6 -1.</_> - <_>8 7 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.3239999534562230e-003</threshold> - <left_val>0.2226269990205765</left_val> - <right_val>-0.3709979951381683</right_val></_></_> - <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 7 16 6 -1.</_> - <_>1 9 16 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0221529994159937</threshold> - <left_val>-0.0386490002274513</left_val> - <right_val>-0.9227499961853027</right_val></_></_> - <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 5 13 9 -1.</_> - <_>10 8 13 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1124619990587235</threshold> - <left_val>0.4189960062503815</left_val> - <right_val>0.0804110020399094</right_val></_></_> - <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 5 13 9 -1.</_> - <_>1 8 13 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0164810009300709</threshold> - <left_val>-0.1675669997930527</left_val> - <right_val>0.7184240221977234</right_val></_></_> - <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 4 24 6 -1.</_> - <_>12 4 12 3 2.</_> - <_>0 7 12 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0681139975786209</threshold> - <left_val>0.1571989953517914</left_val> - <right_val>-0.8768110275268555</right_val></_></_> - <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 14 10 9 -1.</_> - <_>1 17 10 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0160119999200106</threshold> - <left_val>-4.1600000113248825e-003</left_val> - <right_val>-0.5932779908180237</right_val></_></_> - <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 17 18 3 -1.</_> - <_>5 18 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.6640001237392426e-003</threshold> - <left_val>-0.0301539991050959</left_val> - <right_val>0.4834530055522919</right_val></_></_> - <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 18 3 -1.</_> - <_>0 17 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7579997703433037e-003</threshold> - <left_val>-0.2266740053892136</left_val> - <right_val>0.3366230130195618</right_val></_></_> - <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 17 9 6 -1.</_> - <_>9 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.7289999201893806e-003</threshold> - <left_val>-0.0603739991784096</left_val> - <right_val>0.3145810067653656</right_val></_></_> - <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 20 22 4 -1.</_> - <_>1 20 11 2 2.</_> - <_>12 22 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.5869999080896378e-003</threshold> - <left_val>-0.2987259924411774</left_val> - <right_val>0.1778749972581863</right_val></_></_> - <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 14 8 6 -1.</_> - <_>8 17 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.8989999555051327e-003</threshold> - <left_val>0.2189020067453384</left_val> - <right_val>-0.2956709861755371</right_val></_></_> - <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 6 8 15 -1.</_> - <_>8 11 8 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0300539992749691</threshold> - <left_val>1.2150429487228394</left_val> - <right_val>-0.1435499936342239</right_val></_></_> - <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 4 18 3 -1.</_> - <_>5 5 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0141810001805425</threshold> - <left_val>0.0124519998207688</left_val> - <right_val>0.5549010038375855</right_val></_></_> - <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 3 5 10 -1.</_> - <_>9 8 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0605270005762577</threshold> - <left_val>-1.4933999776840210</left_val> - <right_val>-0.0652270019054413</right_val></_></_> - <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 8 12 3 -1.</_> - <_>6 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0198829993605614</threshold> - <left_val>-0.3852640092372894</left_val> - <right_val>0.1976120024919510</right_val></_></_> - <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 6 18 6 -1.</_> - <_>2 6 9 3 2.</_> - <_>11 9 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0312189999967813</threshold> - <left_val>-0.2128120064735413</left_val> - <right_val>0.2944650053977966</right_val></_></_> - <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 6 4 18 -1.</_> - <_>12 6 2 9 2.</_> - <_>10 15 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0182719994336367</threshold> - <left_val>9.7200000891461968e-004</left_val> - <right_val>0.6681420207023621</right_val></_></_> - <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>7 5 6 6 -1.</_> - <_>10 5 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1089999461546540e-003</threshold> - <left_val>-0.6246790289878845</left_val> - <right_val>-1.6599999507889152e-003</right_val></_></_> - <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 5 2 18 -1.</_> - <_>14 14 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0367139987647533</threshold> - <left_val>-0.4233390092849731</left_val> - <right_val>0.1208470016717911</right_val></_></_> - <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>8 5 2 18 -1.</_> - <_>8 14 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0120440004393458</threshold> - <left_val>0.0258820001035929</left_val> - <right_val>-0.5073239803314209</right_val></_></_> - <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 2 10 6 -1.</_> - <_>9 2 5 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0747490003705025</threshold> - <left_val>0.1318469941616058</left_val> - <right_val>-0.2173960059881210</right_val></_></_> - <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 1 18 12 -1.</_> - <_>12 1 9 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2347320020198822</threshold> - <left_val>1.1775610446929932</left_val> - <right_val>-0.1511469930410385</right_val></_></_> - <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 2 17 22 -1.</_> - <_>5 13 17 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1409649997949600</threshold> - <left_val>0.0339910015463829</left_val> - <right_val>0.3992309868335724</right_val></_></_> - <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>4 0 12 6 -1.</_> - <_>4 2 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.1789997853338718e-003</threshold> - <left_val>-0.3180670142173767</left_val> - <right_val>0.1168169975280762</right_val></_></_> - <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 9 16 6 -1.</_> - <_>14 9 8 3 2.</_> - <_>6 12 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0572169981896877</threshold> - <left_val>0.8439909815788269</left_val> - <right_val>0.0838890001177788</right_val></_></_> - <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 0 5 18 -1.</_> - <_>9 9 5 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0552270002663136</threshold> - <left_val>0.3688830137252808</left_val> - <right_val>-0.1891340017318726</right_val></_></_> - <_> - <!-- tree 155 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 0 6 9 -1.</_> - <_>14 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0215830001980066</threshold> - <left_val>-0.5216180086135864</left_val> - <right_val>0.1577260047197342</right_val></_></_> - <_> - <!-- tree 156 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 0 6 9 -1.</_> - <_>8 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0257479995489120</threshold> - <left_val>-0.0599219985306263</left_val> - <right_val>-1.0674990415573120</right_val></_></_> - <_> - <!-- tree 157 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 6 12 -1.</_> - <_>11 1 2 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0130989998579025</threshold> - <left_val>0.7895839810371399</left_val> - <right_val>0.0520999990403652</right_val></_></_> - <_> - <!-- tree 158 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 9 13 4 -1.</_> - <_>5 11 13 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.2799998987466097e-003</threshold> - <left_val>-1.1704430580139160</left_val> - <right_val>-0.0593569986522198</right_val></_></_> - <_> - <!-- tree 159 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 19 3 -1.</_> - <_>5 9 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.8060004636645317e-003</threshold> - <left_val>0.0417179986834526</left_val> - <right_val>0.6635259985923767</right_val></_></_> - <_> - <!-- tree 160 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 9 6 8 -1.</_> - <_>9 13 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.9699998497962952e-003</threshold> - <left_val>-0.3586269915103912</left_val> - <right_val>0.0604580007493496</right_val></_></_> - <_> - <!-- tree 161 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 9 4 15 -1.</_> - <_>11 14 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0230001322925091e-003</threshold> - <left_val>0.2097939997911453</left_val> - <right_val>-0.2480600029230118</right_val></_></_> - <_> - <!-- tree 162 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 0 6 14 -1.</_> - <_>2 0 3 7 2.</_> - <_>5 7 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0250170007348061</threshold> - <left_val>-0.1879590004682541</left_val> - <right_val>0.3954710066318512</right_val></_></_> - <_> - <!-- tree 163 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 1 6 14 -1.</_> - <_>18 1 3 7 2.</_> - <_>15 8 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.9009999968111515e-003</threshold> - <left_val>0.2566390037536621</left_val> - <right_val>-0.0949190035462379</right_val></_></_> - <_> - <!-- tree 164 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 1 6 14 -1.</_> - <_>3 1 3 7 2.</_> - <_>6 8 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.3850000947713852e-003</threshold> - <left_val>0.0331390015780926</left_val> - <right_val>-0.4607540071010590</right_val></_></_> - <_> - <!-- tree 165 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 20 18 4 -1.</_> - <_>12 20 9 2 2.</_> - <_>3 22 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0337719991803169</threshold> - <left_val>-0.9888160228729248</left_val> - <right_val>0.1463689953088760</right_val></_></_> - <_> - <!-- tree 166 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 0 4 20 -1.</_> - <_>5 0 2 10 2.</_> - <_>7 10 2 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0445230007171631</threshold> - <left_val>-0.1328669935464859</left_val> - <right_val>1.5796790122985840</right_val></_></_> - <_> - <!-- tree 167 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 8 8 12 -1.</_> - <_>20 8 4 6 2.</_> - <_>16 14 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0409290008246899</threshold> - <left_val>0.3387709856033325</left_val> - <right_val>0.0749709978699684</right_val></_></_> - <_> - <!-- tree 168 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 8 8 12 -1.</_> - <_>0 8 4 6 2.</_> - <_>4 14 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0393519997596741</threshold> - <left_val>-0.1832789927721024</left_val> - <right_val>0.4698069989681244</right_val></_></_> - <_> - <!-- tree 169 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 13 10 8 -1.</_> - <_>18 13 5 4 2.</_> - <_>13 17 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0703229978680611</threshold> - <left_val>-0.9832270145416260</left_val> - <right_val>0.1180810034275055</right_val></_></_> - <_> - <!-- tree 170 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 13 10 8 -1.</_> - <_>1 13 5 4 2.</_> - <_>6 17 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0357430018484592</threshold> - <left_val>-0.0330509990453720</left_val> - <right_val>-0.8361089825630188</right_val></_></_> - <_> - <!-- tree 171 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 8 4 15 -1.</_> - <_>15 13 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0429619997739792</threshold> - <left_val>1.1670809984207153</left_val> - <right_val>0.0806920006871223</right_val></_></_> - <_> - <!-- tree 172 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>5 8 4 15 -1.</_> - <_>5 13 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0210079997777939</threshold> - <left_val>0.6386979818344116</left_val> - <right_val>-0.1762630045413971</right_val></_></_> - <_> - <!-- tree 173 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 11 16 12 -1.</_> - <_>6 15 16 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1574220061302185</threshold> - <left_val>-0.2330249994993210</left_val> - <right_val>0.1251749992370606</right_val></_></_> - <_> - <!-- tree 174 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>2 11 16 12 -1.</_> - <_>2 15 16 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.8659998252987862e-003</threshold> - <left_val>-0.2203799933195114</left_val> - <right_val>0.2719680070877075</right_val></_></_> - <_> - <!-- tree 175 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>14 12 7 9 -1.</_> - <_>14 15 7 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0236220005899668</threshold> - <left_val>0.1612730026245117</left_val> - <right_val>-0.4332900047302246</right_val></_></_> - <_> - <!-- tree 176 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>10 1 3 21 -1.</_> - <_>10 8 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0746920034289360</threshold> - <left_val>-0.1699199974536896</left_val> - <right_val>0.5888490080833435</right_val></_></_> - <_> - <!-- tree 177 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 11 9 4 -1.</_> - <_>13 13 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.4799998654052615e-004</threshold> - <left_val>0.2584289908409119</left_val> - <right_val>-0.0359119996428490</right_val></_></_> - <_> - <!-- tree 178 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 10 17 9 -1.</_> - <_>3 13 17 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0162909999489784</threshold> - <left_val>-0.7676439881324768</left_val> - <right_val>-0.0204729996621609</right_val></_></_> - <_> - <!-- tree 179 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>13 8 8 15 -1.</_> - <_>13 13 8 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0331339985132217</threshold> - <left_val>-0.2718009948730469</left_val> - <right_val>0.1432570070028305</right_val></_></_> - <_> - <!-- tree 180 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 8 8 15 -1.</_> - <_>3 13 8 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0487979985773563</threshold> - <left_val>0.0764089971780777</left_val> - <right_val>-0.4144519865512848</right_val></_></_> - <_> - <!-- tree 181 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>11 14 10 8 -1.</_> - <_>16 14 5 4 2.</_> - <_>11 18 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.2869999520480633e-003</threshold> - <left_val>-0.0386289991438389</left_val> - <right_val>0.2075379937887192</right_val></_></_> - <_> - <!-- tree 182 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 18 22 6 -1.</_> - <_>0 18 11 3 2.</_> - <_>11 21 11 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0453040003776550</threshold> - <left_val>-0.1777790039777756</left_val> - <right_val>0.6346139907836914</right_val></_></_> - <_> - <!-- tree 183 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 16 24 4 -1.</_> - <_>0 16 12 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1070580035448074</threshold> - <left_val>0.1897229999303818</left_val> - <right_val>-0.5123620033264160</right_val></_></_> - <_> - <!-- tree 184 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>6 20 12 3 -1.</_> - <_>12 20 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0405250005424023</threshold> - <left_val>0.7061499953269959</left_val> - <right_val>-0.1780329942703247</right_val></_></_> - <_> - <!-- tree 185 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>18 12 6 12 -1.</_> - <_>21 12 3 6 2.</_> - <_>18 18 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0319689996540546</threshold> - <left_val>0.0681499987840652</left_val> - <right_val>0.6873310208320618</right_val></_></_> - <_> - <!-- tree 186 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 12 6 12 -1.</_> - <_>0 12 3 6 2.</_> - <_>3 18 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0576170012354851</threshold> - <left_val>0.7517049908638001</left_val> - <right_val>-0.1576499938964844</right_val></_></_> - <_> - <!-- tree 187 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 17 9 6 -1.</_> - <_>15 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0135939996689558</threshold> - <left_val>0.1941190063953400</left_val> - <right_val>-0.2456189990043640</right_val></_></_> - <_> - <!-- tree 188 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>1 6 22 10 -1.</_> - <_>1 6 11 5 2.</_> - <_>12 11 11 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0713960006833076</threshold> - <left_val>-0.0468810014426708</left_val> - <right_val>-0.8819829821586609</right_val></_></_> - <_> - <!-- tree 189 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 17 9 6 -1.</_> - <_>15 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0148959998041391</threshold> - <left_val>-0.4453240036964417</left_val> - <right_val>0.1767989993095398</right_val></_></_> - <_> - <!-- tree 190 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 18 18 2 -1.</_> - <_>0 19 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0100260004401207</threshold> - <left_val>0.6512269973754883</left_val> - <right_val>-0.1670999974012375</right_val></_></_> - <_> - <!-- tree 191 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 15 19 3 -1.</_> - <_>3 16 19 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.7589999847114086e-003</threshold> - <left_val>-0.0583010017871857</left_val> - <right_val>0.3448329865932465</right_val></_></_> - <_> - <!-- tree 192 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 18 3 -1.</_> - <_>0 14 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0162630006670952</threshold> - <left_val>-0.1558150053024292</left_val> - <right_val>0.8643270134925842</right_val></_></_> - <_> - <!-- tree 193 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>15 17 9 6 -1.</_> - <_>15 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0401760004460812</threshold> - <left_val>-0.6102859973907471</left_val> - <right_val>0.1179639995098114</right_val></_></_> - <_> - <!-- tree 194 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 17 9 6 -1.</_> - <_>0 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0270809996873140</threshold> - <left_val>-0.0496019981801510</left_val> - <right_val>-0.8999000191688538</right_val></_></_> - <_> - <!-- tree 195 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>12 17 9 6 -1.</_> - <_>12 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0524200014770031</threshold> - <left_val>0.1129719987511635</left_val> - <right_val>-1.0833640098571777</right_val></_></_> - <_> - <!-- tree 196 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>3 17 9 6 -1.</_> - <_>3 19 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0191600006073713</threshold> - <left_val>-0.7988010048866272</left_val> - <right_val>-0.0340790003538132</right_val></_></_> - <_> - <!-- tree 197 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>16 2 3 20 -1.</_> - <_>17 2 1 20 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.7730000913143158e-003</threshold> - <left_val>-0.1912409961223602</left_val> - <right_val>0.2153519988059998</right_val></_></_> - <_> - <!-- tree 198 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>0 13 24 8 -1.</_> - <_>0 17 24 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0757620036602020</threshold> - <left_val>-0.1342169940471649</left_val> - <right_val>1.6807060241699219</right_val></_></_> - <_> - <!-- tree 199 --> - <_> - <!-- root node --> - <feature> - <rects> - <_>9 1 6 22 -1.</_> - <_>12 1 3 11 2.</_> - <_>9 12 3 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0221730004996061</threshold> - <left_val>0.4860099852085114</left_val> - <right_val>3.6160000599920750e-003</right_val></_></_></trees> - <stage_threshold>-2.9928278923034668</stage_threshold> - <parent>23</parent> - <next>-1</next></_></stages></haarcascade_frontalface_default> -</opencv_storage> diff --git a/lab1/sample_oak_jetson.py b/lab1/sample_oak_jetson.py deleted file mode 100644 index e50ab1ece9bafa5092327191dadc768469d538a8..0000000000000000000000000000000000000000 --- a/lab1/sample_oak_jetson.py +++ /dev/null @@ -1,55 +0,0 @@ -#!/usr/bin/env python3 - -import cv2 -import time -import depthai as dai - -import matplotlib.pyplot as plt - -from IPython.display import clear_output - -# Create pipeline -pipeline = dai.Pipeline() - -# Define source and output -camRgb = pipeline.create(dai.node.ColorCamera) -xoutRgb = pipeline.create(dai.node.XLinkOut) - -xoutRgb.setStreamName("rgb") - -# Properties -camRgb.setPreviewSize(300, 300) -camRgb.setInterleaved(False) -camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB) - -# Linking -camRgb.preview.link(xoutRgb.input) - -# Connect to device and start pipeline -with dai.Device(pipeline) as device: - - # Output queue will be used to get the rgb frames from the output defined above - qRgb = device.getOutputQueue(name="rgb", maxSize=4, blocking=False) - - for i in range(10) : - # Clear output beacause we do not have an animation here - # Not so fancy but breaks less often - clear_output(wait=True) - inRgb = qRgb.get() # blocking call, will wait until a new data has arrived - - # Retrieve 'bgr' (opencv format) frame - frame = inRgb.getCvFrame() - - # Convert to RGB - frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) - - # Save image - cv2.imwrite("oak0000{}.jpeg".format(i), frame) - print("Saved oak000{}".format(i)) - - # Display image - plt.imshow(frame) - plt.show() - - # Feel free to edit - time.sleep(1) diff --git a/.ipynb_checkpoints/HAAI_2-checkpoint.ipynb b/lab2/.ipynb_checkpoints/HAAI_2-checkpoint.ipynb similarity index 100% rename from .ipynb_checkpoints/HAAI_2-checkpoint.ipynb rename to lab2/.ipynb_checkpoints/HAAI_2-checkpoint.ipynb diff --git a/HAAI_2.ipynb b/lab2/HAAI_2.ipynb similarity index 100% rename from HAAI_2.ipynb rename to lab2/HAAI_2.ipynb diff --git a/lab2/Lab2.ipynb b/lab2/Lab2.ipynb deleted file mode 100644 index 0e7d9ea06ed18abddf5ee4d781f41dadebd09148..0000000000000000000000000000000000000000 --- a/lab2/Lab2.ipynb +++ /dev/null @@ -1,1030 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "f63ddc5b-dae2-4199-af98-78a698931ef7", - "metadata": { - "id": "f63ddc5b-dae2-4199-af98-78a698931ef7" - }, - "source": [ - "# Lab work\n", - "\n", - "Henrique Núñez" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "a1b540ef-b205-4365-b738-07b43818261a", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "a1b540ef-b205-4365-b738-07b43818261a", - "outputId": "f8dd5e17-ac4f-4f96-b7e5-0e27c6ac9d28" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "<module 'numba.cuda' from '/usr/local/lib/python3.10/dist-packages/numba/cuda/__init__.py'>\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import numba as nb\n", - "import numba.cuda\n", - "import matplotlib.pyplot as plt\n", - "from functools import partial\n", - "import timeit\n", - "\n", - "# For instrumentation\n", - "import time\n", - "\n", - "def instrumentor(num_run=1):\n", - " def _instrumentor(func):\n", - " def wrapper(*args, **kwargs):\n", - " runs = []\n", - " for _run in range(num_run):\n", - " start = time.time()\n", - " result = func(*args, **kwargs)\n", - " end = time.time()\n", - " runs.append(end - start)\n", - " runtime = np.average(runs) * 10**6\n", - " print(f\"Function {func.__name__} took {runtime:.2f} µs seconds to execute\")\n", - " return result, runtime\n", - " return wrapper\n", - " return _instrumentor\n", - "\n", - "print(nb.cuda)" - ] - }, - { - "cell_type": "markdown", - "id": "dc73da03-203b-4a22-9dff-1c52296387f0", - "metadata": { - "id": "dc73da03-203b-4a22-9dff-1c52296387f0" - }, - "source": [ - "# Acceleration in CPU with numba" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "f376285f-d9b1-4a2f-96e0-8e4239dc4ca9", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "f376285f-d9b1-4a2f-96e0-8e4239dc4ca9", - "outputId": "4b270df9-f221-4c42-fefc-6db13c79b7fa" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4.47 ms ± 1.05 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" - ] - } - ], - "source": [ - "# Baseline implementation\n", - "\n", - "def monte_carlo_pi(nsamples):\n", - " acc = 0\n", - " for i in nb.prange(nsamples):\n", - " x = np.random.random()\n", - " y = np.random.random()\n", - " if (x**2 + y**2) < 1.0:\n", - " acc += 1\n", - " return 4.0 * acc / nsamples\n", - "\n", - "%timeit monte_carlo_pi(1000)" - ] - }, - { - "cell_type": "markdown", - "id": "8a768e9b-e0e9-4f6a-9058-ab1a4d898936", - "metadata": { - "id": "8a768e9b-e0e9-4f6a-9058-ab1a4d898936" - }, - "source": [ - "### Baseline" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "63f353e3-4a38-4324-8f12-b289523b4858", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "63f353e3-4a38-4324-8f12-b289523b4858", - "outputId": "eb37febb-7d8e-44f5-b1e2-b0f19f8a82f7" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.21 ms ± 282 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" - ] - } - ], - "source": [ - "%timeit monte_carlo_pi(1000)" - ] - }, - { - "cell_type": "markdown", - "id": "10c6cf06-d2b5-49ef-9ffc-e93f50dbd574", - "metadata": { - "id": "10c6cf06-d2b5-49ef-9ffc-e93f50dbd574" - }, - "source": [ - "### CPU accelerated" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "a59d4f2d-b980-4538-a1ef-9083b8635180", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "a59d4f2d-b980-4538-a1ef-9083b8635180", - "outputId": "e5f1d799-53b8-424c-fed1-677afc633e17" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "12.3 µs ± 2.64 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n", - "13.6 µs ± 2.96 µs per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n" - ] - } - ], - "source": [ - "monte_carlo_pi_jit = nb.njit()(monte_carlo_pi)\n", - "%timeit monte_carlo_pi_jit(1000)\n", - "%timeit monte_carlo_pi_jit(1000)" - ] - }, - { - "cell_type": "markdown", - "id": "cae05830-75f5-4e9a-9fa4-3bb7e3fdebb7", - "metadata": { - "id": "cae05830-75f5-4e9a-9fa4-3bb7e3fdebb7" - }, - "source": [ - "### CPU MT" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "21eaa95e-f392-42c0-9fb5-ada210d07224", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "21eaa95e-f392-42c0-9fb5-ada210d07224", - "outputId": "38219d52-a247-4822-c849-24f63089e807" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "49.1 µs ± 26.4 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" - ] - } - ], - "source": [ - "monte_carlo_pi_jit_par = nb.njit(parallel=True)(monte_carlo_pi)\n", - "%timeit monte_carlo_pi_jit_par(1000)" - ] - }, - { - "cell_type": "markdown", - "id": "6b4ba608-c6a0-4f71-8f15-5ae39e3420b4", - "metadata": { - "id": "6b4ba608-c6a0-4f71-8f15-5ae39e3420b4" - }, - "source": [ - "## Answers\n", - "\n", - "1. Because it has the overhead of JIT'ing the code, what takes a large time.\n", - "2. Answer below.\n", - "3. `nopython` is a boolean flag for numba that makes the compiled code to execute without the python interpreter, and this leads to a better performance. This will typically be executed natively." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "3bace93f-747d-4351-801a-d75fcd277559", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 730 - }, - "id": "3bace93f-747d-4351-801a-d75fcd277559", - "outputId": "8dda663c-3a0b-4db7-eb8c-73adc7cfa60d" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Runtime for 100: 1.80 µs.\n", - "Runtime for 7235: 80.69 µs.\n", - "Runtime for 14371: 150.93 µs.\n", - "Runtime for 21507: 221.42 µs.\n", - "Runtime for 28642: 293.57 µs.\n", - "Runtime for 35778: 787.27 µs.\n", - "Runtime for 42914: 751.27 µs.\n", - "Runtime for 50050: 646.66 µs.\n", - "Runtime for 57185: 620.98 µs.\n", - "Runtime for 64321: 655.55 µs.\n", - "Runtime for 71457: 881.66 µs.\n", - "Runtime for 78592: 793.74 µs.\n", - "Runtime for 85728: 1027.47 µs.\n", - "Runtime for 92864: 962.41 µs.\n", - "Runtime for 100000: 1163.84 µs.\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG1CAYAAADwRl5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOpUlEQVR4nO3dd3hUZfrG8e8kIZUkEAKBkEDoEEihd0GkCIKKBWwYZFdXV0GMWNhdxQ4qIqJZXV3rrgoKigVkVUTpoiGFDoEAoSQQIBXSZs7vj2j8RYqZMJPJzNyf68p1MWfOnHkSDpmbc973fUyGYRiIiIiIuCAPRxcgIiIiYi8KOiIiIuKyFHRERETEZSnoiIiIiMtS0BERERGXpaAjIiIiLktBR0RERFyWgo6IiIi4LC9HF+BIFouFI0eOEBgYiMlkcnQ5IiIiUgOGYVBYWEh4eDgeHhe+ZuPWQefIkSNERkY6ugwRERGphaysLCIiIi64j1sHncDAQKDyBxUUFOTgakRERKQmCgoKiIyMrPocvxC3Djq/3q4KCgpS0BEREXEyNRl2osHIIiIi4rIUdERERMRlKeiIiIiIy1LQEREREZeloCMiIiIuS0FHREREXJaCjoiIiLgsBR0RERFxWQo6IiIi4rIUdERERMRlKeiIiIiIy1LQEREREbuwWAxHl6CgIyIiIrZnthhcmbSWp5dtJ/9MucPqUNARERERm/sy/QhbDxfwcfIhPD3+uMu4vSjoiIiIiE1ZLAZJqzIA+NPANjT08XJYLU4fdPLy8ujVqxfx8fF069aNN954w9EliYiIuLX/bctmd04Rgb5eJAyMcmgtjotYNhIYGMjq1avx9/enuLiYbt26cc0119CkSRNHlyYiIuJ2DMNgwXeVV3NuG9iGIN8GDq3H6a/oeHp64u/vD0BpaSmGYWAYjh/lLSIi4o6+3XGMHUcLCPD2ZIqDr+ZAPQg6q1evZty4cYSHh2MymVi6dOlZ+yQlJREVFYWvry99+/Zl06ZN1Z7Py8sjLi6OiIgIHnjgAUJDQ+uoehEREfeTU1BCUWnFWdsNw2DByj0AJAyIopG/d12XdhaHB53i4mLi4uJISko65/OLFi0iMTGRWbNmsXnzZuLi4hg1ahTHjh2r2qdRo0akpaWRmZnJBx98QE5OTl2VLyIi4lYyjhUx9PnvGTB7JR//nFXtLsr3u4+z5XA+fg08+dOgNg6s8jcODzqjR4/mqaeeYvz48ed8ft68edx+++3cdtttREdH89prr+Hv789bb7111r5hYWHExcWxZs2acx6rtLSUgoKCal8iIiJSc++u38+ZcjMFJRU8sDidW9/aRNbJ09Wu5tzSrxVNGvo4uNJKDg86F1JWVkZycjLDhw+v2ubh4cHw4cPZsGEDADk5ORQWFgKQn5/P6tWr6dSp0zmPN3v2bIKDg6u+IiMj7f9NiIiIuIiCknKWbD4EwIReEfh4ebBmTy6j5q/mH0u3knIwDx8vD26/pK2DK/1NvQ46ubm5mM1mwsLCqm0PCwsjOzsbgAMHDjB48GDi4uIYPHgwU6dOJSYm5pzHmzlzJvn5+VVfWVlZdv8eREREXMWS5EOcLjPToVlDnr02lq/uHUyfqBBOl5l5/8eDANzYpxXNAn0dXOlvnH56eZ8+fUhNTa3Rvj4+Pvj41I9LaSIiIs7EYjH4z4YDANw6IAqTyUTbpg1ZeEc/3t90kDnLd+Dl6cGdQ9o5uNLq6nXQCQ0NxdPT86zBxTk5OTRv3txBVYmIiLifNRm57MstJtDHi2u6t6za7uFhYlK/1lwdH05ZhaXejM35Vb2+deXt7U3Pnj1ZuXJl1TaLxcLKlSvp37+/AysTERFxL++t3w/Adb0iCDhHS4dA3wb1LuRAPbiiU1RUREZGRtXjzMxMUlNTCQkJoVWrViQmJpKQkECvXr3o06cP8+fPp7i4mNtuu82BVYuIiLiOAyeK8fQwEdHY/5zPHzxxmu92VS7rMqlf67os7aI5POj8/PPPXHrppVWPExMTAUhISOCdd95h4sSJHD9+nEcffZTs7Gzi4+NZsWLFWQOUrZGUlERSUhJms/mi6xcREXFmxwpKGP3SGiyGwUs3dGdU17OHhvxn434MAy7p2JS2TRs6oMraMxlu3C+hoKCA4OBg8vPzCQoKcnQ5IiIidW7u/3bxyi+dxk0meGxcVxIGRFU9f6bMTN9nvqWgpIK3JvdiWOfaX2iwFWs+v+v1GB0RERGxnzNlZv77Y+VMqp6tG2MYMOvzbTyzfAcWS+V1kM9SD1NQUkGrEH+GdGzmyHJrRUFHRETETS3ZfIi80+W0CvHno7/054FRlQvuvr56H1MXplBSbuadXwYhT+rXGk8PkwOrrR2Hj9ERERGRumexGLy1NhOAKQOj8PQwcfel7Qlv5MuDi9NZln6UXdmFZBwrwreBBxN6OWc3AQUdERERG1q9+zilFRZiI4IJC6o/KwT/3nc7j1Wui+PrxfX/L8SM7x5BWKAvf/lPMhnHin7Z1pJg/waOKvWiuGXQ0awrERGxh80HT3HrW5uqHjcL9CE2ohGxEcHERAQT2zK43qw18++1+wC4qW+rs9bFGdA+lMV3DeC2tzdxvKiUyQPqRyfy2tCsK826EhERG3luxU7++f1eAn28KC6rwHKOT9iWjfyIiwwmpmUj4iKC6doymGC/ur1asvVwPmNfXouXh4k1D11Ki2C/c+5XXFrBqdNl511fx1Gs+fx2yys6IiIi9vD9ruMAPHF1V0Z1bc72IwWkH8on/VAe6Yfz2Xe8mMN5Zzicd4blW7KrXnddzwievKobft6edVLnv9dUXs0ZG9vivCEHIMDH65yrIDsT565eRESknjhWUML2owUADO7QFH9vL3pFhdArKqRqn4KScrYezmfLofzKAHQ4j6yTZ1icfIith/N59ZaetAkNsGudR/PP8GX6UQD+NKitXd+rPlDQERERsYEfdldezYmNCCb0PONwgnwbMKBdKAPahVZt27jvBPd8kMLO7EKufHktcyfEnXN1Ylt5d/0BKiwGfduEEBMRbLf3qS+0jo6IiIgNfP9L0BnSsalVr+vXtgnLpg2id1RjCksr+Mt/kpn91Q4qzBab11hcWsEHvywQ+OfBrn81BxR0RERELlqF2cLaPbkADO1kXdABCAvy5YPb+/GnQZWzm/71wz4mvbmJ44WlNq3z45+zKCipoE1oAJd1dr5VjmvDLYNOUlIS0dHR9O7d29GliIiIC0g7lEf+mXKC/RoQF9GoVsdo4OnBI2OjSbqpBwHenmzYd4KxL6/h5/0nbVKj2WLw1rr9AEwZ1AYPJ1zluDbcMujcfffdbN++nZ9++snRpYiIiAv44ZfZVoM6hOLleXEfrVfEtuCzewbSvllDcgpKueH1jby1NpOLXQ3mm+05HDx5mkb+Dbi2R8uLOpYzccugIyIiYku/js8ZauX4nPNp3yyQz+4eyNjYFlRYDJ74cjtTP0wh73SZ1cfKP13OBz8e5JnlOwC4uW8r/L3dZy6S+3ynIiIidpBbVEr6oXzA+oHIFxLg48XLN3anR6vGPLN8B1+mH2XZlqN0aR5EnzYh9G0TQu82Ieec4VVutvDDruN8knKIb7cfo+yXgc1NArxJ6B9lsxqdgYKOiIjIRVizp/JqTnSLIJrZuLeVyWRiyqA2xEYE87dPt7A7p4jtRwvYfrSgqqt4u6YB9GkTQp82IYQH+/HV1mw+TzvCyeLfrv50Cgvk2p4tubp7S5oF1t/+W/agoCMiInIRfh2fM6QWs61qqldUCF/fN4RjBSVs2n+STZmVXzuzC9l7vJi9x4v5cFNWtdeENvThqvhwrunRkugWQZhM7jH4+PcUdERERGrJYjFY/eu0chvetjqfZkG+jI0NZ2xsOAB5p8v4af8pNmWeYFPmSQ6cPM3gDk25pkdLBre/+IHRrkBBR0REpJbSD+dzsriMQB8verRuXOfv38jfmxHRYYyIDqvz93YWbhn1tI6OiIjYwq+3rQa2D6WBrp7US275t6J1dERExBa+330MqN1qyFI33DLoiIiIXKxTxWWkZeUB9h2ILBdHQUdERKQW1mTkYjEqp263CPZzdDlyHgo6IiIitfDr+BzdtqrfFHRERESsZLEY/PBL2wdbroYstqegIyIiYqXtRwvILSrF39uTXlEhji5HLkBBR0RExEq/Xs0Z0C4Uby99lNZn+tsRERGx0ve7NK3cWbhl0NGCgSIiUlv5Z8rZfDAP0PgcZ+CWQUcLBoqISG2ty8jFbDFo1zSAyBB/R5cjf8Atg46IiEht/TatvJmDK5GaUNARERGpIcPQtHJno6AjIiJSQzuzC8kuKMG3gQd92mhauTNQ0BEREamhX6/m9G/bBN8Gng6uRmpCQUdERKSGfptWrvE5zkJBR0REpAaKSiv4ef8pQOvnOBMFHRERkRpYl5FLhcUgqok/rZsEOLocqSEFHRERkRr4dXyObls5FwUdERGRP2AYRtX6OZpW7lwUdERERP5AxrEiDuedwdvLg35tmzi6HLGCWwYd9boSERFr/Hrbqm+bEPy8Na3cmbhl0FGvKxERscb3avvgtNwy6IiIiNTU6bIKNmWeBDSt3Bkp6IiIiFzAhr0nKDNbiGjsR9tQTSt3Ngo6IiIiF/DbtPKmmEwmB1cj1lLQEREROQ/DMKrG5wzpqPE5zkhBR0RE5Dwyc4s5ePI0DTxNDGinaeXOSEFHRETkPH69bdU7KoQAHy8HVyO1oaAjIiJyHr9NK9dsK2eloCMiInIOJeVmNu47AWj9HGemoCMiInIOG/edoLTCQotgXzo0a+jocqSWFHRERETOQdPKXYOCjoiIyDmoW7lrUNARERH5nYMnTrMvtxgvDxMD24c6uhy5CAo6IiIiv/PD7mMA9GzdmEDfBg6uRi6GWwadpKQkoqOj6d27t6NLERGReiYzt5i31u0HYIimlTs9k2EYhqOLcJSCggKCg4PJz88nKCjI0eWIiIiDfb0tm/s/SqOwtIKmgT58OXUQYUG+ji5Lfseaz28t8ygiIm7PbDGY980uklbtBaB3VGOSbupBM4Ucp6egIyIibu1kcRn3LkxhzZ5cAG4bGMXfxnShgadbju5wOQo6IiLittIP5XHXfzdzOO8Mfg08mXNtDFfFt3R0WWJDCjoiIuKWFv10kEc+20ZZhYWoJv68NqknnZtrvKarUdARERG3UlJu5rHPt7HwpywAhncJY97EOII0jdwlKeiIiIjbOHTqNH99fzPph/IxmWDGyE7cNaQdHh5q8eCqFHRERMQtrNlznGkfpnDqdDmN/Rvw0g3duUTtHVyego6IiLg0i8Xg1R/28sLXu7AYENMymFdv6UFEY39HlyZ1QEFHRERcVkFJOfd/lMY323MAmNgrksev6opvA08HVyZ1RUFHRERc0q7sQu78bzKZucV4e3rwxFVduaFPK0eXJXVMQUdERFzO52lHeGhxOmfKzbRs5Mc/b+5BXGQjR5clDqCgIyIiLqPcbGH28p28tS4TgEHtQ1lwY3dCArwdXJk4ioKOiIi4hGMFJdzzQQqb9p8E4K9D23H/yE54auq4W1PQERERp7c+I5dpC1PILSoj0MeLuRPiGNW1uaPLknpAQUdERJyW2WLwyncZzF+5G8OAzs0D+efNPWjbtKGjS5N6QkFHREScUm5RKfctSq3qOq6p43IuCjoiIuJ0ftx3gmkLU8gpKMWvgSdPXd2Na3tGOLosqYcUdERExGlYLAb/Wr2PuV/vwmwxaN+sIf+8uQcdwwIdXZrUUwo6IiLiFE4Vl5H4USqrdh0HYHz3ljx1dTcCfPRRJufnlmdHUlISSUlJmM1mR5ciIiI1sPngKe55fzNH8kvw9vLgiSu7MrF3JCaTpo7LhZkMwzAcXYSjFBQUEBwcTH5+PkFBQY4uR0REfscwDN5cm8mcr3ZSYTFoExpA0k09iA7X72x3Zs3nt1te0RERkfov/0w5D3ycxte/NOS8IrYFc66JIdC3gYMrE2eioCMiIvVO+qE87v5gM1knz+Dt6cEjY7twS7/WulUlVlPQERGResMwDP6z8QBPfbmDMrOFyBA/km7qQWxEI0eXJk5KQUdEROqFwpJyHv5kC8vSjwIwMjqM56+PI9hPt6qk9hR0RETE4bYfKeDuDzaTmVuMl4eJh0d35k+D2uhWlVw0BR0REXEYwzBY+FMWj32+jdIKC+HBvrxycw96tGrs6NLERSjoiIiIQxSXVvCPpVv5NOUwAJd2asq8CfE0DvB2cGXiShR0RESkzu3OKeSv728m41gRnh4m7h/ZkTsvaYeHh25ViW0p6IiISJ1aknyIfyzdyplyM80CfXj5xu70bdvE0WWJi7Iq6OTl5fHpp5+yZs0aDhw4wOnTp2natCndu3dn1KhRDBgwwF51ioiIkyspNzPrs20s+jkLgEHtQ5l/QzyhDX0cXJm4Mo+a7HTkyBH+/Oc/06JFC5566inOnDlDfHw8l112GREREaxatYoRI0YQHR3NokWL7F2ziIg4mb3Hi7g6aR2Lfs7CZIL7hnfk3Sl9FHLE7mp0Rad79+4kJCSQnJxMdHT0Ofc5c+YMS5cuZf78+WRlZTFjxgybFioiIs7ps9TD/O2TLRSXmQlt6M1LN3RnYPtQR5clbqJGTT1PnDhBkyY1v39q7f6OoqaeIiL2U1xawazPt7E4+RAAfduE8PKN3WkW5OvgysTZ2bypp7WhxRlCjoiI2M/Ww/lM/TCFzNxiPExwz6XtmXZZB7w8azRiQsRmrD7j3n33XZYtW1b1+MEHH6RRo0YMGDCAAwcO2LQ4ERFxLhaLwb/X7GP8P9eRmVtM8yBfPri9H4kjOynkiENYfdY988wz+Pn5AbBhwwaSkpJ47rnnCA0N5b777rN5gSIi4hxyi0qZ8u5PPLVsB+Vmg5HRYXx172D6aeq4OJDV6+hkZWXRvn17AJYuXcq1117LHXfcwcCBAxk6dKit6xMRESewevdxEj9KI7eoFB8vD/4xNppb+rZSrypxOKuv6DRs2JATJ04A8PXXXzNixAgAfH19OXPmjG2rExGReq2swsLs5Tu49a1N5BaV0jGsIZ/fM4hJ/Vor5Ei9YPUVnREjRvDnP/+Z7t27s3v3bsaMGQPAtm3biIqKsnV9IiJST+3PLWbawhTSD+UDcHPfVvzjimj8vD0dXJnIb6y+opOUlET//v05fvw4S5YsqZphlZyczI033mjzAkVEpP75ZPMhrliwhvRD+QT7NeC1W3ry9PgYhRypd2q0jk5NFBUVkZ2dXTV+xxloHR0REesUlpTz6GfbqjqO92kTwvyJ8YQ38nNwZeJObL6Ozv+3evXqc27funUrs2bN4vjx49YeUkREnEBaVh7TFqZw4MRpPEwwfXhH7r60PZ7qOC71mNVB53wzq0wmE+PGjbvYekREpJ6xWAzeWLOP5/+3iwqLQctGfsy/IZ7eUSGOLk3kD1kddE6dOlXtsdlsZu/evcyYMYNBgwbZrDAREXG8YwUl3P9xGmv25AIwJqY5s8fHEuzfwMGVidSMzcbopKamMmzYME6ePGmLw9UJjdERETm/VbuOMeOjNE4Ul+HbwINZ47pyQ+9ITRsXh7PrGJ3z8fDwwNvb21aHExERBymtMPPcil28uTYTgM7NA3n5xu50CAt0cGUi1rM66KSnp5+1LScnhyeeeIIpU6ZUez42NvbiqhMRkTq193gR0z5MYduRAgAmD4ji4dGd8W2gaePinKy+deXh4YHJZOJ8L/v1OZPJhNlstkmR9qJbVyIilQzD4OPkQ8z6bBtnys009m/A89fFMTw6zNGliZzFrreuMjMza12YPWRlZTFp0iSOHTuGl5cXjzzyCNdff72jyxIRcRoFJeX8/dOtfJF2BID+bZvw4sR4mgf7OrgykYtns8HIjnL06FFycnKIj48nOzubnj17snv3bgICAv7wtbqiIyLubvPBU0z7MIVDp87g6WEicURH7hzSTmvjSL1mzed3jVpALFy4sMZvnpWVxbp162q8/8Vq0aIF8fHxADRv3pzQ0FCnmvklIuIIZotB0qoMrn9tA4dOnSGisR8f39lfCwCKy6lR0Hn11Vfp0qULzz33HDt27Djr+fz8fJYvX85NN91Ejx49qrqb18Tq1asZN24c4eHhmEwmli5detY+SUlJREVF4evrS9++fdm0adM5j5WcnIzZbCYyMrLG7y8i4m6y80u45d8/8vz/dmG2GIyNbcHyewfTo1VjR5cmYnM1Cjo//PADzz77LN988w3dunUjKCiIDh06EBMTQ0REBE2aNGHKlCm0atWKrVu3cuWVV9a4gOLiYuLi4khKSjrn84sWLSIxMZFZs2axefNm4uLiGDVqFMeOHau238mTJ7n11lt5/fXXa/zeIiLu5tvtOYx+aTUb9p3Ar4Enz10Xy8s3difIVwsAimuyeoxObm4ua9eu5cCBA5w5c4bQ0FC6d+9O9+7d8fCwuhl69WJMJj799FOuvvrqqm19+/ald+/evPLKKwBYLBYiIyOZOnUqDz/8MAClpaWMGDGC22+/nUmTJp33+KWlpZSWllY9LigoIDIyUmN0RMTllZSbmfPVTt5Zvx+AruFBLLixO+2aNnRsYSK1YNdZV6GhodWCiD2VlZWRnJzMzJkzq7Z5eHgwfPhwNmzYAFROiZw8eTLDhg27YMgBmD17No8//rhdaxYRqW8yjhVyzwcp7MwuBOBPg9rw4OWd8PHS2jji+i7uEoyd5ebmYjabCQurvo5DWFgY2dnZAKxbt45FixaxdOlS4uPjiY+PZ8uWLec83syZM8nPz6/6ysrKsvv3ICLiKIZh8OGmg4x9eS07swtpEuDN25N788jYaIUccRs2awHhKIMGDcJisdRoXx8fH3x8fOxckYiI4+WfLmfmp+ks31L5n8JB7UOZNyGOZkFaG0fcS70OOqGhoXh6epKTk1Nte05ODs2bN3dQVSIi9dvP+09y78JUDuedwcvDxAOjOnH74LZ4aNq4uKF6fevK29ubnj17snLlyqptFouFlStX0r9/fwdWJiJS/5gtBgtW7mHCvzZwOO8MrZv4s/iuAfxlSDuFHHFbtb6iU1ZWRmZmJu3atcPLq/YXhoqKisjIyKh6nJmZSWpqKiEhIbRq1YrExEQSEhLo1asXffr0Yf78+RQXF3PbbbfV+j2TkpJISkqq9724RERq6kjeGaYvSmVTZuWCqeO7t+SJq7oSqGnj4uasnl5++vRppk6dyrvvvgvA7t27adu2LVOnTqVly5ZVU75r6vvvv+fSSy89a3tCQgLvvPMOAK+88grPP/882dnZxMfHs2DBAvr27WvV+5yLWkCIiCtYsTWbh5akk3+mnABvT568uhvX9IhwdFkidmPN57fVQefee+9l3bp1zJ8/n8svv5z09HTatm3LZ599xmOPPUZKSspFFV+XFHRExJmVlJt5atl2/rvxIACxEcEsuKE7UaF/3OtPxJnZdR2dpUuXsmjRIvr164fJ9Ns9365du7J3717rqxUREavtyi5k6oeb2Z1TBMBfLmnL/SM74e1Vr4deitQ5q4PO8ePHadas2Vnbi4uLqwUfERGxPcMw+O+PB3nqy+2UVlgIbejDvAlxXNKxqaNLE6mXrI7+vXr1YtmyZVWPfw03//73vzUTSkTEjk4UlXLHf5J5ZOlWSissDOnYlBXTByvkiFyA1Vd0nnnmGUaPHs327dupqKjgpZdeYvv27axfv54ffvjBHjXanGZdiYiz+X7XMR5YnM7xwlIaeJp46PLOTBnYRtPGRf6A1YORAfbu3cucOXNIS0ujqKiIHj168NBDDxETE2OPGu1Gg5FFpL4rKTcze/kO3t1wAIAOzRry0g3diQ7X7yxxX3addeVKFHREpD7bdiSf6QtT2XOscsDx5AFRPDy6M74N1KdK3JtdZ1396tixYxw7duysPlOxsbG1PaSIiAAWi8G/1+7j+f/totxsENrQh+evj+XSTmdPBBGRC7M66CQnJ5OQkMCOHTv4/cUgk8mkcS8iIhfhSN4Z7v8ojQ37TgAwvEsYz14bQ5OGakgsUhtWB50pU6bQsWNH3nzzTcLCwjSlXETERr5MP8LfPtlCQUkFfg08eXRcNDf0jtTvWZGLYHXQ2bdvH0uWLKF9+/b2qEdExO0UlpQz6/NtfLL5MFC5wvH8ifG0bdrQwZWJOD+rg85ll11GWlqaUwcdTS8Xkfri5/0nue+jVLJOnsHDBH8d2p57h3eggadWOBaxBatnXeXm5pKQkECfPn3o1q0bDRpU74x75ZVX2rRAe9KsKxFxlHKzhZdX7uGVVRlYDGjZyI8XJ8bTp02Io0sTqffsOutqw4YNrFu3jq+++uqs5zQYWUTkj2XmFjN9USppWXkAjO/eksev6kqQb4MLv1BErGb1tdGpU6dyyy23cPToUSwWS7UvhRwRkfMzDIOFmw5yxYI1pGXlEeTrxYIbu/PixHiFHBE7sfqKzokTJ7jvvvsICwuzRz0iIi7pZHEZDy9J5+vtOQD0axvCvAnxhDfyc3BlIq7N6qBzzTXXsGrVKtq1a2ePekREXM7q3ceZ8XEax37pU3X/yE7cPrgtnupTJWJ3Vgedjh07MnPmTNauXUtMTMxZg5GnTZtms+JERJxZSbmZOV/t5J31+wFo1zSAl27oTreWwY4tTMSNWD3rqk2bNuc/mMnEvn37LrqouqJZVyJiLzuOFnDvwhR251T2qbq1f2tmju6Cn7f6VIlcLLvOusrMzKx1YfWF1tEREXuxWAzeWpfJcyt2UWa2ENrQm+evi+PSzupTJeII6l6uKzoiYiPZ+SXM+DiNtRm5AFzWuRnPXhdLqPpUidiUza/oJCYm8uSTTxIQEEBiYuIF9503b17NKxURcRFfbTnKzE+3kHe6HN8GHjwyNpqb+rRSnyoRB6tR0ElJSaG8vLzqzyIiUqmotILHPt/G4uRDAMS0DGb+DfG0U58qkXpBt65060pEain5wCnuW5TKwZOnMZngriHtmD68I95e6lMlYk/WfH5b/a9xypQpFBYWnrW9uLiYKVOmWHs4ERGnU2G28OI3u5nwrw0cPHmalo38WHh7Px68vLNCjkg9Y/UVHU9PT44ePUqzZtVnEOTm5tK8eXMqKipsWqA96YqOiFjrwInKPlUpB/MAuCo+nCeu6kawn1o4iNQVu0wvLygowDAMDMOgsLAQX1/fqufMZjPLly8/K/yIiLgKwzD4OPkQj3++jeIyM4G+Xjx1dTeuim/p6NJE5AJqHHQaNWqEyWTCZDLRsWPHs543mUw8/vjjNi1ORKQ+OFVcxsxPtrBiWzYAfdqEMG9CHBGN/R1cmYj8kRoHnVWrVmEYBsOGDWPJkiWEhIRUPeft7U3r1q0JDw+3S5EiIo6yZk9ln6qcglK8PEwkjuzIXy5ppz5VIk6ixkFnyJAhQOXKyK1aOffaEFoZWUT+SEm5mef/t4s311auBt+2aQAvTexOTIT6VIk4E00v12BkEfmdXdmF3LswhZ3ZlTNMb+7bin9cEa0+VSL1hF17XYmIuCqLxeCd9fuZs2InZRUWmgR489x1sVzWJczRpYlILSnoiIgAOQWVfarW7KnsU3Vpp6Y8d10cTQPVp0rEmSnoiIjbW7E1m5mfpHPqdDk+Xh7844ou3NKvtVOPRRSRSgo6IuK2iksrePyLbXz0c2Wfqq7hQbx0QzztmwU6uDIRsRWr1yrPyclh0qRJhIeH4+XlhaenZ7UvERFnkHLwFGMWrOGjnw9hMsGdQ9rx6V8HKuSIuBirr+hMnjyZgwcP8sgjj9CiRQtd2hURp1JhtpC0ai8LvtuD2WIQHuzLCxPi6d+uiaNLExE7sDrorF27ljVr1hAfH2+HckRE7OfgidPc91EqyQdOATAuLpynrupGsL/6VIm4KquDTmRkJG689I6IOCHDMFiy+TCPfb6NotIKAn28ePLqblwVH66r0iIuzuoxOvPnz+fhhx9m//79dihHRMS28k6XcfcHm5nxcRpFpRX0jmrM8nsHc3X3lgo5Im7A6is6EydO5PTp07Rr1w5/f38aNKh+yffkyZM2K85e1AJCxD2sz8gl8aM0sgtK8PIwcd+Ijtw5RH2qRNyJ1S0g3n333Qs+n5CQcFEF1SW1gBBxTaUVZub+bxdvrPmlT1VoAC9OjCcuspFjCxMRm7BrCwhnCjIi4n525xRy78JUdhwtAODGPq14ZGwX/L21bJiIO6rVv3yz2czSpUvZsWMHAF27duXKK6/UOjoi4jCGYfDu+v3M/monpRUWQgK8efbaWEZEq0+ViDuzOuhkZGQwZswYDh8+TKdOnQCYPXs2kZGRLFu2jHbt2tm8SBGRCzlWUMKMxems3n0cgCEdm/L89bE0C/R1cGUi4mhWj9EZM2YMhmHw/vvvExISAsCJEye45ZZb8PDwYNmyZXYp1B40RkfE+X29LZuHP9nCyeIyfLw8+NuYLtzaX32qRFyZXcfo/PDDD2zcuLEq5AA0adKEOXPmMHDgQOurFRGphdNlFTz55XY+3JQFQJcWQSy4IZ4OYWrhICK/sTro+Pj4UFhYeNb2oqIivL29bVKUiMiFpGXlMX1RKpm5xZhMcPvgttw/siM+XhonKCLVWb1g4NixY7njjjv48ccfMQwDwzDYuHEjd955J1deeaU9ahQRAcBsMXjluz1c++p6MnOLaRHsy/t/6svfxnRRyBGRc7L6is6CBQtISEigf//+VYsFVlRUcOWVV/LSSy/ZvEAREYCsk6e5b1EqP//Sp+qK2BY8c3WM+lSJyAVZHXQaNWrEZ599xp49e9i5cycAXbp0oX379jYvTkTEMAw+TTnMo59V9qlq6OPF41d25ZoeauEgIn+s1itodejQgQ4dOtiyFhGRavJPl/P3pVv4Mv0oAL1aN+bFifFEhvg7uDIRcRY1CjqJiYk8+eSTBAQEkJiYeMF9582bZ5PCRMS9rd+by/0fpXE0vwRPDxPTL+vAXUPb4eVp9dBCEXFjNQo6KSkplJeXV/1ZRMReSivMzPt6N6+v2YdhQFQTf+bf0J149akSkVqwesFAV6IFA0Xql4xjhUz7MJXtv/SpuqF3JI+MjSbAR32qROQ31nx+W30NeMqUKedcR6e4uJgpU6ZYeziHSEpKIjo6mt69ezu6FBGhcsDxexv2c8WCtWw/WkBj/wb8a1JP5lwbq5AjIhfF6is6np6eHD16lGbNmlXbnpubS/PmzamoqLBpgfakKzoijne8sJQHF6exaldln6pLOjZl7nWxNAtSnyoROTe7tIAoKCioWiCwsLAQX9/ffgmZzWaWL19+VvgREbmQb7fn8NCSdE4Ul+Ht5cHM0Z1J6B+Fh4emjYuIbdQ46DRq1AiTyYTJZKJjx45nPW8ymXj88cdtWpyIuKbTZRU8tWwHH/x4EIDOzQN56YbudGquPlUiYls1DjqrVq3CMAyGDRvGkiVLqjX19Pb2pnXr1oSHh9ulSBFxHVsO5XPvwhT25RYD8OdBbXjg8k5q4SAidlHjoDNkyBAAMjMzadWqlVYkFRGrmC0Gr/2wlxe/2U2FxaB5kC8vTIhjYPtQR5cmIi7M6ukMBw4c4MCBA+d9/pJLLrmogkTE9Rw6dZrERWls2n8SgDExzXlmfAyN/L0dXJmIuDqrg87QoUPP2vb/r+6YzeaLKkhEXMvSlMM8snQrhaUVBHh78tiVXbmuZ4SuCotInbA66Jw6dara4/LyclJSUnjkkUd4+umnbVaYiDi3/DPlPLJ0K5+nHQGgR6tGvDgxntZNAhxcmYi4E6uDTnBw8FnbRowYgbe3N4mJiSQnJ9ukMBFxXhv3neD+j9I4nHcGTw8TU4e1555L26tPlYjUOZstORoWFsauXbtsdTgRcUJlFRZe/HY3r/2wF8OA1k38eXFiPD1aNXZ0aSLipqwOOunp6dUeG4bB0aNHmTNnDvHx8baqS0ScTMaxIqYvSmHr4co+VRN6RfDouK40VAsHEXEgq38DxcfHYzKZ+H3niH79+vHWW2/ZrDARcQ6GYfDfHw/y9LLtlJRbaOTfgDnXxHB5txaOLk1ExPqgk5mZWe2xh4cHTZs2rdYSQkTcQ25RKQ8tTmflzmMADO4Qytzr4whTnyoRqSesDjqtW7e2Rx0i4mS+25nDg4vTyS0qw9vTg4dGd+a2AepTJSL1i9VBZ9q0abRv355p06ZV2/7KK6+QkZHB/PnzbVWbiNRDZ8rMPLN8B//ZWLlwaKewQF66MZ7OzS/cQVhExBGsnuu5ZMkSBg4ceNb2AQMGsHjxYpsUJSL109bD+Yx9eU1VyJkysA2f3TNQIUdE6i2rr+icOHHinGvpBAUFkZuba5OiRKR+MVsMXl+9j3nf7KLcbNAs0IcXJsQxuENTR5cmInJBVl/Rad++PStWrDhr+1dffUXbtm1tUpSI1B+H885w0xsbeXbFTsrNBpd3bc7/pl+ikCMiTsHqKzqJiYncc889HD9+nGHDhgGwcuVKXnjhBY3PEXExn6Ue5h9Lt1JYUoG/tyePjevK9b3Up0pEnIfVQWfKlCmUlpby9NNP8+STTwIQFRXFq6++yq233mrzAkWk7hWUlPPo0q0sTa3sUxUf2Yj5E+OJClWfKhFxLibj9yv/WeH48eP4+fnRsGFDW9Zkd0lJSSQlJWE2m9m9ezf5+fkEBWkwpQjApsyT3LcolcN5Z/AwwT3DOjB1WHsaqE+ViNQTBQUFBAcH1+jzu1ZBp6Kigu+//569e/dy0003ERgYyJEjRwgKCnKq0GPND0rE1ZWbLcz/djevfr8XiwGtQir7VPVsrT5VIlK/WPP5bfWtqwMHDnD55Zdz8OBBSktLGTFiBIGBgTz77LOUlpby2muv1bpwEXGMvceLuG9RKumH8gG4rmcEj12pPlUi4vysvhZ977330qtXL06dOoWfn1/V9vHjx7Ny5UqbFici9mUYBu//eICxC9aSfiifYL8G/PPmHsy9Pk4hR0RcgtW/ydasWcP69evx9vautj0qKorDhw/brDARsa8TRaU8tGQL3+7IAWBg+ybMvT6OFsF+f/BKERHnYXXQsVgsmM3ms7YfOnSIwMBAmxQlIva1atcxHvg4ndyiUrw9PXhgVCf+NKiN+lSJiMux+tbVyJEjq62XYzKZKCoqYtasWYwZM8aWtYmIjZWUm5n12VZue/sncotK6RjWkKV3D+T2S9oq5IiIS7J61tWhQ4cYNWoUhmGwZ88eevXqxZ49ewgNDWX16tU0a9bMXrXanGZdiTvZdiSfexemknGsCIDJA6J4eHRnfBt4OrgyERHr1Mn08kWLFpGWlkZRURE9evTg5ptvrjY42Rko6Ig7sFgM3lizj7lfV/apahrow9zr4xjSUS0cRMQ52TXoHD9+nKZNz/0LcsuWLcTExFhzOIdS0BFXdyTvDPd/lMaGfScAGBkdxpxrYwkJ8P6DV4qI1F/WfH5bPUYnJiaGZcuWnbV97ty59OnTx9rDiYidfJl+hMvnr2bDvhP4NfBkzjUx/GtST4UcEXErtWrqee2113Lbbbcxb948Tp48ya233sqWLVv44IMP7FGjiFihsKScWZ9t45OUyuUe4iKCmX9Dd9qoT5WIuKFajdFJSUlh0qRJlJaWcvLkSfr27ctbb71F8+bN7VGj3ejWlbian/efZPqiVA6dquxTdfel7Zl2WQf1qRIRl2LXFhAA7du3p1u3bixZsgSAiRMnOl3IEXEl5WYLC1buIWlVBhYDIhr7MX9iPL2iQhxdmoiIQ1n937x169YRGxvLnj17SE9P59VXX2Xq1KlMnDiRU6dO2aNGEbmAzNxirnttAy9/VxlyrunRkq/uHayQIyJCLYLOsGHDmDhxIhs3bqRLly78+c9/JiUlhYMHDzrVjCsRZ2cYBgs3HeSKBWtIy8ojyNeLV27qzrwJ8QT6NnB0eSIi9YLVt66+/vprhgwZUm1bu3btWLduHU8//bTNChOR8ztZXMbDS9L5entln6r+bZvwwoQ4whs511pWIiL2VqvByK5Cg5HFGf2w+zgzPk7jeGEpDTxNzBjZidsHq4WDiLgPu6yjM2bMGPLz86sez5kzh7y8vKrHJ06cIDo62vpqRaRGSsrNPPb5NhLe2sTxwlLaN6vsU/WXIe0UckREzqPGV3Q8PT05evRoVS+roKAgUlNTadu2LQA5OTmEh4efs7N5faUrOuIsdhwt4N6FKezOqexTldC/NTPHdFGfKhFxS3aZXv77POTGd7xE6ozFYvDWukyeW7GLMrOF0IY+PH99LJd2cp7muSIijlSrdXRExP6y80u4/+NU1mVU9qka3iWMZ6+NoUlDHwdXJiLiPGocdEwmEyaT6axtImJ7y7ccZeYnW8g/U45vAw8eGRvNTX1a6d+ciIiVrLp1NXnyZHx8Kv83WVJSwp133klAQGX/nNLSUvtUKOJGikoreOzzbSxOPgRAbEQwL06Mp13Thg6uTETEOdU46CQkJFR7fMstt5y1z6233nrxFYm4qeQDp7hvUSoHT57GZIK/Dm3H9OEd1adKROQi1DjovP322/asQ8RtVZgtvPxdBq+sysBsMWjZyI8XJ8bTp41aOIiIXCwNRhZxoP25xUxflEpqVh4A47u35PGruhKkFg4iIjahoCPiAIZh8PHPh3jsi22cLjMT6OvF0+NjuDIu3NGliYi4FAUdkTp2qriMmZ9sYcW2bAD6tglh3sR4WqpPlYiIzSnoiNShNXsq+1TlFFT2qUoc0Yk7LmmLp1o4iIjYhYKOSB0oKTfz3IpdvLUuE4B2TQN46YbudGsZ7ODKRERcm0vMWx0/fjyNGzfmuuuuc3QpImfZmV3A1UnrqkLOpH6t+XLqYIUcEZE64BJB59577+W9995zdBki1VgsBm+uzeTKV9axM7uQ0IbevDW5F09e3Q0/bzXjFBGpCy5x62ro0KF8//33ji5DpEpOQQkzPk5jzZ5cAIZ1bsZz18USqj5VIiJ1yuFXdFavXs24ceMIDw/HZDKxdOnSs/ZJSkoiKioKX19f+vbty6ZNm+q+UJEaWrH1KKPmr2bNnlx8G3jw5NXdeDOhl0KOiIgDODzoFBcXExcXR1JS0jmfX7RoEYmJicyaNYvNmzcTFxfHqFGjOHbsmNXvVVpaSkFBQbUvEVspLq3gwcVp3PnfzeSdLqdbyyC+nDqYSf1aqxmniIiDODzojB49mqeeeorx48ef8/l58+Zx++23c9tttxEdHc1rr72Gv78/b731ltXvNXv2bIKDg6u+IiMjL7Z8EQBSDp5izII1fPTzIUwmuGtoOz65ayDtm6kZp4iIIzk86FxIWVkZycnJDB8+vGqbh4cHw4cPZ8OGDVYfb+bMmeTn51d9ZWVl2bJccUMVZgsvfbuH617bwIETp2nZyI8Pb+/HQ5d3xturXv/zEhFxC/V6MHJubi5ms5mwsLBq28PCwti5c2fV4+HDh5OWlkZxcTERERF8/PHH9O/f/6zj+fj44OOjcRJiGwdPnGb6ohQ2H8wD4Kr4cJ64qhvBfupTJSJSX9TroFNT3377raNLEDdiGAaLkw/x2OfbKC4zE+jjxVPju3FVfEtHlyYiIr9Tr4NOaGgonp6e5OTkVNuek5ND8+bNHVSVuLO802X87dMtLN9S2aeqT1QI8ybGEdHY38GViYjIudTrQQTe3t707NmTlStXVm2zWCysXLnynLemROxpXUYul89fw/It2Xh5mHhgVCc+vKOfQo6ISD3m8Cs6RUVFZGRkVD3OzMwkNTWVkJAQWrVqRWJiIgkJCfTq1Ys+ffowf/58iouLue2222r9nklJSSQlJWE2m23xLYiLK60wM/d/u3hjTWULh7ahAcy/IZ7YiEaOLUxERP6QyTAMw5EFfP/991x66aVnbU9ISOCdd94B4JVXXuH5558nOzub+Ph4FixYQN++fS/6vQsKCggODiY/P5+goKCLPp64nt05hUz7MIWd2YUA3Ny3FX+/ogv+3g7/P4KIiNuy5vPb4UHHkRR05HwMw+Cd9fuZ/dVOyiosNAnw5tlrYxkeHfbHLxYREbuy5vNb/y0V+Z1jBSXMWJzO6t3HAbi0U1Oeuy6OpoFamkBExNko6Ij8P//bls3DS9I5dbocHy8P/n5FF7VwEBFxYgo6IlT2qXryy+0s/KlytezoFkG8dEM8HcICHVyZiIhcDLcMOpp1Jf9falYe0xemsP/EaUwmuOOSttw/opNaOIiIuAANRtZgZLdlthj8c1UG81fuwWwxaBHsywsT4hjQLtTRpYmIyAVoMLLIH8g6eZr7FqXy84FTAIyNbcHTV8cQ7K8+VSIirkRBR9yKYRh8svkwsz7fRlFpBYE+XjxxdVeujm+pAcciIi5IQUfcRv7pcv62dAvL0o8C0DuqMfMmxBMZohYOIiKuSkFH3ML6vbnc/1EaR/NL8PIwMX14B+4a2h5PD13FERFxZQo64tJKK8zM+3o3r6/Zh2FAm9AA5k+MJy6ykaNLExGROuCWQUfTy93DnpxC7l2YyvajBQDc2KcVj4xVnyoREXei6eWaXu5yDMPgvQ0HeGb5DkorLIQEeDPnmhhGdm3u6NJERMQGNL1c3NaxwhIeXJzO97sq+1QN6diU56+PpVmgr4MrExERR1DQEZfx7fYcHlySzsniMry9PPjb6M4kDIjStHERETemoCNO73RZBU8t28EHPx4EoMsvfao6qk+ViIjbU9ARp5Z+KI/pC1PZl1sM/NKnamRHfLw8HVyZiIjUBwo64pTMFoPXftjLi9/spsJi0DzIl3kT4hjQXn2qRETkNwo64nSyTp7m/o/S2LT/JABXxLTg6fHdaOTv7eDKRESkvnHLoKN1dJzX0pTDPLJ0K4WlFQR4e/L4Vd24tof6VImIyLlpHR2to+MU8s+U88jSrXyedgSAnq0b8+KEeFo1UZ8qERF3o3V0xKVs3HeCxEWpHMkvwdPDxL2XdeCvQ9vh5enh6NJERKSeU9CRequswsK8b3bzr9V7MQyIauLPixPj6d6qsaNLExERJ6GgI/VSxrEipi9KYevhyj5VE3tF8ui4aAJ8dMqKiEjN6VND6hXDMPjvxgM8vXwHJeUWGvs3YPY1sVzeTX2qRETEego6Um8cLyzloSXpfLfzGACDO4Qy9/o4woLUp0pERGpHQUfqhZU7cnhwcTonfulT9fDlnZk8IAoPD00bFxGR2lPQEYc6U2bm6eXb+e/Gyj5VnZsHMv+GeDo313R/ERG5eG4ZdLRgYP2w9XA+9y5MYe/xyj5Vfx7UhhmjOuHbQH2qRETENrRgoBYMrHNmi8G/Vu9l3teVfarCgnx44fp4BnVQnyoREfljWjBQ6q3DeWdIXJTKj5mVfapGd2vOM+NjaBygPlUiImJ7CjpSZz5LPcw/lm6lsKSyT9WsK7tyfc8I9akSERG7UdARuysoKefRpVtZmlrZp6p7q0bMnxhP6yYBDq5MRERcnYKO2NWP+06Q+FEah/PO4OlhYuqw9txzaXv1qRIRkTqhoCN2UVZhYf63u3n1h8o+Va1CKvtU9WytPlUiIlJ3FHTE5vYeL2L6wlS2HM4H4PqeEcy6sisN1adKRETqmD55xGYMw+D9Hw/y1LLtlJRbaOTfgNnjYxgd08LRpYmIiJtS0BGbOFFU2afq2x2VfaoGta/sU9U8WH2qRETEcRR05KKt2nmMBxank1tUirenBw9e3okpA9uoT5WIiDicgo7UWkm5mWeW7+C9DQcA6BRW2aeqSwutMi0iIvWDWwYd9bq6eFsP5zN9USoZx4oAuG1gFA9d3ll9qkREpF5Rryv1urKKxWLw+pp9vPD1LsrNBs0CfZh7fRyXdGzq6NJERMRNqNeV2MWRvDMkfpTKxn2VfapGdQ1j9jWxhKhPlYiI1FMKOlIjX6Qd4e+fbqGgpAJ/b09mjYtmQq9I9akSEZF6TUFHLqiwpJxZn23jk5TDAMRFVvapahOqPlUiIlL/KejIef20/yT3LUrl0KkzeJjgnmEdmDqsPQ3Up0pERJyEgo6cpdxs4aVv9/DP7zOwGBAZ4sf8ifH0bB3i6NJERESsoqAj1WTmFjN9YQpphyr7VF3bI4LHrowm0LeBgysTERGxnoKOAJV9qhb+lMUTX2znTLmZYL8GPDM+hiti1adKREScl4KOcLK4jIeWpPPN9hwABrRrwgsT4mgR7OfgykRERC6Ogo6b+35XZZ+q44WVfaoeGNWJPw1SnyoREXENCjpuqqTczJyvdvLO+v0AdGjWkJdu6E50uFaIFhER16Gg44a2Hylg+qIUdudU9qmaPCCKh0erT5WIiLgeBR03YrEYvLk2k+f/t4sys4WmgT48f10sQzs1c3RpIiIidqGg4yaO5p/h/o/SWL/3BAAjosOYc00MTRr6OLgyERER+3HLoJOUlERSUhJms9nRpdSJZelH+dunW8g/U45fA08eHRfNDb3Vp0pERFyfyTAMw9FFOIo1bd6dUWFJOY99vp0lmw8BEBcRzIsT42nbtKGDKxMREak9az6/3fKKjjtIPnCS6YtSyTpZ2afqr0Pbc+/wDupTJSIibkVBx8WUmy28/F0Gr3y3B4sBEY39eHFiPL2j1KdKRETcj4KOC9mfW8z0RamkZuUBcE33ljx2VVeC1KdKRETclIKOCzAMg49+zuLxL7ZzusxMkK8XT4+PYVxcuKNLExERcSgFHSd3qriMhz9J53/bKvtU9WsbwrwJ8YQ3Up8qERERBR0ntmbPce7/KI1jhaU08DQxY2Qnbh/cVn2qREREfqGg44RKys08t2IXb63LBKB9s4bMnxhPt5bBDq5MRESkflHQcTI7swu498NUduUUAnBr/9bMHN0FP2/1qRIREfk9BR0nYbEYvLUuk+dWVPapCm1Y2afq0s7qUyUiInI+CjpOIKeghPs/SmNtRi4Aw7s0Y861sYSqT5WIiMgFKejUcyu2HuXhT7aQd7oc3wYePDI2mpv6tFKfKhERkRpQ0KmnikoreOKLbXz0c2WfqpiWwcy/IZ526lMlIiJSYwo69dDmg6e4b1EqB06cxmSCu4a0Y/rwjnh7qU+ViIiINRR06pEKs4VXVmXw8ncZmC0GLRtV9qnq00Z9qkRERGpDQaeeOHCisk9VysE8AK6OD+eJq7upT5WIiMhFUNBxMMMwWJx8iMc+30ZxmZlAXy+eurobV8W3dHRpIiIiTk9Bx4FOFZfx96VbWL4lG4A+bUKYNyGOiMb+Dq5MRETENSjoOMjaPbnc/3EqOQWleHmYuH9kJ+64pC2e6lMlIiJiMwo6dayk3Mzc/+3i32sr+1S1bRrAghu6q0+ViIiIHbhl0ElKSiIpKQmz2Vyn77sru5B7F6awM7uyT9Ut/Vrx9zHR6lMlIiJiJybDMAxHF+EoBQUFBAcHk5+fT1BQkN3ex2IxeGf9fuas2ElZhYUmAd48d10sl3UJs9t7ioiIuCprPr/d8opOXTpWUMKMxems3n0cgGGdm/HstbE0DVSfKhEREXtT0LGj/23L5uEl6Zz6pU/V36+I5pa+6lMlIiJSVxR07KC4tIInv9zOwp+yAOjWMoj5E+Np3yzQwZWJiIi4FwUdOzh48jRLNh/CZIK/XNKOxBHqUyUiIuIICjp20KVFEE9e1Y3WTQLo366Jo8sRERFxWwo6dnJDn1aOLkFERMTt6X6KiIiIuCwFHREREXFZCjoiIiLishR0RERExGUp6IiIiIjLUtARERERl6WgIyIiIi5LQUdERERcloKOiIiIuCwFHREREXFZCjoiIiLishR0RERExGUp6IiIiIjLcuvu5YZhAFBQUODgSkRERKSmfv3c/vVz/ELcOugUFhYCEBkZ6eBKRERExFqFhYUEBwdfcB+TUZM45KIsFgtHjhwhMDAQk8l0zn169+7NTz/9dN5jnO/5goICIiMjycrKIigoyGY129sffb/18b0u5jjWvram+9dkvwvt42rnFdTduWXL96ntserreXWh55313HKn86o2r7XVuVXfzivDMCgsLCQ8PBwPjwuPwnHrKzoeHh5ERERccB9PT88L/uX80fNBQUFO9Uvjj76f+vheF3Mca19b0/1rst+F9nG18wrq7tyy5fvU9lj19byqyfPOdm6503lVm9fa6tyqj+fVH13J+ZUGI/+Bu++++6KedzZ1+f3Y6r0u5jjWvram+9dkvwvt42rnFdTd92TL96ntserreWXNezkLdzqvavNaW51bznxeufWtK3sqKCggODiY/Px8p/rfkdRvOq/EXnRuiT3Uh/NKV3TsxMfHh1mzZuHj4+PoUsSF6LwSe9G5JfZQH84rXdERERERl6UrOiIiIuKyFHRERETEZSnoiIiIiMtS0BERERGXpaAjIiIiLktBp45lZWUxdOhQoqOjiY2N5eOPP3Z0SeIi8vLy6NWrF/Hx8XTr1o033njD0SWJCzl9+jStW7dmxowZji5FXERUVBSxsbHEx8dz6aWX2u19NL28jh09epScnBzi4+PJzs6mZ8+e7N69m4CAAEeXJk7ObDZTWlqKv78/xcXFdOvWjZ9//pkmTZo4ujRxAX//+9/JyMggMjKSuXPnOroccQFRUVFs3bqVhg0b2vV9dEWnjrVo0YL4+HgAmjdvTmhoKCdPnnRsUeISPD098ff3B6C0tBTDMND/Y8QW9uzZw86dOxk9erSjSxGxmoKOlVavXs24ceMIDw/HZDKxdOnSs/ZJSkoiKioKX19f+vbty6ZNm855rOTkZMxmM5GRkXauWpyBLc6tvLw84uLiiIiI4IEHHiA0NLSOqpf6yhbn1YwZM5g9e3YdVSzOwBbnlclkYsiQIfTu3Zv333/fbrUq6FipuLiYuLg4kpKSzvn8okWLSExMZNasWWzevJm4uDhGjRrFsWPHqu138uRJbr31Vl5//fW6KFucgC3OrUaNGpGWlkZmZiYffPABOTk5dVW+1FMXe1599tlndOzYkY4dO9Zl2VLP2eL31dq1a0lOTubzzz/nmWeeIT093T7FGlJrgPHpp59W29anTx/j7rvvrnpsNpuN8PBwY/bs2VXbSkpKjMGDBxvvvfdeXZUqTqa259b/d9dddxkff/yxPcsUJ1Ob8+rhhx82IiIijNatWxtNmjQxgoKCjMcff7wuy5Z6zha/r2bMmGG8/fbbdqlPV3RsqKysjOTkZIYPH161zcPDg+HDh7NhwwYADMNg8uTJDBs2jEmTJjmqVHEyNTm3cnJyKCwsBCA/P5/Vq1fTqVMnh9QrzqEm59Xs2bPJyspi//79zJ07l9tvv51HH33UUSWLE6jJeVVcXFz1+6qoqIjvvvuOrl272qUeL7sc1U3l5uZiNpsJCwurtj0sLIydO3cCsG7dOhYtWkRsbGzVPc3//Oc/xMTE1HW54kRqcm4dOHCAO+64o2oQ8tSpU3VeyQXV5LwSsVZNzqucnBzGjx8PVM4Yvf322+ndu7dd6lHQqWODBg3CYrE4ugxxQX369CE1NdXRZYgLmzx5sqNLEBfRtm1b0tLS6uS9dOvKhkJDQ/H09DxrAGhOTg7Nmzd3UFXiCnRuiT3ovBJ7qG/nlYKODXl7e9OzZ09WrlxZtc1isbBy5Ur69+/vwMrE2encEnvQeSX2UN/OK926slJRUREZGRlVjzMzM0lNTSUkJIRWrVqRmJhIQkICvXr1ok+fPsyfP5/i4mJuu+02B1YtzkDnltiDziuxB6c6r+wyl8uFrVq1ygDO+kpISKja5+WXXzZatWpleHt7G3369DE2btzouILFaejcEnvQeSX24EznlXpdiYiIiMvSGB0RERFxWQo6IiIi4rIUdERERMRlKeiIiIiIy1LQEREREZeloCMiIiIuS0FHREREXJaCjoiIiLgsBR0Rsbn9+/djMpnqVTf1nTt30q9fP3x9fYmPj3d0OVaZPHkyV199taPLEHFKCjoiLmjy5MmYTCbmzJlTbfvSpUsxmUwOqsqxZs2aRUBAALt27arWbFBEXJuCjoiL8vX15dlnn+XUqVOOLsVmysrKav3avXv3MmjQIFq3bk2TJk1sWJWI1GcKOiIuavjw4TRv3pzZs2efd5/HHnvsrNs48+fPJyoqqurxr7dNnnnmGcLCwmjUqBFPPPEEFRUVPPDAA4SEhBAREcHbb7991vF37tzJgAED8PX1pVu3bvzwww/Vnt+6dSujR4+mYcOGhIWFMWnSJHJzc6ueHzp0KPfccw/Tp08nNDSUUaNGnfP7sFgsPPHEE0RERODj40N8fDwrVqyoet5kMpGcnMwTTzyByWTiscceO+dxFi9eTExMDH5+fjRp0oThw4dTXFwMwE8//cSIESMIDQ0lODiYIUOGsHnz5mqvN5lM/Otf/2Ls2LH4+/vTpUsXNmzYQEZGBkOHDiUgIIABAwawd+/es/4O/vWvfxEZGYm/vz8TJkwgPz//nDX++v3Onj2bNm3a4OfnR1xcHIsXL656/tSpU9x88800bdoUPz8/OnTocM6/HxF3oKAj4qI8PT155plnePnllzl06NBFHeu7777jyJEjrF69mnnz5jFr1izGjh1L48aN+fHHH7nzzjv5y1/+ctb7PPDAA9x///2kpKTQv39/xo0bx4kTJwDIy8tj2LBhdO/enZ9//pkVK1aQk5PDhAkTqh3j3Xffxdvbm3Xr1vHaa6+ds76XXnqJF154gblz55Kens6oUaO48sor2bNnDwBHjx6la9eu3H///Rw9epQZM2acdYyjR49y4403MmXKFHbs2MH333/PNddcw699jwsLC0lISGDt2rVs3LiRDh06MGbMGAoLC6sd58knn+TWW28lNTWVzp07c9NNN/GXv/yFmTNn8vPPP2MYBvfcc0+112RkZPDRRx/xxRdfsGLFClJSUvjrX/963r+P2bNn89577/Haa6+xbds27rvvPm655ZaqIPnII4+wfft2vvrqK3bs2MGrr75KaGjoeY8n4tIc0jNdROwqISHBuOqqqwzDMIx+/foZU6ZMMQzDMD799FPj//+znzVrlhEXF1fttS+++KLRunXrasdq3bq1YTabq7Z16tTJGDx4cNXjiooKIyAgwPjwww8NwzCMzMxMAzDmzJlTtU95ebkRERFhPPvss4ZhGMaTTz5pjBw5stp7Z2VlGYCxa9cuwzAMY8iQIUb37t3/8PsNDw83nn766Wrbevfubfz1r3+tehwXF2fMmjXrvMdITk42AGP//v1/+H6GYRhms9kIDAw0vvjii6ptgPGPf/yj6vGGDRsMwHjzzTertn344YeGr69v1eNZs2YZnp6exqFDh6q2ffXVV4aHh4dx9OhRwzCq/32WlJQY/v7+xvr166vV86c//cm48cYbDcMwjHHjxhm33XZbjb4PEVenKzoiLu7ZZ5/l3XffZceOHbU+RteuXfHw+O3XRVhYGDExMVWPPT09adKkCceOHav2uv79+1f92cvLi169elXVkZaWxqpVq2jYsGHVV+fOnQGq3drp2bPnBWsrKCjgyJEjDBw4sNr2gQMHWvU9x8XFcdlllxETE8P111/PG2+8UW18U05ODrfffjsdOnQgODiYoKAgioqKOHjwYLXjxMbGVv05LCwMoNrPKiwsjJKSEgoKCqq2tWrVipYtW1Y97t+/PxaLhV27dp1VZ0ZGBqdPn2bEiBHVfnbvvfde1c/trrvuYuHChcTHx/Pggw+yfv36Gv8cRFyNl6MLEBH7uuSSSxg1ahQzZ85k8uTJ1Z7z8PCoujXzq/Ly8rOO0aBBg2qPTSbTObdZLJYa11VUVMS4ceN49tlnz3quRYsWVX8OCAio8TEvhqenJ9988w3r16/n66+/5uWXX+bvf/87P/74I23atCEhIYETJ07w0ksv0bp1a3x8fOjfv/9ZA6T//8/l1xlu59pmzc/q/ysqKgJg2bJl1cIRgI+PDwCjR4/mwIEDLF++nG+++YbLLruMu+++m7lz59bqPUWcma7oiLiBOXPm8MUXX7Bhw4Zq25s2bUp2dna1sGPLtW82btxY9eeKigqSk5Pp0qULAD169GDbtm1ERUXRvn37al/WhJugoCDCw8NZt25dte3r1q0jOjraqnpNJhMDBw7k8ccfJyUlBW9vbz799NOq402bNo0xY8bQtWtXfHx8qg2cvhgHDx7kyJEjVY83btyIh4cHnTp1Omvf6OhofHx8OHjw4Fk/t8jIyKr9mjZtSkJCAv/973+ZP38+r7/+uk1qFXE2uqIj4gZiYmK4+eabWbBgQbXtQ4cO5fjx4zz33HNcd911rFixgq+++oqgoCCbvG9SUhIdOnSgS5cuvPjii5w6dYopU6YAcPfdd/PGG29w44038uCDDxISEkJGRgYLFy7k3//+N56enjV+nwceeIBZs2bRrl074uPjefvtt0lNTeX999+v8TF+/PFHVq5cyciRI2nWrBk//vgjx48frwpmHTp04D//+Q+9evWioKCABx54AD8/P+t+IOfh6+tLQkICc+fOpaCggGnTpjFhwgSaN29+1r6BgYHMmDGD++67D4vFwqBBg8jPz2fdunUEBQWRkJDAo48+Ss+ePenatSulpaV8+eWXVd+HiLvRFR0RN/HEE0+cdbukS5cu/POf/yQpKYm4uDg2bdp0zhlJtTVnzhzmzJlDXFwca9eu5fPPP6+a/fPrVRiz2czIkSOJiYlh+vTpNGrUqNp4oJqYNm0aiYmJ3H///cTExLBixQo+//xzOnToUONjBAUFsXr1asaMGUPHjh35xz/+wQsvvMDo0aMBePPNNzl16hQ9evRg0qRJTJs2jWbNmllV5/m0b9+ea665hjFjxjBy5EhiY2P55z//ed79n3zySR555BFmz55Nly5duPzyy1m2bBlt2rQBwNvbm5kzZxIbG8sll1yCp6cnCxcutEmtIs7GZPz+Br2IiNSZxx57jKVLl9ardhkirkRXdERERMRlKeiIiIiIy9KtKxEREXFZuqIjIiIiLktBR0RERFyWgo6IiIi4LAUdERERcVkKOiIiIuKyFHRERETEZSnoiIiIiMtS0BERERGXpaAjIiIiLuv/AKT9QoABPVpQAAAAAElFTkSuQmCC", - "text/plain": [ - "<Figure size 640x480 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Answer 2\n", - "\n", - "import timeit\n", - "from functools import partial\n", - "\n", - "nsamples_vec = np.linspace(100, 100000, 15)\n", - "\n", - "xs = []\n", - "results_vec = []\n", - "\n", - "verbose=True\n", - "\n", - "for _nsamples in nsamples_vec:\n", - " _nsamples = int(_nsamples)\n", - " xs.append(_nsamples)\n", - "\n", - " my_function_partial = partial(monte_carlo_pi, _nsamples)\n", - "\n", - " run_num = 10\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " runtime_adj = np.average(runtime) * 10**3\n", - "\n", - " if verbose:\n", - " print(f\"Runtime for {_nsamples}: {runtime_adj:.2f} µs.\")\n", - "\n", - " results_vec.append(runtime_adj)\n", - "\n", - "plt.loglog(nsamples_vec, results_vec)\n", - "plt.xlabel('Number of samples')\n", - "plt.ylabel('Execution time (µs)')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "d72a7cce-4270-48bc-82b9-d8d24a266a16", - "metadata": { - "id": "d72a7cce-4270-48bc-82b9-d8d24a266a16" - }, - "source": [ - "# Task 2 - Accelerating in CPU and GPU with vectorize" - ] - }, - { - "cell_type": "markdown", - "id": "4c6833cb-544e-4ddf-bb0f-89a73ab6914c", - "metadata": { - "id": "4c6833cb-544e-4ddf-bb0f-89a73ab6914c" - }, - "source": [ - "## Defining universal functions (ufunc)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "1cc33740-fd7b-44e0-a026-17e3fac6b930", - "metadata": { - "id": "1cc33740-fd7b-44e0-a026-17e3fac6b930" - }, - "outputs": [], - "source": [ - "import math\n", - "\n", - "# Two functions, and 3 versions of each function\n", - "\n", - "# Simple function: multiply\n", - "def mul(a, b):\n", - " return a * b\n", - "\n", - "@nb.vectorize([nb.float32(nb.float32, nb.float32), nb.float64(nb.float64, nb.float64)])\n", - "def mul_vec(a, b):\n", - " return a * b\n", - "\n", - "@nb.vectorize([nb.float32(nb.float32, nb.float32), nb.float64(nb.float64, nb.float64)], target='parallel')\n", - "def mul_vec_par(a, b):\n", - " return a * b\n", - "\n", - "@nb.vectorize([nb.float32(nb.float32, nb.float32), nb.float64(nb.float64, nb.float64)], target='cuda')\n", - "def mul_vec_gpu(a, b):\n", - " return a * b\n", - "\n", - "# Complex function: discriminant in second degree equations\n", - "def discriminant(a, b, c):\n", - " return np.sqrt(b ** 2 - 4 * a * c)\n", - "\n", - "@nb.vectorize(['float32(float32, float32, float32)',\n", - " 'float64(float64, float64, float64)'])\n", - "def discriminant_vec(a, b, c):\n", - " return np.sqrt(b ** 2 - 4 * a * c)\n", - "\n", - "@nb.vectorize(['float32(float32, float32, float32)',\n", - " 'float64(float64, float64, float64)'],\n", - " target='parallel')\n", - "def discriminant_vec_par(a, b, c):\n", - " return np.sqrt(b ** 2 - 4 * a * c)\n", - "\n", - "@nb.vectorize(['float32(float32, float32, float32)',\n", - " 'float64(float64, float64, float64)'],\n", - " target='cuda')\n", - "def discriminant_vec_gpu(a, b, c):\n", - " return math.sqrt(b ** 2 - 4 * a * c)\n", - "\n", - "# nsamples_vec = np.linspace(100, 50000000, 50)\n", - "nsamples_vec = np.linspace(100, 10000000, 10)" - ] - }, - { - "cell_type": "markdown", - "id": "bf4a44f0-3a77-49b5-bae1-0ee3fffb93e7", - "metadata": { - "id": "bf4a44f0-3a77-49b5-bae1-0ee3fffb93e7" - }, - "source": [ - "## Instrument" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "db3bbda0-9c62-48e2-9639-e9f1d71c2bf4", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 523 - }, - "id": "db3bbda0-9c62-48e2-9639-e9f1d71c2bf4", - "outputId": "16d04ec8-5aee-481b-85fe-15c6b7c296a3" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.10/dist-packages/numba/cuda/dispatcher.py:536: NumbaPerformanceWarning: Grid size 1 will likely result in GPU under-utilization due to low occupancy.\n", - " warn(NumbaPerformanceWarning(msg))\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHVCAYAAAB8NLYkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACGHUlEQVR4nOzdd3xV9f3H8dcd2ZMQSMhiJQFBIbKRmRi1qFi1tVSt4rYaXGhbrW2tHdr+WhGRqMVWsVYr2lpttWqBhI3sJTusBEIWIXvee8/vjxMuRlYISW7G+/l48GhzvjfnfG4uwpvvOZ/v12IYhoGIiIiIdHhWTxcgIiIiIi1DwU5ERESkk1CwExEREekkFOxEREREOgkFOxEREZFOQsFOREREpJNQsBMRERHpJBTsRERERDoJBTsRERGRTkLBTkRERKSTsHu6gJbmcrnIzc0lKCgIi8Xi6XJERERELohhGJSXlxMVFYXVevY5uXYX7EpKSkhNTcXhcOBwOHjkkUe49957m/z9ubm5xMbGtmKFIiIiIm0vJyeHmJiYs77GYhiG0Ub1NInT6aS2thZ/f38qKyu5+OKLWb9+Pd27d2/S95eWlhIaGkpOTg7BwcGtXK2IiIhI6yorKyM2NpaSkhJCQkLO+tp2N2Nns9nw9/cHoLa2FsMwOJ/seeL2a3BwsIKdiIiIdBpNecSsxZsnli1bxtSpU4mKisJisfDRRx+d8pr09HT69OmDr68vo0ePZu3atY3GS0pKGDp0KDExMfzoRz8iPDy8pcsUERER6XRaPNhVVlYydOhQ0tPTTzu+YMECZs6cyTPPPMPGjRsZOnQoV111FQUFBe7XhIaGsmXLFg4cOMC7775Lfn7+Ga9XW1tLWVlZo18iIiIiXVGLB7spU6bwm9/8hhtuuOG047NmzeLee+/lzjvvZNCgQbz22mv4+/vzxhtvnPLaiIgIhg4dyvLly894veeff56QkBD3LzVOiIiISFfVps/Y1dXVsWHDBp566in3MavVSmpqKqtXrwYgPz8ff39/goKCKC0tZdmyZTzwwANnPOdTTz3FzJkz3V+feMDwXJxOJ/X19RfwbqQz8Pb2PmfruIiISEfRpsGuqKgIp9NJREREo+MRERHs2rULgEOHDnHfffe5myYeeughLrnkkjOe08fHBx8fnybXYBgGeXl5lJSUNOs9SOditVrp27cv3t7eni5FRETkgrW7rthRo0axefPmVjv/iVDXs2dP/P39tYhxF3ZiMeujR48SFxen3wsiItLhtWmwCw8Px2azndIMkZ+fT2Rk5AWdOz09nfT0dJxO5xlf43Q63aGuqeviSefWo0cPcnNzcTgceHl5ebocERGRC9KmDxd5e3szfPhwFi9e7D7mcrlYvHgxY8eOvaBzp6WlsWPHDtatW3fG15x4pu7EOnkiJ27Bnu0fBCIiIh1Fi8/YVVRUkJWV5f76wIEDbN68mbCwMOLi4pg5cybTp09nxIgRjBo1itmzZ1NZWcmdd97Z0qWckW65yQn6vSAiIp1Jiwe79evXk5yc7P76RMfq9OnTmT9/PtOmTaOwsJBf/OIX5OXlkZSUxOeff35KQ4WIiIiInJ8WvxU7efJkd0fr13/Nnz/f/ZoZM2Zw6NAhamtrWbNmDaNHj77g66anpzNo0CBGjhx5weeS0+vTpw+zZ892f32mnUVERETEMzrNAl5NecauI7vjjjuwWCzuX927d+db3/oWW7du9VhNR48eZcqUKR67voiIiDTWaYJdV/Ctb32Lo0ePcvToURYvXozdbufaa6/1WD2RkZHntYagiIiItC4Fuw7Ex8eHyMhIIiMjSUpK4sknnyQnJ4fCwkIAfvKTn5CYmIi/vz/9+vXj5z//eaPdNbZs2UJycjJBQUEEBwczfPhw1q9f7x5fsWIFEyZMwM/Pj9jYWB5++GEqKyvPWM/Xb8UePHgQi8XChx9+SHJyMv7+/gwdOtS9o0hzryEiIiJN16WDnWEYVNU5PPLLMIwLqr2iooK//e1vxMfHu9fkCwoKYv78+ezYsYOXXnqJ119/nRdffNH9PbfeeisxMTGsW7eODRs28OSTT7rXbtu3bx/f+ta3+M53vsPWrVtZsGABK1asYMaMGedV19NPP80TTzzB5s2bSUxM5Oabb8bhcLToNUREROT02t3OE83VlAWKv6m63smgX3zRilWd2Y5fXYW/9/n9+D/55BMCAwMBqKyspFevXnzyySfuvU5/9rOfuV/bp08fnnjiCd577z1+/OMfA5Cdnc2PfvQjBg4cCEBCQoL79c8//zy33norjz76qHtszpw5TJo0iVdffRVfX98m1fjEE09wzTXXAPDss88yePBgsrKyGDhwYItdQ0REpD0ofOUVXKWlhHznO/gmJnq6HKATzdh19uYJgOTkZDZv3szmzZtZu3YtV111FVOmTOHQoUMALFiwgHHjxhEZGUlgYCA/+9nPyM7Odn//zJkzueeee0hNTeV3v/sd+/btc49t2bKF+fPnExgY6P511VVX4XK5OHDgQJNrHDJkiPv/9+rVC4CCgoIWvYaIiEh7UPbv/1D81l9xFBR6uhS3TjNj1xx+XjZ2/Ooqj137fAUEBBAfH+/++s9//jMhISG8/vrrXHPNNdx66608++yzXHXVVYSEhPDee+/xwgsvuF//y1/+kltuuYVPP/2Uzz77jGeeeYb33nuPG264gYqKCu6//34efvjhU64bFxfX5Bq/vi3XicV/XS4XQItdQ0RExNNc1dXUNUys+A5oH7N10MWDncViOe/boe2JxWLBarVSXV3NqlWr6N27N08//bR7/MRM3tclJiaSmJjIY489xs0338ybb77JDTfcwLBhw9ixY0ej4NjS2uIaIiIibaE2KwsMA1v37th79PB0OW6d5lZsV1BbW0teXh55eXns3LmThx56iIqKCqZOnUpCQgLZ2dm899577Nu3jzlz5vCvf/3L/b3V1dXMmDGDJUuWcOjQIVauXMm6deu46KKLALOjdtWqVcyYMYPNmzezd+9ePv744xZtbGiLa4iIiLSF2t27gfY1WwedaMauOc0THc3nn3/ufm4tKCiIgQMH8sEHHzB58mQAHnvsMWbMmEFtbS3XXHMNP//5z/nlL38JgM1m49ixY9x+++3k5+cTHh7OjTfeyLPPPguYz8YtXbqUp59+mgkTJmAYBv3792fatGktVn9bXENERKQt1OzeA4BP4gAPV9KYxbjQdTfambKyMkJCQigtLSU4OLjRWE1NDQcOHKBv377qwBRAvydERKR5Dt0+naq1a+n1/POE3nB9q17rbNnmm3QrVkREROQ8GIbRbm/FKtiJiIiInAdHQQHO0lKw2fDu39/T5TSiYCciIiJyHk7M1nn37YO1ne2ZrmAnIiIich5qTtyGbWeNE6BgJyIiInJeak90xA5QsGs16enpDBo0iJEjR3q6FBEREenE3I0TAxXsWk1X2CtWREREPMtVV0dtw/7mmrETERER6cDq9u0DhwNrSAj2iAhPl3MKBTsRERGRJjrZOJGIxWLxcDWnUrATERERaaL23DgBCnYdSl5eHg899BD9+vXDx8eH2NhYpk6dyuLFiwHo06cPFosFi8VCQEAAw4YN44MPPnB//x133MH1119/ynmXLFmCxWKhpKSkjd6JiIhIx3SiccKnne04cYKCXQdx8OBBhg8fTkZGBn/4wx/Ytm0bn3/+OcnJyaSlpblf96tf/YqjR4+yadMmRo4cybRp01i1apUHKxcREek8avaYM3a+7XTGzu7pAqRpHnzwQSwWC2vXriUgIMB9fPDgwdx1113ur4OCgoiMjCQyMpL09HT+9re/8Z///IfLLrvME2WLiIh0Go6iIpxFRWCx4BMf7+lyTqvTBLv09HTS09NxOp1N/ybDgPqq1ivqbLz8oYkPXRYXF/P555/z29/+tlGoOyE0NPS032e32/Hy8qKuru5CKhURERGgtmG2zjsuDqu/v4erOb1OE+zS0tJIS0ujrKyMkJCQpn1TfRU8F9W6hZ3JT3PB+9SQdjpZWVkYhsHAgQObfPq6ujpeeOEFSktLSUlJaW6VIiIi0qCmnTdOgJ6x6xAMw2jya3/yk58QGBiIv78/v//97/nd737HNddc04rViYiIdA3uxol2uOPECZ1mxq5ZvPzNmTNPXbuJEhISsFgs7Nq165yv/dGPfsQdd9xBYGAgERERjdbYCQ4O5tChQ6d8T0lJCTab7bS3eUVERMRUs6dhDbt2PGPXtYOdxdLk26GeFBYWxlVXXUV6ejoPP/zwKQGspKTE/ZxdeHg48Wd4oHPAgAG899571NbW4uPj4z6+ceNG+vbti5eXV6u9BxERkY7McDio25sF6FastIATjSGjRo3in//8J3v37mXnzp3MmTOHsWPHNukct956KxaLhdtvv50NGzaQlZXFG2+8wezZs3n88cdb+R2IiIh0XHUHDmDU12MNCMArykPP5zdB156x60D69evHxo0b+e1vf8vjjz/O0aNH6dGjB8OHD+fVV19t0jlCQ0NZvnw5Tz75JNdddx2lpaXEx8cza9Ys7r777lZ+ByIiIh2Xu3EiMRGLtf3OiynYdSC9evVi7ty5zJ0797TjBw8ePOc5EhMT+fDDD1u4MhERkc6tve84cUL7jZwiIiIi7URHaJwABTsRERGRc6rtAGvYQScKdunp6QwaNIiRI0d6uhQRERHpRCpXr8aRlweAT0KCh6s5u04T7NLS0tixYwfr1q3zdCkiIiLSSVRv387htBkAhHz7OmxBQR6u6Ow6TbATERERaUl1hw6Rc9/9uKqq8B8zhshf/9rTJZ2Tgp2IiIjINzgKC8m+516cx47hM+giYua+jNXb29NlnZOCnYiIiMjXOMvLyb7vfupzcvCKiyNu3jxsgYGeLqtJFOxEREREGrhqazmcNoPanTuxde9O3J9fxx4e7umymkzBTkRERARwlpRw5LGZVK1dizUggLjX5+EdF+fpss6Lgp2clcVi4aOPPgLMnS0sFgubN29u8vdPnjyZRx99tFVqExERaQmGYVDyr4/Yd/U1VGRkYPHyIiZ9Lr6DBnm6tPOmYNcB3HHHHVgsFiwWC97e3sTHx/OrX/0Kh8Ph6dJaRF1dHf/3f//H0KFD8ff3Jzw8nHHjxvHmm29SX18PnPtnMH/+fEJDQ097/q+HUxERka+rzcoi+/bpHH3qKZzFxfgkxBP31nwCxozxdGnNor1iO4hvfetbvPnmm9TW1vLf//6XtLQ0vLy8eOqpp877XE6nE4vFgrUdbGJcV1fHVVddxZYtW/j1r3/NuHHjCA4O5ssvv+SPf/wjl156KUlJSUDL/gxERKRrc1VXU/TKqxx7801wOLD4+hKe9iDdp0/H0gG6X8/E83+zS5P4+PgQGRlJ7969eeCBB0hNTeXf//43ALNmzeKSSy4hICCA2NhYHnzwQSoqKtzfe2I269///jeDBg3Cx8eH7Oxs1q1bxxVXXEF4eDghISFMmjSJjRs3nlddX331FVOmTCEwMJCIiAhuu+02ioqKmvz9s2fPZtmyZSxevJi0tDSSkpLo168ft9xyC2vWrCHhayt8n+1nICIickL1tm2UfvIppR9/TMk/P+T4++9z/O9/p/jtv3Fs/nyK/jSP/ddO5djrr4PDQWBKCv0//YTwe+/t0KEOuviMnWEYVDuqPXJtP7sfFoul+d/v58exY8cAsFqtzJkzh759+7J//34efPBBfvzjH/PKK6+4X19VVcXvf/97/vznP9O9e3d69uzJ/v37mT59Oi+//DKGYfDCCy9w9dVXs3fvXoKasLJ2SUkJKSkp3HPPPbz44otUV1fzk5/8hO9973tkZGQ06X288847pKamcumll54y5uXlhZeXV5N+BiIiInWHj1Dw+99RvnBRk15v79WLyJ89TdDll7dyZW2nSwe7akc1o98d7ZFrr7llDf5e/uf9fYZhsHjxYr744gseeughgEbNCX369OE3v/kNP/zhDxsFu/r6el555RWGDh3qPpaSktLo3PPmzSM0NJSlS5dy7bXXnrOWuXPncumll/Lcc8+5j73xxhvExsayZ88eEhMTz3mOvXv3Mnny5HO+7utO9zMQEZGuy1VTw7HX/8yxP/8Zo7YWbDb8L70Ui48P2G1YrDYsdhvY7Fhs5v/37tuXsNtuwxoQ4OnyW1SXDnYdySeffEJgYCD19fW4XC5uueUWfvnLXwKwaNEinn/+eXbt2kVZWRkOh4Oamhqqqqrw9zfDo7e3N0OGDGl0zvz8fH72s5+xZMkSCgoKcDqdVFVVkZ2d3aSatmzZQmZmJoGnWbRx3759TQp2hmE06Vpw9p+BiIh0PYZhUL5oEQXP/4763FwA/EeNIuJnT+PbhL+DOqNOE+zS09NJT0/H6XQ2+Xv87H6suWVNK1Z19mufj+TkZF599VW8vb2JiorCbjc/uoMHD3LttdfywAMP8Nvf/pawsDBWrFjB3XffTV1dnTvY+fmdeut3+vTpHDt2jJdeeonevXvj4+PD2LFjqaura1JNFRUVTJ06ld///venjPXq1atJ50hMTGTXrl1Neu2ZfgYAwcHBVFZW4nK5GjWFlJSUABASEtKka4iISMdQu38/+b/5LZWrVgFgj4wk4ic/Juhb37qgR506uk4T7NLS0khLS6OsrKzJf4lbLJZm3Q71hICAAOLj4085vmHDBlwuFy+88II70Lz//vtNOufKlSt55ZVXuPrqqwHIyck5r8aHYcOG8c9//pM+ffo0Clnn45ZbbuGnP/0pmzZtOuU5u/r6eurq6ghomCY/088AYMCAATgcDjZv3sywYcPcx080gzRl9lBERNo/Z0UFRemvUPz222Y3q5cXYXffRfh992H17xh/p7cmdcV2cPHx8dTX1/Pyyy+zf/9+3n77bV577bUmfW9CQgJvv/02O3fuZM2aNdx66634+TV9JjEtLY3i4mJuvvlm1q1bx759+/jiiy+48847mzxz+uijjzJu3Dguv/xy0tPT2bJlC/v37+f9999nzJgx7N27t0nnGTx4MFdeeSV33XUXixcv5sCBA3z++ec8+OCDTJs2jejo6Ca/LxERaX8Mw6D03/9m35QpFDcsURKYnEy/Tz+h56OPKtQ1ULDr4IYOHcqsWbP4/e9/z8UXX8w777zD888/36Tv/ctf/sLx48cZNmwYt912Gw8//DA9e/Zs8rWjoqJYuXIlTqeTK6+8kksuuYRHH32U0NDQJq+R5+Pjw8KFC/nxj3/Mn/70J8aMGcPIkSOZM2cODz/8MBdffHGT61mwYAGTJk3i/vvvZ/DgwTz88MN8+9vf5s9//nOTzyEiIu2P4/hxjjz8MLk//gnOwiK8e/cmdt6fiH31lQ635Vdrsxjn8/R6B3DiVmxpaSnBwcGNxmpqajhw4AB9+/bF19fXQxVKe6LfEyIi7VvF8hXk/vQpnIVF4OVFj7QHCbvrLqwdfL2583G2bPNNneYZOxEREek8XDU1FPzhjxx/5x0AvPv3J/oP/9ch929tSwp2IiIi0q7U7NjBkR/9mLp9+wDo9oMf0POJx7Hqzso5KdiJiIhIu2A4nRx74w0K57wM9fXYeoQT9dxzBE6Y4OnSOgwFOxEREfG4+iNHyP3Jk1StXw9AYOrl9Pr1r7F36+bhyjoWBTsRERHxGMMwKPvkE/Ke/RWuigqs/v5EPP1TQm68sd0vNLzwH/OoqatnyISp9I5tH925CnYiIiLiEc7SUvKe/RVl//0vAH5JSUT93+87zBImvbe/QqJxgK3dAyF2uqfLARTsRERExAMqVq7k6NM/w5GXBzYb4WkPEn7ffViauZNRWzt0tJB+rkNggfhhkz1djlvH+OmJiIhIp1C1fj2FL8+lao25V7tX7zii/+//8Bs61MOVnZ+dm5bT2+Ki2BpGWHj7mWFUsBMREZFWV7VxE0VzX6Zy1WrzgJcX3aZNo+djj2Jt2BO8IynLMt9HSdgQwtrRs4AKdiIiItJqqrdsofDluVSuWGEesNsJvfFGwu+/D68Ouo93ncNF6LEtYAH/vqM9XU4j2iu2A8nLy+ORRx4hPj4eX19fIiIiGDduHK+++ipVVVUA9OnTB4vFgsViISAggGHDhvHBBx+4z3HHHXdw/fXXn3LuJUuWYLFYKCkpaaN3IyIinVn1tq/Ivv9+Dk77vhnqbDZCvvsd+n/+Gb1+9WyHDXUAGw4d52L2AtDzovEerqYxzdh1EPv372fcuHGEhoby3HPPcckll+Dj48O2bduYN28e0dHRXHfddQD86le/4t5776WsrIwXXniBadOmER0dzWWXXebhdyEiIp1d9fbtFM1NpyIz0zxgsxFy3XWEP/DDDtPtei4bvtrBWEsxLqxYo4d5upxGFOw6iAcffBC73c769esJ+NqzCP369ePb3/42hmG4jwUFBREZGUlkZCTp6en87W9/4z//+Y+CnYiItJqanTspnJtOxeLF5gGrlZCpUwl/8AG8e/f2bHEt7PieVQCs7daPiJpC+voEeriik7p0sDMMA6O62iPXtvj5NXnhxWPHjvG///2P5557rlGoa3S+M5zLbrfj5eVFXV1ds2sVERE5k5rdeyiaO5fyhQvNAxYLwddeS/gDD+DTr69ni2sFheW1hJduAzukh/my+aPr+PW4X3N9/PWeLg1oh8EuJyeH2267jYKCAux2Oz//+c+56aabWuVaRnU1u4cNb5Vzn8uAjRuw+Ps36bVZWVkYhsGAAQMaHQ8PD6empgaAtLQ0fv/73zcar6ur44UXXqC0tJSUlJSWKVxERASo3buXwvRXKP/8c/OAxULwlCmEpz2IT//+ni2uFS3fW0iSZR8lVitbXeUAjI5sPw0U7S7Y2e12Zs+eTVJSEnl5eQwfPpyrr776jDNVXdnatWtxuVzceuut1NbWuo//5Cc/4Wc/+xk1NTUEBgbyu9/9jmuuucaDlYqISGdRu38/RXPTKfvsM2h4DCjoW9+iR9qD+CQkeLi61rd8dx6/tu4n098XFwYDug2gV2AvT5fl1u6CXa9evejVy/wBRUZGEh4eTnFxcasEO4ufHwM2bmjx8zb12k0VHx+PxWJh9+7djY7369cPAL9vnOtHP/oRd9xxB4GBgURERDS6TRscHMyhQ4dOuUZJSQk2m00BWkRETsswDI6/8y75v/891NcDEHTllYSnpeE7INHD1bUNl8sgd+9mAi01ZAZEADApdpKHq2qsxZc7WbZsGVOnTiUqKgqLxcJHH310ymvS09Pp06cPvr6+jB49mrVr1572XBs2bMDpdBIbG9vSZQLmc2lWf3+P/DqfjY27d+/OFVdcwdy5c6msrDzn68PDw4mPjycyMvKU6wwYMIDt27c3muED2LhxI3379sXLy6vJdYmISNfgqqwk94kfkf+b30B9PQETJ9D3Xx8SM+elLhPqAHYcLaNP7S7qgVV+vgBMjpns0Zq+qcWDXWVlJUOHDiU9Pf204wsWLGDmzJk888wzbNy4kaFDh3LVVVdRUFDQ6HXFxcXcfvvtzJs3r6VL7JBeeeUVHA4HI0aMYMGCBezcuZPdu3fzt7/9jV27dmGz2Zp0nltvvRWLxcLtt9/Ohg0byMrK4o033mD27Nk8/vjjrfwuRESko6ndv58D06ZR9umnYLcT8dSTxP7pT/hedJGnS2tzS/cUkmTJYp2vL5UWg3C/cAaHD/Z0WY20+K3YKVOmMGXKlDOOz5o1i3vvvZc777wTgNdee41PP/2UN954gyeffBKA2tparr/+ep588slzLtFRW1vbaPaprKysBd5F+9O/f382bdrEc889x1NPPcXhw4fx8fFh0KBBPPHEEzz44INNOk9oaCjLly/nySef5LrrrqO0tJT4+HhmzZrF3Xff3crvQkREOpKyzz/n6E+fxlVVhb1HD6Jnv4j/cM80HbYHS/cU8qw1i4/8zUegJsVMwmppX3s9tOkzdnV1dWzYsIGnnnrKfcxqtZKamsrq1eaea4ZhcMcdd5CSksJtt912znM+//zzPPvss61Wc3vSq1cvXn75ZV5++eUzvubgwYPnPE9iYiIffvhhC1YmIiKdiVFfT8EfX6D4rbcA8B81iugX/oi9Rw8PV+Y55TX17Dp0lASvwyz1N3sBJsW0r+froI23FCsqKsLpdBIREdHoeEREBHl5eQCsXLmSBQsW8NFHH5GUlERSUhLbtm074zmfeuopSktL3b9ycnJa9T2IiIh0ZvX5BRyafoc71HW/9x7i3vhLlw51AKv3HWMQ+9jvbeeIlx0fmw9josZ4uqxTtLuu2PHjx+NyuZr8eh8fH3x8fFqxIhERka6hcu1ajsx8HGdREdbAQKJ+9zxBqameLqtdWLbXfL5uacNt2DG9xuBnb/oKF22lTWfswsPDsdls5OfnNzqen59PZGTkBZ07PT2dQYMGMXLkyAs6j4iISFdjGAbH/vIXsu+8C2dRET6JifT9xwcKdQ0MwzAbJ6z7WHLi+bp2tszJCW0a7Ly9vRk+fDiLT+wjB7hcLhYvXszYsWMv6NxpaWns2LGDdevWXWiZIiIiXYazvJzDDz1EwR/+CE4nId++jj4L3sO7Tx9Pl9ZurD90nJziavp47WObjzfQPp+vg1a4FVtRUUFWVpb76wMHDrB582bCwsKIi4tj5syZTJ8+nREjRjBq1Chmz55NZWWlu0tWRERE2kbN7t0cfvhh6g9lY/HyIuLppwmd9r3zWmu1K5i9aA+RHGOnfy2GJZBBYQPp6d/T02WdVosHu/Xr15OcnOz+eubMmQBMnz6d+fPnM23aNAoLC/nFL35BXl4eSUlJfP7556c0VLSm83mGTzo3o2E7HBGRrqb04485+swvMWpqsEf1Iuall/C75BJPl9XurD1QzMqsY0y1n7wNOzmu/e6/3uLBbvLkyef8y3LGjBnMmDGjpS99Tt7e3litVnJzc+nRowfe3t76V0kXZhgGhYWFWCwW7bghIl2Gq66O/Oeeo+S9BQAEjB9P1B/+D3u3bh6urH16afEeAK7vdZSn2uluE1/X7rpimys9PZ309HScTucZX2O1Wunbty9Hjx4lNze3DauT9spisRATE9PknTtERDqy+iNHOPzoY9Rs2wYWC+EPPkj4gw9g0Z+Bp3Vits7LZsHis4tqq5UIryAGhg30dGln1GmCXVpaGmlpaZSVlRESEnLG13l7exMXF4fD4ThrCJSuwcvLS6FORLqEiuUryH3iCZylpdhCQoj6w/8ROHGip8tq12YvMmfr7hzqz8rCXPDyY1LkmHZ9t6/TBLvzceLWm26/iYhIZ2e4XBS9+ipFc9PBMPAdPJjol17COyba06W1a2v2H2PVvmOMtGcx89ArXBtmZobJCdd7trBz6JLBTkREpCtwHD9O7k9+QuWy5QCETptGxE+fwqqF/c9p9qK9TLNl8gvv+TwRGEq+3ZsgewCjokZ7urSz6jTBrinP2ImIiHQV1du+4sgjj1Cfm4vFx4fIX/6S0Buu93RZHcKavblcm/1/3OidwaM9wlnl74ePzZs/TH4BH1v7DsUWo5Ot93DiGbvS0lKCg4M9XY6IiEibMgyDkvc/IP83v8Gor8crLo6YOS/hO7D9PvDfrpQdZc/LNxDj2EVaRA/W+/niZ/cj/fJ0RkZ6Zner88k2nWbGTkREpKtzVVeT9+yvKP3oIwACU1KI+t3z2DTR0TT7Mqn7x730chRxd2QkX/l6EegVyKupr5LUM8nT1TWJgp2IiEgnUHfoEIcffoTa3bvBaqXHY4/S/e67sVjbdPfQjslZD5m/xVgxm2qrhemRMezztRDsHcy8K+YxOHywpytsMgU7ERGRDq588WJyn3wKV3k5tu7diX7hBQLGtO+H/NuN4wfhn/fA4XUU2mzcHNGXAp86Qry78ZerXmdA2ABPV3heFOxEREQ6KMPhoPClORx7/XUA/C69lOjZL+LVhtt0dmhffYjxn4ex1Jaz2R7EPZFR1HpVE+wVxltT3qB/aH9PV3jeOk2wU1esiIh0JY6iIo48/gRVa9YAEDb9dno+8QQWrdF6bnVV8PmTsPEtLMA73v35XaQVbNXEBfVm3pV/IjqwY67zp65YERGRDsJwOHCWllKzcxdHf/pTHAUFWPz9ifrtbwieMsXT5XUMJTm43v0e1oIduAwLj/tNYFFkDlicJPVI4uWUlwn1DfV0lY2oK1ZERKSdMwwDV2UVzpLjOIuLcR4/juP4cZzFxxv+fzHO4yWNxlylpY3O4d2/PzFzXsKnf8e7ZegJ9Yc34nj7JvxqiygwQrk1MJm8nhsASI1L5fkJz+Nr9/VwlRdGwU5ERKQFGA4HzpISHMUNgex4QyBzf30c5/FiHF8La0ZdXbOuZQsJIfDyy4l8+qdYAwJa+J10bIuzF/PihhcpqS0hLiiOuOA4YgLiqN2fzeQ9fyXBUcV+Vyz39hxFedA6AG696FZ+NOJH2Kwdf+9w3YoVERH5BnM2rbIhjH0tnBUX4yz5xtfHj+MoKTllNq2pLN7e2MLCsIV1wx7azfz/3bphD+uGrVs3bN3CsHULxd6tYSwkBItd8zLfdLTiKM+tfY4lOUvO+Voviy/1Rg0Ajw9/nOmDp2OxWFq3wAugW7EiIiJfY9TXN8ymHf/azFnD/z/DrU+jvv78L2SxYAsJMQNZ2NcCWbfThTXza4ufX7sOFe2dw+XgnZ3vkL45nWpHNXarndsumo6r/BI+2LSJS43P6Omzn2y7nf2+QRy31FNv1GC32vntuN9ydb+rPf0WWlSnCXbqihUR6Rrcs2nF37zVeeLr4ydn2hrCmqusrFnXsvj4YAsLawhnXwtrYWHYQrs1DmthYdiCgzWb1oa2FW7jV1/+il3FuwAYEp7EQK+7WPA/J2VlJbzk9V+utG2AcqhP/gVeE2dS5agmuzybnv49CfMN8/A7aHm6FSsiIh5l1NXhKClxh7HT3/o8MbtWjKOkBJo7mxYa2hDCuplhLfQbYa1hNs3ezXyd1d+/xd+vXLjyunLmbJzDgt0LMDAI9Aoi3v591m+Lp7reoAclvOX3AoOMfRg2Hyw3vAoXf8fTZTebbsWKiIhHGIaBq6Lia7Np37j12Wg2zfxfV3l5s65l8fNruNUZ1jisnfj662HtxGyareM/HN+VGYbB/w79j9+v/T2F1YUAdDfGcmj75Rx1BjDUspc7QjYwxViBb90x8AvDcvPfIW6MhytvOwp2IiJyRkZdndnF2XCb82xh7cRtTxyO87+Q1XpyNu10Ye3ErU93eOuG1c+vxd+vtC9Ol5NDZYfYfXw3u4p3sTF/I5sLNwNgd/ak7PB1xFbb+ZHtE24KXEsPRx7UNnxz93i45X3o3rWWglGwExHpIgzDwFVebt7OPN1tT/etzpNhzVVR0axrWfz9sYeGNu7wDO3mDmvmsRMza900myZU1Vex5/gedhfvZtfxXewu3s3e43upcdY0fqFhw//YcG4qcXCj9TX6+eSaxx2AVwAMvBoG3wjxl4Pdp83fh6cp2ImIdFCuurqTz6UVn3727ORyHMcvfDbtG8txnO3Wp9W3Yy/yKq1vd/Fulh9Zzq5iM8QdKjuEwamP/fvZ/egbHM/RgjB6H8vjnprdTHL9A078O8DmA4lXms/QJVwF3l37uUgFOxGRdsBwuXCVl5/a4XmWsOaqrGzWtaz+/t9YjuNrM2ffuPVpD+uGNTgYi9Xawu9YurKSmhJu/+x2qhxVjY738OvBgLABDAwbaP5vt4EcLvTj0b9vZUbtPO6wLwTAsNqx9L/cDHMDpoCvmiVPULATEWkFrtracy9u+/WdCI4fh+Ys12SzYQsNPXmr85vLcYR9Y3Hb0FDNponHfZj1IVWOKqIDo5k2YBoDwgYwoNsAuvt1d7/G5TJ4ZUkWsxZ+xS9sb3GH/X8YWLCkPoNl2HTw73xLlbSEThPstI6diLQWw+XCVVZmNg2UnCasnW42rarq3Cc+DWtAQOPZtLPtRBAWhjUoSLNp0qE4XA7e2/UeAD8c+kOuj7/+lNcUV9bx2ILNLN1TwDP2v54Mdde9DMNua+OKOxatYyciXY6rtvbMy3Gc7tZnSUnzZ9O6dTt1cduv3fpstLhtaChWn673sLd0LYsOLeKxJY/RzacbC29aiI+t8e/5DYeOM+PdjRwtreZX3m9zu/Vzc+C6uV021GkdOxHpMgyXC2dp6Xktbms0dzYtMPBkIDvdTgRfHzsxm6atokQaeWfnOwB8N/G7jUKdYRj8ZcUBfvfZLhwuFy8E/Z3v1J8IdZqpayoFOxFpV1w1NY07PEu+1vHZ6NZnQ1grKQGX6/wvZLeffr20M+xEYOsWitXbu8Xfr0hXsqt4F+vz12Oz2Jg2YJr7eGl1PT/+xxa+2J4PGLwR+SEpJZ+Yg9e9DMNu90zBHZCCnYi0GsPpxFlWdtrlOE7e+mwc1ozq6mZdyxoUdObFbU/ZgL2bZtNEPODdne8CcEXvK4gIiADgqyOlPPjORrKLq/Cywcf9/8ug7H+a3zB1jkLdeVKwE5Emc1VXNwS0pu1E4Cwtbd5smpfXWRe3dXd4nrj1GRqKRbNpIu3a8ZrjfLr/UwBuvehWDMPg3bXZPPufHdQ5XMSE+vKv/p/SY7t5q5apL8Hw6R6suGNSsBPpogyn8+Szad+49XmmnQiMmppzn/g0rEFBpyxue0qH59fCmjUwULNpIp3MP/f+kzpXHYO6D2JI+BB++q9t/H1tDgCpA3uQHv5PfNb/xXzx1Jdg+B2eK7YDU7AT6QQMw8Corj45c1Zy6q3Pby7H4SwtheY0xXt5fS2EhTbeeeB0tz5DQ7F4ebX8mxaRDqPeVe9e4uTWi25lyZ5C/r42B5vVwo+uTOT+6r9gWfOa+eJrZyvUXQAFO5F2yHA6cZaUfGMfz7PvRGDU1p77xKdhDQ4+fYfnGW59WgMCNJsmIuclIzuD/Kp8wnzDSI29kuvmrgHgnvF9+GHtm7DmFfOF186GEXd6rtBOQMFOpJUZhoFRVXX6Tde/uRxHw61PZ1lZs2bTLF5eZgALC8PeLfSsHZ5mB6hm00Sk9Z1omrgp8SY+3JhPVkEF3fzszDT+CqtfNV907YsKdS2g0wQ77TwhbcVwOL42m3by1uepOxGcDGpGXV2zrmUNCTmPxW27YQ3w12yaiLQrO47tYGPBRuwWO1f3uZHvpW8H4K+9P8Nn3Zvmi659EUbc5cEqO49OE+zS0tJIS0tzr84s0hSGYeCqrHI/k3b6nQgahzVXaWmzrmXx9j7ZOHCmW59hXxsLDcVi7zT/iYpIF+Ve4qTPFXy4tpyiijqu7ZbNJQcbQt01sxTqWpD+1pBOxaivx1lS0nhx23Pc+mzubJotJOTkkhvnWNzW3i0Ui79m00SkazlWfYz/HvgvAN+K/S4P/GU/Flz8xu9dqAYuvQ1G3u3ZIjsZBTtpt8zZtMrzWtzWVVbWrGtZfHxOvdX5jQ7PRmEtJESzaSIi5/DPvf+k3lXPxd0v5pO13tQ6XDwWsY3Q4q3gFQApP/d0iZ2O/maSNmPU158MY6dbzPY0Yc2orz//C1ksjWfTThfWGm59nnhGzeLnp9k0EZEWVO+qZ8GuBQBMjLyB//vnEXyo4wHH38wXTHgMgiI8WGHnpGAnzWIYBq6KitMubtvoObWvLW7rKi9v1rUsvr7ntbitLSQEi83Wwu9YRETOx+JDiymoLiDcL5wlG6MwjFL+GLMS76IjEBwDY2d4usROScFOADDq6nCUlDRacuO066W5w1oJNHc2zb1VVOgZ9vFs/LXVz6/F36+IiLSud3aaW4ONCLuaDzaW0stexjWlZiMFqc+Al/5sbw0Kdp2QYRi4ysu/sbjtqbc+v764rauiolnXsvj5nXU5jlP29QwO1myaiEgnt71oO5sLN2O32lm/bSAAr0R9jrWgEqKGwcXf9XCFnZeCXQfgqqtrvPPANzs8TxPWcDjO/0JWa8NsWsNtz28ux/HNW5+aTRMRkdN4d5c5MzcgcAJfbrcy0i+XpMJ/m4NXPQdWqwer69wU7NqYYRi4ysoaL2D7zbD2jbFmz6b5+39tNu3sy3HYuoWaz6bpPzYREbkARdVFfHbgMwD27B0KGMzu9g8sxS4Y9G3oPdazBXZyCnYXyJxNO93itqduuu44fhxnSUnzZ9NO0+FpLnZ7mp0IunXD6uvb4u9XRETkbP6x5x/Uu+rp4ZXI/uJIpoXuIrr4S7B5Q+ovPV1ep6dg1wxln39OwR9fMGfTKiubdQ6rv3/jxW3PeOvTnGmzBgdrNk1ERNq1emc97+9+H4Cj2cOx4eTnXu9ADTD6fgjr59kCuwAFu+Zwuag/fPjk1zZbQwALPbmY7dkWt+3WDauPj+fqFxERaQULDy2ksLoQb0IpLxnM0z3XEFi2D/zCYMITni6vS1Cwawb/MWPo/e67J5fjCArSbJqIiHR57+wylzgpLxxJEHXcWdewvEnyT8Ev1HOFdSGdJtilp6eTnp6O0+ls9WvZw8Kwh4W1+nVEREQ6im2F29hauBWLYaf++CheiVqMvbgYwhNh+B2eLq/L6DTTTGlpaezYsYN169Z5uhQREZEu58RsXV3pEPpaarm85J/mwJW/AZuXByvrWjpNsBMRERHPKKwq5IuDXwBQd/wy5vb8GIurDvpNhoQrPVtcF6NgJyIiIhfkgz0f4HA5cFb1ZqKljkHFiwELXPlbsFg8XV6XomAnIiIizVbnrGNBwxIn9cVj+UPQe+bAsNsg8mIPVtY1KdiJiIhIs31x8AuKa47hqg/mB9Z6epR9BV4BkPwzT5fWJSnYiYiISLMYhsH8r94GwHV8JD+2LTAHJjwGQREerKzrUrATERGRZtlatJU9JTsxXHYet9biV5ULwTEwdoanS+uyFOxERESkWV7ZMB8AW9lF3FnzsXkw9Rnw8vNcUV2cgp2IiIict/zKfFblZQLwpKUGW30lRA2Di7/r4cq6NgU7EREROW9/WD0fLE58qnrx/eNmwOOq50BbbHqUfvoiIiJyXqrqavhfzkcAPOqsxmK4YNC3ofdYzxYmCnYiIiJyfn6V+S6GtQIfhz/fL9oKNm9I/aWnyxIU7EREROQ8lFXX8d/sDwC4o6YGO8Do+yGsn0frEpOCnYiIiDTZbxZ9huF9GJth5dZj2eAXBhOe8HRZ0kDBTkRERJpkzf5jfHLInK27tqqGbi4XJP8U/EI9W5i4KdiJiIjIOS3ckc/0997CGrgNgNtKjkF4Igy/w7OFSSN2TxcgIiIi7dsH63P42eLX8Yr6CIvF4IqqGgbU1cOVvwGbl6fLk69RsBMREZEzmrc0iz+un41P5FIArrN155f5m6DfZEi40rPFySna5a3YG264gW7duvHd72r1ahEREU8wDIPnPtvGrC2/xCfcDHUPBg/mN1mb8MICV/4WLBYPVynf1C6D3SOPPMJf//pXT5chIiLSJTmcLh7/52rePvhTvEK2YMXGr33688CWz7AApDwNkRd7ukw5jXYZ7CZPnkxQUJCnyxAREelyauqd3P3OF3xe/DPs/gfxsfrxmqs71+/KBIsNrnsZJv7I02XKGbR4sFu2bBlTp04lKioKi8XCRx99dMpr0tPT6dOnD76+vowePZq1a9e2dBkiIiJynspr6pk2/33W1/8Km08hofZuvFvuZOyh9eAdBLd+AMNu93SZchYtHuwqKysZOnQo6enppx1fsGABM2fO5JlnnmHjxo0MHTqUq666ioKCgpYuRURERJqoqKKW69+cxz77H7DaK4jzieIfebkkFmRBcDTc/QXEX+7pMuUcWrwrdsqUKUyZMuWM47NmzeLee+/lzjvvBOC1117j008/5Y033uDJJ5887+vV1tZSW1vr/rqsrOz8ixYREenCDh+v4qZ3/kh54D+wWAyG+fXjlb1rCaivgshL4JYPILiXp8uUJmjTZ+zq6urYsGEDqampJwuwWklNTWX16tXNOufzzz9PSEiI+1dsbGxLlSsiItLp7c4rZeo7T1IR9AEWi8E1/on8ecdSM9TFXwF3fqZQ14G0abArKirC6XQSERHR6HhERAR5eXnur1NTU7npppv473//S0xMzFlD31NPPUVpaan7V05OTqvVLyIi0pl8eSCPmz5MwxGUCcD9PvE8v30RXhgw/E64+T3wUTNjR9IuFyhetGhRk1/r4+ODj49PK1YjIiLS+Xy6PYufLH8MS8BBMGz82hrJ9bsyzMHUZ2HcI1qnrgNq02AXHh6OzWYjPz+/0fH8/HwiIyPbshQREZEua/7a9fxhy4+w+hVhM3x5rd6bMUdWg80HbngNLr7R0yVKM7XprVhvb2+GDx/O4sWL3cdcLheLFy9m7NixF3Tu9PR0Bg0axMiRIy+0TBERkU7r95lf8MdtM7B6F+FvhPBBWQ1jjnwFfmEw/d8KdR1ci8/YVVRUkJWV5f76wIEDbN68mbCwMOLi4pg5cybTp09nxIgRjBo1itmzZ1NZWenukm2utLQ00tLSKCsrIyQk5ELfhoiISKdiGAYzP/kbC4tmYbE76EkEfy/YS8+qEgjrB7f+A7r393SZcoFaPNitX7+e5ORk99czZ84EYPr06cyfP59p06ZRWFjIL37xC/Ly8khKSuLzzz8/paFCREREWobLZXDbP/7Ilqq3sVgNBlpimH9oPQHOOogdDd//OwR093SZ0gIshmEYni6iJZ2YsSstLSU4ONjT5YiIiHhUTX09Ny54ihznFwAkE8esAyvMmZ1B15vP1Hn5ebJEOYfzyTbtcq/Y5tAzdiIiIo0VV5VzxTv3uEPdHa5oXjoR6i57GL77pkJdJ6MZOxERkU7owPF8vveve6mxHQDDxi/qQrgpdzNYrHD1H2DkPZ4uUZrofLJNu1zHTkRERJpvw5Hd3P3FD3HairA4fXm1ysW4os3gFQA3zYfEKz1dorQSBTsREZFO5L97VvPkyscwbJV4O4J5r6SQhPJ8CIyEW9+HXkM9XaK0IgU7ERGRTuIvGz9i9tZnweogpK47/yraQ4/aSug5CG79AEJiPF2itLJOE+zS09NJT0/H6XR6uhQREZE2ZRgGv17+Kh/sfw0sBr1rI1iQt5EAlxP6JcP33gJfrfHaFah5QkREpANzupzM+OIZVhR8DMDoqp78KX89NoCkH8DU2WDz8mSJcoHUPCEiItIFVNVXcdt/HmFP+ZcATCvvxtNF67EAJP8MJj4BFotHa5S2pWAnIiLSARVVFzHto/soqNsLLhs/KfXiByVbwOoF306HodM8XaJ4gIKdiIhIB7O/ZD+3/udeKlwFWBy+zC2pYmL5AfM5uu+/C33Ge7pE8ZBOE+zUPCEiIp1ZaW0py48s54sDi1l+eDlOavGqC+Lvx3IZUHMcQuPg1n9AjwGeLlU8SM0TIiIi7dTRiqNk5GSQmZPJ+rwNOA2Heyy4OoyPinbSw1EL0cPh5vcgsKcHq5XWouYJERGRDsgwDPYc32OGuexMdhbvbDTurInAqBjI7UYZP6n42NzwfeC1cOPr4O3vkZqlfVGwExER8SCHy8Gmgk1kZJszc0cqjnxt1IKlpg/VpRfhW96PR/y3c7vlc/xq8s3h0Q/AVb8Fq80jtUv7o2AnIiLSxqrqq1idu5qMnAyWHl5KaW2pe8zH5kO0z1CyD/ejpCieSGctTwct5kaft/GqrTRfFBgJyU/B8Ds88wak3VKwExERaQPFNcUszVlKRnYGq4+uptZZ6x4L8QlhQvREbNWX8L8NwWwphYssh/id/ztc4VqJtb7h2boeA+Gyh+CSm8Du46F3Iu1Zpwl26ooVEZH2Jrssm8ycTDKyM9hcuBmX4XKPRQdGkxybzMToZPbl9OCVzP3kllYz3rqNuf7/ZZRrC5z4K63PBLjsYYhPBavVM29GOgR1xYqIiLQQwzDYfmy7+3m5rJKsRuMXhV1EclwyKbEp9A2O56NNuczJ2Eve8XKutX7Jgz7/JdE4aL7YYoXBN8DYGRA9rO3fjLQb6ooVERFpI/XOetblrXMvS1JQVeAes1lsjIgcQXKsGeZ6BfbC4XTx8eZc7stYxrFjRXzflsm9vp8TwTEwAK8AGHYbjHkQuvX23BuTDknBTkRE5DxV1FWw4sgKMrIzWH5kORX1Fe4xf7s/46LHkRKXwoToCYT4hADgdBl8vPkILy3eS2VhDnfaP+cHvhkEUmV+Y0BPGH0/jLgL/MM88bakE1CwExERaYKCqgKW5CwhIzuDNXlrcLhOLhbc3bc7k2MnkxKXwuheo/GxnWxscLkMPvsqj9mL9mAt3EGa/VOu812F14kH6MITGxoivgdevm38rqSzUbATERE5DcMw2F+63/283LaibY3G+wT3ISUuheTYZIb0GILVYj3l+7/Yns/shbsJK/ySp22fMtlny8kX9B5nNkQkXKmGCGkxCnYiIiINnC4nW4u2kpGdQUZ2Btnl2Y3Gh/QYQkpsCslxyfQL6XfacxiGQcauAl763w765C/kj/ZPudj7oDlmsWK56Doz0MUMb+23I12Qgp2IiHRpNY4avjz6JZk5mSzJWUJxTbF7zMvqxZheY0iOS2ZyzGR6+Pc443kMw2DpnkJe+2Izg/M/5hX758R4F5ljXv5YLv0BljEPQljf1n5L0oV1mmCndexERKSpSmpKWHZkGZnZmazMXUm1o9o9FuQVxMTYiSTHJjM+ejwBXgFnPZdhGKzad4w3P1/N8LwFzLMtJtjLbIhw+ffAOvp+LCPvVkOEtAmtYyciIl3CkYojZGZnkpGTwcb8jTiNkxMBEf4RpMSlkBKXwvCI4XhZvZp0zi/3H+P9//6PMXl/53rbCrwt5jkd3fpjH/8wDPm+GiLkgmkdOxER6fIMw2BX8S73zg+7j+9uNJ7YLdFcXy4uhYvCLsJisTT53OsPHOOLTz9gbP7fmWXb7P7btC56NN4THsGeOEUNEeIRCnYiItJp1Lvq2Zi/0d3JerTyqHvMarEyrOcwkmOTSY5LJjYo9rzPv+lgIav+8wYTCv/O09YDYAMXFurir8F30qN4x45sybcjct4U7EREpEOrqq9iZe5KMrIzWHZ4GWV1Ze4xX5svl0VdRkpcChNjJtLNt1uzrrH9QC5b/vMyE4+9T5qlCKxQZ/Gh7pKbCZz0ML7d+7fU2xG5IAp2IiLS4RRVF7E0ZykZORl8mfslda4691g3n25Mip1ESmwKY6LG4Gf3a/Z1dmdlse+TF7js+McMtlSCBSpsIThH3EfIxAfwDujeEm9HpMUo2ImISIdwsPSguR9rdiZbCrdgcLL3LzYo1r2+XFKPJGxW24Vda9dGjvz3D4wo/R8DLA6wQKFXNJZxDxE+7g7wan5YFGlNCnYiItIuuQwXXxV95X5ebn/p/kbjg7sPdu/8EB8af17ND6dlGBzevIjji17gksrV9AGwwH7fi/Gb/Ci9Rt0IFxgYRVqbgp2IiLQbdc461hxd414suLC60D1mt9gZGTmSlLgUJsdOJjIgsmUu6nRQsPYDapbOJq5mFzGAy7CwNXAcYVc+Qb+hyS1zHZE2oGAnIiIeVVZXxvLDy8nMyWTFkRVU1le6xwK8ApgQPcFcLDhmPMHeLbg+aV0lx1e+iWvVXHrWm92zNYYXXwZ/i5gpT5A0KKnlriXSRjpNsNPOEyIiHUdeZZ57fbn1eetxGA73WA+/Hu4lSUZFjsLb5t2yF68ooGzZK9g3/IVuTrODttgIZEXoDcRf+xiTE9ThKh2Xdp4QEZFWZxgGe0v2und+2HFsR6Px/iH9SY5LJiU2hcHhg7FaWmFx38I9VC19Ca/t7+NlmF20B10RLO3+PYZOfZCkflEtf02RFqCdJ0RExOOcLiebCja5Z+YOVxx2j1mwkNQzyZyZi02mT0if1inCMCD7S2qXvYjPvi/wbzi8yRXP0vDvM/7aO5jer0frXFvEAxTsRESkxVQ7qlmdu9q9WPDx2uPuMW+rN2OjxroXCw73C2+9QlxO2PUJ9ctfwuvoBnwaDi90DmdZz5u55uobeLR/K15fxEMU7ERE5IIcrznO0sNLycjOYHXuamqcNe6xYO9gJsVMIiUuhcuiLsPfy/8sZ2oBdVWw+R2cq+ZiKzmIF1BrePFP53hW9byZm6++nF/1737hS6OItFMKdiIict5yynPc68ttKtiEy3C5x6ICotzPy10acSleVq/WL6iyCNbOw7X2dazVxdiA40YgbztTWd/zu9z9rTG8nBCuQCednoKdiIick2EY7Cje4Q5ze4/vbTQ+MGyge+eHAd0GtF2AKsqC1XMxtvwdi6MGK5Dt6sGfnVfzVc+ppF05hIcG9lSgky5DwU5ERE6r3lXP+rz17jCXX5XvHrNZbAyPGO5eLDg6MLpti8teA6vmYOz6FAsGFmCzqx/zHNdysEcKj1x5Ec8OilCgky5HwU5ERNwq6ipYkbuCzOxMlh9eTnl9uXvMz+7H+OjxJMcmMzFmIiE+IW1bnMsJu/8LK+fA4bUAWIBFzkuZ57iW4+EjePSKAUy5OBKrVYFOuiYFOxGRLq6wqpDMnEwyczJZc3QN9a5691iYb5h7SZLRvUbja/dt+wLrq2Hzu7A6HYr3AVCHnQ8d43ndeQ1G90QeSU3g2iFR2BTopItTsBMR6YL2l+43b7FmZ7K1aGujsd7BvUmJTSElLoVLwi/B5qmN7yuPwbrXYe08qDoGQBkB/NWRyluOK/HvHs0jlydw3dAo7LZWWNBYpANSsBMR6QJchouthVvJyDHD3MGyg43Gh4QPcXey9g3p69ln047tM2fnNr8LjmoAcunJvPpv8b5zMmHduvGjlARuGBaNlwKdSCMKdiIinVSts5Y1R9eQkZ3BkpwlHKs55h6zW+2M7jWalFiz+aGnf0/PFXpCzjpY9RLs/AQwd7vcZenP3Nqr+cw1ioiQAH6WksB3h8fgbVegEzkdBTsRkU6ktLaUZYeXkZmTyYojK6humPECCPIKYnzMeFLiUhgfNZ5A70APVtrA5YI9n8GqlyF7tfvwautwXqqZwpeui4gI9uWZ5HimjYzFx+6h28IiHYSCnYhIB5dbkWs2P2Rnsj5/PU7D6R7r6d+T5NhkUuJSGBkxEi9bGywW3BT1NbD1PVg1F46Za+K5LHY+t03ixcqr2GvEEB7owy8m9+eW0XH4einQiTRFpwl26enppKen43Q6z/1iEZEOzDAM9hzf415fbmfxzkbj8aHxpMSlkBKbwqDug9rXWm5VxbDuL7D2T1BZCEC9VxD/sFzBi2WXU0A3wgK8+emkftw2pg9+3gp0IufDYhiG4ekiWlJZWRkhISGUlpYSHBzs6XJERFqEw+VgU8Emd5g7UnHEPWa1WEnqkeQOc7HBsR6s9AyKD8CXr8Cmv0F9FQDV/lG85bqal0vGUokfof5e3DexH9PH9iHAp9PMO4hcsPPJNvovR0Sknaqqr2JV7ioyczJZengppbWl7jEfmw+XRV1Gcmwyk2InEeYb5sFKz+LwBlg1B3b+Gxr2ky0LvYhX66/h9WNDcGAn2NfO4xP6cce4PgT5tpNbxSIdlIKdiEg7cqz6GEsPLyUzO5PVR1dT66x1j4X6hDIpZhLJccmM7TUWfy9/D1Z6Fi4X7P2fGegOrXQfPtZrIrMqr+KdvD6AhUAfO3eN78vd4/sS4qdAJ9ISFOxERDzsUNkhMrMzycjJYHPBZgxOPiETHRjtvsWa1DMJu7Ud/7FdXwPb3jcbIop2A2BY7RT0nspzJal8fKAbAP7eNu4c14d7J/Qj1N/bkxWLdDrt+E8IEZHOyWW42F60ncycTDKyM9hXuq/R+KDug9ydrAmhCe2r+eF0qoph/Ruw5k9QWWAe8wnmSPz3+VXBeL7Yaf5V4+tlZfrYPtw3sR/dA308WLBI56VgJyLSBuqd9azNW+teLLigusA9ZrfYGRE5gpS4FJJjk4kMiPRcoefj+EH48lXY+DbUV5rHgqPJTpzOM4eHk7nBvI3sY7fygzG9+eGk/vQIUqATaU0KdiIiraS8rpwVR1aQkZ3BiiMrqKivcI/52/0ZH20uFjwhZgLB3h2oiz93E6ycAzs+cjdEEHEJBwbcxbP7B7BkRQlQi7fNyi2j43hgcn8ign09WLBI16FgJyLSgvIr81mSs4SMnAzW5q3F4XK4x8L9wkmOTSY5NpnRvUbjbetAz5e5XJC1yGyIOLj85PF+yexLvJtf7+jJkv8VASV42Sx8b0QsacnxRIX6eaxkka5IwU5E5AIYhsG+kn1k5GSQmZ3JV8e+ajTeN6QvKbEpJMclc0n4JVgtHWyPU0ctbPvA3PKrcJd5zGqHi79DVvyd/G6TnUUfFQBF2KwWbhoeQ1pyPLFh7bRjV6STU7ATETlPTpeTLYVb3IsFZ5dnu8csWBjSY4j7ebm+IX09WOkFqD4O6980GyIq8sxj3kEwfDpZ/W/jj6sr+fxd87jVAjdcGsPDl8fTu3uAB4sWEQU7EZEmqHHUsDp3tXux4OKaYveYt9WbMVFjSI5NZnLsZML9wj1Y6QUqyW5oiPgr1DU8ExgUBWN+yL7Y7zJrRT6fZppdvBYLfHtoFA9fnkC/HoEeLFpETlCwExE5g5KaEnOx4JxMVuWuotpR7R4L8g4yFwuOTWZc9DgCvDr4TNXRLWZDxPZ/gdGw53bPwXDZQ+yPvIqXlhzi359s5sQmlNcM6cWjlyeQEBHkuZpF5BQKdiIiX3O4/LB7fbmNBRtxnej6BCIDIkmJTSElLoVhEcPwsnbw3RIMA7IWmw0RB5aePN53Eox7mEOhY5iTsY9/LViNqyHQfWtwJI9ekcDAyA7UxSvShSjYiUiXZhgGO4t3usPcnuN7Go0P6DaA5LhkUmJTGBg2sP0vFtwUjjr46h9mQ0TBDvOYxQYX3whjZ5Djm0h6ZhYfbFiGsyHRpV4UwaOpCVwcHeLBwkXkXBTsRKTLqXfVsyF/A5nZmWTmZHK08qh7zGqxMjxiOCmxKUyOnUxMUIwHK21hNaUNDRGvQXnDe/YOhGHTYcwPyaUH6ZlZvL9+CfVOM9BNHtCDx1ITGRob6rm6RaTJFOxEpEuorK9k5ZGVZORksOzwMsrryt1jfnY/Lou6jJS4FCZGTyTUN9RzhbaG0sNmQ8SGt+DE+w6MhDE/hOF3kl/vyyuZWfx97XbqnOat5wkJ4Tyamsjw3t08WLiInC8FOxHptIqqi8zFgrMzWHN0DXWuOvdYmG8Yk2MnkxybzJheY/C1d8KdEfK2mbdbv/onnFgoucdFcNlDcMl3KayG1xbv429fHqLWYQa6Mf3CmHnFAEb1DfNg4SLSXO0y2H3yySc8/vjjuFwufvKTn3DPPfd4uiQR6SAOlB5wry+3tXArBoZ7LC4ozr2+3NAeQ7FZbR6stJUYBuzLMAPd/syTx/tMgMsehoQrOFZZx7z/7eet1QepqTcD3Yje3Zh5ZSKX9e/AS7WISPsLdg6Hg5kzZ5KZmUlISAjDhw/nhhtuoHv37p4uTUTaIZfhYlvRNneYO1B6oNH4xd0vJiXO7GTtF9KvczQ/nI6z3pyZW/Uy5DfsfmGxweDrYewMiB5GSVUdr/9vN2+uPEhVnbmkSVJsKI9fmcj4+PDO+7MR6ULaXbBbu3YtgwcPJjo6GoApU6bwv//9j5tvvtnDlYlIe1HnrGPN0TVk5GSwJGcJRdVF7jG71c7oyNHuxYIjAiI8V2hbqCmDDfPNhoiyI+YxrwAYdjuMeQC69aa0up6/LNzDGysOUFFr3pIdEhPCY1ckMjmxhwKdSCfS4sFu2bJl/OEPf2DDhg0cPXqUf/3rX1x//fWNXpOens4f/vAH8vLyGDp0KC+//DKjRo0CIDc31x3qAKKjozly5EhLlykiHUxpbSnLjywnMzuTFUdWUOWoco8FegUyIXoCyXHJjI8eT5B3F1g0t/SIGeY2zIfaMvNYYASMvh+G3wn+YZTX1PPm4r28vnw/5TVmoLuoVzAzr0gk9aKeCnQinVCLB7vKykqGDh3KXXfdxY033njK+IIFC5g5cyavvfYao0ePZvbs2Vx11VXs3r2bnj17tnQ5ItKB5VXmkZGdQUZOBhvyNuAwHO6xnn493evLjYwciZetgy8W3FR5X8HqubDtg5MNEeGJZkPEkGlg96Gy1sFbS7KYt2w/JVX1AAyICOKxKxK4clAkVqsCnUhn1eLBbsqUKUyZMuWM47NmzeLee+/lzjvvBOC1117j008/5Y033uDJJ58kKiqq0QzdkSNH3LN5p1NbW0ttba3767KyshZ4FyLiCYZhsLdkrxnmsjPYWbyz0Xh8aDzJscmkxKUwqPsgrBarhyptY4YB+5eYz8/tW3zyeO/xZqBLuBKsVqrrnLy9bB+vLd1PcaXZAdy/RwCPpiZyzSW9FOhEuoA2fcaurq6ODRs28NRTT7mPWa1WUlNTWb16NQCjRo3iq6++4siRI4SEhPDZZ5/x85///IznfP7553n22WdbvXYRaR0Ol4NNBZvcOz8cqTj5DzsLFi7team7kzUuOM6DlXqAs97cu3XVHHPpEgCLFQZ9G8Y+BDHDAaipd/LOqgO8umQfRRXmP3T7hgfwyOUJTB0ahU2BTqTLaNNgV1RUhNPpJCKi8cPMERER7Nq1yyzIbueFF14gOTkZl8vFj3/847N2xD711FPMnDnT/XVZWRmxsbGt8wZEpEVUO6pZlbuKjGxzseCS2hL3mI/Nh7G9xpqLBcdMpLtfF+yIry2HjX81FxUuzTGPefnDpbeZDRFhfc2XOZwsWJdDemYW+WVmoIsN8+PhlARuuDQau62LzGiKiFu764oFuO6667juuuua9FofHx98fHxauSIRuVDFNcUszVlKRk4GX+Z+SY2zxj0W4hPCpJhJpMSmMDZqLP5e/h6s1IPKjpoNEevfhNpS81hADxh1P4y8G/zNRYPrHC4+2JBDekYWuaXmzzE61I+HUuL5zvAYvBToRLqsNg124eHh2Gw28vPzGx3Pz88nMjKyLUsRkTaQU5ZDRo75vNzmws24DJd7LDow2v283KU9L8VubZf/zmwb+TvMhoit74PLbHagewJcNgOGfB+8zF0x6p0u/rXxCHMy9nL4eDUAkcG+zEiJ53sjYvG2K9CJdHVt+iept7c3w4cPZ/Hixe4lUFwuF4sXL2bGjBkXdO709HTS09NxOp0tUKmINIdhGOw4toPF2YvJzMkkqySr0fhFYRe5O1kTuyV27eU2DAMOLoeVcyBr4cnjcWPNHSISvwVWM6g5nC4+3pzLnIy9HDpmLvPSI8iHtMn9+f6oOHy9OuEOGiLSLC0e7CoqKsjKOvmH+YEDB9i8eTNhYWHExcUxc+ZMpk+fzogRIxg1ahSzZ8+msrLS3SXbXGlpaaSlpVFWVkZISMiFvg0RaaJ6Zz3r8te5d34oqCpwj9ksNkZEjiA5Npnk2GSiAqM8WGk74XTAjo/MhoijWxoOWuCiqWagix158qUug0+25vLS4r3sL6wEIDzQmx9O6s8PxvRWoBORU7R4sFu/fj3Jycnur080NkyfPp358+czbdo0CgsL+cUvfkFeXh5JSUl8/vnnpzRUiEj7VVFXwYojK8jIyWD54eVU1Fe4x/zsfoyPHk9KXAoToicQ4qN/aAFQWwGb3obVr0BptnnM7geX3gpj0yCsn/ulLpfBZ1/lMXvRHvYWmD/bbv5e3D+pP7eP7Y2/dxe+bS0iZ2UxDMM498s6jhMzdqWlpQQHB3u6HJFOo6CqgCU5S8jIyWDN0TU4XCcXC+7u253JsZNJiUthdK/R+NjU0ORWngdr/gTr/wI1DQ0R/uEw6j4YeQ8EnOz6NQyDL7bnM3vRHnbllQMQ4ufFfRP7Mf2yPgT6KNCJdEXnk206zZ8SesZOpGUZhsGB0gPu5odtRdsajfcJ7uN+Xm5IjyFdZ7HgpirYBatfNhsinOZiwYT1Nxsiht4MXn7ulxqGQcauAmYt3MP2XHOR9SAfO3dP6Mtd4/sS7NtFdtUQkQumGTsRcXO6nGwt2kpmdiYZORkcKjvUaHxIjyGkxKaQHJdMv5B+ZzhLF2YYcGil2RCx94uTx2NHm8/PDZgCVtvXXm6wdE8hLy7cw5bD5mxegLeNu8b35Z7x/QjxV6ATkS46YycizVPjqGHN0TVk5GSwJGcJxTXF7jEvqxeje40mJS6FyTGT6eHfw3OFtmdOB+z8t7nlV+7GhoMWGHiNGejiRjd6uWEYrNp3jFkL97Dh0HEA/LxsTL+sD/dN7EdYgHcbvwER6SwU7ES6oNLaUpYdXkZGdgYrc1dS7ah2jwV5BTEhZgIpcSmMjx5PgFeABytt5+oqYdPfYHU6lDTMbtp9IekWGDsDuvc/5Vu+3G8GurUHzADtY7dy+9je3D+pP+GBejZRRC6Mgp1IF5Fbkevej3VD/gacxsnnUSP8I9z7sY6IHIGXVbcAz6qiwGyIWPdnqCkxj/mFnWyICDx1ZnP9wWJmLdzDqn3HAPC2W7l1dBwPTOpPz2DfNixeRDqzThPs1Dwh0phhGOw+vtu9vtyu4l2NxhO6JZASm0JKXAoXhV3UtRcLbqrCPWZDxJYF4DT3ZqVb34aGiFvA+9St0DZlH+fFRXtZtqcQAC+bhe+PjCMtOZ7IEAU6EWlZap4Q6UQcLgcb8zeSkZNBZnYmuZW57jGrxcqwnsPMxYLjkokNivVgpR2IYUD2arMhYs9nJ4/HjDSfnxt4TaOGiBO2HS7lxUV7yNhlLthst1q4aUQsM1LiiQ71O+X1IiJnouYJkS6kqr6KVbmryMjOYOnhpZTVlbnHfG2+XBZ1GSlxKUyMmUg3324erLSDcTlh53/Mhogj6xsOWmDA1TDuYbPT9TSznDtyy3hx0R4W7jD3xLZZLXxnWDQPpSQQG3bqjJ6ISEtSsBPpgIqqi1ias5TMnExW566mzlXnHuvm041JsZNIiU1hTNQY/OyaHTovdVWw+R1YPReOHzSP2Xwg6WazISI84bTftie/nNmL9vDfbXkAWC1wfVI0D12eQN9wNaCISNtQsBPpIA6VHSIj21wseEvhFgxOPkURExhDSpz5vFxSjyRsp7k1KOdQUQhr55kNEdUNS774dTObIUbdB4E9T/ttWQUVvLR4L59szcUwzEm8qUOiePjyBOJ7BrbhGxAR6UTBTs0T0tm4DBdfFX3l7mTdX7q/0fjg7oPdnazxofFqfmiuoixzdm7L38FRYx4L7W3Ozl16K3iffrbtYFElcxbv5aPNR3A1ZOyrL4nk0dREEiOC2qh4EZHG1Dwh0o7UOetYm7eWjGxzseDC6kL3mN1iZ2TkSHOx4NjJRAZEeq7QziD7S/P5uV2fwonZz6hh5vNzF1132oYIgJziKuYs3suHm47gbEh0Vw6K4NHURAZF6c8cEWl5ap4Q6UDK6spYcXgFGTkZrDiygsr6SvdYgFcA46PHkxKbwviY8QR7KzhcEJcTdv/X7HA9vPbk8cQpcNlD0Puy0zZEABwpqWZuRhYfrM/B0RDoLh/Yk0dTE7kkJqQtqhcROScFOxEPyKvMY0nOEjKyM1iXtw6H4XCP9fDr4V6SZFTkKLxt2l7qgtVXw+Z3zR0iiveZx2zeMGSaGeh6DDjjt+aV1pCemcV767Kpd5qBbmJiDx5LTeDSOHUZi0j7omAn0gYMwyCrJMu9WPD2Y9sbjfcL6Wc2P8SmMDh8MFaL1UOVdjKVRWYzxNp5UGXu+IBvKIy8G0bdD0ERZ/zWgvIaXsncx7trs6lzuAAYF9+dx1ITGdEnrA2KFxE5fwp2Iq3E6XKyuXCzO8zllOe4xyxYSOqZZM7MxSbTJ6SP5wrtjI7tM2fnNr/ztYaIOBiTBpf+AHzO3K1aVFHLn5bu4+0vD1FTbwa6UX3DmHlFImP6dW+L6kVEmk3BTqQFVTuq+TL3SzJyMlias5TjtcfdY95Wb8ZGjSU5NplJsZMI9wv3YKWdVM46WPUS7PwEd0NEr6SGhohvg+3Mf+QVV9Yxb9l+3lp1kOp6s7t+WFwoj185gMv6d1fXsYh0CJ0m2Gm5E/GU4zXHWXp4KZnZmazKXUWNs8Y9FuwdzKSYSaTEpXBZ1GX4e2nngRbncplbfa2cAzlfnjyecKW55Vef8WdsiAAorarnzyv288aKA1TWmX9+DI0JYeaVA5iYEK5AJyIdipY7EWmGnPIcMrMzycjJYFPBJlyGyz0WFRBFclwyKbEpXBpxKV5WLw9W2onVV8OW98w16I5lmcesXg0NETOg50Vn/faymnreWHGAvyw/QHmt2bwyOCqYmVckkjKwpwKdiLQbWu5EpIUZhsGO4h3uMLf3+N5G4wPDBpISm0JyXDIDug1QKGhNVcVmQ8SaP0FVkXnMJwRG3mU2RAT3Ouu3V9Q6mL/yAPOW7aesxgx0AyODeOyKRK4cFKHPTkQ6NAU7kTOod9WzPm+9uVjw4SXkVea5x2wWG8MjhrsXC44OjPZgpV1E8QGzIWLT38BRbR4LiYUxD8Kw28Dn7Ls9VNU5+OvqQ/xp6T6OV9UDkNAzkEdTE5lycSRWqwKdiHR8CnYiX1NZX8mKIyvIyM5g+ZHllNeVu8f87H6Mjx5PcmwyE2MmEuKjRWnbxOENDQ0R/4ETt7wjh8C4R2DQ9WdtiACornPyzppDvLZ0H0UVdQD0Cw/gkdQErh0ShU2BTkQ6EQU76fIKqwpZcthcLHjN0TXUu+rdY2G+Ye4lSUb3Go2v3deDlXYhLhfs/cLc8uvQypPH41PNhoi+E8/aEAFQU+/k72uzeWXJPgrLawHo3d2fRy5P4LqhUdhtWitQRDofBTvpkvaX7nevL7e1cGujsd7BvUmJTSElLoVLwi/BdoY9Q6UV1NfA1gVmQ0TRHvOY1QsuuclsiIgYfM5T1DqcvL/+MOkZWeSVmR3KMd38eDglgRuGReOlQCcinZiCnXQJLsPF1sKtZORkkJmdycGyg43Gh4QPcXey9g3pqwfo21pVMaz/C6yZB5UF5jGfYBhxJ4z+IQRHnfMU9U4X/9hwmLkZWRwpMZ/BiwrxZUZKAt8dHoO3XYFORDq/ThPstI6dfFOts5Y1R9eYzQ85SzhWc8w9ZrfaGd1rNCmxZvNDT/+eniu0Kzt+EFa/Apvehvoq81hwDIx5AIbdDr7nXrLI4XTxr01HmJOxl5xiM9BFBPuQlhzPtJGx+Ng14yoiXYfWsZNOpbS2lGWHl5GZk8mKIyuoPtE9CQR5BTE+ZjwpcSmMjxpPoPeZt5WSVnZko/n83I6PTjZERFxi7hAx+AawnXvtP6fL4N9bjvDSor0cPGaGwvBAHx6c3J9bRsfh66VAJyKdg9axky7laMVR9y3W9fnrcRonZ217+vckOTaZlLgURkaMxKsJgUFaicsFWQvNHSIOrTh5vH8KXPYQ9Es+Z0OEeRqDT7cdZfaiPewrrAQgLMCbByb15wdjeuPnrUAnIl2Xgp10OIZhsOf4HneY21m8s9F4fGg8KXEppMSmMKj7ID0v52mOWtj6vtkQUbjLPGa1w8XfNRsiIi9p0mlcLoMvtufx4qI97MmvACDU34v7JvZj+tg+BPjojzMREf1JKB2Cw+VgU8EmdyfrkYoj7jGrxUpSjyR3mIsNjvVgpeJWfRzWv2HuEFGRbx7zDoIRd5gNESExTTqNYRgs3JHPi4v2svNoGQDBvnbundCPO8b1IchXs7AiIico2Em7VVVfxerc1WTkZLD08FJKa0vdYz42H8ZGjSUlNoVJsZMI8w3zYKXSSEk2fPkqbHgL6s1bpQRFmQ0Rw6eDb9MWdjYMgyW7C5m1cA/bjpiffaCPnbvG9+Xu8X0J8VOgExH5JgU7aVeOVR9j2eFlZGRnsProamqdte6xUJ9QJsVMIjkumbG9xuLv5e/BSuUUuZvNhojt/4ITzzn2HGw+P3fxd8Du3aTTGIbB8r1FzFq4h805JQD4e9u4c1wf7p3Qj1D/pp1HRKQrUrATj8suyyYzJ5OM7Aw2FWzC4GSjdnRgtPsWa1LPJOxW/ZZtVwwDshbBqjlwYNnJ4/0mm4Gu/+VNaog4YdW+Il5cuId1B48D4OtlZfrYPtw3sR/dA31auHgRkc5Hf0tKm3MZLnYc2+F+Xi6rJKvR+KDug9ydrAmhCWp+aI8cdbDtA7MhomCHecxig4tvNANdr6Hndbq1B4qZtXA3X+4vBsDHbuUHY3rzw0n96RGkQCci0lQKdtIm6p31rMtb5+5kLagucI/ZLXZGRI5w78naK7CXByuVs6ougQ3zYc1rUH7UPOYdCMOmm8/QhZ5f48qGQ8d5ceEeVmQVmaeyWblldBwPTO5PRLD25RUROV+dJthp54n2p7yunBVHVpCZncnyI8upqK9wj/nb/Rkf3bBYcPR4Qnya9kC9eEhJjhnmNrwFdeXmscBIGPNDGH4n+IWe1+m25JTw4qI9LNldCICXzcL3RsSSlhxPVKhfCxcvItJ1aOcJaVH5lfksyVlCRk4Ga/PW4nA53GPhfuFMjp1MSmwKo3uNxtumh+DbvaNbzYaIr/55siGix0Xm7dZLbmpyQ8QJXx0pZfaiPSzaac7Y2qwWbhoeQ1pyPLFhaoYRETkd7TwhbcYwDPaX7icjO4OM7Ay+OvZVo/G+IX3dz8tdEn4JVos2Ym/3DAP2ZZgNEfuXnDzeZwKMewTiU8+rIQJgV14ZLy7cwxfbzfXsrBa44dIYHr48nt7dA1qweBGRrk3BTs6b0+VkS+EWdydrdnm2e8yChSE9hpASl0JybDJ9Q/p6sFI5L4462P6hOUOX3xDQLTYYfL05Qxd16Xmfcm9+ObMX7+XTrebzeBYLfHtoFA9fnkC/HtqrV0SkpSnYSZPUOGr48uiXZGSbiwUX1xS7x7yt3ozuNZqUuBQmx04m3C/cg5XKeaspMxsivnwVynPNY14BMOx2syGiW+/zPuW+wgrmLN7Lv7fkcuJhj2uG9OLRyxNIiAhqudpFRKQRBTs5o5KaEpYdMRcLXpW7impHtXssyDvIXCw4Nplx0eMI8NLttA6n9AisadghotbcqovACBh9P4y4C/y6nfcpDx2rZM7iLP616TCuhkD3rcGRPHpFAgMj9cyriEhrU7CTRo5UHCEzO5OMnAw25m/EaZzsMo4MiCQlNoXkuGSGRwzHy6otnTqkvK8aGiL+ASeaW8IHmLdbh3wP7Oe/blxOcRVzM7L4x8bDOBsSXepFETyamsDF0ep4FhFpKwp2XZxhGOwq3uVeX2738d2Nxgd0G0ByXDIpsSkMDBuoxYI7KsMwGyFWzTEbI07oPR7GPQzxV4D1/BtbckuqSc/M4v31OdQ7zUA3eUAPHktNZGhsaMvULiIiTaZg1wXVu+rZmL/RvfPD0cqj7jGrxcrwiOHuxYJjgmI8WKlcMGe9uXfrqjmQt808ZrHCoG+bM3TRw5t12vyyGl7JzOLva3Ooc7oAmJAQzqOpiQzvff63cEVEpGUo2HURVfVV5mLBOZksPbyU8hOLzAJ+dj8ui7qMlLgUJkZPJNQ31HOFSsuoKYONfzUbIsoOm8e8/OHS22Dsg9CtT7NOW1hey6tL9vHOmkPUOsxAN6ZfGDOvGMCovmEtVLyIiDSXgl0nVlRdxJKcJWTmZPJl7pfUuercY2G+YUyKmURKXApjeo3B167tmzqFslxzh4j186G21DwW0KOhIeJu8G9e+DpWUcu8Zft5a/VBaurNQDeidzdmXpnIZf3VBS0i0l4o2HUyB0sPkpFjLha8tXArBic3FokNiiUlNoWUuBSG9hiKzWrzYKXSovJ3mA0R2z4AV715rHtCQ0PENPBqXnA/XlnH68v3M3/VQarqzEaapNhQHr8ykfHx4XrmUkSknVGw6+BchottRdvcnawHSg80Gr+4+8XuxYL7h/bXX8SdiWHAgWXm83NZi04ej7vMDHSJ32pWQwRAaXU9f1lxgDdWHKCi1uycHRITwmNXJDI5sYd+H4mItFMKdh1QnbOONUfXkJmTSWZOJkXVRe4xu9XOqMhRpMSaiwVHBER4sFJpFU4H7PjIDHRHt5jHLFa4aCpc9jDEjGj2qctr6nlz5UFeX76f8hoz0F3UK5iZVySSelFPBToRkXau0wS79PR00tPTcTqd535xB1RWV8byw8vJyM5gxZEVVDmq3GMBXgFMjJ5Iclwy46PHE+Stlf07pdpy2Pi22RBR2rCNm90PLv2B2RAR1q/Zp66sdTB/lRnoSqrMW7kDIoJ47IoErhwUidWqQCci0hFYDMMwzv2yjqOsrIyQkBBKS0sJDu7YK93nVea592Ndn7ceh+Fwj/X060lynLkkycjIkXjbvD1YqbSq8ryGhog3oKahIcI/HEbdByPvgYDuzT51dZ2Tt788yGtL91NcaTbX9O8RwKOpiVxzSS8FOhGRduB8sk2nmbHrDAzDYG/JXvf6cjuO7Wg0Hh8aT3JsMilxKQzqPgirpXnPT0kHUbCroSHifXA2dDSH9YfLZsDQm8HLr9mnrql38s6abF5dso+iiloA+oYH8MjlCUwdGoVNgU5EpENSsPMwh8vB5oLN7k7WIxVH3GMWLFza81JzseC4ZHoHn/9m7NLBGAYcXGEGur1fnDweO8ZsiBhwdbMbIgBqHU7eW5tDemYWBeVmoIsN8+PhlARuuDQau03/WBAR6cgU7Dyg2lHN6tzVZGRnsPTwUkpqS9xjPjYfxvYaay4WHDOR7n7Nv80mHYjTATs/NgNd7qaGgxa46FqzISJ21AWdvs7h4oMNOczNyOJoaQ0A0aF+PJQSz3eGx+ClQCci0iko2LWR4ppiluYsJTMnk9W5q6lx1rjHQnxCzMWCY1MYGzUWfy9/D1Yqbaq2Ajb9Db5Mh5ITDRG+kHQLjJ0B3ftf0OnrnS4+3HiYOYuzOFJSDUBksC8zUuL53ohYvO0KdCIinYmCXSvKKctx32LdXLgZl+Fyj0UHRrufl7u056XYrfooupTyfFg7D9b9GWpKzGN+YWZDxKh7IeDCdnNwOF18vDmXORl7OXTM7KDuEeRD2uT+fH9UHL5eWpxaRKQzUppoQYZhsOPYDneYyyrJajR+UdhFJMclkxKbQmK3RK0J1hUV7oHVL8OW9042RHTr29AQcQt4X9hsrdNl8MnWXF5atJf9RZUAhAd688NJ/fnBmN4KdCIinZyC3QWqd9azLn8dmdnmYsH5VfnuMZvFxoiIEe5lSaICozxYqXiMYcChVebzc3s+O3k8ZqT5/NzAa+ACt3dzuQw++yqP2Yv2sLegAoBu/l7cP6k/t4/tjb+3/lMXEekK9Kd9M1TUVbAid4W5WPDhFZTXl7vH/Ox+jI8eT3JsMhNjJhLiE+LBSsWjXE7Y+W8z0B3Z0HDQYna2jnsY4sZc8CUMw+CL7fnMXrSHXXnm78MQPy/um9iP6Zf1IdBH/4mLiHQl+lO/Gd7b/R4vbXzJ/XV33+5Mjp1MSlwKo3uNxsfm48HqxOPqKmHzu7B6Lhw/aB6z+UDSzWZDRHjCBV/CMAwydhUwa+EetueWARDkY+eeCf24c3wfgn29LvgaIiLS8SjYNUNybDIfZ33sfl5uSI8hWixYoKKwoSHidag+bh7z6wYj7zWbIgJ7XPAlDMNg6Z5CXly4hy2HzV0oArxt3DW+L/eM70eIvwKdiEhXpmDXDP1C+vGfG/7j6TKkvSjKMhsiNv8dnOaiv3TrY87OJd0C3gEXfAnDMFiZdYxZC3ezMbsEAD8vG3eM68O9E/oRFqAt5URERMGuWdTNKhgG5KyBlXNg93+Bhi2Xo4ebDREXTb3ghogTvtx/jFkL97D2QDEAPnYrt4/tzf2T+hMeqNv+IiJykoKdyPlwOWHXp7BqDhxed/J44pSGhoix0ELBf/3BYmYt3MOqfccA8LZbuXV0HA9M6k/PYN8WuYaIiHQuCnYiTVFXBVvehdXpULzfPGbzhqHfN2+59hjQYpfalH2cWQv3sHxvEQBeNgs3j4rjwcnxRIYo0ImIyJkp2ImcTWURrH3dbIioMmfO8A2FkfeYDRFBES12qW2HS3lx0R4ydhUAYLdauGlELDNS4okO9Wux64iISOelYCdyOsf2mcuVbH4XHA37+obGNTRE3Ao+gS12qe25pcxetJeFO8zFrW1WC98ZFs1DKQnEhmnfYBERaToFO5Gvy1kLK18yn6M70RARdWlDQ8R1YGu5/2R255Uze9EePvsqDwCrBa5PiuahyxPoG37hnbQiItL1tMtgd8MNN7BkyRIuv/xy/vGPf3i6HOnsXC6zs3XVHLPT9YSEq+Cyh6DP+BZriADIKqjgpcV7+WRrLoZhnnrqkCgevjyB+J4tNxMoIiJdT7sMdo888gh33XUXb731lqdLkc6svhq2/B1WzYXifeYxmzcM+Z55y7XnRS16uQNFlcxZvJePNx/B1TAZePUlkTyamkhiRFCLXktERLqmdhnsJk+ezJIlSzxdhnRWlcdg3Z/NXSKqzM5TfEJg5F0w+ocQFNmil8s+VsXLGXv5cNMRnA2J7spBETyamsigqOAWvZaIiHRt570P1rJly5g6dSpRUVFYLBY++uijU16Tnp5Onz598PX1ZfTo0axdu7YlahW5MMX74dMn4MXBsOQ5M9SFxMJVz8PM7ZD6yxYNdYePV/HUh1tJeWEJH2w4jNNlcPnAnvxnxnjm3T5CoU5ERFrcec/YVVZWMnToUO666y5uvPHGU8YXLFjAzJkzee211xg9ejSzZ8/mqquuYvfu3fTs2ROApKQkHA7HKd/7v//9j6ioqGa8DZGzOLzebIjY+R/cDRGRQ2DcIzDo+hZtiAA4WlrNK5n7eG9dNvVO83oTE3vwWGoCl8Z1a9FriYiIfN15/402ZcoUpkyZcsbxWbNmce+993LnnXcC8Nprr/Hpp5/yxhtv8OSTTwKwefPm5lV7GrW1tdTW1rq/Lisra7FzSwfmcsGez2HVy5C96uTx+CvMhoi+E1u0IQKgoKyGV5bs49212dQ5XACMi+/OY6mJjOgT1qLXEhEROZ0Wnaqoq6tjw4YNPPXUU+5jVquV1NRUVq9e3ZKXcnv++ed59tlnW+Xc0gHV18DW98yGiGN7zWNWL7jkJjPQRQxq8UsWVdTy2pJ9vP3lIWobAt2ovmHMvCKRMf26t/j1REREzqRFg11RURFOp5OIiMar8UdERLBr164mnyc1NZUtW7ZQWVlJTEwMH3zwAWPHjj3ta5966ilmzpzp/rqsrIzY2NjmvQHpuKqKYf1fYM08qDR3bsAnGEbcaTZEBLf8Lf7iyjrmLdvPW6sOUl3vBGBYXCiPXzmAy/p3x9LCM4IiIiLn0i67YhctWtTk1/r4+ODj49OK1Ui7dvyguX/rpr9BfZV5LDgGxjwAw24H35ZvUCipquPPyw/w5soDVNaZgW5oTAgzrxzAxIRwBToREfGYFg124eHh2Gw28vPzGx3Pz88nMrJll5D4pvT0dNLT03E6na16HWknjmwwn5/b8TEY5u1PIi6BcQ/D4BvA5tXilyyrqeeNFQf4y/IDlNeazT+Do4KZeUUiKQN7KtCJiIjHtWiw8/b2Zvjw4SxevJjrr78eAJfLxeLFi5kxY0ZLXuoUaWlppKWlUVZWRkhISKteSzzE5YK9/zMD3aEVJ4/3TzG3/Oo3ucUbIgAqah3MX3mAecv2U1ZjBrqBkUE8dkUiVw6KUKATEZF247yDXUVFBVlZWe6vDxw4wObNmwkLCyMuLo6ZM2cyffp0RowYwahRo5g9ezaVlZXuLlmR8+aoha3vm4GuaLd5zGqHi79rNkREXtwql62qc/DWqkPMW7aP41X1ACT0DOTR1ESmXByJ1apAJyIi7ct5B7v169eTnJzs/vpE48L06dOZP38+06ZNo7CwkF/84hfk5eWRlJTE559/fkpDhcg5VR+H9W/Amj9BRcPtfe8gGHEHjH4AQqJb57J1Tt5Zc4hXl+zjWGUdAP3CA3gkNYFrh0RhU6ATEZF2ymIYhuHpIlrC15+x27NnD6WlpQQHa2X/Dun4IfjyVdj4V6ivNI8FRZkNEcOng2/r3GqvqXfy97XZvLJkH4Xl5tqIvbv788jlCVw3NAq77bw3ahEREblgJx4za0q26TTB7oTzefPSzuRuhlVzYPtHYDQ0wfQc3NAQcSPYvVvlsrUOJ++vP0x6RhZ5ZTUAxHTz4+GUBG4YFo2XAp2IiHjQ+WSbdrnciXQhhgFZi8wtvw4uP3m832SzIaJ/Sqs0RADUO138Y8Nh5mZkcaSkGoCoEF9mpCTw3eExeNsV6EREpGNRsBPPcNTCtn+YDRGFO81jFhtc/B24bAb0Gtp6l3a6+HDTEV7O2EtOsRnoIoJ9SEuOZ9rIWHzstla7toiISGtSsJO2VV0CG96EL1+DijzzmHcgDL/D3CEitPV2DXG6DP695QgvLdrLwWPmYsbhgT48OLk/t4yOw9dLgU5ERDq2ThPstEBxO1eS09AQ8RbUVZjHgnqZYW74HeAX2mqXdrkMPtl2lJcW7WFfodmMERbgzQOT+vODMb3x81agExGRzkHNE9K6jm4xb7d+9eHXGiIGmevPXfzdVmuIADPQfbE9jxcX7WFPvhkmQ/29uG9iP6aP7UOAT6f5d42IiHRiap4QzzIM2LcYVs6BA0tPHu870WyIiE9ttYYI8/IGC3fk8+Kivew8WgZAsK+deyf0445xfQjybfntxkRERNoDBTtpOY46+Oqf5gxdwXbzmMVm7t162QyIurRVL28YBkt2FzJr4R62HSkFINDHzl3j+3L3+L6E+CnQiYhI56ZgJxeuphQ2zDcbIspzzWNeAeZiwqN/CN16t+rlDcNg+d4iZi3cw+acEgD8vW3cOa4P907oR6h/693uFRERaU8U7KT5Sg+bDREb3oK6cvNYYASMvh9G3AV+3Vq9hFVZZqBbf+g4AL5eVqaP7cN9E/vRPdCn1a8vIiLSnnSaYKeu2DaUt62hIeKf4HKYx8IHmA0RQ74H9tYPVGsPFDNr4W6+3F8MgI/dyg/G9OaHk/rTI0iBTkREuiZ1xUrTGAbszzQD3b6Mk8d7jze3/Iq/Aqytv1PDhkPHeXHhHlZkFQHgbbNyy+g4Hpjcn4hg31a/voiISFtTV6y0HGe9uVTJqpchf5t5zGKFQdebDRHRw9ukjC05Jby4aA9LdhcC4GWz8L0RsaQlxxMV6tcmNYiIiLR3CnZyejVl5mLCX74KZUfMY17+cOltMPZB6NanTcr46kgpsxftYdHOAgBsVgs3DY8hLTme2DD/NqlBRESko1Cwk8bKcmHNa7D+Tag114AjoCeMvg9G3A3+YW1Sxq68Ml5cuIcvtucDYLXAjcNieCglnt7dA9qkBhERkY5GwU5M+dth1VzY9gG46s1j3RMaGiKmgVfbPL+2N7+c2Yv38unWo4C5jvG3h0bx8OUJ9OsR2CY1iIiIdFSdJtipK7YZDMPcGWLVy5C16OTxuMvMhoiEq9qkIQJgX2EFcxbv5d9bcjnRznPtkF48cnkCCRFBbVKDiIhIR6eu2K7IWQ/bP4JVcyBvq3nMYoWLpppbfsWMaLNSDh2rZM7iLP616TCuht+J3xocyaNXJDAwUp+fiIiIumLl9GrLYePb8OUrUJpjHrP7waU/MBsiwvq1WSk5xVXMzcjiHxsP42xIdKkXRfBoagIXR4e0WR0iIiKdiYJdV1B2FNb+Cda/YW7/BeAfbu4QMfKeNmuIAMgtqWZuZhbvr8vB0RDoJg/owWOpiQyNDW2zOkRERDojBbvOrGCn2RCxdcHXGiLiYewMGPp98Gq79d/yy2p4JTOLv6/Noc7pAmBCQjiPpiYyvHfrbz0mIiLSFSjYdTaGAQeXmw0Re/938njsGLMhInFKmzVEABSU1/Dakv28s+YQtQ4z0I3pF8bMKwYwqm/bzRSKiIh0BQp2nYXTATs/hpVz4OjmhoMWuOhasyEidlSblnOsopY/LdvPX1cfpKbeDHQjendj5pWJXNY/vE1rERER6SoU7Dq62grY9Df4Mh1Kss1jdl9IuhXGpkH3/m1azvHKOl5fvp/5qw5SVWcuPZMUG8rjVyYyPj4ci8XSpvWIiIh0JZ0m2HW5dezK882GiHV/gZoS85h/dxh1n9kQEdC2s2Kl1fX8Zfl+3lh5kIpaBwBDYkJ47IpEJif2UKATERFpA1rHrqMp3G0+P7d1ATjrzGNh/czZuaG3gHfb7p9aXlPPmysP8vry/ZTXmIHuol7BzLwikdSLeirQiYiIXCCtY9fZGAYcWmUuKLzn85PHY0aaz88NvAastjYtqbLWwfxVZqArqTI7bgdEBPHYFQlcOSgSq1WBTkREpK0p2LVnLifs/LfZEJG7seGgxQxylz0EcWPavKTqOidvf3mQ15bup7jSnDHs3yOAR1MTueaSXgp0IiIiHqRg1x7VVcKmd2D1XCg5ZB6z+UDSLeYt1/CENi+ppt7JO2uyeXXJPooqagHoGx7AI5cnMHVoFDYFOhEREY9TsGtPKgpg7TxY92eoPm4e8+sGI+81myICe7R5SbUOJ++tzSE9M4uCcjPQxYb58XBKAjdcGo3d1nZr4omIiMjZKdi1B0V7zYaILe+B0wxPdOtj7hCRdAt4B7R5SXUOFx9syGFuRhZHS2sAiA7146GUeL4zPAYvBToREZF2R8HOUwwDsr80GyJ2//fk8ejhZkPERVPbvCECoN7p4sONh5mzOIsjJdUARAb7MiMlnu+NiMXbrkAnIiLSXinYtTWXE3Z9Ys7QHV538viAqxsaIsaCB5YIcThdfLw5lzkZezl0rAqAHkE+pE3uz/dHxeHr1fYhU0RERM6Pgl1bqauCze/A6nQ4fsA8ZvOGod+HsQ9Bj0SPlOV0GXyyNZeXFu1lf1ElAOGB3vxwUn9+MKa3Ap2IiEgH0mmCXbvdeaKyCNa+Duteh6pj5jHfUHN3iFH3QVCER8pyuQz++9VRZi/aS1ZBBQDd/L24f1J/bh/bG3/vTvNbQ0REpMvQzhOt5di+hoaIv4PDbD4gNM5siLj0Bx5piAAwDIMvtucze9EeduWVAxDi58V9E/sx/bI+BPoo0ImIiLQn2nnCk7LXmA0Ruz4FGjJz1KUNDRHXgc0zP3LDMFi8s4AXF+1he24ZAEE+du6Z0I87x/ch2NfLI3WJiIhIy1Gwawkup9nZuuplyFlz8njCVTDuYeg9ziMNEWAGuqV7Cnlx4R62HC4FIMDbxl3j+3LP+H6E+CvQiYiIdBYKdheivtq81bpqLhTvM4/ZvGHI98yGiJ4DPVaaYRiszDrGrIW72ZhdAoCfl407xvXh3gn9CAvw9lhtIiIi0joU7Jqj8pjZDLF23tcaIkJgxN0w+n4IivRoeV/uP8ashXtYe6AYAB+7ldvH9ub+Sf0JD/TxaG0iIiLSehTsmmPdn2HJ8+b/D4mDsQ+aDRE+QR4ta/3BYmYt3MOqfWbY9LZbuXV0HA9M6k/PYF+P1iYiIiKtT8GuOUbeA/syYNS9MOh6jzVEnLAp+zizFu5h+d4iALxsFm4eFceDk+OJDFGgExER6SoU7JojoDvc/YWnq2Db4VJeXLSHjF0FANitFm4aEcuMlHiiQ/08XJ2IiIi0NQW7Dmh7bimzF+1l4Y58AGxWC98ZFs1DKQnEhvl7uDoRERHxFAW7DmR3XjmzF+3hs6/yALBa4PqkaB66PIG+4Z5Z8FhERETaDwW7DiCroIKXFu/lk625GIa5JN7UIVE8fHkC8T0DPV2eiIiItBMKdu3YgaJK5izey8ebj+Bq2MTi6ksieTQ1kcQIz3bgioiISPujYNcOZR+r4uWMvXy46QjOhkR35aAIHk1NZFCUB/e/FRERkXat0wS79PR00tPTcTqdni6l2Q4fryI9M4sP1h/G0RDoLh/Yk0dTE7kkJsTD1YmIiEh7ZzEMw/B0ES2prKyMkJAQSktLCQ7uGLNbR0urSc/MYsG6HOqd5scxMbEHj6UmcGlcNw9XJyIiIp50Ptmm08zYdUQFZTW8smQf767Nps7hAmBcfHceS01kRJ8wD1cnIiIiHY2CnQcUVdTy2pJ9vP3lIWobAt2ovmHMvCKRMf26e7g6ERER6agU7NpQcWUdf1q2j7+uOkR1vfks4LC4UB6/cgCX9e+OxWLxcIUiIiLSkSnYtYGSqjr+vPwAb648QGWdGeiGxoQw88oBTEwIV6ATERGRFqFg14rKaup5Y8UB/rL8AOW1DgAGRwUz84pEUgb2VKATERGRFqVg1woqah3MX3mAecv2U1ZjBrqBkUE8dkUiVw6KUKATERGRVqFg14Kq6hy8teoQ85bt43hVPQAJPQN5NDWRKRdHYrUq0ImIiEjrUbBrAdV1Tt5Zc4hXl+zjWGUdAP3CA3gkNYFrh0RhU6ATERGRNqBgdwFq6p38fW02ryzZR2F5LQC9u/vzyOUJXDc0CrvN6uEKRUREpCtRsGuGWoeT99cfJj0ji7yyGgBiuvnxcEoCNwyLxkuBTkRERDxAwa4Z5izeS3rmPgCiQnyZkZLAd4fH4G1XoBMRERHPUbBrhtvH9uGTrUe5e3xfpo2Mxcdu83RJIiIiIgp2zRER7Evm45PV5SoiIiLtiu4dNpNCnYiIiLQ3CnYiIiIinYSCnYiIiEgnoWAnIiIi0km0u2CXk5PD5MmTGTRoEEOGDOGDDz7wdEkiIiIiHUK764q12+3Mnj2bpKQk8vLyGD58OFdffTUBAQGeLk1ERESkXWt3wa5Xr1706tULgMjISMLDwykuLlawExERETmH874Vu2zZMqZOnUpUVBQWi4WPPvrolNekp6fTp08ffH19GT16NGvXrm1WcRs2bMDpdBIbG9us7xcRERHpSs472FVWVjJ06FDS09NPO75gwQJmzpzJM888w8aNGxk6dChXXXUVBQUF7tckJSVx8cUXn/IrNzfX/Zri4mJuv/125s2b14y3JSIiItL1WAzDMJr9zRYL//rXv7j++uvdx0aPHs3IkSOZO3cuAC6Xi9jYWB566CGefPLJJp23traWK664gnvvvZfbbrvtnK+tra11f11WVkZsbCylpaUEBwef/5sSERERaUfKysoICQlpUrZp0a7Yuro6NmzYQGpq6skLWK2kpqayevXqJp3DMAzuuOMOUlJSzhnqAJ5//nlCQkLcv3TbVkRERLqqFg12RUVFOJ1OIiIiGh2PiIggLy+vSedYuXIlCxYs4KOPPiIpKYmkpCS2bdt2xtc/9dRTlJaWun/l5ORc0HsQERER6ajaXVfs+PHjcblcTX69j48PPj4+rViRiIiISMfQojN24eHh2Gw28vPzGx3Pz88nMjKyJS8lIiIiIt/QosHO29ub4cOHs3jxYvcxl8vF4sWLGTt2bEte6hTp6ekMGjSIkSNHtup1RERERNqr874VW1FRQVZWlvvrAwcOsHnzZsLCwoiLi2PmzJlMnz6dESNGMGrUKGbPnk1lZSV33nlnixb+TWlpaaSlpbk7R0RERES6mvMOduvXryc5Odn99cyZMwGYPn068+fPZ9q0aRQWFvKLX/yCvLw8kpKS+Pzzz09pqGgtJ1ZvKSsra5PriYiIiLSmE5mmKSvUXdA6du3R4cOHteSJiIiIdDo5OTnExMSc9TWdLti5XC5yc3MJCgrCYrEwcuRI1q1bd9rXnmnsdMe/eezEQsg5OTkeWQj5bO+rtc/T1O851+v02bT8efTZnJ0+mzMf02ejz+ZM9Nmc+XhbfTaGYVBeXk5UVBRW69nbI9rdcicXymq1NkqzNpvtjD/sM42d7viZXhscHOyR/9DO9r5a+zxN/Z5zvU6fTcufR5/N2emzOfdr9dk0/3X6bFr+PO3tsznT8bb4bJraP9CiXbHtUVpa2nmPne742c7jCS1VT3PO09TvOdfr9Nm0/Hn02ZydPpvzr6et6LM5/3raij6b5tXkKZ3uVmxbOZ9926Rt6bNpv/TZtF/6bNovfTbtV3v8bDr9jF1r8fHx4ZlnntGuF+2QPpv2S59N+6XPpv3SZ9N+tcfPRjN2IiIiIp2EZuxEREREOgkFOxEREZFOQsFOREREpJNQsBMRERHpJBTsWlhOTg6TJ09m0KBBDBkyhA8++MDTJUmDkpISRowYQVJSEhdffDGvv/66p0uSb6iqqqJ379488cQTni5FvqZPnz4MGTKEpKSkRnuFi+cdOHCA5ORkBg0axCWXXEJlZaWnS5IGu3fvJikpyf3Lz8+Pjz76qNWvq67YFnb06FHy8/NJSkoiLy+P4cOHs2fPHgICAjxdWpfndDqpra3F39+fyspKLr74YtavX0/37t09XZo0ePrpp8nKyiI2NpY//vGPni5HGvTp04evvvqKwMBAT5ci3zBp0iR+85vfMGHCBIqLiwkODsZu73SbSnV4FRUV9OnTh0OHDrV6HtCMXQvr1asXSUlJAERGRhIeHk5xcbFnixLA3AbG398fgNraWgzDQP+uaT/27t3Lrl27mDJliqdLEekQtm/fjpeXFxMmTAAgLCxMoa6d+ve//83ll1/eJpM8CnbfsGzZMqZOnUpUVBQWi+W006bp6en06dMHX19fRo8ezdq1a097rg0bNuB0OomNjW3lqruGlvhsSkpKGDp0KDExMfzoRz8iPDy8jarv3Fris3niiSd4/vnn26jirqMlPhuLxcKkSZMYOXIk77zzThtV3vld6Gezd+9eAgMDmTp1KsOGDeO5555rw+o7v5bMA++//z7Tpk1r5YpNCnbfUFlZydChQ0lPTz/t+IIFC5g5cybPPPMMGzduZOjQoVx11VUUFBQ0el1xcTG333478+bNa4uyu4SW+GxCQ0PZsmULBw4c4N133yU/P7+tyu/ULvSz+fjjj0lMTCQx8f/bu2OXRrYwCuAHlZQKKkREIgg+EdEUmkEhYyFBUfwPRBMLCxEbsbASbBIIFoJgK6QTC8U2RCFqIkIgaiuo2DgiSDQBEZP7qjfsvt1lR9ede505P0gxNylOOEz4mJlL/rEztit8xnlzdHSEXC6Hvb09RKNRnJ+f2xXf0f60m7e3NxweHmJjYwPZbBbJZBLJZNLOr+BonzUPPD09IZPJYGxszI7YgKBfAiB2dna+W9M0TczNzZnH5XJZNDc3i1gsZq69vLwIXddFIpGwK6rrfLSbb83Ozort7e2/GdOVPtLN0tKSaGlpEa2traKhoUHU1taKlZUVO2O7wmecN4uLi2Jzc/MvpnSnj3STyWTE8PCw+X48HhfxeNyWvG7zJ+dOIpEQExMTdsQUQgjBK3bv8Pr6ilwuh1AoZK5VVVUhFAohm80CAIQQiEQiGBoawuTkpKyormOlG8Mw8Pz8DAAoFApIp9Po6OiQktdNrHQTi8Vwe3uL6+trrK6uYmZmBsvLy7Iiu4aVbkqlknneFItF7O/vo6urS0peN7HSTSAQwP39PR4fH1GpVJBOp9HZ2SkrsqtY6ec/dt6GBXgr9l0eHh5QLpfh9Xq/W/d6vbi7uwMAHB8fY2trC7u7u+YW54uLCxlxXcVKNzc3N9B1HX6/H7quY35+Ht3d3TLiuoqVbkgOK90YhoFgMAi/34/+/n5MTU0hEAjIiOsqVrqpqalBNBrF4OAgenp60N7ejvHxcRlxXcfq71qhUMDp6SlGRkZsy8btM58sGAyiUqnIjkE/oWka8vm87Bj0G5FIRHYE+kZbWxvOzs5kx6BfGB0d5U5yhdXV1dn+LDev2L1DY2MjqqurfyjJMAw0NTVJSkUAu1EZu1EXu1EXu1Gbyv1wsHsHj8eD3t5epFIpc61SqSCVSmFgYEBiMmI36mI36mI36mI3alO5H96K/Z9isYjLy0vz+OrqCvl8HvX19fD5fFhYWEA4HEZfXx80TcPa2hpKpRKmp6clpnYHdqMudqMudqMudqO2L9uPbftvv4iDgwMB4IdXOBw2P7O+vi58Pp/weDxC0zRxcnIiL7CLsBt1sRt1sRt1sRu1fdV++F+xRERERA7BZ+yIiIiIHIKDHREREZFDcLAjIiIicggOdkREREQOwcGOiIiIyCE42BERERE5BAc7IiIiIofgYEdERETkEBzsiIiIiByCgx0RERGRQ3CwIyIiInIIDnZEREREDsHBjoiIiMgh/gWYR9fSlOuWlwAAAABJRU5ErkJggg==", - "text/plain": [ - "<Figure size 640x480 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "xs = []\n", - "results_vec = []\n", - "\n", - "run_num = 10\n", - "\n", - "for _nsamples in nsamples_vec:\n", - " _nsamples = int(_nsamples)\n", - " xs.append(_nsamples)\n", - "\n", - " # Create synthetic data\n", - " a = np.random.random(_nsamples).astype('float32')\n", - " b = np.random.random(_nsamples).astype('float32')\n", - "\n", - " # Simple function: multiply\n", - " my_function_partial = partial(mul, a, b)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_mul = np.average(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(mul_vec, a, b)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_mul_vec = np.average(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(mul_vec_par, a, b)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_mul_vec_par = np.average(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(mul_vec_gpu, a, b)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_mul_vec_gpu = np.average(runtime) * 10**3\n", - "\n", - " results_vec.append((res_mul,res_mul_vec,res_mul_vec_par,res_mul_vec_gpu))\n", - "\n", - "normal = list(zip(*results_vec))[0]\n", - "cpu = list(zip(*results_vec))[1]\n", - "par_cpu = list(zip(*results_vec))[2]\n", - "gpu = list(zip(*results_vec))[3]\n", - "\n", - "# fig, axs = plt.subplots(4, 1, figsize=(10, 40))\n", - "plt.loglog(nsamples_vec, normal, label='Baseline')\n", - "plt.loglog(nsamples_vec, cpu, label='CPU')\n", - "plt.loglog(nsamples_vec, par_cpu, label='Parallel CPU')\n", - "plt.loglog(nsamples_vec, gpu, label='GPU')\n", - "plt.legend()\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "4e867bd0-4bf1-452c-940c-01b419808af9", - "metadata": { - "id": "4e867bd0-4bf1-452c-940c-01b419808af9" - }, - "source": [ - "## Instrument discriminant function" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "74740716-2787-48ff-b98a-c0c17e8b333b", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 707 - }, - "id": "74740716-2787-48ff-b98a-c0c17e8b333b", - "outputId": "4f7bda0e-db28-446c-8bf8-db0fb5a207af" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "<ipython-input-16-1a8345aeb9e4>:23: RuntimeWarning: invalid value encountered in sqrt\n", - " return np.sqrt(b ** 2 - 4 * a * c)\n", - "/usr/local/lib/python3.10/dist-packages/numba/np/ufunc/dufunc.py:190: RuntimeWarning: invalid value encountered in discriminant_vec\n", - " return super().__call__(*args, **kws)\n", - "<timeit-src>:6: RuntimeWarning: invalid value encountered in discriminant_vec_par\n", - "/usr/local/lib/python3.10/dist-packages/numba/cuda/dispatcher.py:536: NumbaPerformanceWarning: Grid size 1 will likely result in GPU under-utilization due to low occupancy.\n", - " warn(NumbaPerformanceWarning(msg))\n", - "<ipython-input-16-1a8345aeb9e4>:23: RuntimeWarning: invalid value encountered in sqrt\n", - " return np.sqrt(b ** 2 - 4 * a * c)\n", - "/usr/local/lib/python3.10/dist-packages/numba/np/ufunc/dufunc.py:190: RuntimeWarning: invalid value encountered in discriminant_vec\n", - " return super().__call__(*args, **kws)\n", - "<timeit-src>:6: RuntimeWarning: invalid value encountered in discriminant_vec_par\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPlUlEQVR4nOzdd3hUZfbA8e+k94T0Tgs1oYUuoDRFpAcrKiXR3VXUdVn76lpXV/2prBp1VxOKqKASkKKohCogLbQQWmjpjZDeJjP398dNBiItgUlmMjmf59lnc9+ZufckUg73nvccjaIoCkIIIYQQotWzMnUAQgghhBDCOCSxE0IIIYSwEJLYCSGEEEJYCEnshBBCCCEshCR2QgghhBAWQhI7IYQQQggLIYmdEEIIIYSFkMROCCGEEMJC2Jg6AGPT6/VkZWXh6uqKRqMxdThCCCGEEDdEURRKS0sJDAzEyurq9+QsLrHLysoiJCTE1GEIIYQQQhhVeno6wcHBV32PxSV2rq6ugPrNu7m5mTgaIYQQQogbU1JSQkhIiCHHuRqLS+zqH7+6ublJYieEEEIIi9GYEjPZPCGEEEIIYSEksRNCCCGEsBCS2AkhhBBCWAiLq7FrLJ1Oh1arNXUYwsTs7OyuuXVcCCGEaC0sJrGLjY0lNjYWnU531fcpikJOTg5FRUUtE5gwa1ZWVnTs2BE7OztThyKEEELcMI2iKIqpgzCmkpIS3N3dKS4uvuyu2OzsbIqKivD19cXJyUmaGLdh9c2sbW1tCQ0NlV8LQgghzNK1cpuLWcwdu8bQ6XSGpM7Ly8vU4Qgz4OPjQ1ZWFrW1tdja2po6HCGEEOKGtKniovqaOicnJxNHIsxF/SPYaz3CF0IIIVqDNpXY1ZNHbqKe/FoQQghhSdpkYieEEEIIYYkksRON1qFDB+bPn2841mg0rFy50mTxCCGEEKIhSexaidmzZ6PRaAz/8/Ly4vbbb+fgwYMmiyk7O5vx48eb7PpCCCGEaMhiErvY2Fh69uzJwIEDTR1Ks7n99tvJzs4mOzubxMREbGxsmDhxosni8ff3x97e3mTXF0IIIURDFpPYzZ07l5SUFHbv3m3qUJqNvb09/v7++Pv707dvX5577jnS09PJz88H4Nlnn6Vr1644OTnRqVMnXnrppQbTNQ4cOMCoUaNwdXXFzc2N/v37s2fPHsPrv/32GyNGjMDR0ZGQkBCeeOIJysvLrxjPxY9iz5w5g0ajISEhgVGjRuHk5ESfPn3YsWNHg8809RpCCCGEaDyLSeyuh6IoVNTUmuR/N9oXuqysjCVLlhAWFmboyefq6srChQtJSUnhP//5D59//jkffPCB4TP3338/wcHB7N69m7179/Lcc88ZeredPHmS22+/nenTp3Pw4EGWLVvGb7/9xmOPPdakuP7xj3/w1FNPsX//frp27cp9991HbW2tUa8hhBBCiMtrUw2K/6hSq6PnP382ybVTXhuHk13Tfvxr1qzBxcUFgPLycgICAlizZo1h1umLL75oeG+HDh146qmnWLp0Kc888wwAaWlpPP3003Tv3h2ALl26GN7/1ltvcf/99/Pkk08aXvvwww+55ZZb+PTTT3FwcGhUjE899RQTJkwA4NVXXyU8PJzU1FS6d+9utGsIIYQQLUlfU0PW3/9ObX4Bjv364divL06Rkdh4e5s6tEu06cSutRk1ahSffvopAOfPn+eTTz5h/Pjx7Nq1i/bt27Ns2TI+/PBDTp48SVlZGbW1tQ1Gj8ybN4+HHnqIL7/8krFjx3LXXXfRuXNnQH1Me/DgQb766ivD+xVFQa/Xc/r0aXr06NGoGHv37m34OiAgAIC8vDy6d+9utGsIIYQQLangk08o/XU9AJX798MCdd02NBSnfv1o9+CDOEaEmy7Ai7TpxM7R1pqU18aZ7NpN5ezsTFhYmOH4iy++wN3dnc8//5wJEyZw//338+qrrzJu3Djc3d1ZunQp7733nuH9r7zyCjNmzGDt2rX89NNPvPzyyyxdupRp06ZRVlbGn//8Z5544olLrhsaGtroGC8ey1Xf/Fev1wMY7RpCCCFES6lKSeHc518A4PXnP6MrKqIyKYnq1FS0aWkUp6XhPmWyiaO8oE0ndhqNpsmPQ82JRqPBysqKyspKtm/fTvv27fnHP/5heP3s2bOXfKZr16507dqVv/3tb9x3330sWLCAadOmERkZSUpKSoPE0dha4hpCCCGEsShaLVn/eBF0Olxvvx3fvz1peE1XUkLlgQNUJCXh0LuP6YL8gza9eaK1qa6uJicnh5ycHI4cOcLjjz9OWVkZkyZNokuXLqSlpbF06VJOnjzJhx9+yIoVKwyfrays5LHHHmPTpk2cPXuWbdu2sXv3bsPjz2effZbt27fz2GOPsX//fk6cOMEPP/xg1I0NLXENIYQQwljOxcVRfeQI1h4e+L/4jwavWbu54TJiBL5//SvWLs4mivBSrfd2VRu0bt06Q92aq6sr3bt357vvvmPkyJEA/O1vf+Oxxx6jurqaCRMm8NJLL/HKK68AYG1tzblz55g5cya5ubl4e3sTFRXFq6++Cqi1cZs3b+Yf//gHI0aMQFEUOnfuzD333GO0+FviGkIIIYQxVKemUhD7CQB+/3jhshsldHqFAxlF9AvxMJvZ4xrlRvtumJmSkhLc3d0pLi5usHEAoKqqitOnT9OxY0fZgSkA+TUhhBDiUopOx5kZM6g6cBCXkSMJ/vQTQ+JWVl3L1uP5rD+Sx8ZjeRSW17DuyRF093e7xlmv39Vymz+SO3ZCCCGEEBcpXPwlVQcOYuXigv+rr6DRaFh7MJtv96Sz4+Q5anR6w3vdHGw4U1DRrIldU1hMYhcbG0tsbCw6nc7UoQghhBCilao5c4b8+fMB8H32GWz9/Mg4X8Fj3yRR/4yzvZcTY3v4MaaHLwM7eGJrbT5bFiwmsZs7dy5z58413K4UQgghhGgKRacj+8WXUKqrcRo6BI877wRg64kCFAW6+7vy0X39CPN1MZuauj+ymMROCCGEEOJG5L3zLhV79qBxciLg9dcNydtvJwoAGBfuTxc/V1OGeE3mc+9QCCGEEMJEir7/nsJFiwAIfPNf2AUHA+rO120n1cRuRBfzGyH2R5LYCSGEEKJNq9izh+xXXwPA+7HHcLv9dsNrh7OKKarQ4mpvQ58QDxNF2HiS2AkhhBCizarJyCTj8SdAq8X19tvxfvSRBq9vrXsMO6Szl1ltkrgS849QCCGEEKIZ6MrKyXjkEXTnz+PQsyeBb72JxqpharT1RD7QOh7DgiR2QgghhGiDFJ2OrKefpvrECax9vAn+JBYrR8cG76moqWXv2fMADA+TxE4YWU5ODo8//jidOnXC3t6ekJAQJk2aRGJiIgAdOnRAo9Gg0WhwdnYmMjKS7777zvD52bNnM3Xq1EvOu2nTJjQaDUVFRS30nQghhBCmlT//P5Rt3IjGzo6Qjz/G1t//kvfsPF2IVqcQ5OFIR2/zmQd7NZLYtRJnzpyhf//+bNiwgXfffZdDhw6xbt06Ro0axdy5cw3ve+2118jOzmbfvn0MHDiQe+65h+3bt5swciGEEMK8FK9axbnPPwcg4F9v4Ninz2XfV9/mZEQXb7PtW/dH0seulXj00UfRaDTs2rULZ+cL/2oIDw8nOjracOzq6oq/vz/+/v7ExsayZMkSVq9ezU033WSKsIUQQgizUrZ5M1n/eBEArz/9CfdJk6743vr6uuGtpL4O5I5dq1BYWMi6deuYO3dug6SunoeHx2U/Z2Njg62tLTU1Nc0coRBCCGH+yrdvN+yAdbtjPD5P/vWK780tqeJ4bhkaDQzr3HoSu7Z9x05RQFthmmvbOkEjb+umpqaiKArdu3dv9Olramp47733KC4uZvTo0dcbpRBCCGERKnbvJv3RuSg1NbiMHUPg229fsgP2YvWPYSMC3WnnbNdSYd4wi0nsYmNjiY2NRafTNf5D2gp4M7D5grqaF7LArnGFmEr91OFGePbZZ3nxxRepqqrCxcWFf//730yYMOF6oxRCCCFavcr9+0n/819QqqpwHjGCoPffR2Nre9XP/JbaeqZNXMxiEru5c+cyd+5cSkpKcHd3N3U4RtWlSxc0Gg1Hjx695nuffvppZs+ejYuLC35+fg2KPd3c3Dh79uwlnykqKsLa2vqyj3mFEEKI1qzy8GHSHv4T+ooKnIYMIfijD7Gyu/odOEVRDI2JW1N9HVhQYnddbJ3UO2emunYjeXp6Mm7cOGJjY3niiScuScCKiooMdXbe3t6EhYVd9jzdunVj6dKlVFdXY29vb1hPSkqiY8eO2F7jXy9CCCFEa1J17Djp0THoS0tx7N+fkE9isXJwuObnjuaUUlBWjaOtNf3bt2uBSI2nbW+e0GjUx6Gm+F8Tt03XP2YeNGgQy5cv58SJExw5coQPP/yQoUOHNuoc999/PxqNhpkzZ7J3715SU1OJj49n/vz5/P3vf7+en6AQQghhlqpPnSItOhpdcTEOvXsT8t/PsHJq3E2V+vq6QR09sbexbs4wja5t37FrRTp16kRSUhL/+te/+Pvf/052djY+Pj7079+fTz/9tFHn8PDwYOvWrTz33HNMnjyZ4uJiwsLCeP/994mJiWnm70AIIYRoGTVpaaTNnoPu3Dnse/Qg9PP/Ye3i0ujPb22l9XUgiV2rEhAQwMcff8zHH3982dfPnDlzzXN07dqVhIQEI0cmhBBCmAdtZiZnZ8+mNi8P+y5hhMbHYd2E2vsqrY5dp88BMKKLT3OF2Wza9qNYIYQQQlgMbU4OZ2fPoTYrG7sOHQiNj8emXdNq5PaePU+VVo+vqz1d/Rp/l89cSGInhBBCiFZPm5dH2qzZaNPTsQ0NJXTRQmx8mn7HzbAbNqz1jBG7mCR2QgghhGjVas+dI21ONDVnz2IbFET7hQuw9fO7rnP9lqqOERvRtfXV14EkdkIIIYRoxWrPn1eTupMnsfH3J3TRQmwDr2/4wIajuSRnlgAwLEwSOyGEEEKIFqMrLiYtOobq48ex8fGh/cIF2AUHX9e5kjOLeezrfQDcNygUX9dr97szR5LYCSGEEKLV0ZWWkvbQw1QfOYK1lxehixZi16HDdZ0rq6iS6IW7qajRMTzMm9emhBs32BYkiZ0QQgghWhVdWTnpD/+JqkOHsPbwIHRBPPadOl3XuUqrtEQv3E1eaTXd/Fz55IFIbK1bb3rUeiMXQgghRJujr6gg4y9/oXL/fqzc3QldEI9D167XdS6tTs+jXyVxNKcUH1d74ucMxM2hdY/XlMROCCGEEK2CvqqK9EfnUrFnD1YuLoR+8QUOPXpc17kUReGfPySz9UQBjrbWxM8aSJCHo5EjbnkyeUJclUajYcWKFUydOpUzZ87QsWNH9u3bR9++fRv1+ZEjR9K3b1/mz5/frHEKIYSwHIpWizY3j9rcHLTZOdTmZKPNyaUyKYmqlBSsnJwI/eJzHHtFXPc1Ptt8im92pWOlgY/u60ev4MZPpzBnkti1ArNnz2bRokUA2NraEhoaysyZM3nhhRewsWn9/wlramqYP38+X331FSdOnMDJyYlu3brx0EMP8cADD2Bra3vNn8HChQt58sknKSoquuT8FyenQgghzEP1qdNUHUmhNicXbU4OtTk5aHNy0OZkoys4B4py2c9pHB0J+fx/ODbyBsPlrDmYxdvrjgLwz4k9Gdvz+nremaPWnxW0EbfffjsLFiygurqaH3/8kblz52Jra8vzzz/f5HPpdDo0Gg1WVqZ/El9TU8O4ceM4cOAAr7/+OsOGDcPNzY3ff/+d//u//6Nfv36Gu4PG/BkIIYRoedqcHErWrqV4zVqqjxy56ns1dnbY+Ptj6+eHTYA/tv4B2Pj74TJsGHbt2193DKfyy3jquwMAzBnWgdnDOl73ucyRJHathL29Pf7+/gA88sgjrFixglWrVvH888/z/vvvs2DBAk6dOoWnpyeTJk3inXfewcVFnXFXfzdr8eLFPPfccxw/fpzU1FTy8/N54YUX2LdvH1qtlr59+/LBBx8QGRnZ6LiSk5N5+umn2bp1K87Oztx222188MEHeHs3rrHj/Pnz2bJlC3v27KFfv36G9U6dOnHXXXdRU1PTqJ+BEEII86QrKqLkl18oWb2Gij17LtyJs7HBsU8fbAMDsfX3U5M4f3/1/wMCsG7XzugjvWp1euZ9e4AqrZ6bOnvx4oSeRj2/ObCYxC42NpbY2Fh0Op2pQ2kRjo6OnDt3DgArKys+/PBDOnbsyKlTp3j00Ud55pln+OSTTwzvr6io4O233+aLL77Ay8sLX19fTp06xaxZs/joo49QFIX33nuPO+64gxMnTuDq6nrNGIqKihg9ejQPPfQQH3zwAZWVlTz77LPcfffdbNiwoVHfx1dffcXYsWMbJHX1bG1tsbW98u6ki38GQgghzIe+qoqyjRspXrOWsi1bQKs1vOY0YABuEyfiOu42bNq1a9G4Ptt8kv3pRbg62PB/d/XB2qr1zYK9FotJ7ObOncvcuXMpKSnB3b1xBZCKolBZW9nMkV2eo43jdf1LRFEUEhMT+fnnn3n88ccBePLJJw2vd+jQgTfeeIO//OUvDRI7rVbLJ598Qp8+fQxro0ePbnDu//3vf3h4eLB582YmTpx4zVg+/vhj+vXrx5tvvmlYi4+PJyQkhOPHj9O1EdvPT5w4wciRI6/5votd7mcghBDCtJTaWsp/30nJ6tWU/vor+ooKw2v23bvjPnECbnfccd3jvm5UcmYx89efAODVyeEEWsAO2MuxmMTuelTWVjL468EmufbOGTtxsnVq9PvXrFmDi4sLWq0WvV7PjBkzeOWVVwBYv349b731FkePHqWkpITa2lqqqqqoqKjAyUm9hp2dHb17925wztzcXF588UU2bdpEXl4eOp2OiooK0tLSGhXTgQMH2Lhxo+GR78VOnjzZqMROuUJx7OVc7WcghBCi5SmKQtXBgxSvWUvJTz+hKygwvGYbFITbxIm4T5yAfZcuJowSqrQ65n27n1q9wu3h/kzrF2TSeJpTm07sWpNRo0bx6aefYmdnR2BgoGE37JkzZ5g4cSKPPPII//rXv/D09OS3334jJiaGmpoaQ2Ln6HjpHcJZs2Zx7tw5/vOf/9C+fXvs7e0ZOnRog7q2qykrK2PSpEm8/fbbl7wWEBDQqHN07dqVo0ePNuq9V/oZALi5uVFeXo5er2+wKaR+l2xj7+IKIYS4tupTpyhZs4biNWvRXnQzwLpdO9zG347bxEk49ut71SdTG4/mUVZdy6Q+zX8H74Nfj3M8twxvFzv+NS3C6LV75qRNJ3aONo7snLHTZNduCmdnZ8LCwi5Z37t3L3q9nvfee8+Q0Hz77beNOue2bdv45JNPuOOOOwBIT0+n4KJ/bV1LZGQky5cvp0OHDtfddmXGjBmGDRx/rLPTarXU1NTg7OwMXPlnANCtWzdqa2vZv39/g80fSUlJAI26eyiEEOLqKvbsIffdd6k6cNCwpnFywnXMGNwnTcR56FA0V6mNrpdfWs3Di/dQq1fILanioRHXNw6sMXadLuR/W08B8FZUb7xc7JvtWuagTSd2Go2mSY9DzVFYWBharZaPPvqISZMmsW3bNj777LNGfbZLly58+eWXDBgwgJKSEp5++mkcHRufcM6dO5fPP/+c++67j2eeeQZPT09SU1NZunQpX3zxBdbW1tc8x5NPPsnatWsZM2YMr7/+OsOHD8fV1ZU9e/bw9ttvExcX16hmyOHh4dx2221ER0fz3nvv0alTJ44dO8aTTz7JPffcQ1CQ5d52F0KI5qbNzibv3f+j5Mcf1QUbG1yGD1c3QYwehZVT0/4uXXswi1q9WorzxtojeLnYMa1fsLHDpqy6lr9/tx9Fgbv6B3OrBfWruxLTNzITN6RPnz68//77vP3220RERPDVV1/x1ltvNeqzcXFxnD9/nsjISB588EGeeOIJfH19G33twMBAtm3bhk6n47bbbqNXr148+eSTeHh4NLpHnr29Pb/++ivPPPMM//3vfxkyZAgDBw7kww8/5IknniAiovFdxZctW8Ytt9zCn//8Z8LDw3niiSeYMmUKX3zxRaPPIYQQ4gJ9dTUFn33GyTsmqEmdRoPHPffQZdNGQj77FPeJE5qc1AGsOpAFQJivWqP99HcH2Xg0z6ixA/xrbQrphZUEeTjyz0mW19rkcjRKU6rXW4H6XbHFxcW4ubk1eK2qqorTp0/TsWNHHBwcTBShMCfya0IIIS6lKApliYnk/vtttBkZADj274//P17AoeeNJUjphRWMeGcjVhrY8fwY/v3TUVbsy8TB1oqvHhpC//bGaYGy4Wgu0Qv3APDNw0MY2tnLKOc1havlNn/Uph/FCiGEEKKh6pMnyf3Xm5Rv3w6AjZ8fvk8/jduEO4yy6aD+bt3Qzl74uTnwzp29OV9Rw6Zj+UQv3M13fxlKV79r91K9mvPlNTy7/BAAMcM7tuqkrqnkUawQQggh0JWUkPvWW5yaMpXy7dvR2Nri9Zc/0/nHtbhPnGC0naSr9quJ3ZQ+au2zrbUVn9wfSWSoB8WVWmbG7SLjfMXVTnFVer3CP1YeIr+0mjBfF54e180ocW/J2MLunN1GOVdzksROCCGEaMMUvZ6i77/n5O3jKVy0GGprcRkzhk5r1+D75JNY1XUmMIajOSUcyy3FztqKcRH+hnUnOxviZw+ki68LOSVVzIzbxbmy6iafv6y6lr8s2cuPh3KwsdLwwd19cbC99ka+a8kpz+HxDY/zl1//QnF18Q2frzlJYieEEEK0URVJ+zhz191kv/gSusJC7Dp1IuSLLwiJ/Ri70FCjX6/+bt0t3Xxwd2zYFsXDyY7FMYMI8nDkVEE5cxbupqy6ttHnPlNQzrTYbfySkoudtRXv3NmbXsHG6WG6N3cvekVPjb6GxLREo5yzuUhiJ4QQQrQx2tw8Mp95hrMzZlB1+DBWLi74Pf8cnX5YicvwYc1yTUVRWH2w7jFs38s3JQ5wd2RxzCA8ne04mFHMX77cS3XttWfAbz6ez+SPf+NEXhm+rvYs/fMQoiKN1z5lX94+w9frTq8z2nmbgyR2QgghRBuhr6mh4PPPOTl+PCWrVoNGg/ud0+n88zo8Z81qVHPh67UvvYj0wkqc7awZ0/3K/eQ6+7iwYPZAnOys+S21gL9/ewCd/vINPBRF4b+bTzJnwS5KqmrpF+rB6seHExlqnJ219Q7kHzB8vTNnJ+cqzxn1/MYkiZ0QQghh4RRFoXTjRk5NmkT+e++jVFTg2KcPHb79lsA33sDGq/l3jdY/hr0t3B9Hu6vXvfUJ8eC/D/bH1lrDmoPZvLr68CWzxStrdPx16X7e+ukoegXuHhDM0j8Nwc/NuK2ryrXlHD9/HIBgl2D0ip5fz/5q1GsYkyR2QgghhAWrPnWa9D//mYxHHkV7Ng1rH28C3/437b/5GsdejW8CfyNqdXrWHMwGYHIjZ8OO6OLD+3f3RaOBxTvO8mFiquG1zKJK7vxsO6sOZGFjpeG1KeG8Pb039jY3vlHijw7kH0Cv6AlyCeLe7vcC8NPpn4x+HWORPnZCCCGEBdKVlVHwyacULlZ3umJri9fsWXj9+S9Yuxhvp2tj7Dh1joKyato52TK8i3ejPzepTyCF5TW8vOowH6w/jqeLHV19XXj0qyTOldfg5WxH7P2RDOnUfHcc9+ftB6Cvb1/GdRjH/+35P/bl7SOnPAd/Z/+rf9gEJLETQgghLIii11O88gfy3n8fXUEBAC633ILf889h16GDSWKqfwx7R68AbK2b9rBw1k0dOFdew4eJJ/jnD8lYazTU6hXCA93438wBBHk0fsb59ajfONHPpx/+zv5E+kaSlJfEL2d+YWb4zGa99vWQR7GtSE5ODn/9618JCwvDwcEBPz8/hg0bxqeffkpFhdrMsUOHDmg0GjQaDc7OzkRGRvLdd98ZzjF79mymTp16ybk3bdqERqOhqKiohb4bIYQQxlZ58CBn7r2P7BdeQFdQgF379oT89zNC/vuZyZK6Kq2Odck5QOMfw/7R38Z24f7BoSgK1OoVJvcJ5Pu/3NTsSV2tvpaD+QcB9Y4dwO0dbwdg3Rnz3B0rd+xaiVOnTjFs2DA8PDx488036dWrF/b29hw6dIj//e9/BAUFMXnyZABee+01Hn74YUpKSnjvvfe45557CAoK4qabbjLxdyGEEKI51Obnk/f+BxSvWAGAlZMT3nMfxfPBB9HY2Zk0tk3H8imtriXA3YGBHTyv6xwajYbXpkQQ6ulEO2c77uofbLRJGFdz4vwJKmorcLF1IexAAhSe5FZnT/6NhkMFh0hP/ZkQ/37g5A1W5nGvTBK7VuLRRx/FxsaGPXv24HxRF/BOnToxZcqUBruFXF1d8ff3x9/fn9jYWJYsWcLq1aslsRNCCAuj1NRQ+OUSCj75BH15OQDuU6fiM+9v2Pr6mjg61eq62bCT+gRiZXX9yZi1lYY/39LZWGE1Sv1j2D4uoVhv/jcA3sBAf192Ojrw8+qHeKi4BO7+EnpObtHYrqRNJ3aKoqBUVprk2hpHx0b/a+PcuXP88ssvvPnmmw2Sugbnu8K5bGxssLW1paam5rpjFUIIYX7Ktmwh9823qDlzBgCHXr3wf/EfOPbpY9rALlJapWX9kVzg+h/DmpJh40TpeXWhwwjwi2B84QF21mawzs2Nh4pLwT3IdEH+QdtO7CorORbZ3yTX7pa0F42TU6Pem5qaiqIodOvWcJCxt7c3VVVVAMydO5e33367wes1NTW89957FBcXM3r0aOMELoQQokUpWi3arCxq0tKpSTuLNi2dqpQUKnarA+mtvbzwnTcP92lT0ZjJ48B6v6bkUl2rp5OPM+GBbqYOp8n25ddtnMhQ6+wY/zb4hTO2upg3lo3kmE0tp57YSSePMBNG2VCbTuxau127dqHX67n//vuprr4wLPnZZ5/lxRdfpKqqChcXF/79738zYcIEE0YqhBDiavQVFdSkZ6BNT2uQwNWkp6PNygLdZcZq2djg+eCDeD/6CNauri0fdCP8ULcbdkqfoBapiTOmnPIccspzsEZDr6oqaD8M/MIBcLd3Z2jgULZmbmVdWiKPena7xtlaTptO7DSOjnRL2muyazdWWFgYGo2GY8eONVjv1KkTAI5/ONfTTz/N7NmzcXFxwc/Pr8FvJjc3N86ePXvJNYqKirC2tr7io14hhBA3RldURE2amrhp09OoOZumJm5padTm51/1sxoHB+xCgrENbY9dSAi2oSG4DBuGXfv2LRR9050rq+a3VLXdyuQrzIY1Z/X1dd20OpwUBQY+1OD18R3HszVzKz+d/olH+jxiNolr207sNJpGPw41JS8vL2699VY+/vhjHn/88WsmX97e3oSFXf62cLdu3Vi6dCnV1dXY29sb1pOSkujYsSO2zTgnUAghLJmi11Obn482Le2yCZy+pOSqn7dyd8cuJAS70BBsQ0OxCwmt+7o9Nr4+ZpM4NNaPh7LR6RV6BbnT0bv13TQw9K+rKAcXf+gxqcHro0JGYWdlx5mSMxw/f5xuZnLXzuwSu/T0dB588EHy8vKwsbHhpZde4q677jJ1WCb3ySefMGzYMAYMGMArr7xC7969sbKyYvfu3Rw9epT+/RtXK3j//ffz2muvMXPmTJ555hnc3d3ZsmUL8+fP55133mnm70IIIVq3y9W71aTXfZ2egXJRWczl2Pj6YhsaoiZt7UOxDQnBLjQUu5AQrD08WuabaCGr6nbDTmmFd+vgoo0T1dUw8C9g3fDGh4udCzcH38yB/ANkl2dLYnclNjY2zJ8/n759+5KTk0P//v2544472vwjws6dO7Nv3z7efPNNnn/+eTIyMrC3t6dnz5489dRTPProo406j4eHB1u3buW5555j8uTJFBcXExYWxvvvv09MTEwzfxdCCGH+rqverZ61NbaBgdiFhl6awIWEYNWEMpzWLLOokt1nzqPRwMTerS+xK9eWc6zwKAB9a2qh/+zLvu/loS/jaueKtZXxZ9ReL7NL7AICAggICADA398fb29vCgsL23xiB+rP5qOPPuKjjz664nvO1G17v5quXbuSkJBgxMiEEKJ1uaTeLS2dmrS0ptW7hYRemsAFBKCRkhZD77rBHT3xd3cwcTRNdzD/IHoUAmpr8e86EVwvPxPWw8GjZQNrBKMndlu2bOHdd99l7969ZGdns2LFiktGWMXGxvLuu++Sk5NDnz59+Oijjxg0aNAl59q7dy86nY6QkBBjhymEEMKC3XC9m5ub+oj0cvVuPt5m11bE3NTPhp3cx3z6uzXF/qwdAPStqoaxfzJxNE1j9MSuvLycPn36EB0dTVRU1CWvL1u2jHnz5vHZZ58xePBg5s+fz7hx4zh27Bi+F3XJLiwsZObMmXz++efGDlEIIYQFaFDvlp6Gtn6Xad0duGvWu/n4YNv+4qQt1GLr3VpSal4pKdkl2FprGB9x+Ttd5m7/6V8B6GfnBaFDTBxN0xg9sRs/fjzjx4+/4uvvv/8+Dz/8MHPmzAHgs88+Y+3atcTHx/Pcc88BUF1dzdSpU3nuueeuOQarurq6QQ+3kmv8K0wIIUTroa+sbPi49OIETurdzFL93bqbu/jQztm0c2qvh65Wy4HyDNBAvx53QSvbjdyiNXY1NTXs3buX559/3rBmZWXF2LFj2bFDve2pKAqzZ89m9OjRPPjgg9c851tvvcWrr77abDELIYRoXrqiInVn6dk0qXdr5RRF4Ye6+rrW2LsOIPXQV5RrwFmv0GXAX0wdTpO1aGJXUFCATqfDz8+vwbqfnx9Hj6q7T7Zt28ayZcvo3bs3K1euBODLL7+kV69elz3n888/z7x58wzHJSUlUpMnhBBm5Ir1bnUJXJPq3eoSuPpHpzY+PlLvZkYOZhRz9lwFjrbW3NrT79ofMJF1Z9ZxvPA4NwXeRF/fvthY1aVDej37Di0GoLeDD9YOrW8Mmtntih0+fDh6vb7R77e3t2/QaLcxFEVpaljCQsmvBSGMQ+rdBFzoXTe2px9OdmaXYgCQV5HHc1ueQ6fo+PzQ57jZuTEieAQj7f0Ztj+BfdoMcHGmX4expg71urToT93b2xtra2tyc3MbrOfm5uLv3/wFlvVTFSoqKi4ZwyXappqaGgCsrc2nB5EQ5kpfWWkYgXXd9W4hIZcmcFLvZhF0esXQ5mRKH/N9DPtD6g/oFB3ejt5o9VqKq4tZe2otawEbOwUrO3UiVd/2o00b6HVq0cTOzs6O/v37k5iYaGiBotfrSUxM5LHHHmv261tbW+Ph4UFeXh4ATk5OrW5EizAevV5Pfn4+Tk5O2NiY578shWhpl613q0vgpN5NXM3O0+fIK63G3dGWm7v6mDqcy9IrehJOqH1cn+wZzYRTuzhw5ls2OzqwycmR03bqr1E7Kzt6+/Q2ZajXzeh/m5WVlZGammo4Pn36NPv378fT05PQ0FDmzZvHrFmzGDBgAIMGDWL+/PmUl5cbdsler9jYWGJjY9Fd7V+MYLgzWJ/cibbNysqK0NBQSfBFm9Gw3q1uk4LUuwkjqN8Ne0cvf+xszPPXwe6c3WSUZeBiZcetq57Fpqac/kD/DmOZN/YV0uzs2Za1jQ5uHXC2bZ2DEYye2O3Zs4dRo0YZjus3NsyaNYuFCxdyzz33kJ+fzz//+U9ycnLo27cv69atu2RDRVPNnTuXuXPnUlJSgru7+xXfp9FoCAgIwNfXF61We0PXFK2fnZ0dVvIXkbAwilaLNju7rhlvmjoOqz6BS89Aqaq66ucvqXeru+sm9W7iSqprdfyUnAPAJDN+DLv8xHIAJhSdw6mmHIIHwq2vQ/uhAIQCoW6hJozwxmkUC6ser0/siouLcXNrfbtZhBCiMaTeTZiTX1NyeXjxHvzc7Nn+3BisrczvKUhRVRGjvx2FVqllWWY2PQc9DmP+2Sr61DUlt5HCIiGEMFOGere6nm5Nqnezt79wt+2PCVxgoNS7CaOq3w07sXegWSZ1AGuPfotWqaVHdQ09O4yB0S+1iqSuqSSxE0IIE7lqvVt6Ovri4qt+XurdhDkor67l1xT1MexkM30Mq9Rq+f7AZwBE6R1g2n/BQn9/WExi19jNE0II0ZKMUu8WGtowgZN6N2FG1h/JpUqrp4OXE72Dr1zjbkrJ654kFS32isIdk+LA0cPUITUbi0nsGrt5QgghjM1Q71bXJqRBAne99W4hodiFBGPl5NRy34gQ16F+N+zkPoHm2WHg0PcsP/0juLlwm3df3IIGmDqiZmUxiZ0QQjQnqXcT4lLny2vYfFz99W+Ws2FzkqlY/Tg/BXgCEDXgSdPG0wIksRNCCNTxcrV5+WjTzl5I2tJupN4tpK5Jr9S7Ccv1U3IOtXqFngFuhPm6NumziqKgU3QX5rQaW0UhLLufn+00VFhZ0d41lP5+/ZvnWmZEEjshRJsh9W5CGNcP+zMBmNLEu3W1+lruXTaGSn0NX09dhbuzkSdV6HWQ8DCcP8PyELUvXVTX6eb5qNjIJLETQlgUo9W7hYZgF9pe6t2EuILs4kp2nSkEYGITd8NuT/ofx2rUz763PIrXZqwHG3vjBbfxX5C6nlQHFw7YgI3GhsmdJxvv/GbMYhI72RUrRNvRoN7tDwlc7TXGBUq9mxDGseZANooCAzu0I8ijCU2tFYVVB+PBWj1coRQx4ZupDL43AWyN0Bx7/zew9T0AEnqPh/yd3BJyC96O3jd+7lbAYhI72RUrhOUwSr1bSIg6fF7q3YRoFvVNiSf3DWrS54qTv2ejpgrQMNi1IztLT/Nq9WkSvr4Lh/u+BbsbuDOemgirHgOg5qbHWF24BYCoLlHXf85WxmISOyFE66LU1qLNyqprzHtWfVyanq4mc9db71aXwEm9mxDN61R+GYcyi7G20nBHhH/jP6jX8fP2t6hx0BBm4878iV8zZfl40ini06KD/O2ru2DGMrB3aXpQWfvh25mgr4Ved7EhbDhFW1fh6+TLsMBhTT9fKyWJnRCi2TSod/tjApeZKfVuQrRS9XfrRnTxxsulCbVxB5exmjLAninh9+Ni58KLw17jiY1PsMjdjfFZO+m+ZDrc/x04NGHe+/mz8PXdUFMGHW+GKZ+QsEG9czctbBrWVtZN+O5aN0nshBA3RFdcTE1a2nXXu9mGBKtJ2x8TOKl3E8IsKYpy4TFsUzZN1FZzdvNb7PewxwoNE7reCcCo0FHc2v5Wfj37Ky/7+PBV+u/YLImC+79v3ISIikJYMh3KcsEvAu5ZQkZlHjuyd6BBw7Qu067ju2y9JLETQlzV5evd1I0LUu8mRNtzOKuEU/nl2NtYcVt4Ex7D7lnAKqUYcGdowBB8nC60OHlh8Av8nv07KZTylZcvszJ2w5dT4YEEcPK88jm1lfD1PXDuBLgFq8mggzsrjiwGYGjgUIJcmlYD2NpJYieEMF6922USOKl3E8Ky1N+tG9vDDxf7RqYR1WXot7zLai9nAKb84S6at6M3f+//d17Z8Qqx7dwZU60nOGsfLJ4MD/4Azl6XnlOvg+UPQcYucHCHB5aDWwBanZaVqSuBtrVpop7FJHbS7kSIq5N6NyHEjdLrFVbXJXaTmvIY9vdP2aMvJdvGD1dbF0aFjLrkLVFdolh7ei27c3bzevchfHZkJ5qcQ7BoIsxcBS4XNTFWFPjpGTi6Bqzt4b6l4NsdRVF4Zccr5FXk4engednrWDqLSeyk3YkQl6l3uyiBk3o3IcSN+nhjKtnFVbg62DCyWyOnRVQUwvYPWeWq3q27rcM4HGwcLnmbRqPh5aEvE/VDFNvPHWTNrc8waf17kJcCCyfArFXgWvfo97cPYPcXgAai/gftbwIgLjmOVSdXYa2x5s3hb2JnbWeMb7tVsZjEToi2wFDvlp52yVSFptS7NbzrFoJd+/ZS7yaEuKr1Kbl8sP44AC9N6ImDbSN3mv72PhU1pfzqEgLAlLApV3xre7f2PNL3Ef6T9B/eOfolw2Z8g+fSB6DgWF1ytxpOb4HEV9UP3P5vCJ8KwK9nf+U/Sf8B4LlBzzEsqO20OLmYJHZCmJmL690uJHDpaoPe9HSpdxNCtLiT+WX8bdl+FAVmDm3P3QNDGvfBkizY9TmJzo5UaCDENYS+Pn2v+pFZ4bP46fRPHD9/nHdOfsu/Z6+FRZPgXCp8cSuU5ahvvOkJGPIXAA4XHOaFrS8AcH+P+7m3+73X+622epLYCWECV613y8qC2torf9jaGtuAgLqdpSHqOKz6BE7q3YQQRlZSpeXhxXsora5lUEdPXprYs/Ef3vw21Fbxg3cXoJpJnSeh0Wiu+hFbK1teGfoKD/z0AGtPrWVip4kMn/MjLJwIRWfVN0XcCWPVu3Y55Tk8tuExqnRVDA8azlMDnrrO79QySGInRDNR693qkjapdxNCtEJ6vcK8Zfs5lV9OgLsDn9wfia11I0s2zp2EpC/JsbZml6YGgMmdJzfqo718ejGj+wyWHFnC6zteZ8WUFTjN+QkSHga3QJgSC1ZWVGgreCzxMQoqCwjzCOPdm9/FxqptpzZt+7sX4gZcsd6tbjj9NevdXF0v3HWTejchhBn6T+IJ1h/Jw87Giv8+2B/vpkyZ2PAGKDpWd+iPos9ngN+AJvWUe7zf42xI20BWeRYf7/+YZwY+A3N+NLyu0+t4dsuzHDt/DE8HT2LHxOJidx2jyCyMJHZCXIUx693+mMBZe3hc85GEEEKYys+Hc/hP4gkA3prWi97BHo3/cPYBOJyAAqxytIHyxt+tq+dk68RLQ1/ikfWP8NWRr7ij4x1EeEcYXn9/7/tsytiEnZUdH47+kECXJrRfsWCS2Ik2T19VVfeoNO3SBO5a9W5WVmp/N6l3E0JYkBO5pcxbth+AOcM6ML1/cNNOkPg6AId6judM+WEcrB24rcNtTY5jeNBwJnSawNpTa3l5+8ssnbgUWytbvjv+HYtT1OkS/xr+L/r49GnyuS2VxSR20qBYXI1R6t1CQi96dFr3tdS7CSEsTHGllj99uZfyGh1DO3nxwh09mnaCM9sg9VewsmGVbyicPcyY9mNwtnW+rnieGfgM2zK3cfz8cRYdXkSEdwRv/v4mAI/2fZTbO95+Xee1VBpFURRTB2FM9Q2Ki4uLcXNzM3U4ooU0qHf7wy5TqXcTQojG0ekVHlq0m43H8gnycGTVY8PwakpdnaJA/DhI30lN/9mMKttDSU0J/731v9wUeNN1x7X65Gpe+O0F7KzssLe2p1Rbyh0d7+DfI/7dJkpampLbWMwdO2H5Lql3q2vMq01LoyYjA6Wy8qqft/bxvvwuU6l3E0IIAD749Tgbj+XjYKtulmhSUgdw/GdI3wk2jmwKu4mSXRvwdfJlsP/gG4prYqeJrD65mh3ZO6jR19DXpy+vDXtN/ty+DEnshFkxdr2bIYGTejchhLiqHw9l8/HGVADent6biKAmjufU6yHxNfXrwX9mddZvAEzqNAlrq0ZOqbgCjUbDP4f+k3vW3IOHvQfzR83H3rqJSWcbIYmdaHH19W7qXbe6BK5uvqnUuwkhRMs7llPKU98dAODhER2Z0rfxbUkMkr+HvMNg7865AbP4bfV0oOm7Ya8k2DWYn6f/jI2VzWVnzQqVJHbC6Ixa72bYZaomcDa+vlLvJoQQRlRUUcPDi/dQUaNjWJgXz97eveknqa2Bjf9Svx72BD9mb6NWqSXCK4JOHp2MFqv0qbs2SezEdVFqa9FmZ1NzNk3q3YQQopXS6RUe/2YfaYUVBLdz5OP7IrFp7GSJi+1bDOfPgLMvDHmEVT/PBmBymHHu1onGk8ROXJGh3i09/dIErtH1biF1DXql3k0IIczNuz8fY+uJAhxtrfnfgwNo52zX9JPUlMPmd9Svb3mGY2UZHC08io2VDeM7jDduwOKaJLFr45ql3i2kbp6p3XX8ASGEEKJFrD6QxWebTwLw7l296Rl4nS3Cdv4XynLBoz1EzmL1vg8BGBk8Eg8HDyNFKxpLEjsLd0m9W3oa2ovGYumk3k0IIdqclKwSnvn+IAB/uaUzE3tf5ziuyvOwbb769agXqLWyYs2pNYDxNk2IprGYxK4tT54wer3bRQmc1LsJIYRlOV9ew5++3EOlVsfNXX14ely36z/Ztg+hqhh8e0Kvu9ietY1zVedoZ9+O4cHDjRe0aDSLSezmzp3L3LlzDd2ZLY3UuwkhhLhRtTo9j32TRMb5Stp7OfHhvX2xtrrOf7yX5sDvn6pfj34JrKxZdXIVAHd0ugNbK2k/ZQoWk9hZgob1bhfddUtPpzY396qf1djZXbjbVp/ASb2bEEKIi7y97ijbUs/hZKdulvBwuoG/G7a8C7WVEDwIuo2nuLqYjWkbAXkMa0qS2LUgRVGozc+v25wg9W5CCCFazg/7M/l862kA3rurD938Xa//ZIWnYe9C9esx/wSNhp/P/EyNvoYwjzB6ePa48YDFdZHEzsgM9W71d9suTuAaW+928S5TqXcTQghxg5Iziw2bJR4bFcb4XgE3dsJNb4G+FjqPgY4jAFh9cjUAUzpPkb+rTEgSu+ugr642PCJtUO+WnoY283rr3UKxCw7Gytm55b4RIYQQFu9cWTV//nIv1bV6RnXz4W+3dr2xE+YehoPfql+P+ScAZ0vOsj9/P1YaKyZ0mnCDEYsbIYnddSj67nty33jjiq9LvZsQQghzoNXpmft1EplFlXT0dmb+vf2uf7NEvcTXAQV6ToXAvgCGTRNDA4fi4+RzY+cXN0QSu+tgFxqi1ruFhGDbPvSSBE7q3YQQQpiDN388wu+nCnGxt+Hzmf1xd7zBnaopq+D4T6CxhtEvAqBX9A0ewwrTksTuOjgPH07XXTulhkAIIYTZWr43gwXbzgDw/t19CPO9gc0SAIWn4Ie56tdD54J3FwD25OwhuzwbV1tXRoWMurFriBsmid11kLtxQgghzNnBjCKeX3EIgL+O6cJt4f43dkJtFXw7C6pLIGSIobYOLjyGva3DbTjYONzYdcQNkwxFCCGEsCD5pepmiZpaPWN7+PHXMV1u/KQ/Pw85B8HJC+6MB2v1kW6FtoJfz/4KwJQweQxrDiSxE0IIISyEVqdn7ldJZBdX0dnHmQ/u6YPVjW6WOPgd7IkHNBD1ObgHGV5KTEukoraCENcQ+vr0vbHrCKOQxE4IIYSwEK+vSWHXmUJc7W3438wBuDrc4GaJ/OOw+q/q1zc/DWFjGrz8w8kfAJjUeZLUnZsJi0nsYmNj6dmzJwMHDjR1KEIIIUSL+3Z3Oot3nEWjgfn39qWzj8uNnbCmAr6dCdpy6DACRj7X4OWc8hx2Ze8CZISYObGYxG7u3LmkpKSwe/duU4cihBBCtKh9aed5cWUyAPPGdmVMD78bP+mPT0H+EXDxg+lxYGXd4OU1p9agoDDAbwBBLkFXOIloaRaT2AkhhBBtUV5pFX9ZspcanZ5x4X7MHRV24ydN+hL2fwUaKzWpc22YKCqKwg+p6mNYuVtnXiSxE0IIIVqpmlo9jyxJIrekmi6+Lrx3d98b3yyRk6zerQMY9Q/DLNiLHSo4xJmSMzhYO3Bbh9tu7HrCqCSxE0IIIVqpV1YfZu/Z87g52PD5zAG42N9ge9qqErWurrYKwsbC8HmXfVt977ox7cfgbCszzs2JJHZCCCFEK/T1zjS+3pmGRgMf3tePDt43mGApiroDtvAkuAXBtP/BZRry1+hq+On0T4A8hjVHktgJIYQQrczes4W8vErdLPH0uG6M7OZ74yfd/QUcTgArG7hrITh7XfZtmzM2U1JTgq+TL4P9B9/4dYVRyUgxIYQQopU4e66chKRMFu84g1anMKFXAI/c0vnGT5yZBD+/oH5962sQMuiKb12Vqj6GndRpEtZ/2CkrTE8SOyGEEMKMFVdoWXMoi4SkTPaePW9YDw904507e994Y+DK8/DdLNDVQPeJMOTRS95yvuo8m9I3sSF9A1sytwDyGNZcSWInhBBCmBmtTs+mY/ms2JfB+pQ8anR6AKw0MLyLD9MjgxgX7o+D7Q3eMVMUWDkXitLAoz1MiYW6RDGnPIfEtEQS0xJJyk1Cp+gMH5vYaSKdPDrd2LVFs5DETgghhDADiqJwKLOYhKRMVh3IorC8xvBad39XpkcGM6VvIL5uDsa76I5YOLYWrO3g7kWcqi4k8cR3JKYlcvjc4QZv7dauG2NCxzA6dDRd23U1XgzCqCSxE0IIIUwoq6iSlfszSUjKJDWvzLDu7WLP1L6BREUG0zPQzfgXTtuJfv3LHLazI7H3RBJ3/pMzJWcML2vQ0M+3H6NDRzMmdAzBrsHGj0EYnSR2QgghRAsrq65lXXIOCUkZ7Dh1DkVR1+1trBgX7s+0yCBGhHljY2385hVavZa9ZzaS+Ovf2BDkS56NDZzbA4CtlS2DAwYzJnQMI0NG4u3obfTri+YliZ0QQgjRAnR6he0nC0hIymRdcg6V2gs1a4M7ejI9MpjxvfxxdbA1+rUrayvZnrWdDWkb2JS+iZKaEnCwAqxwsnFiRPAIxoSOYUTQCFzsXIx+fdFyJLETQgghmtGxnFISkjJYuT+T3JJqw3onb2eiIoOY0jeIEE8no1+3uLqYLRlbSExLZHvWdiprKw2veep0jKysYczNLzO4593YW9sb/frCNCSxE0IIIYwsv7SaVQeySEjK4HBWiWHdw8mWSb0DiYoMom+Ix423KvmDvIo8NqZtZH3aevbk7KFWqTW8FugcyGiPbozZs4x+VVVYT4mFXg8Y9frC9CSxE0IIIYygSqtj/ZFcEpIy2Xw8H51eLZyztdYwqpsvUZHBjOrug72NcZv6ni05a2hLcjD/YIPXwjzCGBM6hjGhY+hu2w7Nf0dAVRX0vR/6SVJniSSxE0IIIa6TXq+w5+x5EpIyWHswm9LqC3fI+oZ4MD0yiIm9A2nnbGfU6x4rPMYvZ39hQ9oGUotSG7zWx6ePoS1Je7f2dYHqYPEUKM8D355wx/8ZNR5hPiSxE0IIIZroTEE5CfsyWbEvg/TCC7VrQR6OTOsXxLTIIDr7GHcTgqIo/J79O3HJcezM3mlYt9HYMNB/IGNCxzAqdBS+TpeZG7vpLTizFexc4O7FYGf8mj5hHiwmsYuNjSU2NhadTnftNwshhBBNVFRRw5qD2SQkZZCUVmRYd7G34Y5e/kRFBjOogydWVsatm9PpdaxPW0/coTiOFB4B1GTulpBbGBM6hpuDb8bd3v3KJzixHra8q3496T/g3cWo8QnzolGU+u45lqGkpAR3d3eKi4txc2uGho5CCCHajJpaPZuP55OQlEHikYajvUZ08SEqMojbevrjaGfcujmAal01q06uYmHyQtJK0wBwtHEkqksUM3vOJNAl8NonKc6Az0ZAZSEMiIGJ7xs9TtH8mpLbWMwdOyGEEMIYFEXhYEYxCUkZrD6Y3WC0V48AN6ZHBjG5j5FHe12ktKaUb499y5IjSyioLADA3d6dGd1ncF/3+2jn0K5xJ9Jp4ftoNakL6APj3myWeIV5kcROCCGEADKLKlm5L5OEpAxO5pcb1n1c1dFe0/o102ivOgWVBSxJWcKyY8so06qjxfyd/ZnVcxZRXaJwsm1iXdz6VyB9J9i7w12LwLZ5ElFhXiSxE0II0WaVVdfy06FsVuzLbDDay8FWHe0VFRnMsM5ezTLaq15aSRoLDy/kh9QfqNGrdwc7u3cmulc04zuOx9bqOiZRHF0LOz5Wv54aC54djRixMGeS2AkhhGhTdHqFbakFJCRlsO5wDlVaveG1IZ08iYoMZnxE84z2uljKuRTik+P59eyv6BU1hj4+fXio10PcHHwzVprrTCYLT8OKR9Svh8yFHpOMFLFoDSSxE0II0SYczSlhRVLmZUd7Te8fzJS+gQS3a942IIqisCtnF3GH4tiRvcOwfnPwzURHRBPpG3lj0yhqq+G72VBdDMEDYewrNxyzaF0ksRNCCGGx8kur+WF/JglJmaRkNxztNblPIFGRwfQJdjf6aK8/0ul1bEjfQNyhOA6fOwyAtcaa2zvezpzwOXTz7GacC/38D8jeD47t4M4FYGPcxsjC/EliJ4QQwqJUaXX8mpJLQlIGW04UNBjtNbp73Wivbr7Y2TRf3Vy9Gl0Nq0+uZuHhhZwpOQOAg7UD07pMY1b4LIJcgox3seTlsPtz9euoz8EjxHjnFq2GJHZCCCFaPb1eYfeZQhKSMvnxUMPRXv1CPYiKDGZirwCjj/a6krKaMr47/h1fpnxJfmU+AG52btzX/T5m9JiBp4OncS9YkAqrnlC/HvF36HKrcc8vWg1J7IQQQrRapwvKWZGUQcK+TDLONxztFRUZxLR+QXQy8mivqymoLODrI1+z9OhSSrWlAPg6+TKr5yzu7Hpn01uWNIa2Er6dCTVl0H44jHzB+NcQrYYkdkIIIVqVoooaVh/MZsVlRntN6BVAVGQQA5thtNfVpJems+jwIlacWGFoWdLRvSPREdFM6DgBW+tm3GH741OQdxicfeDOOLCWv9rbMvmvL4QQwuzV1OrZdCyPhKRMNhxtONrr5q4+REUGc2sPv2YZ7XU1RwuPEn8onp/P/mxoWdLbuzfRvaIZFTLq+luWNNa+r2DfEkAD0+PA1b95ryfMniR2QgghzJKiKBzIKGZFUgarDmRxvkJreK1ngBtRkUFM7huIr2vLTlRQFIU9uXuIOxTHtqxthvXhQcOJjohmgN+AZt9lC0BuCqz9u/r1qBeg0y3Nf01h9iSxE0IIYVbqR3stT8rg1B9Ge03rp9bN9QhovtFeV6JX9GxM20hcchyHCg4BYKWxYlyHccRExBivZUljVJepdXW1ldB5NIx4quWuLcyaJHZCCCFMrn60V0KSOtqrXkuO9roSrU7LmlNriE+ON7Qssbe2Z2rYVGaFzyLEtYXbiui0sPoJOHcCXAPV1iZWLf9zEeZJEjshhBAmodMr/FY32uvnP4z2GtrJi6jIIG5vgdFeV1KuLef749+zOGUxeRV5ALjauXJvt3u5v8f9eDl6tWxAej0cToANb8D506Cxhjvjwdm7ZeMQZk0SOyGEEC3qaE4JCUmZrNyXSV7pRaO9fJyZHtkyo72uprCqkK+OfMU3R7+htKauZYmjLw/2fJA7u96Ji13LtU8BQFEgNRESX4Ec9REwzr4w/t/QfmjLxiLMniR2Qgghml1eaRWr9mexPCmTIxeN9mp30Wiv3i0w2utqMkozWHR4EStTV1KlqwKgg1sH5kTMYWKnidhZm2A8V/ouWP8qnP1NPbZ3g2FPwOBHwL6FE0zRKkhiJ4QQollUaXX8Uj/a63g+dZO9sLXWMKa7H1GRQYxsodFeV3Os8BjxyfH8fOZndIoOgAivCGJ6xTAqZBTWVi3bQgWAvCOQ+DocW6seW9vD4D/B8HngZOSpFcKiSGInhBDCaPR6hV1nCllxmdFekfWjvXoH4OFk2uH0iqKwN3cv8cnxbM3cali/KfAmYiJiGOg/0DR3D4vSYONbcOAbQAGNFfS9H0Y+B+7BLR+PaHUksRNCCHHDTuWXsWJfJglJmWQWXRjtFdzOkah+QUyLDKajt7MJI1TpFT2b0jcRnxzPgfwDgNqy5Lb2txEdEU0Prx6mCay8ALa+B7u/AJ06uYIek2H0S+DT1TQxiVZJEjshhBDXpX60V0JSBvsuGu3lam/DhN4BTOvX8qO9rkSr07L29FoWJC/gVPEpAOys7JgaNpXZ4bMJcWvhliX1qkthRyxs/0id9QrQ8WYY8woE9zdNTKJVk8ROCCFEo9XU6tl4LI+EpAw2HM1Dq1ML56ytNNzcxVsd7dXTDwdbE9SlXUaFtoLlJ5az6PAicityAXCxdeHe7mrLEm9HE7UKqa2GPQtgy7tQUaCuBfSFsa9A51GmiUlYBEnshBBCXFX9aK+EutFeRReN9goPdGNaP9OM9rqa81Xn+fro13x95GtKatRduN6O3szsOZO7ut7V8i1L6ul1cPBb2PgmFKepa56dYcxL0GOKNBoWN0wSOyGEEJeVcb6ClXV1c6cKLoz28q0f7RUZRHf/lh/tdTVZZVksOryIhBMJhpYl7d3aMzt8NpM6T8Le2t40gSkKHPsJEl+D/CPqmmuAuimi7/1gbZomzMLymGViN23aNDZt2sSYMWP4/vvvTR2OEEK0GaVVWn5KziEhKYPfTxUa1h1trRkX7qeO9grzxtoM6uYudvz8cRYkL+Cn0z8ZWpb09OpJTEQMY0LHmKZlSb2z22H9K5C+Uz12cFfblgz6E9iZrhGzsExmmdj99a9/JTo6mkWLFpk6FCGEsHi1On3daK9Mfkm5MNpLo6kf7RXM7RH+uNib318ZSblJxCXHsSVji2FtSMAQYnrFMNh/sEkbHpNzSL1Dd+IX9djGEYY8ojYYdmxnuriERTO/36XAyJEj2bRpk6nDEEIIi3Yku4SEpAxW7s8i/6LRXp19nImKDGZqvyCCPBxNGOHl6RU9WzO2Epccx768fQBo0HBr+1uJ7hVNuFe4aQMsPKXW0B36HlDAygYiZ8Etz4Crv2ljExbP6Indli1bePfdd9m7dy/Z2dmsWLGCqVOnNnhPbGws7777Ljk5OfTp04ePPvqIQYMGGTsUIYQQf5BXUsUP+7NYnpTB0ZxSw3o7J1um9A0iKjKIXkGmHe11JVq9lnWn1xGfHE9qUSoAtla2TAmbwuzw2bR3a2/aAEtzYcs7sHch6OsaM0dMh1H/AK/OJg1NtB1GT+zKy8vp06cP0dHRREVFXfL6smXLmDdvHp999hmDBw9m/vz5jBs3jmPHjuHr62vscIQQos2rrNHxS0oOCUmZbD1xYbSXnbUVY3r4EhUZzC1dfUw+2utKKrQVrEhdwaLDi8guzwbA2daZu7vdzYM9HsTHyce0AVYVw7YP4fdPQFuhroWNhTH/hIA+po1NtDlGT+zGjx/P+PHjr/j6+++/z8MPP8ycOXMA+Oyzz1i7di3x8fE899xzTb5edXU11dUXHiGUlJRc5d1CCNE26PUKO08XsmJfBj8eyqHsotFe/du3Y1q/ILMY7XU1RVVFfHP0G74++jVF1UUAeDl48UDPB7i729242Zl4R662EnZ9Dr+9D5Xn1bXggTDmZeg4wrSxiTarRWvsampq2Lt3L88//7xhzcrKirFjx7Jjx47rOudbb73Fq6++aqwQhRCiVTuZX8aKpExW7LvMaK/IYKb1CzKL0V5Xk12WzeKUxSw/sZzKWvV7CHENYXb4bKaETTFdy5J6ulo48DVs+jeUZKprPt3VO3Td7lB3nQhhIi2a2BUUFKDT6fDz82uw7ufnx9GjRw3HY8eO5cCBA5SXlxMcHMx3333H0KFDL3vO559/nnnz5hmOS0pKCAkx0WgYIYQwgfPlNaw5mMXypEz2pxcZ1utHe0VFBjOgfTuzGO11NSeLThKfHM+Pp36kVlHvMPbw7EF0r2huDb3VtC1LQO1Fd2QVJL4O506oa27BMOoF6HMvmDo+ITDTXbHr169v9Hvt7e2xtzfxv96EEKKFVdfq2Hg0n4SkDDYeazja65auPkRFBjG2h/mM9rqa/Xn7iUuOY1P6JsPaYP/BRPeKZmjAUPPYyHFqE6x/FbKS1GNHT7j5aRgQDbbmM3FDiBZN7Ly9vbG2tiY3N7fBem5uLv7+sgVcCCGuRlEU9qcXkZCUyeqDl472iooMZnKfQHxczf8fu4qisDVzK3GH4kjKU5MlDRrGth9LdEQ0Ed4RJo6wTtY+NaE7tVE9tnWGmx6DoY+Bg3lN3RACWjixs7Ozo3///iQmJhpaoOj1ehITE3nsscdaMhQhhGg10gvV0V4r9jUc7eXnZs/UfkFE9Qumm7+rCSNsvFp9LevOqC1LTpxXH2faWNkwpfMUZoXPoqN7RxNHWKcgFTa8Dikr1WMrWxgYAyOeAhcT78IV4iqMntiVlZWRmppqOD59+jT79+/H09OT0NBQ5s2bx6xZsxgwYACDBg1i/vz5lJeXG3bJXq/Y2FhiY2PR6XQ3+i0IIYTJlVZp+elQDsuTMth5uuFor9sj/ImKDOKmzuY32utKKmsrWXFCbVmSVZ4FgJONE3d3u5sHejyAn7PfNc7QQkqyYPPbkPQlKDpAo9bPjXwe2pm4T54QjaBRFEUx5gk3bdrEqFGjLlmfNWsWCxcuBODjjz82NCju27cvH374IYMHDzbK9UtKSnB3d6e4uBg3N7lNLoRoPWp1erbWj/Y6nEN17YXRXjd19mJaP/Md7XUlxdXFasuSI19zvlptCeLp4MkDPdSWJe727iaOsE5FIWybDzv/C7VV6lrX8TDmJfAz8SQL0eY1JbcxemJnapLYCSFam5SsC6O9Csou9OUM83UhKjKIqX2DCDTD0V5Xk1Oew+KUxXx//HtDy5IglyDmhM9hStgUHGzMZMNBTTns/Ax++w9UF6troUNh7CsQOsSkoQlRrym5Tev5Z58QQliQK4328nS2Y3KfQLMe7XU1p4pOEZ8cz9rTa6mtG6vVrV03YnrFcGv7W7GxMpO/dnRaSFqsPnYtq9vQ5xsOY1+GLrdJLzrRapnJ7zAhhLB89aO9lidl8tsfRnuN7elLVL9gbunmg621eY72upoD+QeIPxTPhvQNhrWB/gOJjohmWOAw80lQ9Xo4nAAb3oDzp9U1j/Yw+kWIuBOsWt/PXoiLSWInhBDNqH60V0JSBj8eyqa85sIGr/7t2xEVGcTEXoG4O9maMMrroygK27K2EXcojj25ewzrY0LHEB0RTW+f3iaM7g8UBVITIfEVyDmkrjn7wC3PQuQssDHf0WpCNIXFJHayK1YIYU5S88pYsS+DlfuyGoz2CvF0JKqfOtqrg5mP9rqSWn0tv5z5hfjkeI6dPwaoLUsmdprInPA5dPLoZOII/yB9N6x/Bc7+ph7bu8FNT8CQR8DexaShCWFssnlCCCGMpPCi0V4HLh7t5WDDxItGe5nNY8kmqqqtYmXqShYeXkhmmToj1dHGkbu63sWDPR/E39nMGs3nHVV70R1dox5b28Ogh2H4PHD2Mm1sQjSBbJ4QQogWoo72yiMhKfOS0V4ju/oQFRnMmB6+rWK015UUVxez7NgyvjryFYVVak+9dvbtuL/H/dzb/V7zaVlSrygdNr0FB74BRQ8aK+h7P4x8DtyDTR2dEM1KEjshhGgiRVHYl15EQlIGqw9kU1x5YbRXRJAbUf2Cmdw3EG8X8x/tdTW55bksObKEb499S0VtBaC2LJkVPoupYVNxtDGzFizlBbD1fdj9Oehq1LUek2D0S+DTzbSxCdFCJLETQohGSi+sYEXdaK/TF4328ndzUEd7RQbR1a91jPa6mtPFp1l4eCGrTq4ytCzp0q4LMRExjOswznxaltSrLoUdn8D2j6CmrnVMhxEw9lUI7m/a2IRoYWb2u1MIIcxLSZWWnw5lszwpk11/GO01PsKfqMhghnb2ajWjva7mUP4h4pPjSUxLREF9pBzpG0lMrxhGBI0wv9rA2mrYswC2vAsVBepaQB+1uXCnUdKLTrRJFpPYya5YIYSx1Or0bD1RQMK+y4/2iqob7eXcikZ7XYmiKOzI2kFcchy7cnYZ1keGjCQmIoa+vn1NF9yV6HVw6DvY+C8oSlPXPDurveh6TpVedKJNk12xQgiBmuCkZJeQkJTJD5cZ7TU9Mpip/QIJcDezurLrVKuvZf3Z9cQnx3Ok8AgANhob7uh0B9ER0XT26GziCC9DUeD4Okh8DfJS1DXXALUXXb8HwLr19QIUojFkV6wQQjRSbkkVP+zPJCEps8FoLy9nOyb1CWR6ZDARQW7m9xjyOlXrqvkh9QcWJC8goywDUFuWTO8ynZk9ZxLgEmDiCK/g7HZY/yqk/64eO7irbUsG/QnsnEwbmxBmRBI7IUSbU1FTyy+Hc1melMG21IIGo71u7elHVGQQN3dtnaO9rqSkpoRvj33LkpQlnKs6B4CHvQczeszgvm734eHgYdoAryQnGRJfhRO/qMc2jjDkLzDsr+DYzrSxCWGGJLETQrQJer3C76fPkZCUyU9/GO01oH07oiKDmdAroFWO9rqavIo8lqQs4dvj31KuVXfyBjgHMCt8FtPCpuFka6Z3uwpPw8Y31Vo6FNBYQ/9ZcPMz4GamdxWFMAOS2AkhLFpqXhkJSRms3JdJVnGVYT3U04moyCCm9QuivVfrHO11NWdLzrIgeQGrTq5Cq1f77IV5hBEdEc3tHW/H1spME9iyPNj8DuxdCHVxEzEdRv0DvMyw7k8IMyOJnRDC4hSW17D6QBYJSRkcyCg2rKujvQKZHhlE/1Y82utqDhccJi45jvVn1zdoWRIdEc2I4BFYacz08XJVsdqHbscnUHdnkc5jYMw/IbCvSUMTojWxmMRO2p0I0bZV1+rYcCSPhH2ZbDyaR63e8kZ7XYmiKPye/TtxyXHszN5pWL8l+BaiI6KJ9Is0YXTXoK1SJ0VsfQ8qz6trQQNg7MvQ8WbTxiZEKyTtToQQrZaiKCSlqaO91hxsONqrV5A7UZFBTOrT+kd7XYlOr2N9mtqyJOWc2v7DWmPNHR3vYE7EHLq062LiCK9CVwsHvoZN/4aSTHXNuxuMeQm6T5TmwkJcRNqdCCEsWnphBQlJmazYl8GZcxWGdUsb7XUl1bpqVp1cxcLkhaSVqg16HawdmN5VbVkS6BJo4givQlHgyGrY8DoUHFfX3IJh1PPQ+16wlr+WhLgR8jtICNEqlFRp+fFgNglJmew6c2G0l5OdNbdH+DM9MpghnSxjtNeVlNaU8t3x7/gy5UsKKtURWu727tzX/T5mdJ9BOwczb/9xarPauiRzr3rs6Ak3PwUDYsDWwbSxCWEhJLETQpit+tFey5My+DUlt8For2GdvYmKDGJcuGWM9rqagsoClqQsYdmxZZRpywDwc/JjVvgspneZbr4tS+pl7VOnRZzcoB7bOsNNj8HQx8BBSmaEMCbL/tNQCNHqKIrC4Sx1tNeqA5kUlNUYXuvi68L0/sFM6Ws5o72uJq0kjYWHF/JD6g/U6NWfQyf3TkRHRHNHxzuwNfcRWgWpsPENOLxCPbayhQHR6l06F1/TxiaEhZLETghhFnJLqli5Tx3tdSy34WivyX3V0V7hgZYz2utqUs6lEJ8cz69nf0WvqHcp+/j0ISYihltCbjHfliX1SrJg89uQ9CUoOkADve9R6+jadTB1dEJYNEnshBAmU1FTy8+Hc0hIymw42stGHe01PTKIEV0sa7TXlSiKwq6cXcQdimNH9g7D+oigEcT0iiHSN9L8k9rK8/DbfNj5GdTWNYPuejuMfgn8I0wamhBthcUkdtLHTojWQa9X+P3UOZYnZfJTcjYVF432GthBHe11R68A3B3N/DGjkej0OjakbyDuUByHzx0G1JYlt3e8nTnhc+jm2c3EETZCTYWazG2brzYaBggZAmNfgfZDTRmZEG2O9LETQrSI1LxSEpIyLxnt1d7Liah+wUzrF0Sol5lvAjCiGl0Nq0+uZuHhhZwpOQOAvbU9UV2imBU+iyCXINMG2Bg6LSQtVkeAleWoa77hanPhLrdJLzohjET62AkhzMK5smp1tNe+TA5eNNrLzcGGiX3U0V6RoZY52utKymrK+P749yxOWUx+ZT4AbnZu3Nv9XmZ0n4GXo5eJI2wEvR5SVsCGN6DwlLrmEQqjXoRed4KV5U33EKK1kMROCGFU9aO9lidlsunYhdFeNlYaRnZTR3uN7m6Zo72upqCygK+PfM3SY0sprVE3h/g6+TKz50zu7HonzrbOJo6wERQFTibC+lch56C65uwDNz8D/WeDjZ1JwxNCSGInhDACdbTXeZYnZbLmQBYlVbWG13oHuxPVTx3t5WWho72uJr00nUWHF7EydSXVumoAOrh1IDoimomdJpp/y5J6GXtg/StwZqt6bOcKw/4KQx4BexeThiaEuEASOyHEdUs7V8GKfZkk7Mvg7EWjvQLc60Z79QuiiwWP9rqao4VHiT8Uz89nfza0LOnl3YuYiBhGhY4y/5Yl9fKOquO/jq5Rj63tYdDDMHweOLeCx8ZCtDGS2AkhmqS4UsuPh7JJSMpg95nzhnUnO2vGRwQwPTKIwRY+2utKFEVhT+4e4pLj2Ja5zbA+LGgYMRExDPAb0HrqCYvSYdO/4cDXoOhBYwV9Z8Atz4FHiKmjE0JcgSR2Qohr0ur0bD2Rz/KkTH5NyaXmotFew8MujPZysmubf6ToFT0b0zYSnxzPwQK19sxKY8W4DuOIjoimu2d3E0fYBOXnYOt7sPtz0NVN/eg+Ecb8E3xaQesVIdq4tvmnsBDimupHey1PymD1gawGo726+rkQFRnM1L5B+Lu33eHtWp2WNafWsODwAk4XnwbUliVTw6YyK3wWIa6t6M5WdRn8/gls+xDqNnfQYYTaiy54gElDE0I0niR2QogGcoqrWLk/k4SkDI7nlhnWvV3smNwniKjIoDYz2utKyrXlhpYleRV5ALjauqotS3rMwNvR28QRNkFtDexdAFvehXK1/Qr+vdWErvNo6UUnRCsjiZ0QgvJqdbTXin2Z/JZagNKGR3tdTWFVIV8d+Ypvjn5jaFni4+hjaFniYteKdofqdXDoe9j4BhSlqWuendTxXz2nglXb/m8tRGtlMYmdjBQToml0htFeGaxLzmkw2mtQB0+iIoMY34ZGe11NRmmGoWVJlU6dmtHBrQNzIuYwsdNE7KxbUf82RYHjP0Pia5CnjjDDxR9GPgv9HoTW0n5FCHFZMlJMiDbmRG4pCfvU0V7ZMtrrqo4VHiM+OZ6fz/yMTlET3wivCGJ6xTAqZBTWrW3Cwtkdai+69N/VYwd3GP43GPRnsJP/5kKYKxkpJoRo4FxZNasOZJGQlMmhzIajvSb1CSQqMpjIUI82XTdXT1EU9ubuJT45nq2ZWw3rNwXeRHRENIP8B7W+n1NOstqL7vg69djGEYb8RW0w7NjOtLEJIYxKEjshLFSVVseGo3kkJGWw6Vj+H0Z7+TI9MojRPXyxt2lld52aiV7Rsyl9E/HJ8RzIPwCoLUtua38bcyLm0NOrp2kDvB7nz8DGN+Hgt4ACGmuInAm3PAtuAaaOTgjRDCSxE8KCKIrC3rPqaK+1BxuO9uoT7E5UZDATewe0ydFeV6LVafnx9I/EJ8dzqlgdaG9nZceUsCnMDp9NqFuoiSO8DmV56i7XPQtAr1XXwqNg9Ivg1dm0sQkhmpUkdkJYgLRzFSTsy2DFvsxLRntN66e2KAnzbZujva6kQlvB8hPLWZyymJzyHABcbF24p9s9PNDzgdbVsqReVTFs/xh2xIK2XF3rPFptLhzYz7SxCSFahCR2QrRSxZVa1h7MZsW+hqO9nO2sGd8rgKh+QQzp5IVVGxztdTXnq87z9dGv+eboNxRXq/WG3o7ePNjzQe7qeheudq0wAdZWwe4v1IkRlYXqWlB/GPMydLrFtLEJIVqUJHZCtCJanZ4tx/NJSMrk1yMXRntZaWBYmDfTI4O5LdyvzY72upqssiwWHV5EwokEQ8uSUNdQZkfMZnLnydhbt8LH07paOLgUNr4FJRnqmndX9Q5d94nSXFiINkj+9BfCzF082mvV/izOlV8Y7dXNz5WoyCCmtPHRXldz4vwJFiQv4MfTPxpalvT06kl0RDRjQ8e2vpYloPaiO7oGEl+HgmPqmlsQjHwe+twH1vJHuxBtlfzuF8JMZRdXsnJfFglJGZzIazjaa0pftW6uZ0DbHu11NUm5ScQnx7M5Y7NhbXDAYGIiYhgSMKT1/txOb1F70WXuVY8d28GIp2DgQ2Aryb0QbZ0kdkKYkfrRXglJmWw7eWG0l71htFcwI7p4Y9PGR3tdiV7RszVjK3HJcezL2weABg1j248lJiKGcO9wE0d4A7L2Q+KrcHKDemzrBEPnwk2Pq42GhRACSeyEMDmdXmHHyXMkJGWw7vAfRnt19GR63WgvNwcZ9XQlWr2WdafXEZ8cT2pRKgC2VrZM7jyZ2eGz6eDewbQB3ohzJ2HDG3A4QT22soUBc+Dmp8HF17SxCSHMjiR2QpjI8dxSEpLU0V45JRdGe3XwciIqUh3tFeIpY56upkJbwYrUFSw6vIjs8mwAnG2dubvb3TzY40F8nHxMHOENKMmGzW9D0mJQdIAGet+t1tF5djR1dEIIM2UxiV1sbCyxsbHodLprv1kIEykoq2bV/ixW7Gs42svd0ZZJfQKIigymX4iM9rqWoqoivjn6DV8f/Zqi6iIAvBy8eKDnA9zd7W7c7FrxnOjK87DtP/D7Z1Bbqa51GafudPWPMG1sQgizp1GU+ioey9CUQblCtIQqrY7EI3WjvY7no7totNeo7upor1HdZbRXY2SXZbM4ZTHLTyynsi7pCXYJZk7EHKaETWmdLUvq1VTArv/Cbx+ojYYBQobA2Jeh/U2mjU0IYVJNyW0s5o6dEOZEURT2nD1PQlImaw5mUXrxaK8QD6L6BTGpTyCeznYmjLL1OFl0kvjkeH489SO1ivqz7O7ZnZiIGMa2H4uNVSv+o0ynhX1fwqa3oUydgIFvT7W5cNdx0otOCNEkrfhPQyHMz9lz5SQkZbJiXyZphRdGewW6OzAtMohp/YIJ83UxYYSty/68/cQlx7EpfZNhbZD/IGIiYhgaOLR1P7LW6yFlpboxovCkuuYRCqNehF53QmvsryeEMDlJ7IS4QcUVWtYcymJFUiZ7zl5mtFdkEEM6ymivxlIUha2ZW4k7FEdSXhKgtiwZEzqG6Ihoevn0MnGEN0hR1JYlia9C9gF1zckbbnkG+s8Gm1b8OFkIYXKS2AlxHbQ6PZuP5ZOwL4P1KXnU6C6M9hrexYfpkUHc1tMfRzu569JYtfpa1p1RW5acOH8CABsrG0PLko7uFrATNGOP2lz4zFb12M4Vhj0BQx4B+1Y4o1YIYXYksROikRRF4VBmMQlJmaw+cOlor+n91dFefm7S/b8pKmsrWXFiBYtTFpNZlgmAk40Td3e7mwd6PICfs5+JIzSC/GOQ+Jo6BgzA2g4GPgwj/g7OXqaNTQhhUSSxE+IasooqWbk/k4SkTFIbjPayZ2rfQKbJaK/rUlxdzNKjS/nqyFecr1YfYXs6eHJ/j/u5p9s9uNtbwDSF4gzY9Bbs/xoUPWisoM8MGPkceISYOjohhAWSxE6IyyivrmVdcg4J+zLYfvJcg9Fet4X7ExUZxIgwGe11PXLKc/gy5Uu+O/6doWVJkEsQs8NnMzVsKg42FnDHs6IQtr4Huz4HXbW61n0ijH4JfLubNjYhhEWTxE6IOjq9wvaTBSQkZbIuOYdK7YVm14M7ehIlo71uyKmiUyw4vIA1p9ZQq1dblnRt15WYiBhu63Bb625ZUq+6DH7/FLZ/CNUl6lqHEWrrkpCBpo1NCNEmWMCfpELcmOO5pSxPymDlvkxyS6oN6x29nYnqF8RUGe11Qw7kHyD+UDwb0jcY1gb4DSCmVwzDAodZxiPs2hrYuxC2vAPl+eqaf2+1uXDnMdKLTgjRYiSxE21Sfmk1qw5ksWJfBsmZJYZ1Ge1lHIqisC1rG3GH4tiTu8ewPjpkNNG9ounj08eE0RmRXg+HvoON/4Kis+qaZycY/SL0nAZW8qheCNGyJLETbUaVVsf6I7kkJGWy+aLRXrbWGkZ18yUqMphR3X1ktNcNqNXX8suZX4hPjufY+WMA2GhsmNh5InPC59DJo5OJIzQSRYETv6g7XXOT1TUXP7jlWYicCdbyuF4IYRqS2AmLpigKu8+cZ8W+DNYczL5ktNf0yCAm9pbRXjeqqraKlakrWXh4oaFliaONI3d2vZOZPWfi7+xv4giNKO13tRdd2g712N4dhj8Jg/8CdvLIXghhWpLYCYt0pqCchH2ZrNiXQXphpWE9yMORaf2CmBYZRGcfGe11o4qri1l2bBlfHfmKwqpCANrZt2NGjxnc1/0+y2hZUi/3MCS+Dsd/Uo9tHNRkbthfwcnTtLEJIUQdSeyExagf7ZWQlMneP4z2uqOXWjc3uKOnjPYygtzyXJYcWcK3x76loladiRvoHMis8FlM6zINRxtHE0doROfPwMa34OAyQAGNNUQ+qD52dQs0dXRCCNGAJHaiVaup1bP5eD4JSRkkHmk42mtEFx+iZLSXUZ0uPs3CwwtZdXKVoWVJmEcYMb1iGNdhHLZWFlRbVpYHW/4P9sSDXquuhU+DUS+Cd5hpYxNCiCuQxE60OheP9lp1IIvCi0Z7dfd3ZXpkMFP6BuIro72MJrkgmbhDcSSmJaKgbjqJ9I0kplcMI4JGWNbu4aoS2PExbP8YtOXqWufRMOafENjPtLEJIcQ1SGInWo2sokpW7MskISmDk/nlhnUf17rRXv2C6RnoZsIILYuiKOzI2kF8cjw7c3Ya1keGjCQmIoa+vn1NF1xz0FbBnjj1Ll2lWi9IYCSMfQU63WLS0IQQorEsJrGLjY0lNjYWnU537TeLVqOsfrRXUgY7TjUc7TWubrTXcBntZVQ6vY5fz/5KfHI8RwqPAGrLkjs63cGc8DmEtbOwx5C6Wji4VK2jK8lQ17y6qHfoekyS5sJCiFZFoyj1f1VahpKSEtzd3SkuLsbNTe7etEY6vcK21AJW7Lv8aK/pkcGM7+WPq4z2MqpqXTU/pP7AwsMLSS9NB9SWJdO7TGdmz5kEuASYOEIjUxQ4ulbtRVeg9tzDLQhGPgd9ZoC1xfy7VwjRyjUlt5E/uYTZOJZTSkJSBiv3Nxzt1cnbmajIIKb0ldFezaG0ppRlx5axJGUJ56rOAeBh78GM7mrLEg8HD9MG2BxOb1V70WXWTcVwbAcj/g4DHwJbC9rRK4RocySxEyZVP9orISmDw1kXRnt5ONkyqXcgUZFB9JXRXs0ivyKfL498ybfHvqW8bpOAv7M/s8NnMy1sGk62FphEZx+A9a/CyUT12NYJhs6Fmx4HBwvquSeEaLMksRMtrkqr49eUXBKSMthyoqDBaK/R3etGe3Xzxc5G6uaaw9mSsyxIXsCqk6vQ1rXxCPMIY07EHMZ3HG9ZLUvqnTupznNNXq4eW9lA/zlw89Pg6mfa2IQQwogksRMtQq9X2HP2PAlJGaw9mE1p9YXRXn0vGu3VTkZ7NZvDBYeJS45j/dn1hpYlfX36EtMrhpuDb8ZKY4GJdEk2bHkHkhaDvhbQQK+7YNQL4NnR1NEJIYTRSWInmtXpgnJWJGWQsC+TjPMNR3tFRQYxtZ+M9mpOiqLwe/bvxCXHsTP7QsuSm4NvJiYihki/SBNG14wqi2DbfPj9M6it+3XX5TZ1p6t/L1NGJoQQzUoSO2F0RRU1rDmYTUJSBklpRYZ1F3sb7ujlT1RkMIM6yGiv5qTT61iftp745HhSzqUAYK2xZnzH8cyJmEPXdl1NHGEzqamAXf+D3z6AqiJ1LWQwjHkZOgwzaWhCCNESJLETRlFTq2fTsTwSkjLZcLThaK+bu/owrZ+M9moJ1bpqVp1cxcLkhaSVpgHgYO1AVJcoZobPJMglyMQRNhOdFvYtgc1vQ2m2uubbU71D1/V26UUnhGgzJLET101RFA5mFJOQlMGqA1mcr9AaXusR4Mb0yCAm95HRXi2htKaU745/x5cpX1JQWQCAm50bM3qoLUs8HTxNHGEz0eshZSVseAMKT6pr7qEw+h9qLZ2V/ENCCNG2SGInmiyzqJKVMtrLLBRUFrAkZQnLji2jTFsGgJ+TH7PCZzG9y3TLbFkCanPhUxvV1iXZ+9U1J291l+uAOWBjb9LwhBDCVCSxE41SVl3LT4eySUjK5PfTF0Z7OdjWj/YKZlhnLxnt1ULSStJYeHghP6T+QI2+BoBO7p2Ijojmjo53YGttgS1L6mXshcRX4PQW9djOVe1DN/RRsHc1aWhCCGFqktiJK9LpFX5LLWBFUgbrDudQpdUbXhvSyZOoyGDGR8hor5Z05NwR4pPj+eXsL+gV9b9Hb5/exETEMDJkpGW2LKmXfxw2vAZHVqvH1nYw8GEYMQ+cvU0bmxBCmAlJ7MQljuaUkJCUycp9meSVNhztNb1/MFP6BhLczkIf8ZkhRVHYlbOL+OR4tmdtN6yPCBpBdEQ0/f36W/ZkjuIM2PRv2P8VKHrQWEGf+9SZrh6hpo5OCCHMiiR2AoC80ipW7c8iISmTlOyGo70m9wkkKjKYPsHulp1AmBmdXsfG9I3EHYoj+VwyAFYaK27vcDvREdF08+xm4gibWUUhbH0Pdn0Ourp/YHSfCKNfBN8epo1NCCHMlCR2bViVVscvdaO9tv5htNeY7n5MiwyS0V4mUKOrYc2pNSxIXsCZkjMA2FvbMy1sGrPCZxHsGmzaAJtbdRn8/ils/xCq6/6R0X4YjH0FQgaZNDQhhDB3kti1MXq9wu4zhSQkZfLjoYajvfqFehAVGczEXgEy2ssEymrK+P7493yZ8iV5lXkAuNq5cl/3+5jRfQZejl4mjrCZ1dZA0iLY/A6Uq98//r1gzCsQNkZ60QkhRCNIYtdGnMovY8W+TFZcZrTX9LrRXp1ktJdJFFQW8PWRr1l6bCmlNaUA+Dr6MjN8Jnd2vRNnW2cTR9jM9HpI/l7tRVd0Vl1r11F95BoeBVZyx1gIIRpLEjsLVlRRw+q60V77/jDaa0KvAKIigxgoo71MJr00nUWHF7EydSXVdTVkHdw6EB0RzYROE7CztvC7pooCJ36FxFchV60hxMUPbnkWImeCJbdsEUKIZiKJnYW5eLRX4tFctDq1bs7aSsOILt5ERQZzaw8/Ge1lQkcLjxJ/KJ6fz/5saFnSy7sXMRExjAodZdktS+ql/a42F06r2+Vr7w7D/wqD/wJ2Fn6HUgghmpEkdhZAURQO1I32Wv2H0V49A9yIigxict9AfF1ltJepKIrCntw9xCXHsS1zm2F9WOAwYnrFMMBvQNvYcZx7GBJfh+M/qcc2DjD4zzDsSXCy0LFnQgjRgiSxa8XqR3stT8rg1EWjvXxd7ZnaL4hp/YLoESCjvUxJr+jZmLaR+OR4DhYcBNSWJePaj2NOxBx6eLWRth3nz8Kmt+DAUkABjTVEPqg+dnULNHV0QghhMSSxa2VKq7T8lJxDQlIGv58qNKw72Fpxe/1orzBvrKVuzqS0Oq3asuTwAk4XnwbAzsqOaV2mMavnLELcQkwcYQspy4et/we740Bfdye551R1Y4R3F5OGJoQQlkgSu1agVqdn28lzJCRl8PMfRnsN7eRFVGQQ43sF4GIv/zlNrVxbzvfHv2dxymLyKupalti6cm/3e5nRYwbejm1k9FVVCez4GLZ/DNq6u8mdRsGYf0JQpGljE0IICyaZgBk7kl1CQlIGP+zPajjay8eZ6ZEy2sucFFYV8tWRr1h6dCklNWpTXR9HHx7s+SB3db0LF7s20kpGWwV74tW7dBXn1LXAfmpz4U4jTRmZEEK0CWaZ2K1Zs4a///3v6PV6nn32WR566CFTh9Ri6kd7LU/K5MhFo73aXTTaq7eM9jIbmWWZLDq8iBUnVlClqwKgvVt75oTPYVLnSZbfsqSeXqfWz216C4rT1TWvLjDmJegxWZoLCyFECzG7xK62tpZ58+axceNG3N3d6d+/P9OmTcPLy3K77lfW6PglJYcV+zLZcjyfusle2FlbMaaHL9P6BTFSRnuZlWOFx1hweAHrTq9Dp+gACPcKJ6ZXDKNDRmNt1UbaySgKHPsREl+D/KPqmmsgjHoe+swAa7P7I0YIISya2f2pu2vXLsLDwwkKCgJg/Pjx/PLLL9x3330mjsy49HqFXWcKSUjK4MdDOZRdNNorsn60V+8APJzayB2fVkBRFJLykog7FMfWzK2G9aEBQ4nuFc1g/8Ft607qmd9g/SuQsVs9dvCAEX+HQQ+DraMpIxNCiDbL6Indli1bePfdd9m7dy/Z2dmsWLGCqVOnNnhPbGws7777Ljk5OfTp04ePPvqIQYPU4d5ZWVmGpA4gKCiIzMxMY4dpMvWjvRKSMsksujDaK7idI1H9gpgWGUxHb2nQak70ip7N6ZuJS47jQP4BQG1Zcmv7W5kTMYdwr3ATR9jCsg+od+hS16vHtk4w5FG46XFw9DBpaEII0dYZPbErLy+nT58+REdHExUVdcnry5YtY968eXz22WcMHjyY+fPnM27cOI4dO4avr6+xwzEL58trWHNQrZvbn15kWHe1t2FC7wCm9ZPRXuZIq9Py4+kfWZC8gJPFJwGwtbJlathUZofPJtQt1MQRtrBzJ2HjvyB5uXpsZQP9Z8PNz4Crn0lDE0IIoTJ6Yjd+/HjGjx9/xdfff/99Hn74YebMmQPAZ599xtq1a4mPj+e5554jMDCwwR26zMxMw9281qSmVs/GY3kkJGWw4Wheg9FeN9eP9urph4NtG6nFakUqtBUsP7GcxSmLySnPAcDF1oW7u93NAz0ewMfJx8QRtrDSHNj8DiQtAn1dyUCvu2DUC+DZybSxCSGEaKBFa+xqamrYu3cvzz//vGHNysqKsWPHsmPHDgAGDRpEcnIymZmZuLu789NPP/HSSy9d8ZzV1dVUV19oBVJSUnLF9zY3RVHYn15EQlImqw9mUXTRaK/wQDem9ZPRXubsfNV5vj76Nd8c/Ybi6mIAvB29eaDHA9zd7W5c7VxNHGELqyyCbf+B3z+F2rqygS63weiXIKC3SUMTQghxeS2a2BUUFKDT6fDza/jYxs/Pj6NH1R11NjY2vPfee4waNQq9Xs8zzzxz1R2xb731Fq+++mqzxn0tGecrWFlXN3eqoOFor2n9gpgWGUR3fxntZa6yyrJYdHgRCScSDC1LQlxDmBMxh8mdJ2NvbW/iCFuYthJ2/hd++wCqitS14EFqL7oOw0wZmRBCiGswu12xAJMnT2by5MmNeu/zzz/PvHnzDMclJSWEhDT/uKbSKi0/HcpheVIGO09fGO3laGvN7RH+TOsXJKO9zNyJ8ydYkLyAH0//aGhZ0sOzBzG9YhgbOrbttCypp6uF/Utg07+hNFtd8+mhTovoNl560QkhRCvQoomdt7c31tbW5ObmNljPzc3F39//us5pb2+PvX3L3lH5audZXludQnWtOtpLo6kf7RXM7RH+MtrLzCXlJhGfHM/mjM2GtcEBg4mJiGFIwJC21bIE1F50KSthwxtwLlVdcw9Va+h63w1tLcEVQohWrEUzEDs7O/r3709iYqKhBYperycxMZHHHnusJUO5IR29nKmu1dPZx5moyGCm9gsiyEP6dpkzvaJna8ZW4pLj2Je3DwANGsa2H0tMRAzh3m2sZUm9kxvVXnTZ+9VjJ2+4+WkYMAds2tgjaCGEsABGT+zKyspITU01HJ8+fZr9+/fj6elJaGgo8+bNY9asWQwYMIBBgwYxf/58ysvLDbtkr1dsbCyxsbHodLob/RauaUgnL1Y/NpyIILe2d3enldHqtaw7vY745HhSi9Rfl7ZWtkzuPJnZ4bPp4N7BtAGaSuZeWP8qnK67a2nnovahGzoX7NvYJhEhhLAgGkVRFGOecNOmTYwaNeqS9VmzZrFw4UIAPv74Y0OD4r59+/Lhhx8yePBgo1y/pKQEd3d3iouLcXOTDQttVYW2ghWpK1h0eBHZ5Wq9mLOtM3d3vZsHej6Ar5Nl9ky8pvzjsOF1OLJKPba2g4EPqRMjnL1NG5sQQojLakpuY/TEztQksWvbiqqK+ObYN3x95GuKqosA8HTw5MGeD3J3t7txs2ujvyaKM2HTW7D/K1D0gAb63Acjn4N27U0dnRBCiKtoSm4jVf7CIuSU57Do8CKWn1hOZV3PtWCXYEPLEgebNto7sKIQfnsfdv4PdHX9HrtNgNEvgl9P08YmhBDC6CSxE63ayaKTxCfH8+OpH6lV1KkI3T27Ex0Rza3tb8XGqo3+Eq8ph98/gW0fQnVd0+72w9RedCGtb5KLEEKIxmmjf+uJ1m5/3n7ikuPYlL7JsDbIfxDREdHcFHhT293UUlujjv7a/A6U56lrfr1g7MsQNlZ60QkhhIWzmMSuJXfFCtNQFIWtmVuJOxRHUl4SoLYsGRM6huiIaHr59DJxhCak10Pyctj4Bpw/o66166CO/wqPAisrU0YnhBCihcjmCWH2avW1rDujtiw5cf4EADZWNkzqNInZEbPp5N6GB9ErCpz4FRJfg9xD6pqLH9zyDPSbCTZ2po1PCCHEDZPNE8IiVNZWsuLEChanLCazLBMAJxsn7up6Fw/2fBA/Z79rnMHCpe2ExFfh7Db12N4Nhv0VhjwCds6mjU0IIYRJSGInzE5xdTFLjy7lqyNfcb76PKC2LLm/x/3c0+0e3O3dTRyhieWmqL3ojv2oHts4wKA/wfC/gZOnaWMTQghhUpLYCbORU57Dlylf8t3x7wwtS4JcgpgVPoupYVNxtGnjY9vOn1V70R1YCiigsYJ+D8Atz4F7kKmjE0IIYQYksRMmd6roFAsOL2DNqTXU6tWWJV3bdSU6IppxHca13ZYl9cryYet7sCcOdDXqWs8pMOpF8Olq2tiEEEKYFYv5G1N2xbY+B/MPEncojg3pGwxr/f36ExMRw/Cg4W23ZUm9qhLYEQs7PoaaMnWt00gY808I6m/S0IQQQpgn2RUrWpSiKGzL2kZ8cjy7c3Yb1keFjCI6Ipq+vn1NF5y5qK2GPfGw5V2oOKeuBfaDMS9D50vnMAshhLBssitWmJ1afS2/nPmF+OR4jp0/BoCNxoYJnSYwJ2IOnT06mzhCM6DXwcFlsPFNKE5X17zC1F50PadIc2EhhBDXJImdaFZVtVX8kPoDCw4vMLQscbRx5M6udzKz50z8nf1NHKEZUBR1h2via5B/VF1zDYSRz0Hf+8FafpsKIYRoHPkbQzSLkpoSlh1dxpIjSyisKgTAw96D+3vcz33d75OWJfXObIP1r0DGLvXYwQNGzFPbl9i28V3AQgghmkwSO2FUeRV5fJnyJd8e+5aK2goAAp0DmRk+k2lh03CydTJxhGYi+6B6hy71V/XY1kltLHzTE+DoYdLQhBBCtF6S2AmjOF18moWHF7L65Gq0ei0AYR5hREdEc3vH27G1sjVxhGbi3Em1hi75e/XYygb6z4abnwZXeSwthBDixlhMYiftTkwjuSCZuENxJKYloqBusI70jSSmVwwjgkZIy5J6pTmw+R1IWgR1vfqIuBNG/wM82/CsWyGEEEYl7U5EkymKwo6sHcQnx7MzZ6dhfWTwSKJ7RdPPt58JozMzlUWw/UP4/VPQqo+mCbtV7UUX0NukoQkhhGgdpN2JaBY6vY5fz/5KfHI8RwqPAGrLkjs63cHs8Nl0adfFxBGaEW0l7PofbH0fqorUteBBMPZl6DDcpKEJIYSwXJLYiWuq1lXzQ+oPLDy8kPRStb+ao40jUV2imNlzJoEugSaO0IzoamH/V7Dp31Capa759FDv0HUbL73ohBBCNCtJ7MQVldaUsuzYMpakLOFclToBwd3enRndZ3Bf9/to59DOxBGaEUWBlB9gwxtw7oS65h4Co16A3veAlbVp4xNCCNEmSGInLpFfkc+XR9SWJeXacgD8nf2Z1XMWUV2ipGXJH53cCImvQtY+9djJS93lOiAabOxNG5sQQog2RRI7YXC25CwLkhew6uQqQ8uSzu6die4VzfiO46VlyR9lJqkJ3alN6rGdCwx9DIbOBQfZuCOEEKLlSWInOHzuMPGH4vn17K+GliV9ffoS0yuGm4NvxkpjZeIIzUzBCdjwuvroFcDaDgbEwIi/g4uPaWMTQgjRpkli10YpisLv2b8TnxzP79m/G9ZvDr6ZmIgYIv0iTRidmSrOhM1vw74loOgADfS5T53p2q69qaMTQgghLCexkwbFjaPT60hMSyQuOY6UcykAWGusGd9xPHMi5tC1XVcTR2iGKgrhtw/U9iW1Vepatztg9Evg19O0sQkhhBAXkQbFbUSNroZVJ1ex8PBCzpacBcDB2kFtWRI+kyCXIBNHaIZqytXGwts+hOpidS30Jhj7CoQONmloQggh2g5pUCwMymrK+Pb4t3yZ8iUFlQUAuNm5cV/3+5jRYwaeDp4mjtAM6bTq6K/N70BZrrrm10ttLhw2VnrRCSGEMFuS2FmogsoClqQs4dtj31KqLQXA18mXWT1ncWfXO6VlyeXo9XA4Qe1Fd/60utauA4x6ESKmg5VsIhFCCGHeJLGzMGklaSw8vJAfUn+gRl8DQEf3jkRHRDOh4wRsraVlySUUBVLXw/pXIfeQuubsC7c8A5GzwMbOtPEJIYQQjSSJnYU4cu4I8cnx/HL2F/SKHoDe3r2J7hXNqJBR0rLkStJ3wfpX4Ow29djeDYY9AUMeBTtnk4YmhBBCNJUkdq2YoijsytlFfHI827O2G9aHBw0nOiKaAX4D0Eg92OXlHYHE1+HYWvXY2h4G/wmGzwMnqTsUQgjROkli1wrp9Do2pm8k7lAcyeeSAbDSWDGuwzhiImLo5tnNxBGasaI02PgWHPgGUEBjBf0egFueBfdgU0cnhBBC3BBJ7FqRGl0Na06tYUHyAs6UnAHA3tqeqWFTmRU+ixDXENMGaM7KC2Dre7D7C9CptYf0mKz2ovOR3n1CCCEsgyR2rUBZTRnfH/+eL1O+JK8yDwBXO1fu7XYv9/e4Hy9HLxNHaMaqS2FHLGz/CGrK1LWON6u96IL6mzQ0IYQQwtgsJrGzxMkT5yrP8dWRr1h6bCmlNXUtSxx9mRk+kzu73omzrRT3X1FtNeyJhy3vQsU5dS2gr5rQdR5lysiEEEKIZiOTJ8xQemk6iw4vYmXqSqp11QB0cOugtizpNAE7a2m/cUV6HRz8Fja+CcVp6ppXmPrItecUaS4shBCi1ZHJE63UscJjxCXH8fOZnw0tS3p59yImIoZRodKy5KoUBY79BImvQf4Rdc01AEY+B30fAGv5pS6EEMLyyd92JqYoCnty9xCXHMe2zG2G9WGBw4iOiGag/0BpWXItZ7apvegydqnHDh4wYh4M+hPYOpoyMiGEEKJFSWJnInpFz8b0jcQfiudgwUFAbVlyW/vbiI6IpodXDxNH2ArkHFKnRaT+qh7bOMKQR2DYX8HRw6ShCSGEEKYgiV0L0+q0asuSwws4XazOI7WzsmNq2FRmh88mxE1allxT4Sm1hu7Qd+qxlY06+uuWZ8DV37SxCSGEECYkiV0LKdeW8/3x71mcspi8CrVliYutC/d2V1uWeDt6mzjCVqA0F7a8A3sXgr5WXYu4E0a9AF6dTRqaEEIIYQ4ksWtmhVWFasuSo0spqSkBwNvRm5k9Z3JX17twsXMxcYStQFUxbPsQfv8EtBXqWthYGPNPCOhj2tiEEEIIMyKJXTPJLMtk0eFFrDixgipdFQDt3dozO3w2kzpPwt7a3sQRtgLaStj1Ofz2PlSeV9eCB8KYl6HjCNPGJoQQQpghSeyM7FjhMRYcXsC60+vQKWqz5J5ePYmJiGFM6BisraxNHGEroKuF/V/Bpn9DaZa65tNdvUPX7Q7pRSeEEEJcgSR2RqAoCkl5ScQdimNr5lbD+pCAIcT0imGw/2BpWdIYigJHVkHi63DuhLrmFqzW0PW5FyQpFkIIIa5KErsboFf0bE7fTFxyHAfyDwCgQcOt7W8lulc04V7hJo6wFTm1SW1dkpWkHjt5wYinYEA02DqYNDQhhBCitZDE7jpo9Vp+PPUjC5IXcLL4JAC2VrZMCZvC7PDZtHdrb+IIW5GsfWpCd2qjemznAkMfg6FzwaF1joQTQgghTMViErvY2FhiY2PR6XTNfq3PDnzG/w7+D1Bbltzd7W4e6PEAPk4+zX5ti1FwAja8ASkr1WMrWxgYo96lc5GfoxBCCHE9NIqiKKYOwpiaMij3emWXZfPgTw9yX/f7uLvb3bjauTbLdSxSSZa6KWLfElB0gEatnxv5PLSTO51CCCHEHzUlt7GYO3YtKcAlgJ+n/yw7XJuiohC2zYed/4Vatf0L3e6A0S+Cn9QiCiGEEMYgid11kqSukWrKYedn8Nt/oLpYXQsdCmNfgdAhJg1NCCGEsDSS2InmodNC0iLY/A6U5aprfhFqc+Eut0ovOiGEEKIZSGInjEuvh8MJ6saI86fVNY/26iPXiDvBysq08QkhhBAWTBI7YRyKAqmJkPgK5BxS15x94JZnIXIW2NiZNDwhhBCiLZDETty49N2w/hU4+5t6bO8Gw56AwY+AvYtJQxNCCCHaEknsxPXLOwobXoeja9Rja3sY9DCM+Ds4eZo2NiGEEKINksRONF1RmtqL7sA3oOhBYwV974eRz4F7sKmjE0IIIdosSexE45UXwNb3YPcXoKtR13pMgtEvgU8308YmhBBCCEnsRCNUl8KOT2D7R1BTqq51GAFjX4Xg/qaNTQghhBAGktiJK6uthj0LYMu7UFGgrgX0UZsLdxolveiEEEIIMyOJnbiUXgeHvoON/1Lr6QA8O8OYl6DHFOlFJ4QQQpgpSezEBYoCx9dB4muQl6KuuQaovej6PQDWtqaNTwghhBBXJYmdUJ3drvaiS9+pHju4w/B5MOhPYOdk0tCEEEII0TiS2LV1OcmQ+Cqc+EU9tnGEIY+oDYYd25k2NiGEEEI0iSR2bVXhadj4plpLhwIaa+g/C25+BtwCTB2dEEIIIa6DJHZtTWmuust170LQa9W1iOkw6h/g1dmkoQkhhBDixlhMYhcbG0tsbCw6nc7UoZinqmLY9iH8/gloK9S1zmNgzD8hsK9JQxNCCCGEcWgURVFMHYQxlZSU4O7uTnFxMW5ubqYOx/S0VbD7c3ViROV5dS1oAIx9GTrebNrYhBBCCHFNTcltLOaOnfgDXS0c+Fqd6VqSqa55d1Pv0HWfIM2FhRBCCAskiZ2lURQ4sho2vA4Fx9U1t2AY9QL0uResrE0bnxBCCCGajSR2luTUZrV1SeZe9djRE25+CgbEgK2DaWMTQgghRLOTxM4SZO2D9a/CqY3qsa0z3PQYDH0MHKTOUAghhGgrJLFrzQpSYeMbcHiFemxlCwOi1bt0Lr6mjU0IIYT4//buPybu+o7j+Auo0J/QUhxIOHqrs0ZKuZvA0WalLS2TYCSZi8ZkrqX9o9lMY8wIzhp/oIuDrXamUc8YzdSw2AS7TOymialopbZ0VBpadamWDTuSypEOy4/rBHv33R+nN0uBcvS475fvPR/JJX4/9+V7L3zlzNvv8f0eYo7BbjYaPCu9/3vp+J8kIyApQSq4Syp7UFriNDsdAAAwCYPdbPLfL6UP9kh/f166+FVobUWltOkRKXOlqdEAAID5GOxmg9ELoWHu8J7QjYYlybFaKn9MWrbGzGQAAMBCGOysLPC1dLxRen+XNNwbWvveytDNhW+4hXvRAQCASzDYWVEwKP3jdendJ6T+f4XWFi+TNj4c+l5X7kUHAADGwWBnJYYh/bMldOuS3pOhtQXXSut+LRVuleYkmxoPAABYG4OdVfQcC91c+PNDoe3kRdKP7pNW3yOlLDQ3GwAAmBUY7MzWdyr09V+n/hbaTkqRPNultTXSgqXmZgMAALMKg51ZzvdIB38nndgrGUEpIVFy/0xav1Na7DA7HQAAmIUY7GLN/x/p0B+kYy9KgdHQ2k1V0sZHpGtvNDcbAACY1RjsYmVkWDr6nHT4aWl0KLTmLA3diy6nyNRoAADAHhjsZtrFEanjldC96C6cC61lFYQGuus3ci86AAAQNQx2MyUYkD7aJ733W+n8v0Nr6ctDH7nm/URKTDQ1HgAAsB8Gu2gzDOmzt6WW30h9n4TWFmZJGx6QfrhZSrrG3HwAAMC2GOyi6Uyb9M5jUs/R0PbcNGntryTPL6Tk+aZGAwAA9sdgFw29H4fO0J1+O7Q9Z560+pehGwzPW2JuNgAAEDcY7K5Gf7d0sEE6+ZokQ0pIkm7eIq1/QEq9zux0AAAgzjDYTcdwn9T6pPThy1Lw69Dayp9KGx+Wll5vbjYAABC3GOym49gfpfYXQv98/SZp06NSttvUSAAAAJa858btt9+uJUuW6I477jA7yvjW7JB+8GOp+q/S5r8w1AEAAEuw5GB33333qbGx0ewYE5ubKv38z9L315mdBAAAIMySg92GDRu0aNEis2MAAADMKhEPdq2traqqqlJ2drYSEhLU3Nx82T5er1dOp1Nz585VSUmJ2tvbo5EVAAAAk4h4sPP7/XK5XPJ6veM+39TUpJqaGtXV1en48eNyuVyqqKhQX19feB+32638/PzLHmfPnp3+bwIAABDnIr4qtrKyUpWVlRM+/9RTT2n79u3atm2bJOn555/Xm2++qZdeekk7d+6UJHV2dk4v7ThGRkY0MjIS3h4cHIzasQEAAGaTqP6N3ejoqDo6OlReXv7/F0hMVHl5udra2qL5UmENDQ1KS0sLPxwOx4y8DgAAgNVFdbA7d+6cAoGAMjMzL1nPzMxUb2/vlI9TXl6uO++8U2+99ZZycnImHQoffPBBDQwMhB89PT3Tzg8AADCbWfIGxe+8886U901JSVFKSsoMpgEAAJgdonrGLiMjQ0lJSfL5fJes+3w+ZWVlRfOlAAAAMEZUB7vk5GQVFhaqpaUlvBYMBtXS0qI1a9ZE86UAAAAwRsQfxQ4PD6urqyu83d3drc7OTqWnpys3N1c1NTWqrq5WUVGRPB6P9uzZI7/fH75KdqZ4vV55vV4FAoEZfR0AAACrSjAMw4jkBw4ePKiysrLL1qurq/XKK69Ikp599lk9+eST6u3tldvt1tNPP62SkpKoBL6SwcFBpaWlaWBgQKmpqTF5TQAAgJkSyWwT8WBndQx2AADATiKZbSz5XbEAAACIHIMdAACATdhmsPN6vcrLy1NxcbHZUQAAAEzB39gBAABYWCSzjSW/eeJqfDunDg4OmpwEAADg6n0700zlXJztBruhoSFJksPhMDkJAABA9AwNDSktLW3SfWz3UWwwGNTZs2e1aNEiJSQkqLi4WMeOHRt334meG2997Nrg4KAcDod6enpM+ch3st9rpo8z1Z+50n50E/3j0M3k6GbiNbqhm4nQzcTrserGMAwNDQ0pOztbiYmTXx5huzN2iYmJysnJCW8nJSVN+C97oufGW59o39TUVFPeaJP9XjN9nKn+zJX2o5voH4duJkc3V96Xbqa/H91E/zhW62ai9Vh0c6Uzdd+yzVWxE9mxY0fEz423PtlxzBCtPNM5zlR/5kr70U30j0M3k6ObyPPECt1EnidW6GZ6mcxiu49iY4Wrb62LbqyLbqyLbqyLbqzLit3Y/ozdTElJSVFdXZ1SUlLMjoIx6Ma66Ma66Ma66Ma6rNgNZ+wAAABsgjN2AAAANsFgBwAAYBMMdgAAADbBYAcAAGATDHZR1tPTow0bNigvL08FBQXat2+f2ZHwjfPnz6uoqEhut1v5+fl68cUXzY6EMS5cuKBly5aptrbW7Cj4DqfTqYKCArndbpWVlZkdB9/R3d2tsrIy5eXladWqVfL7/WZHwjc+/fRTud3u8GPevHlqbm6e8dflqtgo++KLL+Tz+eR2u9Xb26vCwkJ99tlnWrBggdnR4l4gENDIyIjmz58vv9+v/Px8ffjhh1q6dKnZ0fCNhx56SF1dXXI4HNq9e7fZcfANp9Opjz/+WAsXLjQ7CsZYv369nnjiCZWWlqq/v1+pqamaM8d2Xyo16w0PD8vpdOrMmTMzPg9wxi7KrrvuOrndbklSVlaWMjIy1N/fb24oSAp9Dcz8+fMlSSMjIzIMQ/x/jXWcPn1ap06dUmVlpdlRgFnhk08+0TXXXKPS0lJJUnp6OkOdRe3fv1+bNm2KyUkeBrsxWltbVVVVpezsbCUkJIx72tTr9crpdGru3LkqKSlRe3v7uMfq6OhQIBCQw+GY4dTxIRrdnD9/Xi6XSzk5Obr//vuVkZERo/T2Fo1uamtr1dDQEKPE8SMa3SQkJGj9+vUqLi7Wq6++GqPk9ne13Zw+fVoLFy5UVVWVbr75ZtXX18cwvf1Fcx547bXXdNddd81w4hAGuzH8fr9cLpe8Xu+4zzc1NammpkZ1dXU6fvy4XC6XKioq1NfXd8l+/f392rJli1544YVYxI4L0ehm8eLFOnHihLq7u7V37175fL5Yxbe1q+3mjTfe0IoVK7RixYpYxo4L0XjffPDBB+ro6ND+/ftVX1+vkydPxiq+rV1tNxcvXtShQ4f03HPPqa2tTQcOHNCBAwdi+SvYWrTmgcHBQR05ckS33nprLGJLBiYkyXj99dcvWfN4PMaOHTvC24FAwMjOzjYaGhrCa1999ZVRWlpqNDY2xipq3JluN991zz33GPv27ZvJmHFpOt3s3LnTyMnJMZYtW2YsXbrUSE1NNR5//PFYxo4L0Xjf1NbWGi+//PIMpoxP0+nmyJEjxi233BJ+fteuXcauXbtikjfeXM17p7Gx0bj77rtjEdMwDMPgjF0ERkdH1dHRofLy8vBaYmKiysvL1dbWJkkyDENbt27Vxo0btXnzZrOixp2pdOPz+TQ0NCRJGhgYUGtrq2688UZT8saTqXTT0NCgnp4eff7559q9e7e2b9+uRx991KzIcWMq3fj9/vD7Znh4WO+++65WrlxpSt54MpVuiouL1dfXpy+//FLBYFCtra266aabzIocV6bSz7di+TGsxEexETl37pwCgYAyMzMvWc/MzFRvb68k6fDhw2pqalJzc3P4EuePPvrIjLhxZSrdnDlzRqWlpXK5XCotLdW9996rVatWmRE3rkylG5hjKt34fD6tXbtWLpdLq1ev1pYtW1RcXGxG3LgylW7mzJmj+vp6rVu3TgUFBbrhhht02223mRE37kz1v2sDAwNqb29XRUVFzLJx+UyUrV27VsFg0OwYGIfH41FnZ6fZMXAFW7duNTsCvmP58uU6ceKE2TEwgcrKSq4kt7C0tLSY/y03Z+wikJGRoaSkpMtK8vl8ysrKMikVJLqxMrqxLrqxLrqxNiv3w2AXgeTkZBUWFqqlpSW8FgwG1dLSojVr1piYDHRjXXRjXXRjXXRjbVbuh49ixxgeHlZXV1d4u7u7W52dnUpPT1dubq5qampUXV2toqIieTwe7dmzR36/X9u2bTMxdXygG+uiG+uiG+uiG2ubtf3E7PrbWeK9994zJF32qK6uDu/zzDPPGLm5uUZycrLh8XiMo0ePmhc4jtCNddGNddGNddGNtc3WfviuWAAAAJvgb+wAAABsgsEOAADAJhjsAAAAbILBDgAAwCYY7AAAAGyCwQ4AAMAmGOwAAABsgsEOAADAJhjsAAAAbILBDgAAwCYY7AAAAGyCwQ4AAMAmGOwAAABs4n8cnXfrK7gNzwAAAABJRU5ErkJggg==", - "text/plain": [ - "<Figure size 640x480 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "xs = []\n", - "results_vec = []\n", - "\n", - "run_num = 10\n", - "\n", - "for _nsamples in nsamples_vec:\n", - " _nsamples = int(_nsamples)\n", - " xs.append(_nsamples)\n", - "\n", - " # Create synthetic data\n", - " a = np.random.random(_nsamples).astype('float32')\n", - " b = np.random.random(_nsamples).astype('float32')\n", - " c = np.random.random(_nsamples).astype('float32')\n", - "\n", - " # Simple function: multiply\n", - " my_function_partial = partial(discriminant, a, b, c)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res = np.average(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(discriminant_vec, a, b, c)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_vec = np.average(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(discriminant_vec_par, a, b, c)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_vec_par = np.average(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(discriminant_vec_gpu, a, b, c)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_vec_gpu = np.average(runtime) * 10**3\n", - "\n", - " results_vec.append((res,res_vec,res_vec_par,res_vec_gpu))\n", - "\n", - "normal = list(zip(*results_vec))[0]\n", - "cpu = list(zip(*results_vec))[1]\n", - "par_cpu = list(zip(*results_vec))[2]\n", - "gpu = list(zip(*results_vec))[3]\n", - "\n", - "# fig, axs = plt.subplots(4, 1, figsize=(10, 40))\n", - "plt.loglog(nsamples_vec, normal, label='Baseline')\n", - "plt.loglog(nsamples_vec, cpu, label='CPU')\n", - "plt.loglog(nsamples_vec, par_cpu, label='Parallel CPU')\n", - "plt.loglog(nsamples_vec, gpu, label='GPU')\n", - "plt.legend()\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "9d580639-b3cb-478b-a849-e0625703abb1", - "metadata": { - "id": "9d580639-b3cb-478b-a849-e0625703abb1" - }, - "source": [ - "### 64-bit vectorization" - ] - }, - { - "cell_type": "markdown", - "id": "iOZmwXGV0q-8", - "metadata": { - "id": "iOZmwXGV0q-8" - }, - "source": [ - "#### Ufunc" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "c-lAX7Je0pYd", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 524 - }, - "id": "c-lAX7Je0pYd", - "outputId": "2e227a84-6014-44fc-8a19-3cd3c7952519" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.10/dist-packages/numba/cuda/dispatcher.py:536: NumbaPerformanceWarning: Grid size 1 will likely result in GPU under-utilization due to low occupancy.\n", - " warn(NumbaPerformanceWarning(msg))\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDGUlEQVR4nOzdd3hUZd7/8ffMpHdCSEIgEJJQVUCqiChNIECCZZ/1t+sqlnV3FSs2UNS1Yhd147rqY999RHdXSUBAQIoUpQkWQkmDAKmE9Doz5/fH4CjSAiSZyeTzui6u3bnP5Jzv5ETy4Zxz31+TYRgGIiIiItLmmV1dgIiIiIg0DwU7EREREQ+hYCciIiLiIRTsRERERDyEgp2IiIiIh1CwExEREfEQCnYiIiIiHkLBTkRERMRDeLm6gOZmt9s5ePAgwcHBmEwmV5cjIiIiclYMw6CyspKYmBjM5pNfk/O4YHfw4EFiY2NdXYaIiIhIs8rLy6Nr164nfY/HBbvg4GDA8eFDQkJcXI2IiIjI2amoqCA2NtaZcU7G44LdT7dfQ0JCFOxERETEYzTlETO3mzxRVlbGkCFDGDhwIOeeey5vvvmmq0sSERERaRPc7opdcHAwa9asISAggOrqas4991yuuOIKOnbs6OrSRERERNya212xs1gsBAQEAFBfX49hGBiG4eKqRERERNxfs1+xW7NmDc899xxbtmwhPz+fTz/9lMsuu+yo96SmpvLcc89RUFDAgAEDePXVVxk2bJhze1lZGZdccgl79uzhueeeIyIiornLxGaz0djY2Oz7lbbFx8fnlFPHRURE2opmD3bV1dUMGDCAG264gSuuuOKY7fPnz2fmzJm8/vrrDB8+nHnz5jFx4kR27dpFZGQkAGFhYWzfvp3CwkKuuOIKfvOb3xAVFdUs9RmGQUFBAWVlZc2yP2nbzGYzPXr0wMfHx9WliIiInDWT0YL3OU0m0zFX7IYPH87QoUP529/+BjgWFI6NjeW2225j1qxZx+zjlltuYezYsfzmN79p0jErKioIDQ2lvLz8uLNi8/PzKSsrIzIykoCAAC1i3I79tJi1t7c33bp108+CiIi4pVNlm19q1ckTDQ0NbNmyhdmzZzvHzGYz48ePZ8OGDQAUFhYSEBBAcHAw5eXlrFmzhptvvvmE+6yvr6e+vt75uqKi4oTvtdlszlCnyRgC0KlTJw4ePIjVasXb29vV5YiIiJyVVn24qKSkBJvNdsxt1aioKAoKCgDYu3cvo0aNYsCAAYwaNYrbbruN884774T7nDt3LqGhoc4/J+s68dMzdT9NzhD56RaszWZzcSUiIiJnz+2WOxk2bBjbtm1r8vtnz57NzJkzna9/Wp35ZHTLTX6inwUREfEkrRrsIiIisFgsFBYWHjVeWFhIdHT0Ge3T19cXX1/f5ihPREREpE1r1VuxPj4+DB48mBUrVjjH7HY7K1asYMSIEWe179TUVPr168fQoUPPtkw5gbi4OObNm+d8bTKZ+Oyzz1xWj4iIiByt2YNdVVUV27Ztc95OzcnJYdu2bezbtw+AmTNn8uabb/Lee++RkZHBzTffTHV1Nddff/1ZHXfGjBns2LGDTZs2ne1HcEvXXXcdJpPJ+adjx45MmjSJ7777zmU15efnk5SU5LLji4iIyNGaPdht3ryZ888/n/PPPx9wBLnzzz+fhx9+GICrrrqK559/nocffpiBAweybds2lixZ0mzr1HmySZMmkZ+fT35+PitWrMDLy4upU6e6rJ7o6GjdBhcREXEjzR7sRo8e7WwD9ss/7777rvM9t956K3v37qW+vp5vvvmG4cOHN3cZHsnX15fo6Giio6MZOHAgs2bNIi8vj+LiYgDuv/9+evXqRUBAAPHx8Tz00ENHddfYvn07Y8aMITg4mJCQEAYPHszmzZud29euXcuoUaPw9/cnNjaW22+/nerq6hPW88tbsbm5uZhMJv773/8yZswYAgICGDBggHMZmzM9hoiIiDSdx/RSOpNn7AzDoKbB6pI/Z7sudFVVFR9++CGJiYnONfmCg4N599132bFjBy+//DJvvvkmL730kvNrrr76arp27cqmTZvYsmULs2bNcq7dlpWVxaRJk7jyyiv57rvvmD9/PmvXruXWW289rboefPBB7rnnHrZt20avXr343e9+h9VqbdZjiIiIuAPDMLAeubjiLlq084QrnGx15rq6OnJycujRowd+fn7UNFjp9/BSl9S547GJBPg0fVLyddddx4cffoifnx/gaN3WuXNnFi5cyKBBg477Nc8//zwfffSR86pcSEgIr776KtOnTz/mvX/84x+xWCz84x//cI6tXbuWSy65hOrqavz8/IiLi+POO+/kzjvvBI7uLJKbm0uPHj146623uPHGGx2fcccOzjnnHDIyMujTp0+TjtHafv0zISIi0hRGYyMFTzxJ5fLl9PjkY7xjYlrsWKfTecJjrti1B2PGjHFOTNm4cSMTJ04kKSmJvXv3Ao4+vCNHjiQ6OpqgoCDmzJnjnLQCjucd//jHPzJ+/HiefvppsrKynNu2b9/Ou+++S1BQkPPPxIkTsdvt5OTkNLnG/v37O/9/586dASgqKmrWY4iIiLiS9fBh9v3xJsrmz8dWWkr1xo2uLsnJ7RYobk3+3hZ2PDbRZcc+XYGBgSQmJjpfv/XWW4SGhvLmm28yZcoUrr76ah599FEmTpxIaGgoH330ES+88ILz/X/961/5/e9/z6JFi1i8eDGPPPIIH330EZdffjlVVVX8+c9/5vbbbz/muN26dWtyjb9sy/XT4r92ux2g2Y4hIiLiKvXZ2eT95WYa9+3DHBBAzPPPEzx2jKvLcmrXwc5kMp3W7VB3YzKZMJvN1NbWsn79erp3786DDz7o3P7Tlbxf6tWrF7169eKuu+7id7/7He+88w6XX345gwYNYseOHUcFx+bWGscQERFpKVVfreXAzJnYKyvx7tKFrq+9hl/vXq4u6ygecyu2PSxQXF9fT0FBAQUFBWRkZHDbbbdRVVVFcnIyPXv2ZN++fXz00UdkZWXxyiuv8Omnnzq/tra2lltvvZVVq1axd+9e1q1bx6ZNm+jbty/gmFG7fv16br31VrZt28aePXtYsGBBs05saI1jiIiINDfDMCh9/wPy/vxn7JWV+A8eTNwnH7tdqAMPumI3Y8YMZsyY4XzA0BMtWbLE+dxacHAwffr04ZNPPmH06NEA3HXXXdx6663U19czZcoUHnroIf76178CYLFYOHToENdeey2FhYVERERwxRVX8OijjwKOZ+NWr17Ngw8+yKhRozAMg4SEBK666qpmq781jiEiItKcbJWV5D/0MJVLlgAQesUVRP/1Ecw+Pi6u7Pja9axYEf1MiIjIidR+/wMHZs6kMS8PvLyIuvceOlx7rfMZ8tZyOrNiPeaKnYiIiEhzMAyDwx98SOFzz0FjI94xMXR56UX8BwxwdWmnpGAnIiIicoStvJz8OXOoXLYcgKDx44h58kksbeQxLwU7EREREaBy5UoKHn8c68F88PYm6t576XDNH1r91uvZ8Jhgl5qaSmpqKjabzdWliIiISBvSWFhI4RNPUrlsGQDesbF0efFF/M8718WVnT6PWe5kxowZ7Nixg02bNrm6FBEREWkDDJuN0vc/IHvyFEeos1jo+McbiV/wWZsMdeBBV+xEREREmqr2xx8peOSv1P3wAwD+AwYQ/dij+PXu7eLKzo6CnYiIiLQbhtVK8bx5HHr7HbDbMQcHE3n3TMJ++1tM5rZ/I1PBTkRERNoFe3U1B2beTdXq1QCETJlC1Kz78erUycWVNR8FOxEREfF4jQUF5N18C/UZGZh8fYl55mlCJk1ydVnNru1fczyiPfSKLSgo4LbbbiM+Ph5fX19iY2NJTk5mxYoVAMTFxWEymTCZTAQGBjJo0CA++eQT59dfd911XHbZZcfsd9WqVZhMJsrKylrpk4iIiLSeuh07yP3tVdRnZGDp2JHu77/nkaEOPCjYefqs2NzcXAYPHsyXX37Jc889x/fff8+SJUsYM2YMM2bMcL7vscceIz8/n2+//ZahQ4dy1VVXsX79ehdWLiIi4jqVK1eS+4drsBYV4ZOYQNz8+W2ig8SZ0q3YNuKWW27BZDKxceNGAgMDnePnnHMON9xwg/N1cHAw0dHRREdHk5qayocffkh6ejoXXnihK8oWERFxmdIP/0nhU0+B3U7AiAvo+vLLWE7Ra7WtU7BrA0pLS1myZAlPPvnkUaHuJ2FhYcf9Oi8vL7y9vWloaGjhCkVERNyHYbNR+MwzHH7/AwBCf3MlnR95BJO3t4sra3ntO9gZBjTWuObY3gHQxBYlmZmZGIZBnz59mrz7hoYGXnjhBcrLyxk7duyZVikiItKmGFYr+++8k6rljufPO82cSceb/tim2oKdjfYd7Bpr4KkY1xz7gYPgc+zVt+MxDKPJu73//vuZM2cOdXV1BAUF8fTTTzNlypQzrVJERKRNOfT2O1QtX4HJx8cx8zUpydUltar2HezaiJ49e2Iymdi5c+cp33vvvfdy3XXXERQURFRU1FH/QgkJCWHv3r3HfE1ZWRkWi+W4t3lFRETairrduyl59VUAoh99tN2FOmjvwc47wHHlzFXHbqLw8HAmTpxIamoqt99++zEBrKyszPmcXUREBImJicfdT+/evfnoo4+or6/H19fXOb5161Z69OiBdzt49kBERDyTYbWS/8CDGI2NBF1yCaGXTXN1SS7hMcudnNE6diaT43aoK/6c5r3+1NRUbDYbw4YN4z//+Q979uwhIyODV155hREjRjRpH1dffTUmk4lrr72WLVu2kJmZydtvv828efO4++67T6seERERd3Lorf+l7ocfMIeEEP3YY+3mmbpf85hg5+nr2MXHx7N161bGjBnD3Xffzbnnnsull17KihUr+Pvf/96kfYSFhfHVV1/R2NhISkoKAwcO5JVXXuHFF1/kz3/+cwt/AhERkZZRt2s3xampAEQ/+ADeUZEursh1TMbpPJnfBlRUVBAaGkp5eTkhv1qrpq6ujpycHHr06IGfn5+LKhR3op8JEZG2zWhsJPeq/0fdjh0EjRlD19dSPe5q3cmyza95zBU7ERERaX8OvfUWdTt2YA4NJfrRv3pcqDtdCnYiIiLSJtXt2kXxa47HkaLnPIh3ZPu9BfsTBTsRERFpc4zGRg7Ong2NjQSNG0fI1KmuLsktKNiJiIhIm1PyxhvU78jAEhpK578+0u5vwf5EwU5ERETalLqdOyn5++sARD30EF6dOrm4IvehYCciIiJthtHQwMHZD4DVSvCl4wmZMtnVJbkVBTsRERFpM0r+8Qb1GRlYwsKIfkS3YH/NY1qKpaamOrsziIiIiOepy8ig5B//ACDqoTl4RUS0ynFtdhuPbniUguoCBkUNYmj0UM6LOA8fi0+rHP90eEywmzFjBjNmzHAu4iciIiKeo/HgQQ7ed7/jFuyECYRMbr1bsN/kf8OnmZ8CsCF/AwC+Zh96Bveio7k3t1/4B3pFHL9Pe2vTrVg5KZPJxGeffQZAbm4uJpOJbdu2NfnrR48ezZ133tkitYmIiOcz7HYOf/QR2VOTqd+zB0t4ONGPPNyqt2A/y/gnAMNr65hQVU24zUa9vYEfyn9g9eH/sGnLv1utllNRsGsDrrvuOkwmEyaTCR8fHxITE3nsscewWq2uLq1ZNDQ08OyzzzJgwAACAgKIiIhg5MiRvPPOOzQ2NgKn/h68++67hIWFHXf/vwynIiLSdjTs28e+666n4K+PYq+pwf/88+n+zw/x6tix1Wo4WH6IFfu/AuCmQ3XcXWTw373lzM8rYU5xKUlV1fQKcI+rdeBBt2I93aRJk3jnnXeor6/n888/Z8aMGXh7ezN79uzT3pfNZsNkMmE2uz7XNzQ0MHHiRLZv387jjz/OyJEjCQkJ4euvv+b555/n/PPPZ+DAgUDzfg9ERMR9GTYbhz/8kKKX5mHU1WHy9yfyrrvocPXvMVksrVJDXaONDzbsZfmmx2iIMEhoaOQl05NE9z2PQd07MKhbB66MCuIqbGBunZqawvW/2aVJfH19iY6Opnv37tx8882MHz+etLQ0AF588UXOO+88AgMDiY2N5ZZbbqGqqsr5tT9dzUpLS6Nfv374+vqyb98+Nm3axKWXXkpERAShoaFccsklbN269bTq+uGHH0hKSiIoKIioqCiuueYaSkpKmvz18+bNY82aNaxYsYIZM2YwcOBA4uPj+f3vf88333xDz549m/Q9EBERz1Cfnc3eP1xD4dynMerqCBg+nPi0BYRfe02rhDqrzc7/bdzH6OdW8dLn32IEbQRgpP95/GvWNcz7f+dz7Yg4zu0SipeXBbx8FOzk7Pn7+9PQ0ACA2WzmlVde4ccff+S9997jyy+/5L777jvq/TU1NTzzzDO89dZb/Pjjj0RGRlJZWcn06dNZu3YtX3/9NT179mTy5MlUVlY2qYaysjLGjh3L+eefz+bNm1myZAmFhYX89re/bfLn+Oc//8n48eM5//zzj9nm7e1NYGBgk74HIiLSthlWKyVvvknOZZdT++23mAMDif7rX+n2ztv4xMa2Sg01DVampa5j9n+/p6Cijj+HfkyGnwWLAdelvIjZ7P5Lq7TrW7GGYVBrrXXJsf29/M/owU/DMFixYgVLly7ltttuAzhqckJcXBxPPPEEf/nLX3jttdec442Njbz22msMGDDAOTZ27Nij9v3GG28QFhbG6tWrmdqEnnt/+9vfOP/883nqqaecY2+//TaxsbHs3r2bXr16nXIfe/bsYfTo0ad83y8d73sgIiJtV92u3eQ/8AB1P/4IQOCoUXR+9K94x8S0ah3PLd3FjwcrCPX35pHhJvbt/gYIZmSHvnQKaZ1webbadbCrtdYy/F/DXXLsb37/DQHeAU1+/8KFCwkKCqKxsRG73c7vf/97/vrXvwKwfPly5s6dy86dO6moqMBqtVJXV0dNTQ0BAY5j+Pj40L9//6P2WVhYyJw5c1i1ahVFRUXYbDZqamrYt29fk2ravn07K1euJCgo6JhtWVlZTQp2hmE06Vhw8u+BiIi0PUZDAyVvvOlYm66xEXNICFGzZxN62bRWX3h4y95S3l2fC8DLVw1g1PprmRDoD8C0AX9s1VrORrsOdm3JmDFj+Pvf/46Pjw8xMTF4eTlOXW5uLlOnTuXmm2/mySefJDw8nLVr13LjjTfS0NDgDHb+/sdeIZw+fTqHDh3i5Zdfpnv37vj6+jJixIgm396sqqoiOTmZZ5555phtnTt3btI+evXqxc6dO5v03hN9DwBCQkKorq7GbrcfNSmkrKwMQGsbioi4mdoffiT/gQeo370bgKBx44h+5GG8IyNbvZa6Rhv3/fs7DAOuHNSV0XUrWF+0jaLOkYR4BzE6dnSr13Sm2nWw8/fy55vff+OyY5+OwMBAEhOPnU69ZcsW7HY7L7zwgjPQfPzxx03a57p163jttdeYfGSRx7y8vNOa+DBo0CD+85//EBcXd1TIOh2///3veeCBB/j222+Pec6usbGRhoYG53N2J/oeAPTu3Rur1cq2bdsYNGiQc/ynySBNuXooIiItz7DbKX37bYrmvQxWK5YOHYh+aA7BSUkuaw/26pd7yCquJiLIl4fHRcP/Xs6CYMfvnsnxU92yw8SJtOvJEyaTiQDvAJf8aa4f3sTERBobG3n11VfJzs7mgw8+4PXXX2/S1/bs2ZMPPviAjIwMvvnmG66++mr8/ZseOGfMmEFpaSm/+93v2LRpE1lZWSxdupTrr7++ya3d7rzzTkaOHMm4ceNITU1l+/btZGdn8/HHH3PBBRewZ8+eJu3nnHPOYcKECdxwww2sWLGCnJwclixZwi233MJVV11Fly5dmvy5RESkZViLi8m76U8UPf+Cs4NE/KKFhEye7LJQ98OBcl5fnQ3AE5edQ+i6J6msLWXFkYsK0xKnuaSuM9Wug50nGDBgAC+++CLPPPMM5557Lv/85z+ZO3duk772f//3fzl8+DCDBg3immuu4fbbbyfyNC6Bx8TEsG7dOmw2GxMmTOC8887jzjvvJCwsrMlr5Pn6+rJs2TLuu+8+/vGPf3DBBRcwdOhQXnnlFW6//XbOPffcJtczf/58LrnkEv785z9zzjnncPvttzNt2jTeeuutJu9DRERaRtVXa8m+7HKq163D5OdH9GOP0uXleXiFh7uspkabnfv+/R02u8G0czowKesJ2PoeS4MCqDdBQmgC53Q8x2X1nQmTcTpPr7cBP/WKLS8vJyQk5KhtdXV15OTk0KNHD/z8/FxUobgT/UyIiLQso6GBopdfpvR/3wbAt2dPurz0Ir4neLSmNaWuzOS5pbvo71/CfyNex6t4B5jMXNNnMNvqCpk5eCbXn3u9q8s8abb5NY+5Ypeamkq/fv0YOnSoq0sRERERHC3Bcq/+gzPUdfj974j75GO3CHWZRZW8vHwPk8wb+Y9ltiPUBXYi98p/sK2uELPJzNT4Uy/95W48JtjNmDGDHTt2sGnTJleXIiIi0u6Vpy8k5/IrqPv+e8whIXR59RWiH34YsxvcHbHZDR74ZAv3m97jdZ95eFuroduF8OevSGsoAGBkzEg6BXRycaWnr13PihUREZHmZa+upuCJJyn/9FMA/AcPpstzz7bqYsON9kZMmPAyHz/mfPLl19xfeA+DvY5M0Lvwdhj3CFmVe/ks8zMAUhJTWqna5qVgJyIiIs2iLiODAzPvpiEnB8xmIv7yFyJuuRnTGS6JdSbK68u5Iu0KGmwN/KbXb7iq91VEB0aD3U71zhVkLv07l5etxtdspcErGJ/f/IO6xHG8sf013vnxHax2K1EBUYyJHdNqNTcnBTsRERE5K4ZhcPiDDyl67jmMxka8oqKIee5ZAocNa/VaVu9fTVFNEQBvff8W7/7wDuP9u/Kb/dkMLz/AAAAT7As8j643fMC6uoM8seBy9lftB2B019HMHj4bX4tvq9feHBTsRERE5IxZDx8m/4EHqVq5EoCgMWPo/NSTeHXo4JJ6Vu5z1DE2rC8VZblsNmpZUrOXJeEW+gV0pl91D5Ivupdu5/Vn1sZnWZy7GIDIgEgeGPYAY7uNddmaes1BwU5ERETOSPU3Gzl4771Yi4oweXsTed99dPjD1S4LRvW2etYdXAfAn378knMaGtnp481LwbFsCLKzw8+bHX77WZP7JLWZtVQ2VmI2mfl9n99z6/m3Eugd6JK6m5OCnYiIiJwWw2qlODWVQ6//AwwDnx496PLSi/j16ePSur7J/4Zaay2RViuxjb6kWpP4uH404WF9eGtsV7aWLWb+rvkU1Tpu1fbr2I9HRjxCv479XFp3c1KwExERkSZrPHCAA/feR+2RXtyhV15B9IMPYg4IcHFlsCpvFQBjamp5rWEqH1gu577JffjDBd2xmE0M6/4Xbjz3RpbvW06jvZEpPaZgMVtcWnNzU7ATERGRUzJsNg7Pn0/xS/OwV1ZiDgwk+tFHCZ06xdWlAWA37KzauwKAS6rr+Hv4JJbdeAkxYUf3QPe2eJPUI8kVJbYKj1mguD0oKCjgjjvuIDExET8/P6Kiohg5ciR///vfqampASAuLg6TyYTJZCIwMJBBgwbxySefOPdx3XXXcdlllx2z71WrVmEymSgrK2ulTyMiIm1F7fffk/vbqyh87HHslZX4DehPj88+dZtQB/BjyY8U15cSaLfTUJ3AFaOHHhPq2gNdsWsjsrOzGTlyJGFhYTz11FOcd955+Pr68v333/PGG2/QpUsXUlIciyk+9thj3HTTTVRUVPDCCy9w1VVX0aVLFy688EIXfwoREWlLbOXlFM2bR9lH88EwMAcH0+nOO+jw//4fJot73cL8aTbsyJpavjBfwV/P6+ziilxDwa6NuOWWW/Dy8mLz5s0EBv48ayc+Pp5p06ZhGIZzLDg4mOjoaKKjo0lNTeXDDz8kPT1dwU5ERJrEMAzKFyyg6NnnsJWWAhCSkkzUvffi1ck922ytzFkEwAU1NnYMSMHfx72CZ2tp18HOMAyM2lqXHNvk79/k6eCHDh3iiy++4Kmnnjoq1B21vxPsy8vLC29vbxoaGs64VhERaT/qdu+m4LHHqN28BQCfhASiH36YwOGtv9hwU+VV5pFZfRCLYVBdeR5XDu/l6pJcpn0Hu9padg0a7JJj9966BVMTZxBlZmZiGAa9e/c+ajwiIoK6ujoAZsyYwTPPPHPU9oaGBl544QXKy8sZO3Zs8xQuIiIeyV5dTfFrr1H63vtgtWLy96fTjFsIv/ZaTD4+ri7vpFblfAHAoLp6MsKmcF2XUBdX5DrtOti1dRs3bsRut3P11VdTX1/vHL///vuZM2cOdXV1BAUF8fTTTzNlivs84CoiIu7DMAwqly2j8Km5WAsKAAi+dDxRs2fjHRPj4uqaZuWezwAYWG2mw4WTXFuMi7XrYGfy96f31i0uO3ZTJSYmYjKZ2LVr11Hj8fHxAPj/al/33nsv1113HUFBQURFRR11mzYkJIS9e/cec4yysjIsFssJb/WKiIjnadi3j4InnqB6zVcAeHftStScBwkePdq1hZ2G8vpytlbmggmqqgdz3fldXV2SS7XvYGcyNfl2qCt17NiRSy+9lL/97W/cdtttpwxfERERJCYmHndb7969+eijj6ivr8fX9+cGx1u3bqVHjx54e3s3a+0iIuJ+7PX1HHrzLQ698QZGQwMmb2/C/3gjEX/6E+bTuPDgDr7KTMdmgsSGBoz4awjxa9+/x9xuHbu8vDxGjx5Nv3796N+//1FrsLVnr732GlarlSFDhjB//nwyMjLYtWsXH374ITt37sTSxGnnV1/t6OF37bXXsmXLFjIzM3n77beZN28ed999dwt/ChERcbWqr9aSnZxCyd/+htHQQOCFI+iRtoDIO+5oc6EOYMWO+QD0qg5gwkXDXVyN67ndFTsvLy/mzZvHwIEDKSgoYPDgwUyePLnd3yJMSEjg22+/5amnnmL27Nns378fX19f+vXrxz333MMtt9zSpP2EhYXx1VdfMWvWLFJSUigvLycxMZEXX3yRG2+8sYU/hYiIuEpjQQGFc5+mculSALw6dSLqgdkET5rU5FUa3E2DtZ71VbmOy1TWEQzp3sHVJbmc2wW7zp0707mzY1HB6OhoIiIiKC0tbffBDhzfm1dffZVXX331hO/Jzc095X569erFf//732asTERE3JXR2Ejph/+k5NVXsdfUgMVC+B/+QMRtt2IJCnJ1eWdl047/o8YMEVYbfc7/U5sNqM2p2W/FrlmzhuTkZGJiYjCZTHz22WfHvCc1NZW4uDj8/PwYPnw4GzduPO6+tmzZgs1mIzY2trnLFBER8Xg1W7aQc8WVFD3zDPaaGvwHDqTHf/5N1OxZbT7UASz57iMAelSHkDK8r4urcQ/NHuyqq6sZMGAAqampx90+f/58Zs6cySOPPMLWrVsZMGAAEydOpKio6Kj3lZaWcu211/LGG280d4kiIiIezVpaysHZD7D36j9Qv2cPlrAwOj/5BN3/9U/8+vRxdXnNwmisY319HgAdA0bTMcj3FF/RPjT7rdikpCSSkpJOuP3FF1/kpptu4vrrrwfg9ddfZ9GiRbz99tvMmjULgPr6ei677DJmzZqlNlgiIiJNZNjtlH38CUUvvYS9vByAsP/5HzrNvAuvDp71/Nl3W9+myMuMn91g0oVNe868PWjVZ+waGhrYsmULs2fPdo6ZzWbGjx/Phg0bAMdCiddddx1jx47lmmuuOeU+6+vrj1qct6KiovkLFxERcXO1P/5IwaOPUffddwD49u1L50cexn/gQNcW1kKWfP8ReEO3ug6M6aNHtn7SqsudlJSUYLPZiIqKOmo8KiqKgiOrXa9bt4758+fz2WefMXDgQAYOHMj3339/wn3OnTuX0NBQ5x89jyciIu2JraKCgsefIPd/fkvdd99hDgwk6oEH6PHJxx4b6qguYZO9EIDEiImYzZo08RO3mxV70UUXYbfbm/z+2bNnM3PmTOfrioqKU4Y7wzDOuD7xLPpZEJG2yjAMKhYupPCZZ7GVlAAQMmUKkfffh3dkpIura1k/fPV3dvn6YDLg+ku0VNcvtWqwi4iIwGKxUFhYeNR4YWEh0dHRZ7RPX1/fozoonMxPXRVqamqOacMl7VNDQwNAkxd4FhFxNXtDA/V79lD0zLPUHFlVwqdHD6IfeZjACy5wcXWtY+2eTyEEutjC6RPZ2dXluJVWDXY+Pj4MHjyYFStWcNlllwFgt9tZsWIFt95661ntOzU1ldTUVGw22wnfY7FYCAsLc87ADQgI0Jo37Zjdbqe4uJiAgAC8vNzu4rWItENGYyONhUVYCwtozC/AWpBPY34BjYUFWPMLaCwowHbokPP9Jj8/Im6+mfDrr8Ps4+PCyltPY/4PbPGuAPwZ3HWyq8txO83+26yqqorMzEzn65ycHLZt20Z4eDjdunVj5syZTJ8+nSFDhjBs2DDmzZtHdXW1c5bsmZoxYwYzZsygoqKC0NDQE77vpyuDv15eRdons9lMt27dFPBFpMUZVivW4uKfA1tBIY0F+c7AZi0owFpSAk14RMTk60vQxRcTef99+HRtX03vd335Dzb7+QFw/bDfurga99PswW7z5s2MGTPG+fqn59+mT5/Ou+++y1VXXUVxcTEPP/wwBQUFDBw4kCVLlhwzoaKlmEwmOnfuTGRkJI2Nja1yTHFfPj4+mM1u1zJZRNoYw2bDWlKCtcBxpc0Z2AoLsebnO4JbcTE04Rlyk7c3XtHReEdH49U5Gu/oznhFR+Ed3RnvztF4RUdjCQtrn/8gtVnZWbAEa4QfEXQgoUMPV1fkdpo92I0ePfqUD6TfeuutZ33r9WxZLBY9VyUiIqdk2O3YDh2isaCAxvx8rAWFR66w/eI2aVExWK2n3pm3N96RkY7AFhV9JKh1xjs6yvG/naOxhIe3z9DWBIe+W8JGP8cjV5f0OPGaue2ZxzxY1JRn7ERERH7JMAxspaXOW6HHvU1aVARNucNjseAVGYl39K8DWzTenTvjFRWFV0QEJt0lOGMF695hbYBj8uNlfRTsjsdkeNh6Dz89Y1deXk5ISIiryxERERcxDANbWdnPga3wOLdJCwowjsyOPymzGa9OnRy3R391m9Q7Ogqvzp0doU13glpMZd4Ovv3neGZ07kiwOYivrl6Lxdw+vt+nk2085oqdiIi0H4ZhYK+oOOpKW2PBL26T5ufTWFiIUVd36p2ZTFgiOh4JadHH3ibtHI1Xp06YNHveZb79/ns6/+cy1oU7Zv6OiRvXbkLd6dJPqYiIuB1bVZVz0oEjqBX8/FzbkfBm1NQ0aV+Wjh2PutJ2zHNtkZ0wtZOlQtqaRpudN5dsYsI31xFpLmF5oKMBwfju41xcmftSsBMRkVZlr66msbDwyESE498mtVdXN2lflrAwvDp3/jmwOa+0HbldGhWFuYmL2It72Xeohvv+bz2ziu6jm/kgMyNjKPIy4e/lzwUx7WMh5jPhMcFOkydERFzPXlv78+3RgsKfZ47+4japvaKiSfsyh4YeudJ29FIf3j+FtuhozEfWMxPP8um3+3nss228bH+aHt453BQdw1ZfL7xMXjwy4hH8vdQ96kQ0eUJERJrEXl9/bGD7RUcEa34+tvLyJu3LHBz8863QY8Kb4zapOSCghT+RuJuKukYe+uwH0rft5xXvVxnou5lboqPI8fYiyDuIF0e/yIiYEa4us9Vp8oSIiJwWo6GBxqKiI8+1HdsRobGgAFtpaZP2ZQ4IcNwejYr6eebor26TWoKCWvgTSVuzZW8pd3y0jf2Ha3jK+x16+H/L1dHRlFosRAVE8dr41+jVoZery3R7CnYiIh7OaGzEWlR09HNtR90mLcBWUtKkfZn8/E7aEcE7OhpzcLAW2JUms9rspK7M4pUv92CzGzwa9Ckx3uu5PjKSWrOZ3h16kzoulajA1ulQ1dYp2ImItGGGzXak/+hxAtuR26TWkpKmtbLy8Tn+Uh9RUXgfmaBgDg1VaJNms/9wDXd+tI3New8D8FK3dTTULuGOjhHYTSZGxozk+UueJ8hHV3ibSsFORMRNGXY71uIS54zR4z7XVlwMTZk05u2Nd1TUkattR3dE+GkigqVDB4U2aTWff5/P/f/5jso6K0G+Xrw9KJO1uf/knYhwAK7oeQVzLpiDt9nbxZW2LR4T7DQrVkTaEsNud7SyOmrG6K8axxcVNa3/qJeXo//oSRrHW8LD1cpK3MaSHwqY8a+tGAac3y2Mvw05yLzNL7IkzDEx4NaBt/Kn/n/SPzTOgGbFiog0M8MwsB0+7Jx0cFTj+COL7loLCzGa0n/UbHb2Hz3+bdJovCI6qpWVtBlb9h7m929+Tb3Vzm+HdOX+/gXMXHU7W3198MLEYyMfJzlxmqvLdCuaFSsi0kIMw8BeXv5zYCssPLZxfEEhRn39qXdmMuHVqdMJOiIcaRwfEaFWVuIxckqq+eN7m6i32hnbJ5JbBhRx3eq7yPX1IRgzL43/O8O7XOjqMts0/W0hInKEYRjYKytP0H/059ukRm1tk/ZniYg4fkeEn5YCiYzE5K3nh6R9KKmq57p3NnK4ppH+XUO55YJipq+9j1JvC9GGhb9P+ZDETue6usw2T8FORNoNW1W1cwLCr1tY/fRcm72p/UfDw4/qP+p4ri3658kJkZHqPypyRG2DjRvf28zeQzXEhvvzyAQ7M9bfT7XZRB+7mdTL/kNkhwRXl+kRFOxExCPYa2pO2MLqp9uk9srKJu3LEhrq7D96vI4IXtHR6j8q0kQ2u8Ft//ct2/PKCAvw5m9XdmLWmqupNsMgK7x2xQICO8S5ukyP4THBTrNiRTyXva7u54kIx71NWoC9qa2sQkJO2hHBOzoas7/6UIo0B8Mw+GvajyzPKMTHy8yb/xPPK6t/w36LQRebwbyp/6dQ18w0K1ZEXMre0OAMbT8Ftp9vkx7pP1pW1qR9mQMDT9oRwTs6GnNgYMt+IBFxen11Fk8v3onJBK//tjebvv098y21BNgN/jn6FRJ7jHV1iW2CZsWKiFswGhtpLCxy3gr9ZQsrZ//RQ4eatC9TQMCRcParxvE/3TLt3Fn9R0XcyIJtB3h68U4AHp4YT9l3NzLfUovJMHhmyH0KdS1EwU5EzohhtR5pZXWCjggFR1pZNeGmgMnX9+dJB7++TfrTlbaQEC1WKtJGfJ19iHs/+Q6AGy/syjn77+NPxiEwmbg98X8Yfd61Lq7QcynYicgxDJsNa0nJkcV0f7HUxy+utFmLi5vefzQ6+qjA9uvbpJawMIU2EQ+xp7CSP72/mQabncnndOLa2qe5uiELm8XClMhh3DjyYVeX6NEU7ETaGcNud4S2wsLjN44vKMBaVNT0/qORkSfsiOBsZaXQJtIuFFbUcd07m6ioszK4WxhPBf4v1x3aSrmPD+cFdePRCa/p74MWpmAn4kEMw3D2Hz1h4/iiImhKKyuLBa+oyKMD268ax1s6dlT/UREBoKreyvXvbOJAWS3xHQN4v+tn3HdgBVkB/kR6B/Ny0rv4WrRMUEtTsBNpIwzDwFZWduKOCEdukza5/2inTsd/ri06Cq+fWlmp/6iINEGjzc7NH25hR34FEUE+fNpvNf/I/Jg1YSH4mrx4ZcKbdAro5Ooy2wWPCXZax07aMsMwsFdU/Kph/NEdERoLCzHq6k69M5MJr4iIozsi/Po2aadO6j8qIs3CMAwe+O/3fLWnBH9vC2nnb2FNxj94p1MEAI9d9CTnRJzj4irbD61jJ9IKbJWVPy+wm/+rjgg/9R9taiurjh2PH9h+WgYkspNaWYlIq5m3fDfzlu/BbILPL9xNww9PcX10FA1mEzeddxO3D7rd1SW2eVrHTqQV2aurjwS2X/Uf/cVVN3t1dZP2ZenQ4efFdI/TON4rKgqzQpuIuImPN+cxb/keAD4YkkPYtsf5XUw0DWYTY2PHcuv5t7q4wvZHwU7kJOy1tSfoiPDzbVJ7RUWT9mUODf25SXx09DEdEbyiozH7+bXwJxIRaR6rdxfzwH+/B+Cl/vsY9OPDTI/uRImXhZ5hPZk7ai5mkyZXtTYFO2m37PX1xw9sP90mzc/H1tT+o8HBx3ZE+FXjeHNAQAt/IhGR1vHDgXJu+XALVrvBrMT9TMt8iPs7hpHh60MH3w68Ou5VArz1d54rKNiJR7I3NGAtKjqywO5Py3781ETeEd5spaVN2pc5IMAxc/TXge0Xz7dZgtR/VETahwNltdzw7iaqG2xc3+Ugfy54hDdC/FkSFIiXyYsXR79Il6Auri6z3VKwkzbHaGzEWlR0JKQVHGf5jwJsJSVN2pfJz+/niQgnaBxvDg7WgpoiIkB5bSPXvb2Rosp6pnbM5+HKv/KlD/ytQxgAcy6Yw5DoIa4tsp1TsBO3YlitWEtKfu6IcNRt0iP9R4uLm9Z/1Mfn6LXZnFfafm4cbw4NVWgTEWkCq83Orf/ayp6iKkYEFfKK7Ql2U8/syBjA4Oq+V3NlrytdXWa7p2AnrcbRf/SQY4mPX7ew+mX/0aa2soqK+nmB3Z9ukzr/fzSWDh0U2kREmsljC3fw1Z4S+ngX8b73UxyuL+e2bt2oNdkZ0XkE9wy5x9UlCgp20kwMu93ZyurnGaMFRzeOLyoCq/XUO/PyOtJ/tPMJG8dbwsPVykpEpJW8tz6X9zfspYuphE+Dn4WaYmZ260G+yUb3kO48d8lzeJkVKdyBx5wFdZ5oOYZhYDt82HF79JeN438xIcFaWNj0VlaRkUc913b0bdJovCI6qpWViIibWLWriEfTf6Qj5SwKewG/moP8tUscWy02gr2DeWXsK4T6hrq6TDlCnSfaOcMwsJeX/6IjQsFxb5MaDQ2n3pnJhFenTsdvYXXkuTaviAi1shIRaSN2F1ZyxWvrMdeXszjsWbrU7eHDyG48Ewhmk5nUcalc1OUiV5fp8dR5QoAjoa2y8gQL6xY4F9g1amubtD9LRMTPHRGcV9ocHRG8o6LwiozE5O3dwp9KRERaw6Gqem54dxO2+ir+HfwSXer28Hl4NM8FmgE7dw++W6HODSnYtWG2qqrjLPWRf9Rzbfam9h8ND/+5I4LzNmn0z5MTIiPVf1REpJ2oa7Txpw+2UHS4gg8DX6FP4w4+D4tgdqgvduz8T6//4Zp+17i6TDkOBTs3Za+p+VXD+GNvk9qrqpq0L0to6M8zR4/bOD4as69vC38iERFpCwzDYPZ/v2fb3hL+7vcaw2zbWBzSgdkdArFjcGXPK5lzwRytOuCmFOxcwF5X93MXhBP1H21qK6uQkBO2sHIusOvv38KfSEREPEXqykw++zaP57zfYgLfsDg4hFkdQ7BjcEXPK3h4xMPqAevGFOyamb2h4eeZosfpiGDNz8dWVtakfZkDA3+eOXpUC6ufn2szB6qVlYiINI9F3+Xz/Be7eNjrQ35jWc2SwCBmRXRwhrpHRjyiUOfmFOzOQMP+A9R+++3RHRHy82ksLMR26FCT9mEKCDjyDNsvGsf/6rk2S1BQC38SERERh+15Zdz9yTbu9PoPN3gtYUlgALMiO2LH4PLEyxXq2ggFuzNQvWE9BQ89fMLtJl/fYzsi/Lr/aEiInk8QERG3cLCslj++v5mr7Qu50/u/R0JdJ2wYXJZ4GX+98K8KdW2Egt0Z8I2PJ2Do0BPeJrWEhSm0iYhIm1Bdb+WP721mdM1SHvL+kKUB/keFukcvfFShrg1RsDsDAYMH0/2D911dhoiIyFmx2w3unL+N7oXLeNrnLZYG+HN/VCQ2DKYlTFOoa4MU7ERERNqpZ5bupH7nF6R6/43lAb7cH9VJoa6NU7ATERFphz7elMeWNZ/zgc9LrAr0ORLqICUhhUcvfBSLWT272yIFOxERkXZmQ9Yh/vlZGh/4PMfaQAv3/SLUPXbhYwp1bZjHXGNNTU2lX79+DB061NWliIiIuK3ckmqe+TCNt73m8k0g3BupUOdJTIZhGK4uojlVVFQQGhpKeXk5ISEhri5HRETEbZTXNPKX1E95oep+dgTWcm9kJ6wmSI5P5vGRjyvUuanTyTYec8VORERETqzRZmfWB8t5qnKOQp0H0zN2IiIiHs4wDJ76zwZuP3Af2UEV3BMZgc0EU+OnKtR5GF2xExER8XDvr95B8g+3czComLsjI7CZTEyNn8oTI59QqPMwCnYiIiIebNWP+0j48iYOBx1whrop8VMU6jyUbsWKiIh4qJ0HS7F+fAO2oGxnqJvcYzJPjnxSoc5D6YqdiIiIByquqCXnresxB/5wVKh76qKnFOo8mIKdiIiIh6lrsLLx7zfh6/eNM9Ql9UjiyYt0pc7T6VasiIiIBzEMg1X/uJMA03JmRkZgPRLqnrroKbzM+rXv6XTFTkRExIOsfe8RfGv//XOoi1Ooa08U7ERERDzEts/mYSt84+hQN0qhrj1RsBMREfEAOavep3TX09wV5Qh1k+ImKdS1Qwp2IiIibVzJt+nkfDOLu4+EuondJzJ31FyFunZIwU5ERKQNq9mzhm1f3MzdUeFYTSbGxV7K0xc/rVDXTinYiYiItFG2/d+y7tM/cF9UGFaTiVGdx/L86GcV6toxBTsREZG2qGgnKz66kvsjQ2g0mRgWcTGvjH9Boa6dU7ATERFpaw7nsuzDacyKCKDRZOK8kBG8njRPoU4U7ERERNoMux0y0lnx/hTuD/em0WQiwXcI701Lxdvs7erqxA24ZbC7/PLL6dChA7/5zW9cXYqIiIjr2e3U/PBvFrw1nD+unsldoSYaTSY605+P/+cfCnXi5JbXbO+44w5uuOEG3nvvPVeXIiIi4jJ2m5WNm14l/ccPWGaup9bXDPgBEN44mP9e8zo+Fh/XFiluxS2D3ejRo1m1apWryxAREXGJnMPZpG96ifQDqykwG0d+W5sJafClsfpCrhl0NX8ZORRvi1veeBMXavafiDVr1pCcnExMTAwmk4nPPvvsmPekpqYSFxeHn58fw4cPZ+PGjc1dhoiISJtSXl/O/IyPuPrfk0lJm8ab+asoMBsE2ez0KY/Ae991JHV+j2V/foHbLh6uUCfH1exX7KqrqxkwYAA33HADV1xxxTHb58+fz8yZM3n99dcZPnw48+bNY+LEiezatYvIyMjmLkdERMRtNdobWXdgHWmZC1iVt5JGwwaAxTAYXtNAQEUfviz/LR379eX5q/vQvWOgiysWd9fswS4pKYmkpKQTbn/xxRe56aabuP766wF4/fXXWbRoEW+//TazZs067ePV19dTX1/vfF1RUXH6RYuIiLQSwzDIKM0gPSudz3MWUVp32Lmtd30Dk6oaOFQ+gv+rT6Frly688dt+DI/v6MKKpS1p1WfsGhoa2LJlC7Nnz3aOmc1mxo8fz4YNG85on3PnzuXRRx9trhJFRERaRHFNMYuyF7EgawGZZZnO8Y5WG1Oqq5lQZWVNzXj+Zk3CNySCh1L6cPn5XTCbTS6sWtqaVg12JSUl2Gw2oqKijhqPiopi586dztfjx49n+/btVFdX07VrVz755BNGjBhx3H3Onj2bmTNnOl9XVFQQGxvbMh9ARETkNNRZ61iZt5IFWQvYcHADdsMOgI8BY6qrSamqZlC9iXcaJjLdmkSddyh/HpfAny+JJ8DHLec3iptzy5+a5cuXN/m9vr6++Pr6tmA1IiIiTWcYBluLtpKelc7S3KVUNVY5tw20WUg5XMSE6hr88ed/rUnc3jCJMoK5clBX7p3Ym+hQPxdWL21dqwa7iIgILBYLhYWFR40XFhYSHR19VvtOTU0lNTUVm812VvsRERE5E3mVeSzMWkhaVhr7q/Y7x2N8wkiuriW5IIfuViuNlgA+4ApeqZlAGcEMiwvnoan9OK9rqAurF0/RqsHOx8eHwYMHs2LFCi677DIA7HY7K1as4NZbbz2rfc+YMYMZM2ZQUVFBaKj+4xARkZZX2VDJsr3LWJC5gK1FW53jAV4BTAjrS8qBnQzO+Q4zYPMK5CO/K3i6bBxlBNMtPICnJ/dh4jnRmEx6jk6aR7MHu6qqKjIzf34oNCcnh23bthEeHk63bt2YOXMm06dPZ8iQIQwbNox58+ZRXV3tnCUrIiLizmx2GxvyN5CWlcaX+76k3uZYmcGEiQs6X0BKQDfG/rCYgD2fAmD3DmRR4DQeLLiEMoIJ9vPiwbE9ufbC7vh6WVz5UcQDNXuw27x5M2PGjHG+/mliw/Tp03n33Xe56qqrKC4u5uGHH6agoICBAweyZMmSYyZUiIiIuJM9h/eQnpXOwuyFFNcWO8fjQ+NJSUhhit2f6A2vQcF8AAzvQNZ2/A137RtJSWUQFrOJa4d3445xPekYpGfDpWWYDMMwXF1Ec/rpVmx5eTkhISGuLkdERNqw0rpSFucsZkHmAjJKM5zjYb5hJPVIYlp8Cv1KcjGtfgYKvgPA8Aniuy5XcXvuSPbWOiZCjOndiQcm96VnVLBLPoe0baeTbdxyVuyZ0OQJERFpDg22BlbvX01aVhpr96/FalgB8DJ7cXGXi0lJTOHimFF4Zy6D/9x8VKDLTfgDd+0bybYMxy3WXlFBzJnSj4t7dXLZ55H2RVfsRESk3TMMg+9LvictK40luUsory93bjun4zmkJKSQ1COJDr5hsOtzWPW0M9DhE0RJv+k8WHgJS3McIbBjoA8zJ/TiqiGxeKmnq5yldnnFTkRE5HQVVBewMHshCzIXkFuR6xyP9I9kasJUUhJSSAhLAMOAXYth1dyjAl31wBt4ofJS3vmmEsOw4mMxc8NFPZgxJoFgP2/XfChp1xTsRESkXalprGH5vuWkZaWxMX8jBo4bV34WP8Z1H0dKQgrDo4djMVscgW7n58cEOuuQm3iPKby49hDVDZUATOnfmVmT+hAbHuCqjybiOcFOz9iJiMiJ2A07mwo2kZaVxrK9y6i11jq3DYkaQkpCChPiJhDoHegYPEGgM4b9iSXBV/LEyiIOlBUBMCA2jIen9mVw9/DW/lgix9AzdiIi4rFyy3NJy0ojPTudguoC53i34G4kJySTnJBMl6AuP3/BCW65MuxPbIv9A39dXsC2vDIAYkL9uD+pD8n9YzCbtcCwtBw9YyciIu1WeX05S3KWkJadxnfF3znHg72DmdhjItMSpjGg04Cjuz0cL9B5B8LwP3Og7w3MXV3MwuU7AQjwsXDL6ARuvCgefx8tMCzuRcFORETavEZ7I+sOrCMtK41VeatotDcCYDFZuDDmQlISUxjddTR+Xn5Hf+EJA92fqBr0F1I3lvG/f/+BBqsdkwl+OziWuyf0IjLkV/sRcRMKdiIi0iYZhsHO0p2kZaXxec7nlNaVOrf16tDL0Q0ifgoR/hHH+2LYvcQR6PK3O8aOBDrbBbcy/8caXnzte0qqGgAYEd+ROVP7ck6MepGLe1OwExGRNqW4pphF2YtIy05jz+E9zvFwv3CmxE9hWsI0eof3Pv4XnyTQMeI2vjpo58m3drCzwDHTtUdEIA9M7sv4vpFH37oVcVMeE+w0K1ZExHPVWetYmbeStKw01h9cj92wA+Bt9mZM7BimJU5jRMwIvM0nWDvuFIEus9qHJz/OYOUuRw/YUH9v7hjXkz9c0B0fLy0wLG2HZsWKiIhbMgyDb4u+JS0rjS9yv6CysdK5bUCnAaQkpDAxbiKhvie5PXqKQFdKMC8v382H3+zDZjfwMpu4ZkR37hjXk7AAnxb+hCJNo1mxIiLSZu2v3E96VjppWWnsr9rvHO8c2JnkhGRSElLoHtL95Ds5UaAbdhNceBsNvuG8vyGXl1dsprLO0QZsfN8oHpjch/hOQS310URanIKdiIi4XFVDFV/s/YK0rDS2FG5xjgd4BXBp90uZljiNwVGDMZtOcVvUMGD30iOBbptj7BeBzgjoyNIfC5m7eDV7D9UA0LdzCA9N6cuFiceZZCHSxijYiYiIS9jsNr7O/5oFWQv4ct+X1NvqATBhYnjn4aQkpDCu2zgCvJvQousUgY7ACH44UM7jH37NNzmO2bOdgn25d0JvrhzcFYsWGBYPoWAnIiKtKvNwJmlZaSzMXkhxbbFzvEdoD1ISUpgaP5XowOim7awJga6gvI7nPt7Of7/dj2GAr5eZm0bF85fRCQT56tegeBaP+YnWrFgREfdVWlfK4pzFpGWlsePQDud4qG8oSXFJTEucxjkdz2n6kiJNCHQ1DVbeWL6bf6zOprbR8bvhsoEx3DupD13C/Jv5E4q4B82KFRGRFtFga2DN/jUsyFrA2v1rsRqOSQpeJi9GdR3FtIRpXNz1YrwtJ1ii5HiOG+gCjgS62yEwArvd4NNvD/Dc0l0UVNQBMLh7B+ZM6cv53To086cUaXmaFSsiIi5hGAY/lPzAgqwFLMldQnl9uXPbOR3PITkhmck9JtPB7zQDlmHAni8cge7gt46xXwU6gI05pTy+cAffH3Act2sHf2Yl9WHKeZ21wLC0Cwp2IiJy1gqqC1iYvZC0rDRyynOc45H+kUxJmEJKfAqJHRJPf8dNDHR7D1Xz9OKdLP6hAIAgXy9mjEnk+pFx+HlbzvrzibQVCnYiInJGahprWLFvBQuyFrAxfyMGjid7/Cx+jO02lmkJ0xjeeTgW8xkEqyYGuvLaRlJXZvLuulwabHbMJvh/w7px1/hedAr2ba6PKtJmKNiJiEiT2Q07mws2syBrAcv2LqPWWuvcNjhqMNMSpnFp90sJ8jnDRX6bGOisNjv/t3EfLy3fQ2l1AwCjekbw4JS+9InW89XSfinYiYjIKeWW5zqXKMmvzneOxwbHkpyQTHJ8Ml2Du575AZoY6ABW7iriyUUZZBZVAZDQKZA5U/oxuncnPUcn7Z6CnYiIHFd5fTlLc5eSlpXG9uLtzvFg72Am9phISkIKAzsNPLswdaJAN/SPjkAX1Mn51l0FlTz5eQZrdjvWvusQ4M1dl/bid8O64W05RUcKkXbCY4Kd1rETETl7jfZG1h9Yz4KsBazKW0WjvREAs8nMyJiRpCSkMDp2NH5efmd3IMOAPcuOBLqtjrETBLqSqnpeXLabjzbuw26At8XEdRfGcevYnoT6n8ZSKSLtgNaxExERdpbuZEHmAj7P+ZzSulLneM8OPZmWMI0p8VOI8G+GXqqnEejqGm28sy6X1JWZVNU71sCbdE40syf3oXvHwLOvRaSN0Dp2IiJySiW1JSzKXkRaVhq7D+92jof7hTO5x2SmJU6jT3if5jnYaQQ6wzBY9H0+Ty/eyf7DjskZ53UJZc6UvgyP79g89Yh4KAU7EZF2pN5Wz8p9K1mQtYD1B9djN+wAeJu9GRM7hpSEFC7sciHe5ma6xXkagQ5gW14Zjy/cwZa9hwGICvHlvol9uPz8LpjNmhghcioKdiIiHs4wDLYVb2NB5gK+yP2CysZK57YBnQaQkpDCxLiJhPqGNudBjw10Xv4w7I9w4R3HBLqDZbU8u2Qnn207CIC/t4U/XxLPny6OJ8BHv6pEmkr/tYiIeKj9lftJz04nPSudvMo853jnwM5MjZ9KSkIKcaFxzXtQw4DM5Y5Ad2CLY+wkga663srrq7N4Y0029VbH1cMrB3Xl3om9iQ49ywkaIu2Qgp2IiAepaqhi2d5lLMhawJbCLc5xfy9/JnSfQEpCCkOih2A2NfPyIKcZ6Gx2g/9s2c9zX+yiuLIegGE9wnloSj/O69qMVw5F2hkFOxGRNs5mt/FN/jcsyFrAl/u+pM5WB4AJE8M7DyclIYVx3cYR4B3Q/Ac/aaC7HYIij/mS9VklPLEwgx35FQB07xjA7KS+TDwnSgsMi5wlBTsRkTYqqyyLBVkLWJS1iKLaIud4XEgc0xKnMTV+KtGB0S1z8DMIdNnFVTz1+U6WZxQCEOznxe1je3Lthd3x9TqDfrIicgwFOxGRNuRw3WE+z/mctKw0dhza4RwP9Q0lKS6JlIQUzo04t+WufJ1BoCuraeCVFZm8vyEXq93AYjbxh+HduGN8L8IDfVqmTpF2ymOCnTpPiIinarQ1smb/GhZkLeCr/V9hNRyL9XqZvBjVdRQpCSlc3PVifCwtGJJOFOiG3ggj7zhuoGu02fnw673MW76H8lpHB4sxvTvx4JS+JEYGt1ytIu2YOk+IiLghwzD48dCPLMhcwOLcxZTXlzu39evYj5SEFJJ6JBHuF97ShUDmiiOBbrNj7BSBzjAMVmQU8dTnGWSXVAPQOyqYB6f05eJenY55v4icnDpPiIi0UQXVBSzMXkh6VjrZ5dnO8Uj/SKYkTCElPoXEDoktX8gZBDqAHQcreGLRDtZnHQIgIsiHmZf25rdDuuJlaeaZuCJyDAU7EREXq2msYcW+FaRlpfFN/jcYOG6k+Fn8GNttLCkJKVzQ+QIs5laYYHCGga6oso4Xlu7m4y15GAb4eJm58aIe3DI6gWC/ZupiISKnpGAnIuICdsPOlsItLMhcwLK9y6ix1ji3DY4azLSEaVza/VKCfIJap6AzDHR1jTbe+iqb11ZlUdPgeMZ5av/O3D+pD7HhLbC8ioiclIKdiEgr2luxl7SsNBZmLeRg9UHneNegrqQkpjA1fiqxwbGtV9DJAt2Ft0Nw1Am+zCBt+0GeWbyTg+WOdfMGxIbx8NS+DO7ews/9icgJKdiJiLSw8vpyluYuJS0rje3F253jQd5BTIybSEpCCudHnt+6i/MaBmStgFVPw/5NjrEmBDqALXtLeXxhBtvyygCICfXj/qQ+JPePwWzWAsMirqRgJyLSAhrtjWw4uIEFmQtYlbeKBnsDAGaTmQtjLiQlIYUxsWPw82rlfqhnEejySmt4ZslOFn6XD0CAj4VbRifwx1Hx+HlrgWERd6BgJyLSjHaV7nJ0g8heRGldqXO8Z4eeTEuYxuQek+kU4IIlP84i0FXWNfLaqiz+d20ODVY7JhP8dnAsd0/sRWRwKwdTETkpBTsRkbNUUlvCouxFpGWlsfvwbud4uF84k3tMJiUhhT7hfVzTB/UsAp3VZufjzft5cdkuSqocVxwvTOjInCn96BejdUJF3JGCnYjIGai31bMybyVpmWmsP7gem+GYEept9mZ07GimJUzjwi4X4m120VIfxw10fjD0j6cMdABf7SnmiYUZ7CqsBCA+IpAHJvdlXN9I1wRUEWkSBTsRkSYyDIPtxdtZkLWApTlLqWysdG7r36k/0xKmMTFuIqG+oa4s8viBbsiRZUtOEegyiyp5clEGK3cVAxDq782d43ty9fDu+HhpgWERd6dgJyJyCgeqDpCelU56Vjr7Kvc5x6MDo0mOTyY5IZkeoT1cWCFHAt2XRwLdRsfYaQS60uoG5i3fzT+/2YfNbuBlNnHtiDhuH5dIWEAL9qAVkWalYCcichzVjdV8kfsFaVlpbC7c7Bz39/Ln0u6XkpKQwtDooZhNLr6KdZaBrt5q4/31e3nlyz1U1lkBuLRfFLOT+hDfqZUWRxaRZuMxwS41NZXU1FRsNpurSxGRNspmt/FNwTekZaWxYu8K6myOhXdNmBjWeRjTEqYxrts4ArzdoKPCWQY6wzBY+mMBcxfvZO8hR9eLvp1DeGhKXy5MjGjp6kWkhZgMwzBcXURzqqioIDQ0lPLyckJCNGtLRE4tqyzL0Q0ieyFFNUXO8biQOKYlTmNq/FSiA6NdWOEvnGWgA/h+fzmPL9rBxhzHciydgn25d0JvrhzcFYsWGBZxO6eTbTzmip2IyOk4XHeYxTmLSctK48dDPzrHQ3xCSOqRxLSEaZwbca77zAA9YaC74UigO3XwLCiv47mlu/jvt/sxDPD1MvOni+P5yyUJBPrq14GIJ9B/ySLSbjTaGlmzfw1pWWmsObAGq93xTJmXyYuLul7EtIRpXNz1YnwsbjRZwDAge6Uj0OV94xg7zUBX02DljTXZ/GN1NrWNjsdVLhsYw32T+hAT5t+S1YtIK1OwExGPZhgGPx76kbSsNBbnLKasvsy5rW94X6YlTmNS3CQ6+nd0XZHH0wyBzm43+PTbAzy3dBcFFY7nBQd378BDU/sxMDasBYsXEVdRsBMRj1RQXeDsBpFdnu0c7+TfianxU0lOSKZnh54urPAEmiHQAXyTfYgnFmXw/YFyALp28Gd2Ul8mnxftPreXRaTZKdiJiMeoaazhy7wvSctM4+v8rzFwzA3ztfgytttYpiVMY3jn4XiZ3fCvvmYKdHsPVTP3850s+bEAgCBfL2aMSeT6kXH4eVtaqnoRcRNu+LebiEjT2Q07Wwq3kJaVxhe5X1BjrXFuGxQ5iGmJ07i0+6UE+wS7sMqTaKZAV17bSOrKTN5dl0uDzY7ZBL8b1o27Lu1FRJBvC34AEXEnCnYi0ibtrdhLelY6C7MXcqDqgHO8a1BXUhJSmJowldjgWBdWeAqGAdmrjgS6rx1jXn4w+Hq46M4mBzqrzc6/Nu7jpWW7OVzTCMConhHMmdKP3tFuGmZFpMUo2IlIm1HRUMGSnCWkZ6WzrXibczzIO4iJcRNJSUjh/Mjz3fsZsuMFOouv4wrdaQQ6wzBYtbuYJxdlkFlUBUBiZBAPTunL6F6d3Pt7ICItRsFORNya1W5l/cH1pGWlsXLfShrsDQCYTWZGxIxgWsI0xsSOwc/Lz8WVnsLJAt3IOyCkc5N3taugkicW7eCrPSUAdAjwZualvfjdsG54WVzc4kxEXErBTkTc0q7SXaRlpbEoexGH6g45xxPDEpmWMI0p8VPoFNDJhRU2UTMGupKqel5ctpuPNu7DboC3xcT1I3swY0wiof7eLVO/iLQpCnYi4jZKakv4PPtz0rLS2HV4l3M83C+cyT0mk5KQQp/wPm3jNmMzBrq6RhvvrMsldWUmVfWORZWTzo1mVlIfuncMbIHiRaStUrATEZeqt9WzMm8l6VnprDuwDpvh6IzgbfZmdOxoUhJSGNllJN7mNnJF6oSB7noYeedpBTrDMFj0fT5PL97J/sO1AJzXJZQ5U/oyPN7NFlQWEbegYCcirc4wDLYXb2dB1gKW5iylsrHSua1/RH9SElKY1GMSob6hLqzyNBkG5Kx2BLp9GxxjZxjoALbllfH4wh1s2XsYgKgQX+6b2IfLz++C2dwGrliKiEso2IlIqzlQdYD0rHTSs9LZV7nPOR4dGE1yfDLJCcn0CO3hwgrPQDMHugNltTy3ZCefbTsIgL+3hT9fEs+fLo4nwEd/ZYvIyelvCRFpUdWN1XyR+wXp2elsKtjkHPf38ufS7peSkpDC0OihmE1tbDZnMwe66norr6/O4o012dRb7QBcOagr907sTXSom8/4FRG3oWAnIs3OZrfxTcE3pGels2LfCmqtjufDTJgYFj2MlMQUxncbT4B3gIsrPQPNHOhsdoP/bNnPc1/soriyHoBhPcJ5aEo/zuvahm5Fi4hbULATkWaTXZbNgqwFLMxeSFFNkXM8LiTO0Q0ifiqdg04v+LiNEwW6wdc5FhYOiTntXa7PLOHxRRlk5FcA0L1jALOT+jLxnKi2MfNXRNyOWwa7hQsXcvfdd2O327n//vv54x//6OqSROQEyurK+Dznc9Kz0vnh0A/O8RCfEJJ6JJGSkMJ5Eee13aBiGJCz5kigW+8YO8tAl11cxVOf72R5RiEAwX5e3DGuJ9eM6I6vl6X5aheRdsftgp3VamXmzJmsXLmS0NBQBg8ezOWXX07HjpraL+IuGm2NrDmwhvSsdFbvX43V7lhbzcvkxUVdLyIlIYVLul6Cj8XHxZWehRYIdGU1Dby8Yg8fbNiL1W5gMZv4w/Bu3DG+F+GBbfh7JSJuw+2C3caNGznnnHPo0qULAElJSXzxxRf87ne/c3FlIu2bYRjsOLSDBVkLWJyzmLL6Mue2vuF9SUlIIalHEh392/g/wlog0DXa7HywYS8vr9hDeW0jAGP7RPLA5D4kRgY3X+0i0u41e7Bbs2YNzz33HFu2bCE/P59PP/2Uyy677Kj3pKam8txzz1FQUMCAAQN49dVXGTZsGAAHDx50hjqALl26cODAgeYuU0SaqLC6kIXZC0nPSierPMs5HuEfwdT4qSQnJNOrQy8XVthMWiDQGYbB8owi5n6eQXZJNQC9o4KZM7Uvo3q2gXZoItLmNHuwq66uZsCAAdxwww1cccUVx2yfP38+M2fO5PXXX2f48OHMmzePiRMnsmvXLiIjI5u7HBE5A7XWWlbsW0F6Vjpf53+N3XAsv+Fr8WVs7FhSElO4oPMFeJnd7qL/6WuBQAfw48FynlyUwfosR5/biCAfZl7am98O6YqXpY0t7SIibUaz/62clJREUlLSCbe/+OKL3HTTTVx//fUAvP766yxatIi3336bWbNmERMTc9QVugMHDjiv5h1PfX099fX1ztcVFRXN8ClE2h+7YWdL4RbSs9L5Yu8XVDdWO7cNihxESkIKE+ImEOzjIbcOjxvofI4EurvOONAVVdTxwhe7+XhLHoYBPl5mbryoB7eMTiDYr420RRORNqtV/7nd0NDAli1bmD17tnPMbDYzfvx4NmxwLB8wbNgwfvjhBw4cOEBoaCiLFy/moYceOuE+586dy6OPPtritYt4qn0V+0jLSmNh9kIOVP38j6ouQV1ISUghOT6Z2JBYF1bYzAwDcr9yBLq96xxjzRDo6hptvPVVNq+tyqKmwdHvdmr/ztw/qQ+x4W1wvT4RaZNaNdiVlJRgs9mIioo6ajwqKoqdO3c6CvLy4oUXXmDMmDHY7Xbuu+++k86InT17NjNnznS+rqioIDbWg34JibSAioYKluYuJS0zjW3F25zjgd6BTIybSEpCCoMiB7XdJUqOp4UCnd1ukP7dQZ5ZvJOD5XUADIwN46Gp/RjcvUMzFS8i0jRu+YBMSkoKKSkpTXqvr68vvr6+LVyRSNtntVtZf3A96VnpfLnvSxrsDQCYTWZGxIwgJT6FMd3G4O/l7+JKm9nJAt3IOyG0y8m++qS27C3lsYUZbM8rAyAm1I/7k/qQ3D8Gs9mDQrGItBmtGuwiIiKwWCwUFhYeNV5YWEh0dHRrliLSbuwq3UVaVhqLshdxqO6QczwxLJGUhBSmxE8hMsADJy61YKDLK63h6SU7WfRdPgCBPhZuGZPIjRf1wM9bCwyLiOu0arDz8fFh8ODBrFixwrkEit1uZ8WKFdx6661nte/U1FRSU1Ox2WzNUKlI21ZSW8Ln2Z+Tnp3OztKdzvEOvh2YHD+ZlIQU+ob39axbrb/006SIXwa6QdMdt1zPItBV1jWSujKLt9fl0GC1YzLBVUNimTmhF5HBfs1UvIjImWv2YFdVVUVmZqbzdU5ODtu2bSM8PJxu3boxc+ZMpk+fzpAhQxg2bBjz5s2jurraOUv2TM2YMYMZM2ZQUVFBaKgaZ0v7U2+rZ1XeKtKy0lh3YB02w/GPHG+zN6NjR5Mcn8xFXS/C2+zBMzNzfrpCt9bxupkCndVmZ/7mPF78YjeHqh23sC9M6MicKf3oFxPSHJWLiDSLZg92mzdvZsyYMc7XP01smD59Ou+++y5XXXUVxcXFPPzwwxQUFDBw4ECWLFlyzIQKETk1wzDYXrydtKw0luQuobKh0rmtf0R/khOSSeqRRKivh/9jp4UCHcCa3cU8uSiDXYWO7218RCAPTO7LuL6RnnvFU0TaLJNhGIari2hOP12xKy8vJyRE/5IWz3Sw6iDpWemkZ6ezt2KvczwqIIrkhGSSE5KJD413YYWtpAUDXWZRJU8uymDlrmIAQv29uXN8T/5wQXe8tcCwiLSi08k2bjkr9kzoGTvxdNWN1Szbu4y0rDQ2FWxyjvt7+TO+23hSElMYFj0Ms6kdhI4WDHSl1Q3MW76bf36zD5vdwMts4toRcdw+LpGwAJ9mKF5EpOXoip2IG7PZbWws2EhaVhor9q2g1loLgAkTw6KHkZyQzKXdLyXAu50sgNuCga7eauP99Xt55cs9VNZZAbi0XxSzk/oQ3ynobCsXETlj7fKKnYgnyS7PJi3T0Q2isObn5YHiQuJISUhhavxUOgd1dmGFrey4ge7aI4Gu61nt2jAMlv5YwNzFO9l7qAaAfp1DmDO1LxcmRJxt5SIirUrBTsRNlNWVsTh3MWmZafxw6AfneIhPCEk9kkhOSKZ/RP/29cB+zlew+hnHenTQrIEO4Pv95Ty+aAcbc0oB6BTsy70Te3PloK5YtMCwiLRBHhPs9IydtEWNtka+OvAVaVlprN6/GqvdcQvQYrIwqssokhOSGR07Gh9LO3u2K3et4wpdCwW6gvI6nl26k/9udfTG9fUy8+eL4/nzJQkE+nrMX4si0g7pGTuRVmYYBjtKd5CWmcbinMUcrj/s3NY3vC/JCclM7jGZjv4n7pHssVo40NU0WPnH6mzeWJNNbaPjH4GXn9+Feyf2JibMw1qpiYjH0DN2Im6oqKaIhdkLSc9KJ7Ps50W8I/wjmBo/leSEZHp16OXCCl2ohQOd3W7w328P8NzSnRRW1AMwpHsH5kztx8DYsLPev4iIu1CwE2lBtdZavtz3JWlZaXyd/zV2ww6Ar8WXsbFjSU5IZkTMCLzM7fQ/xV8HOrO3I9CNmtksgQ7gm+xDPL5oBz8cqACgawd/Zif1ZfJ50e3reUURaRfa6W8TkZZjN+xsLdxKWlYaX+z9gurGaue2QZGDSElIYULcBIJ9gl1YpYu1QqDbe6iauZ/vZMmPBQAE+Xpx69hErrswDj9vS7McQ0TE3SjYiTSTvIo80rLTSM9K50DVAed4l6AupCSkkByfTGxIrAsrdAOtEOjKaxv525d7eHd9Lo02A7MJfjesG3dd2ouIIN9mOYaIiLvymGCnWbHiCpUNlSzNXUpaVhrfFn3rHA/0DmRi3ESS45MZFDWofXSDOJncdbBq7rGB7qK7IKx5wq7VZudfG/fx0rLdHK5pBODiXp2YM6UvvaLa8dVREWlXNCtW5DRZ7VY2HNxAWlYaK/NWUm9zPIxvNpkZ0XkEyQnJjO02Fn8vzbJsjUBnGAardhXz5OcZZBZVAdAzMogHp/RldO/IZjmGiIgraVasSAvYfXg3aZlpLMpZREltiXM8MSyRlIQUpsRPITJAQQJolUAHsKugkicW7eCrPY7zER7ow13je/K7Yd3wsrTzq6Qi0i4p2ImcxKHaQ3ye8zlpWWnsLN3pHO/g24HJ8ZNJTkimX3g/za78Se46WP005KxxvDZ7w6Br4KKZzRroiivreWn5bj7auA+7AT4WM9ePjOOWMYmE+ns323FERNoaBTuRX6m31bM6bzVpWWmsPbAWm+F4btPL7MXorqNJSUjhoi4X4W1RgHBqpUBX12jj7XU5vLYyi6p6R5eOpHOjmZXUh+4dA5vtOCIibZWCnQiO57S+K/nO0Q0idzGVDZXObedFnEdKQgqT4iYR5hfmuiLd0d71jluuLRzoDMNg0ff5PL14J/sP1wLQv2soc6b0Y1iP8GY7johIW+cxwU6zYuVM5Fflk56dTnpWOrkVuc7xqIAokhOSSY5PJj4s3nUFuqtWCnQA2/LKeHzhDrbsdbReiw7x475JvblsYBfMZt0CFxH5Jc2KlXanprGGZXuXkZaVxsaCjc5xfy9/xncbT0piCkOjhmIxaxHbY7RioDtQVsuzS3ayYNtBAPy9LfzlkgRuurgHAT4e829SEZFT0qxYkV+x2W1sKtxEWmYay/ctp9Za69w2LHoYKQkpjO8+nkBvPad1XMcLdOf/wbGwcFi3Zj1Udb2Vv6/K4s2vsqm32jGZ4MpBXblnQm+iQ/2a9VgiIp5GwU48WnZ5NulZjluthTWFzvHuId1JSUhhavxUYoJiXFihm9u73tEpIme143ULBjqb3eDfW/J4/ovdFFc61gYc3iOch6b249wuoc16LBERT6VgJx6nrK6MJblLSMtK4/uS753jwT7BJMUlkZKYQv+I/lqi5GRaMdABrM8s4fFFGWTkVwDQvWMAs5P6MvGcKJ0nEZHToGAnHqHR3sja/WtJy0pj1f5VWO2OpTAsJgsXdbmIlIQULom9BF+LeoWe1N4NR265tk6gyy6u4qnPd7I8w3E1NdjPizvG9eTaEXH4eGmBYRGR06VgJ22WYRjsKN1BelY6n2d/zuH6w85tfcL7kJKQQlKPJCL8I1xYZRvRyoGurKaBl1fs4YMNe7HaDSxmE38Y3o07xvciPNCn2Y8nItJeKNhJm1NUU8Si7EWkZaWRWZbpHO/o15Gp8VNJTkimd3hvF1bYhhwT6LyOBLq7WyTQNVjtfPj1Xl5esYfy2kYAxvaJ5IHJfUmMDGr244mItDceE+y0jp1nq7XWsnLfStKy0tiQvwG7YQfAx+zD2G5jSUlIYUTMCLzMHvMj3bL2bnB0ishe5XjdwoHOMAyWZxTx1OcZ5JRUA9AnOpgHp/RlVM9OzX48EZH2SuvYidsyDIMthVtIz05nae5SqhurndvOjzyflIQUJsRNIMRH57nJWjnQAfx4sJwnF2WwPusQABFBPtw9oTe/HRKLRQsMi4icktaxkzYtryKP9Ox00rLSOFB1wDneJaiLsxtEt5CWCSEea9/Xjluuvw50F82EDt1b5JBFFXU8/8UuPtmyH8MAHy8zf7yoBzePTiDYT312RURagoKduIXKhkqW5i4lPSudrUVbneOB3oFM6D6BlIQUBkUNwmzSTMnT4oJAV9do48012fx9dRY1DY5HI5IHxHDfxN7Ehge0yDFFRMRBwU5cxmq3suHgBtKz0vky70vqbY5Fac0mMxd0voCUhBTGdhuLv5e/iyttg1wQ6Ox2g7TtB3l2yU4OltcBMDA2jIem9mNw9w4tckwRETmagp20ut2Hd5Oelc7C7IWU1JY4xxNCE0hJTGFKjylEBUa5sMI27HiBbuDVjmfoWijQAWzOLeXxRRlszysDoEuYP/dN6k3KgBgtMCwi0ooU7KRVHKo9xOKcxaRlpZFRmuEcD/MNY3KPyaQkptAvvJ9CwJna97WjU0T2SsfrVgp0eaU1PL1kJ4u+ywcg0MfCLWMSufGiHvh5W1rsuCIicnwKdtJiGmwNrMpbRXpWOmsPrMVqOLpBeJm9uKTrJaQkpDCqyyi8LXqQ/ozt++bIFbrWDXSVdY2krszi7XU5NFjtmExw1ZBYZk7oRWSwX4sdV0RETk7BTpqVYRh8V/Id6VnpLM5ZTEVDhXPbeRHnkZyQTFJcEmF+Ya4r0hO4KNBZbXbmb87jxS92c6i6AYCRiR15cHI/+sVo2RkREVdTsJNmkV+Vz8LshaRlpZFbkescjwyIJDk+mZSEFOLD4l1XoKdwUaADWLO7mCcXZbCrsBKA+E6BPDi5L2P7ROoWuoiIm/CYYKfOE62vprGGZXuXkZ6VzsaCjRg41rr29/JnXLdxpCSkMCx6GBaznrU6a8cNdL8/EujiWvTQmUWVPLEog1W7igEIC/DmznE9ufqC7nhbtPyMiIg7UecJOS12w87Ggo2kZ6WzbO8yaq21zm1Do4eSkpDCpd0vJdA70IVVepB93zg6RWR96XjdioGutLqBect3889v9mGzG3iZTUy/MI7bxiYSFuDToscWEZGfqfOENLuc8hzSs9JJz06noLrAOd49pDvJ8ckkJyQTExTjwgo9jAsDXb3Vxnvrc3n1y0wq6xwTXi7tF8UDk/vSI0KBXUTEnSnYyQmV15ezOGcx6VnpfFfynXM82CeYSXGTSElIYUCnAXq+qjnlbXTccnVBoDMMg6U/FjB38U72HqoBoF/nEOZM7cuFCREtemwREWkeCnZylEZ7I2v3ryU9O51VeatotDcCYDFZGNllJCkJKYyOHY2vxde1hXoaFwY6gO/3l/P4oh1szCkFoFOwL/dO7M2Vg7piMSu4i4i0FQp2gmEYZJRmkJ6Vzuc5n1NaV+rc1ie8D8nxyUyOn0yEv67aNDsXB7qC8jqeXbqT/249AICft5k/jYrnz5ckEOirvx5ERNoa/c3djhXXFDuXKMksy3SOd/TryJT4KaQkpNA7vLcLK/Rgxwt0A37nCHThPVr88DUNVv6xOpt/rMmirtEOwOXnd+Heib2JCVNvXhGRtkrBrp2ps9bx5b4vSctOY8PBDdgNxy91H7MPY7qNISUhhQtjLsTLrB+NFpG30dH6K2uF47XJ8vMVulYIdHa7wX+/PcBzS3dSWFEPwJDuHZgztR8DY8Na/PgiItKy9Nu7HTAMg61FW0nPSmdp7lKqGquc286PPJ/khGQmxk0kxEfLw7QYFwc6gG+yD/H4oh38cMDRDaRrB39mJ/Vl8nnRmgAjIuIhFOw8WF5lHguzHLda91ftd47HBMaQnODoBtEtpJsLK2wH3CDQ5ZZU8/TinSz50bFMTbCvFzPGJnLdhXH4eWvxaBERT6Jg52EqGyr5IvcL0rLS2Fq01Tke4BXAhLgJpCSkMDhqMGaTOga0KDcIdOW1jby6Yg/vbcil0WZgNsHvhnXjrkt7ERGkWc0iIp5Iwc4D2Ow2NuRvIC0zjS/zvqTe5nh2yoSJCzpfQEpiCuO6jcPfSw/Ft7i8TUcmRfwy0P0ORt3TaoGu0WbnX9/sY97y3RyucSxXc3GvTsyZ0pdeUcGtUoOIiLiGgl0btufwHtKy0liUvYji2mLneHxoPCkJKUyNn0pUYJQLK2xH8jY5OkVkLne8dkGgMwyDlbuKeHJRBlnF1QD0jAziwSl9Gd07slVqEBER11Kwa2NK60r5PPtz0rLSyCjNcI6H+YYxucdkUhJS6Nexnx6Gby1uEOgAdhZU8OSiDL7aUwJAeKAPd13ai98NjcXLotvuIiLthYJdG9Bga2D1/tWkZaWxdv9arIajf6eX2YtLul5CckIyF3e5GG+Lt4srbUfcJNAVV9bz4rLdzN+0D7sBPhYz14+M45YxiYT66+dBRKS98Zhgl5qaSmpqKjabzdWlNAvDMPi+5HvSstJYnLOYioYK57ZzO55LckIyST2S6ODXwYVVtkNuEujqGm28vS6H11ZmUVXvCPqTz4vm/kl96N4xsNXqEBER92IyDMNwdRHNqaKigtDQUMrLywkJaXvrshVUF5CelU5aVhq5FbnO8ciASKbGTyUlIYWEsATXFdhe7d/smBTh4kBnGAYLv8vn6cU7OVBWC0D/rqHMmdKPYT3CW60OERFpPaeTbTzmil1bVtNYw/J9y0nLSmNj/kYMHFnbz+LH+O7jSU5IZnj0cCxmrTnW6vZvdixbkrnM8dpkcbT+uvhuCI9v1VK+3XeYxxfuYOu+MgCiQ/y4b1JvLhvYBbNZz1SKiIiCncvYDTubCjaRlpXGsr3LqLXWOrcNjR5KcnwyE+ImEOit22ou4UaB7kBZLc8u2cmCbQcB8Pe2cPPoBG4aFY+/j8K+iIj8TMGuleWU55CelU56djoF1QXO8W7B3UhOSCY5IZkuQV1cWGE750aBrqreyt9XZfLWVznUW+2YTHDloK7cO7E3USF+rVqLiIi0DQp2raC8vpwlOUtIy0rju5LvnOPB3sFM6jGJlIQUBnQaoCVKXMmNAp3NbvDvLXk8/8Vuiisdi00P7xHOQ1P7cW6X0FatRURE2hYFuxbSaG9k3YF1pGWlsSpvFY12RwcAi8nCyC4jSU5IZkzsGHwtau3kUm4U6ADWZ5bw+KIMMvIds6DjOgYwe3JfJvSLUvAXEZFTUrBrRoZhsLN0J2lZaXye8zmldaXObb079CY5IZkp8VOI8I9wYZUCwP4tR2a5/jLQ/T9HL9eOrT/rOKu4irmfZ7A8owiAED8vbh/Xk2tHxOHjpQWGRUSkaRTsmkFxTTGLshexIGsBmWWZzvGOfh2ZEj+FlIQUeof3dmGF4rR/i2Mduj1fOF67ONCV1TQwb/kePvx6L1a7gcVs4poLunPHuJ50CPRp9XpERKRtU7A7Q3XWOlbmrWRB1gI2HNyA3bAD4GP2YUy3MaQkpHBhzIV4mfUtdgtuFugarHY++Hovr6zYQ3mt4zb9uD6RzJ7cl8TIoFavR0REPINSxxn4757/8tym56hqrHKODew0kJTEFCZ0n0Corx5wdxtuFugMw2DZjkLmLt5JTkk1AH2ig5kzpR8X9dQtehEROTsKdmcgOiCaqsYqYgJjnEuUdA/p7uqy5JfcLNAB/HiwnCcWZrAh+xAAEUE+3D2hN78dEotFCwyLiEgzULA7A8M7D+edie8wKGoQZpMebHcrxwt0/a+Ci+9xWaArqqjj+S928cmW/RgG+HiZ+eNFPbhlTCJBvvpPUEREmo9+q5wBi9nCkOghri5DfunAFlj1DOxZ6njtBoGutsHGW19l8/fVWdQ02ABIHhDD/ZN607VDgEtqEhERz6ZgJ23bMYHODP3/n0sDnd1ukLb9IM8s2Ul+eR0A53cLY86Ufgzu3sElNYmISPugYCdtkxsGOoDNuaU8viiD7XllAHQJ8+f+pD4k9++sBYZFRKTFKdhJ2+KmgS6vtIanF+9k0ff5AAT6WLhlTCI3XtQDP2+Ly+oSEZH2RcFO2gY3DXQVdY2krszknbW5NNjsmE1w1dBY7rq0F5HBfi6rS0RE2ie3DHaXX345q1atYty4cfz73/92dTniSscNdFfBxfe6NNBZbXY+2pTHS8t2c6i6AYCRiR2ZM6UffTuHuKwuERFp39wy2N1xxx3ccMMNvPfee64uRVzlwFZY/QzsXuJ47SaBDmD17mKeXLSD3YWOBarjOwXy4OS+jO0TqefoRETEpdwy2I0ePZpVq1a5ugxxBTcOdHsKK3ny8wxW7SoGICzAmzvH9eTqC7rjbdF6hiIi4nqn/dtozZo1JCcnExMTg8lk4rPPPjvmPampqcTFxeHn58fw4cPZuHFjc9QqnuzAVvjXVfDmGEeoM5lhwO/g1s1w+esuDXWHqup56LMfmPTyV6zaVYy3xcSNF/Vg9T1juG5kD4U6ERFxG6d9xa66upoBAwZwww03cMUVVxyzff78+cycOZPXX3+d4cOHM2/ePCZOnMiuXbuIjIwEYODAgVit1mO+9osvviAmJuYMPoa0WW58ha7eauO99bm8+mUmlXWOn9cJ/aKYPbkvPSICXVqbiIjI8Zx2sEtKSiIpKemE21988UVuuukmrr/+egBef/11Fi1axNtvv82sWbMA2LZt25lVexz19fXU19c7X1dUVDTbvqUFHS/QnfdbR6CLSHRpaYZhsOSHAuYu3sm+0hoAzokJYc6UfoxI6OjS2kRERE6mWZ+xa2hoYMuWLcyePds5ZjabGT9+PBs2bGjOQznNnTuXRx99tEX2LS3g4LeOWa67Fzteu1GgA/hufxlPLMxgY24pAJHBvtw7sTdXDOqKxayJESIi4t6aNdiVlJRgs9mIioo6ajwqKoqdO3c2eT/jx49n+/btVFdX07VrVz755BNGjBhx3PfOnj2bmTNnOl9XVFQQGxt7Zh9AWo6bB7r88lqeW7qL/249AICft5k/XZzAny+OJ9DXLecYiYiIHMMtf2MtX768ye/19fXF19e3BauRs+Lmga6mwcrrq7N5Y00WdY12AC4/vwv3TuxNTJi/i6sTERE5Pc0a7CIiIrBYLBQWFh41XlhYSHR0dHMeStydmwc6u93gv98e4LmlOymscDyjOTSuA3Om9GNAbJhrixMRETlDzRrsfHx8GDx4MCtWrOCyyy4DwG63s2LFCm699dbmPNQxUlNTSU1NxWaztehx5BTcPNABfJ19iCcW7eCHA46JNrHh/sxO6kvSudFaYFhERNq00w52VVVVZGZmOl/n5OSwbds2wsPD6datGzNnzmT69OkMGTKEYcOGMW/ePKqrq52zZFvKjBkzmDFjBhUVFYSGhrboseQ4jhvo/udIoOvp2tqOyC2pZu7iDJb+6LiiHOzrxa1jE5l+YRx+3hYXVyciInL2TjvYbd68mTFjxjhf/zRxYfr06bz77rtcddVVFBcX8/DDD1NQUMDAgQNZsmTJMRMqxEMc3OZYtmTX547XbhjoymsbeXXFHt7bkEujzcBsgt8P78Zd43vRMUjPZ4qIiOcwGYZhuLqI5vTTFbvy8nJCQtSMvcW0gUDXaLPzr2/2MW/5bg7XNAJwSa9OPDilL72igl1cnYiISNOcTrZxy1mxZ0LP2LWSNhDoDMNg5a4inlyUQVZxNQA9I4N4cEpfRveOdHF1IiIiLUdX7KRp2kCgA9hZUMGTizL4ak8JAOGBPtx1aS9+NzQWL/V0FRGRNqhdXrGTFnK8QHfubxyBrlMvl5b2S8WV9by4bDfzN+3DboCPxcz1I+OYMTaRED9vV5cnIiLSKhTs5Pjytztmue5a5HjtpoGurtHG2+tyeG1lFlX1VgAmnxfNrEl96dYxwMXViYiItC4FOzlaGwl0hmGw8Lt8nl68kwNltQD07xrKQ1P7MTQu3MXViYiIuIbHBDtNnjhLbSTQAXy77zCPL9zB1n1lAHQO9eO+Sb2ZNqALZrMWGBYRkfZLkyfauzYU6A6U1fLM4p2kbT8IgL+3hZtHJ3DTqHj8fbTAsIiIeCZNnpBT+3Wgw/TzLFc3C3RV9Vb+viqTt77Kod5qx2SC3wzqyj0TexMV4ufq8kRERNyGgl17c9xA9xu4+D63C3Q2u8Enm/N4/ovdlFTVAzC8RzgPTe3HuV3UNk5EROTXFOzai/ztsPpZ2LnwyID7BjqAdZklPL5wBzsLKgGI6xjA7Ml9mdAvCpNJz9GJiIgcj8cEO02eOIH87xzr0B0T6O6FTr1dWtrxZBVXMffzDJZnFAEQ4ufF7eN6cu2IOHy8tMCwiIjIyWjyhKdqY4HucHUDL6/Yw4df78VqN7CYTVxzQXfuGNeTDoE+ri5PRETEZTR5oj1rY4GuwWrng6/38sqKPZTXNgIwrk8ksyf3JTEyyMXViYiItC0Kdp7ieIHu3CvhkvvcMtAZhsGyHYXMXbyTnJJqAPpEBzNnSj8u6hnh4upERETaJgW7tq6NBTqAHw+W88TCDDZkHwIgIsiXeyb04n+GxGLRAsMiIiJnTMGurWqDga6ooo7nv9jFJ1v2Yxjg42XmplE9uHl0IkG++lEUERE5Wx7z27TdzIptg4GutsHGm19l8/rqLGoaHOcneUAM90/qTdcOAS6uTkRExHNoVmxb0QYDnd1ukLb9IM8s2Ul+eR0A53cLY86Ufgzu3sHF1YmIiLQNmhXrSQq+h1VPt6lAB7A5t5THF+5g+/5yALqE+XN/Uh+S+3fWAsMiIiItRMHOXRV877hCl5F+ZMAE517h6BQR2celpZ1MXmkNTy/eyaLv8wEI9LFwy5hEbryoB37eFhdXJyIi4tkU7NxNGw10FXWNpK7M5J21uTTY7JhNcNXQWGZe2ptOwb6uLk9ERKRdULBzF2000Fltdj7alMdLy3ZzqLoBgJGJHZkzpR99O3vQM44iIiJtgIKdq7XRQAewencxTy7awe7CKgDiOwUyZ0pfxvSO1HN0IiIiLqBg5yptONDtKazkiUUZrN5dDEBYgDd3je/F74d3w9tidnF1IiIi7ZfHBLs2s45dwQ+w+umjA905lztmuUb2dWlpp3Koqp6Xlu/m/zbmYbMbeFtMTB8Rx21jexIa4O3q8kRERNo9rWPXWgp+OHKFLu3IQNsJdPVWG++uy+VvX2ZSWW8FYOI5UcxK6kuPiEAXVyciIuLZtI6dO2nDgc4wDBb/UMDcxRnkldYCcE5MCHOm9GNEQkcXVyciIiK/pmDXUtpwoAP4bn8Zjy/cwabcwwBEBvty78TeXDmoK2azJkaIiIi4IwW75tbGA11+eS3PLdnFf789AICft5k/XZzAny+OJ9BXPy4iIiLuTL+pm8txA91ljlmuUf1cWVmT1DRYeX11Nm+syaKu0Q7AFed34d5Jvekc6u/i6kRERKQpFOzOVuGPjkC3Y8GRgbYV6Ox2g/9s3c9zS3dRVFkPwNC4Djw0tR/9u4a5tjgRERE5LQp2Z6qNBzqAr7MP8fjCHfx4sAKA2HB/Hkjqy6Rzo7XAsIiISBukYHcm1r0Cyx468qLtBbrckmrmLs5g6Y+FAAT7enHbuESmXxiHr5fFxdWJiIjImVKwOxPxl4DJDP2mtalAV17TyCtf7uH9Dbk02gzMJvj98G7cNb4XHYN8XV2eiIiInCWPCXat2nmi8wC44zsIi235YzWDRpudf32zj3nLd3O4phGA0b078cDkvvSKCnZxdSIiItJc1HnCgxmGwcpdRTy5KIOs4moAekYGMWdqPy7p1cnF1YmIiEhTqPOEsLOggicWZrA2swSAjoE+3HVpL/7f0Fi8LGYXVyciIiItQcHOwxRX1vPisl3M35SH3QAfi5nrL4pjxphEQvy8XV2eiIiItCAFOw9R12jjf9fm8NrKTKobHM8ZTjmvM/dP6kO3jgEurk5ERERag4JdG2cYBunf5fPM4p0cKKsFoH/XUB6a2o+hceEurk5ERERak4JdG7Z132EeX7iDb/eVAdA51I/7JvVm2oAumM1aYFhERKS9UbBrg/YfruHZJbtI234QAH9vCzePTuCmUfH4+2iBYRERkfZKwa4Nqaq38vdVmbz1VQ71VjsmE/xmUFfumdibqBA/V5cnIiIiLqZg1wbY7AafbM7j+S92U1JVD8AF8eHMmdKPc7uEurg6ERERcRcKdm5uXWYJjy/cwc6CSgDiOgbwwOS+XNovCpNJz9GJiIjIzxTs3FRWcRVPLcpgxc4iAEL8vLhjfC+uuaA7Pl5aYFhERESOpWDnZg5XN/Dyij18+PVerHYDL7OJP1zQnTvG9aRDoI+ryxMRERE3pmDnJhqsdt7fkMsrK/ZQUWcFYHzfSGZP7ktCpyAXVyciIiJtgYKdixmGwRc7Cpn7eQa5h2oA6BMdzJwp/bioZ4SLqxMREZG2xGOCXWpqKqmpqdhsNleX0mQ/HCjniUU7+Dq7FICIIF/umdCL/xkSi0ULDIuIiMhpMhmGYbi6iOZUUVFBaGgo5eXlhISEuLqc4yqsqOP5pbv499b9GAb4eJm5aVQPbh6dSJCvx2RtERERaQank22UIlpRbYONN7/K5vXVWdQ0OK4spgyI4b5JvenaIcDF1YmIiEhbp2DXCux2gwXbD/Dskl3kl9cBMKhbGHOm9mNQtw4urk5EREQ8hYJdC9uUW8oTC3ewfX85AF3C/JmV1Iep/TtrgWERERFpVgp2LWTfoRqeWbKTRd/nAxDk68UtYxK4YWQP/LwtLq5OREREPJGCXTOrqGsk9ctM3lmXS4PNjtkEVw2NZealvekU7Ovq8kRERMSDKdg1E6vNzkeb8nhp2W4OVTcAcFFiBA9O6Uvfzu45O1dEREQ8i4JdM1i9u5gnF+1gd2EVAPGdApkzpS9jekfqOToRERFpNQp2Z2FPYSVPLMpg9e5iAMICvLlrfC9+P7wb3hazi6sTERGR9kbB7gwcqqrnpeW7+b+NedjsBt4WE9NHxHHb2J6EBni7ujwRERFppxTszsB763P58Ot9AEw8J4pZSX3pERHo4qpERESkvVOwOwN/uiSB7fvL+cslCYxI6OjqckREREQABbszEuTrxXs3DHN1GSIiIiJH0RP+IiIiIh5CwU5ERETEQyjYiYiIiHgIBTsRERERD+F2wS4vL4/Ro0fTr18/+vfvzyeffOLqkkRERETaBLebFevl5cW8efMYOHAgBQUFDB48mMmTJxMYqHXiRERERE7G7YJd586d6dy5MwDR0dFERERQWlqqYCciIiJyCqd9K3bNmjUkJycTExODyWTis88+O+Y9qampxMXF4efnx/Dhw9m4ceMZFbdlyxZsNhuxsbFn9PUiIiIi7clpB7vq6moGDBhAamrqcbfPnz+fmTNn8sgjj7B161YGDBjAxIkTKSoqcr5n4MCBnHvuucf8OXjwoPM9paWlXHvttbzxxhtn8LFERERE2h+TYRjGGX+xycSnn37KZZdd5hwbPnw4Q4cO5W9/+xsAdrud2NhYbrvtNmbNmtWk/dbX13PppZdy0003cc0115zyvfX19c7XFRUVxMbGUl5eTkhIyOl/KBERERE3UlFRQWhoaJOyTbPOim1oaGDLli2MHz/+5wOYzYwfP54NGzY0aR+GYXDdddcxduzYU4Y6gLlz5xIaGur8o9u2IiIi0l41a7ArKSnBZrMRFRV11HhUVBQFBQVN2se6deuYP38+n332GQMHDmTgwIF8//33J3z/7NmzKS8vd/7Jy8s7q88gIiIi0la53azYiy66CLvd3uT3+/r64uvr24IViYiIiLQNzXrFLiIiAovFQmFh4VHjhYWFREdHN+ehRERERORXmjXY+fj4MHjwYFasWOEcs9vtrFixghEjRjTnoY6RmppKv379GDp0aIseR0RERMRdnfat2KqqKjIzM52vc3Jy2LZtG+Hh4XTr1o2ZM2cyffp0hgwZwrBhw5g3bx7V1dVcf/31zVr4r82YMYMZM2Y4Z46IiIiItDenHew2b97MmDFjnK9nzpwJwPTp03n33Xe56qqrKC4u5uGHH6agoICBAweyZMmSYyZUtJSfVm+pqKholeOJiIiItKSfMk1TVqg7q3Xs3NH+/fu15ImIiIh4nLy8PLp27XrS93hcsLPb7Rw8eJDg4GBMJhNDhw5l06ZNx33vibYdb/zXYz8thJyXl+eShZBP9rlaej9N/ZpTvU/npvn3o3Nzcjo3Jx7TudG5ORGdmxOPt9a5MQyDyspKYmJiMJtPPj3C7ZY7OVtms/moNGuxWE74zT7RtuONn+i9ISEhLvkP7WSfq6X309SvOdX7dG6afz86Nyenc3Pq9+rcnPn7dG6afz/udm5ONN4a56ap8weadVasO5oxY8Zpbzve+Mn24wrNVc+Z7KepX3Oq9+ncNP9+dG5OTufm9OtpLTo3p19Pa9G5ObOaXMXjbsW2ltPp2yatS+fGfencuC+dG/elc+O+3PHcePwVu5bi6+vLI488oq4Xbkjnxn3p3LgvnRv3pXPjvtzx3OiKnYiIiIiH0BU7EREREQ+hYCciIiLiIRTsRERERDyEgp2IiIiIh1Cwa2Z5eXmMHj2afv360b9/fz755BNXlyRHlJWVMWTIEAYOHMi5557Lm2++6eqS5Fdqamro3r0799xzj6tLkV+Ii4ujf//+DBw48Khe4eJ6OTk5jBkzhn79+nHeeedRXV3t6pLkiF27djFw4EDnH39/fz777LMWP65mxTaz/Px8CgsLGThwIAUFBQwePJjdu3cTGBjo6tLaPZvNRn19PQEBAVRXV3PuueeyefNmOnbs6OrS5IgHH3yQzMxMYmNjef75511djhwRFxfHDz/8QFBQkKtLkV+55JJLeOKJJxg1ahSlpaWEhITg5eVxTaXavKqqKuLi4ti7d2+L5wFdsWtmnTt3ZuDAgQBER0cTERFBaWmpa4sSwNEGJiAgAID6+noMw0D/rnEfe/bsYefOnSQlJbm6FJE24ccff8Tb25tRo0YBEB4erlDnptLS0hg3blyrXORRsPuVNWvWkJycTExMDCaT6biXTVNTU4mLi8PPz4/hw4ezcePG4+5ry5Yt2Gw2YmNjW7jq9qE5zk1ZWRkDBgyga9eu3HvvvURERLRS9Z6tOc7NPffcw9y5c1up4vajOc6NyWTikksuYejQofzzn/9spco939memz179hAUFERycjKDBg3iqaeeasXqPV9z5oGPP/6Yq666qoUrdlCw+5Xq6moGDBhAamrqcbfPnz+fmTNn8sgjj7B161YGDBjAxIkTKSoqOup9paWlXHvttbzxxhutUXa70BznJiwsjO3bt5OTk8O//vUvCgsLW6t8j3a252bBggX06tWLXr16tWbZ7UJz/Hezdu1atmzZQlpaGk899RTfffdda5Xv0c723FitVr766itee+01NmzYwLJly1i2bFlrfgSP1lx5oKKigvXr1zN58uTWKBsMOSHA+PTTT48aGzZsmDFjxgzna5vNZsTExBhz5851jtXV1RmjRo0y3n///dYqtd0503PzSzfffLPxySeftGSZ7dKZnJtZs2YZXbt2Nbp372507NjRCAkJMR599NHWLLtdaI7/bu655x7jnXfeacEq26czOTfr1683JkyY4Nz+7LPPGs8++2yr1NvenM1/O++//75x9dVXt0aZhmEYhq7YnYaGhga2bNnC+PHjnWNms5nx48ezYcMGAAzD4LrrrmPs2LFcc801riq13WnKuSksLKSyshKA8vJy1qxZQ+/evV1Sb3vSlHMzd+5c8vLyyM3N5fnnn+emm27i4YcfdlXJ7UZTzk11dbXzv5uqqiq+/PJLzjnnHJfU25405dwMHTqUoqIiDh8+jN1uZ82aNfTt29dVJbcrTTk/P2nN27CgW7GnpaSkBJvNRlRU1FHjUVFRFBQUALBu3Trmz5/PZ5995pzi/P3337ui3HalKedm7969jBo1igEDBjBq1Chuu+02zjvvPFeU26405dyIazTl3BQWFnLRRRcxYMAALrjgAq699lqGDh3qinLblaacGy8vL5566ikuvvhi+vfvT8+ePZk6daorym13mvr3Wnl5ORs3bmTixImtVpumzzSziy66CLvd7uoy5DiGDRvGtm3bXF2GnMJ1113n6hLkF+Lj49m+fbury5ATSEpK0kxyNxYaGtrqz3Lrit1piIiIwGKxHHOSCgsLiY6OdlFVAjo37kznxn3p3LgvnRv35s7nR8HuNPj4+DB48GBWrFjhHLPb7axYsYIRI0a4sDLRuXFfOjfuS+fGfencuDd3Pj+6FfsrVVVVZGZmOl/n5OSwbds2wsPD6datGzNnzmT69OkMGTKEYcOGMW/ePKqrq7n++utdWHX7oHPjvnRu3JfOjfvSuXFvbfb8tNr82//f3h3bMAwCQBSlYgzGYB2GYiBatiJdmgwQfH5PonOBdM0vkPwQa61TSvk5Y4zvN3PO01o7tdbTez977/9d+EVscy/b3Ms297LN3Z66j3/FAgCE8MYOACCEsAMACCHsAABCCDsAgBDCDgAghLADAAgh7AAAQgg7AIAQwg4AIISwAwAIIewAAEIIOwCAEMIOACDEBxoCiSvBAMptAAAAAElFTkSuQmCC", - "text/plain": [ - "<Figure size 640x480 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "xs = []\n", - "results_vec = []\n", - "\n", - "run_num = 10\n", - "\n", - "for _nsamples in nsamples_vec:\n", - " _nsamples = int(_nsamples)\n", - " xs.append(_nsamples)\n", - "\n", - " # Create synthetic data\n", - " a = np.random.random(_nsamples).astype('float64')\n", - " b = np.random.random(_nsamples).astype('float64')\n", - "\n", - " # Simple function: multiply\n", - " my_function_partial = partial(mul, a, b)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_mul = np.average(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(mul_vec, a, b)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_mul_vec = np.average(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(mul_vec_par, a, b)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_mul_vec_par = np.average(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(mul_vec_gpu, a, b)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_mul_vec_gpu = np.average(runtime) * 10**3\n", - "\n", - " results_vec.append((res_mul,res_mul_vec,res_mul_vec_par,res_mul_vec_gpu))\n", - "\n", - "normal = list(zip(*results_vec))[0]\n", - "cpu = list(zip(*results_vec))[1]\n", - "par_cpu = list(zip(*results_vec))[2]\n", - "gpu = list(zip(*results_vec))[3]\n", - "\n", - "# fig, axs = plt.subplots(4, 1, figsize=(10, 40))\n", - "plt.semilogx(nsamples_vec, normal, label='Baseline')\n", - "plt.semilogx(nsamples_vec, cpu, label='CPU')\n", - "plt.semilogx(nsamples_vec, par_cpu, label='Parallel CPU')\n", - "plt.loglog(nsamples_vec, gpu, label='GPU')\n", - "plt.legend()\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "rNSEPrq90vBF", - "metadata": { - "id": "rNSEPrq90vBF" - }, - "source": [ - "#### Discriminant" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "id": "R7scyBP80wm7", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 579 - }, - "id": "R7scyBP80wm7", - "outputId": "7f9cf223-40c3-4718-dbcb-c19cc74d0bc6" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "<ipython-input-16-1a8345aeb9e4>:23: RuntimeWarning: invalid value encountered in sqrt\n", - " return np.sqrt(b ** 2 - 4 * a * c)\n", - "/usr/local/lib/python3.10/dist-packages/numba/np/ufunc/dufunc.py:190: RuntimeWarning: invalid value encountered in discriminant_vec\n", - " return super().__call__(*args, **kws)\n", - "<timeit-src>:6: RuntimeWarning: invalid value encountered in discriminant_vec_par\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZQ0lEQVR4nOzdd1xWdfvA8c+92aAgIAiyVIZ7z9ypubJlimXzaWjjZ3s6esp2Nmw87ecRR1mmaVmKmTNnWiqgbBVZInvc6/z+OEqaIwdwM6736+XLzuE+51w3IVx8x3VpFEVREEIIIYQQDZ7W0QEIIYQQQoiaIYmdEEIIIUQjIYmdEEIIIUQjIYmdEEIIIUQjIYmdEEIIIUQjIYmdEEIIIUQjIYmdEEIIIUQjIYmdEEIIIUQjoXd0ADXNbreTlZWFu7s7Go3G0eEIIYQQQlwRRVEoKSkhICAArfbCY3KNLrHLysoiKCjI0WEIIYQQQtSow4cP06pVqwu+ptEldu7u7oD65j08PBwcjRBCCCHElSkuLiYoKKg6x7mQRpfYnZp+9fDwkMROCCGEEI3GxSwxk80TQgghhBCNhCR2QgghhBCNhCR2QgghhBCNRKNbY3exbDYbFovF0WEIBzMajf+4dVwIIYRoKJpcYqcoCtnZ2RQWFjo6FFEPaLVaQkNDMRqNjg5FCCGEuGJNLrE7ldT5+vri4uIiRYybsFPFrI8dO0ZwcLB8LQghhGjwmlRiZ7PZqpM6b29vR4cj6oEWLVqQlZWF1WrFYDA4OhwhhBDiijSpxUWn1tS5uLg4OBJRX5yagrXZbA6ORAghhLhyTSqxO0Wm3MQp8rUghBCiMal3iV1hYSHdu3enc+fOtG/fno8//tjRIQkhhBBCNAj1LrFzd3dnw4YN7Nmzh23btvHSSy9x/PhxR4clgJCQEObNm1d9rNFo+O677xwWjxBCCCHOVO8SO51OV70GrqqqCkVRUBTFwVE53m233YZGo6n+4+3tzciRI/njjz8cFtOxY8cYNWqUw54vhBBCiDPVeGK3YcMGxo4dS0BAwHlHdObPn09ISAhOTk706tWL7du3n/HxwsJCOnXqRKtWrXjsscfw8fGp6TAbpJEjR3Ls2DGOHTtGfHw8er2eMWPGOCwef39/TCaTw54vhBBCiDPVeGJXVlZGp06dmD9//jk/vmTJEmbMmMHMmTPZvXs3nTp1YsSIEeTm5la/xsvLi71795KWlsbChQvJycmp6TAbJJPJhL+/P/7+/nTu3Jknn3ySw4cPk5eXB8ATTzxB27ZtcXFxISwsjOeee+6M7hp79+5l8ODBuLu74+HhQbdu3di5c2f1xzdt2sSAAQNwdnYmKCiIBx98kLKysvPGc3rinp6ejkaj4dtvv2Xw4MG4uLjQqVMntm7desY1l/oMIYQQQly8Gk/sRo0axb///W8mTJhwzo+/+eab3H333dx+++1ER0fz4Ycf4uLiwmeffXbWa/38/OjUqRMbN2487/OqqqooLi4+48/FUhSFcrPVIX+udHq5tLSUBQsWEBERUV2Tz93dnS+++IIDBw7w9ttv8/HHH/PWW29VXxMbG0urVq3YsWMHu3bt4sknn6yu3ZaSksLIkSO5/vrr+eOPP1iyZAmbNm1i+vTplxTXM888w6OPPsqePXto27YtkyZNwmq11ugzhBBCiPpAURRySyodHcYZ6rRAsdlsZteuXTz11FPV57RaLcOGDase2cnJycHFxQV3d3eKiorYsGED991333nvOXfuXGbPnn1Z8VRYbEQ//9NlXXulDswZgYvx0j79K1euxM3NDVBHRlu2bMnKlSure50+++yz1a8NCQnh0UcfZfHixTz++OMAZGZm8thjjxEZGQlAmzZtql8/d+5cYmNjefjhh6s/9s477zBw4EA++OADnJycLirGRx99lNGjRwMwe/ZsYmJiSE5OJjIyssaeIYQQQjia3a7w/Ip9rD2Qy5J7etPa29XRIQF1vHkiPz8fm82Gn5/fGef9/PzIzs4GICMjgwEDBtCpUycGDBjAAw88QIcOHc57z6eeeoqioqLqP4cPH67V9+BIgwcPZs+ePezZs4ft27czYsQIRo0aRUZGBqBOc/fr1w9/f3/c3Nx49tlnyczMrL5+xowZ3HXXXQwbNoyXX36ZlJSU6o/t3buXL774Ajc3t+o/I0aMwG63k5aWdtExduzYsfq/W7ZsCVA9zV5TzxBCCCEcyW5XeHrZn6xcv58ee9ay53Cho0OqVu9aivXs2ZM9e/Zc9OtNJtNlL+B3Nug4MGfEZV17pZwNuku+xtXVlYiIiOrjTz75BE9PTz7++GNGjx5NbGwss2fPZsSIEXh6erJ48WLeeOON6tfPmjWLyZMns2rVKn788UdmzpzJ4sWLmTBhAqWlpdxzzz08+OCDZz03ODj4omM8vS3XqeK/drsdoMaeIYQQQjiKza7wxNK9FH/7LR/vX4mbpYJWhSOAQEeHBtRxYufj44NOpztrM0ROTg7+/v51GQqgJh6XOh1an2g0GrRaLRUVFWzZsoXWrVvzzDPPVH/81Eje6dq2bUvbtm35v//7PyZNmsTnn3/OhAkT6Nq1KwcOHDgjcaxpdfEMIYQQorZYbXZe+OBHeix6n47HUwEwRUdh8PV1cGR/qdOpWKPRSLdu3YiPj68+Z7fbiY+Pp0+fPld07/nz5xMdHU2PHj2uNMx6q6qqiuzsbLKzs0lISOCBBx6gtLSUsWPH0qZNGzIzM1m8eDEpKSm88847LFu2rPraiooKpk+fzvr168nIyGDz5s3s2LGDqKgoQN1Ru2XLFqZPn86ePXs4dOgQy5cvr9GNDXXxDCGEEKI2mCsqWXD/81z//hN0PJ6K3eSE7+OPE/rVVzhFRzs6vGo1PlxVWlpKcnJy9XFaWhp79uyhefPmBAcHM2PGDKZOnUr37t3p2bMn8+bNo6ysjNtvv/2Knjtt2jSmTZtGcXExnp6eV/o26qXVq1dXr1tzd3cnMjKSr7/+mkGDBgHwf//3f0yfPp2qqipGjx7Nc889x6xZswC18PPx48e59dZbycnJwcfHh+uuu65640nHjh359ddfeeaZZxgwYACKohAeHs7EiRNrLP66eIYQQghR08pzctl54y30ylXXrVd06UX7117E2Kp+TL+eTqPUcFuH9evXM3jw4LPOT506lS+++AKA9957j9dee43s7Gw6d+7MO++8Q69evWrk+acSu6KiIjw8PM74WGVlJWlpaYSGhsoOTAHI14QQQogLKz1+gh0TJuGfm0GhyQ379Bn0vevm6nXkdeFCuc3f1fiI3aBBg/6xRtv06dNl+k0IIYQQ9VphQQlbbryN0NwMikxu2N/+iH6Dujo6rAtquDsHhBBCCCFqSU5BCRsn3UlM1kHKDU6Y3nyXLvU8qYM63jxRm5rC5gkhhBBC1L7M/FJ+uGU6MRl/YtYZcHl9Hl2G9nZ0WBel0SR206ZN48CBA+zYscPRoQghhBCigUrKLmbZnY/SO2U7No0W97mvEjVioKPDumiNJrETQgghhLgS+5KPsfy+p7g66VcAPGa/QNi4kQ6O6tLIGjshhBBCNGlVhw5x8OMvMf+wkrHWKgDcH3+SVjdd5+DILp0kdkIIIYRochSzmZL4eE4sXET5jh3oUZOifC8/2syYjv9NNzg6xMvSaBK7+fPnM3/+fGw2m6NDEUIIIUQ9pSgKBV98yfHPPsWWlw+ATaNlq38Maf1G8vSzt+DmZPiHu9RfjSaxawqdJ4QQQghx+exmM8eeeZbi779Xj5s15+uW3VkZ1JOojhH855buOBt1Do7yysjmiQYkOzubBx54gLCwMEwmE0FBQYwdO7a6925ISAgajQaNRoOrqytdu3bl66+/rr7+tttu49prrz3rvuvXr0ej0VBYWFhH70QIIYSoW9YTJ8i84w41qdPpKL77IW4Y/BRftL2ajl3a8vGtDT+pA0nsGoz09HS6devGunXreO211/jzzz9ZvXo1gwcPZtq0adWvmzNnDseOHeP333+nR48eTJw4kS1btjgwciGEEMKxzBkZZNw8iYqdu9C6uZH7zMtMKQimwq5hRIwfH07phpOh4Sd10IimYhu7+++/H41Gw/bt23F1da0+HxMTwx133FF97O7ujr+/P/7+/syfP58FCxbw/fff07dvX0eELYQQQjhU+e7dHLl/GrbCQvQBLdk/fRaP7CzFZlcY07Elb03sjEHXeMa5Gs87acQKCgpYvXo106ZNOyOpO8XLy+uc1+n1egwGA2azuZYjFEIIIeqfolWryJx6G7bCQpzat2fd9Jd5eHsJNrvCjd1aMa+RJXXQiEbsLmtXrKKApbz2groQgwtoNBf10uTkZBRFITIy8qJvbzabeeONNygqKmLIkCGXG6UQQgjR4CiKwvGP/kPevHkAuA4dyidXTeW/23MBmD44gkeubovmIn8ONySNJrG7rF2xlnJ4KaB2Azufp7PAePbo27koinLRt33iiSd49tlnqaysxM3NjZdffpnRo0dfbpRCCCFEg2I3m8meNZuib78FwOPWqbwQOITVv+ei0cDscTHc2ifEsUHWokaT2DVmbdq0QaPRkJiY+I+vfeyxx7jttttwc3PDz8/vjN9GPDw8yMjIOOuawsJCdDrdOad5hRBCiIbCkpXFkYcepvLPP0GrxfPxJ3moMpwdCXkYdVrm3dyZazq0dHSYtappJ3YGF3XkzFHPvkjNmzdnxIgRzJ8/nwcffPCsBKywsLB6nZ2Pjw8RERHnvE+7du1YvHgxVVVVmEym6vO7d+8mNDQUg6HhFmQUQgjRtJVt2cLRGY9gKyxE6+mJ85wXue2AnoM5J3B30vPxrd3pHebt6DBrXeNaMXipNBp1OtQRfy5xXv/U+sGePXvyzTffcOjQIRISEnjnnXfo06fPRd0jNjYWjUbDrbfeyq5du0hOTuazzz5j3rx5PPLII5fzGRRCCCEcSrHbyf/wIzLvulvdJBEdjeajL5i4Gw7mlOLnYeLre/s0iaQOmvqIXQMSFhbG7t27efHFF3nkkUc4duwYLVq0oFu3bnzwwQcXdQ8vLy82btzIk08+ybhx4ygqKiIiIoI333yTO++8s5bfgRBCCFGzbMXFZD35FKXr1gHgef11HLttOncs/JOiCgvhLVz57529CPRydnCkdUejXMrK/Abg1OaJoqIiPDw8zvhYZWUlaWlphIaG4uTk5KAIRX0iXxNCCNEwVSYd5MiDD2DJyERjMOD3/HPs6TCQ++J2UWmx0zXYi0+n9qCZq9HRoV6xC+U2f9dopmLnz59PdHQ0PXr0cHQoQgghhKhFRd9/T/rEiVgyMtEHtKT1wjh+jejL3f/dSaXFzqB2LYi7q3ejSOouVaNJ7KZNm8aBAwfYsWOHo0MRQgghRC1QzGayX/g3WY89jlJZiWvfvoR+8w2Litx4eMkerHaFCV0CG03f18sha+yEEEIIUe/ZKyvJvPMuKnbtAsD73nvwmT6dN+KTmf9LCgB39Avl2dFRaLWNr/DwxZLETgghhBD1Xs7LL1Oxaxdad3cCXnkFl0GDeOa7P1m0/TAAj41ox/2DwhtlN4lLIYmdEEIIIeq14p9/pnDxEgAC572FvmdvpsXtZvX+bLQaeHFCByb1DHZwlPWDJHZCCCGEqLcsWVkce/Y5ALzvuhOlW09u/3wHW1OPY9RpeWdSZ0a2b9zdJC6FJHZCCCGEqJcUq5Wjjz+OvbgYpw4d0Nx5L5M+/o19R4txNer4+Nbu9I3wcVx8ilLvpn4lsRNCCCFEvZT/4UdU7NyF1tUV75df4drPdpKaV4a3q5Evbu9Jh1aeDo3vxW0vcqzsGP/q+C86tejk0FhOaTTlTqSOnRBCCNF4lO/YQf777wPgP2smy3M1pOaV4euutghzdFJnsVlYnb6aDUc2UGmtdGgsp2s0iZ3UsasdGo2G7777DoD09HQ0Gg179uy56OsHDRrEww8/XCuxCSGEaJxshYUcfexxsNvxHD8et9Fj+HRTGgD3DwonrIWbgyOErce2UlRVhLeTN939ujs6nGqNJrFrzG677TY0Gg0ajQaj0UhERARz5szBarU6OrQaYTabefXVV+nUqRMuLi74+PjQr18/Pv/8cywWC/DPn4MvvvgCLy+vc97/9ORUCCFE/aYoCseeew5rdjbG1q3xe+451hzIIf14OZ7OBm7sHuToEAH4Kf0nAK4OuRqdtv4UQ5Y1dg3EyJEj+fzzz6mqquKHH35g2rRpGAwGnnrqqUu+l81mQ6PRoNU6Pq83m82MGDGCvXv38sILL9CvXz88PDz47bffeP311+nSpQudO3cGavZzIIQQon4qXLKEkjVrwWAg4I030Lm58snGvQDE9grG1eT41KXKVkV8ZjwAI0NGOjiaMzn+J7u4KCaTCX9/f1q3bs19993HsGHDWLFiBQBvvvkmHTp0wNXVlaCgIO6//35KS0urrz01mrVixQqio6MxmUxkZmayY8cOhg8fjo+PD56engwcOJDdu3dfUlz79u1j1KhRuLm54efnxy233EJ+fv5FXz9v3jw2bNhAfHw806ZNo3PnzoSFhTF58mS2bdtGmzZtLupzIIQQouGrPHiQnLkvA+A7YwbO7WPYnXmCnRknMOg03NY3xLEBnrTp6CbKLGX4ufjR2aejo8M5gyR2DZSzszNmsxkArVbLO++8w/79+/nyyy9Zt24djz/++BmvLy8v55VXXuGTTz5h//79+Pr6UlJSwtSpU9m0aRO//fYbbdq04ZprrqGkpOSiYigsLGTIkCF06dKFnTt3snr1anJycrjpppsu+n3ExcUxbNgwunTpctbHDAYDrq6uF/U5EEII0bDZKyvJeuQRlKoqXAcMoPnUWwH4ZGMqAOM7B+Lr4eTIEKv9lKZOw44w+aP9aACYyxwc0V8cP57pQIqiUGGtcMiznfXOl1X7RlEU4uPj+emnn3jggQcAzticEBISwr///W/uvfde3j+5mwjAYrHw/vvv06nTX9uxhwwZcsa9//Of/+Dl5cWvv/7KmDFj/jGW9957jy5duvDSSy9Vn/vss88ICgri4MGDtG3b9h/vcejQIQYNGvSPrzvduT4HQgghGracV16h6lAyOh8fAua+hEarJfN4Oav3ZQNw94AwB0eoKreUs/7kNOyofT+B2Qy7/wu973NwZKomndhVWCvotbCXQ569bfI2XAwuF/36lStX4ubmhsViwW63M3nyZGbNmgXA2rVrmTt3LomJiRQXF2O1WqmsrKS8vBwXF/UZRqORjh3PHC7Oycnh2WefZf369eTm5mKz2SgvLyczM/OiYtq7dy+//PILbm5n705KSUm5qMROUZSLehZc+HMghBCi4Spes4bCRYsBCHj5ZfQ+atHhzzanYVfgqrYtaOfv7sgQVcdT2PDjA1TYzbSyWIjRu8OI56HLLY6OrFqTTuwaksGDB/PBBx9gNBoJCAhAr1f/16WnpzNmzBjuu+8+XnzxRZo3b86mTZu48847MZvN1Ymds/PZI4RTp07l+PHjvP3227Ru3RqTyUSfPn0uenqztLSUsWPH8sorr5z1sZYtL669S9u2bUlMTLyo157vcwDg4eFBWVkZdrv9jE0hhYWFAHh6OrbekRBCiHP7e8swt/79ACgsN/PVzsMA3D0gtO4CqiqB4ylQng/lBVB+HMryofgo7PuG1d4e4OrCSM8oNLGfg7NX3cV2EZp0Yuesd2bb5G0Oe/alcHV1JSIi4qzzu3btwm6388Ybb1QnNF999dVF3XPz5s28//77XHPNNQAcPnz4kjY+dO3alW+++YaQkJAzkqxLMXnyZJ5++ml+//33s9bZWSwWzGZz9Tq7830OANq1a4fVamXPnj107dq1+vypzSAXM3oohBCiblW3DCsqwqlDB1o8+GD1x+K2ZVJuthHp707/umobVl4A83tBWe45P1yq0bDR1RVQGDn05XqX1EETT+w0Gs0lTYfWRxEREVgsFt59913Gjh3L5s2b+fDDDy/q2jZt2vC///2P7t27U1xczGOPPYaz88UnnNOmTePjjz9m0qRJPP744zRv3pzk5GQWL17MJ598gk73z3V9Hn74YVatWsXQoUN54YUX6N+/P+7u7uzcuZNXXnmFTz/9tLrcyYXExMRw9dVXc8cdd/DGG28QFhZGUlISDz/8MBMnTiQwMPCi35cQQoi6cXrLsMA3XkdjNAJgttr5cks6oK6tq7N+rOvnqkmd0Q2ahYCL919/XH34xajBfGgBIR4htG1WPwcMZFdsA9epUyfefPNNXnnlFdq3b09cXBxz5869qGs//fRTTpw4QdeuXbnlllt48MEH8fX1vehnBwQEsHnzZmw2G1dffTUdOnTg4YcfxsvL66Jr5JlMJtasWcPjjz/ORx99RO/evenRowfvvPMODz74IO3bt7/oeJYsWcLAgQO55557iImJ4cEHH2T8+PF88sknF30PIYQQdaN8584zWoYZg4OrP7Zibxa5JVX4eZgY2ymgbgLKS4Idn6r/ffNCuG8zTF0BN34Oo1+HQU+yukJdgz4qdFTdJZuXSKNcyur1emz+/PnMnz8fm83GwYMHKSoqwsPD44zXVFZWkpaWRmhoKE5O9WPLtHAs+ZoQQoi6V7ppM1lPPIHt+HE8x48n4JWXqz+mKAqj3t5IYnYJT4yM5L5B4XUTVNyNcOhnaHcNTFp01oeLqooY9NUgrHYry8cvJ8yr7nbpFhcX4+npec7c5u8azYid9IoVQggh6jd7VRU5c+dy+K67sB0/jqldO/yee+6M12w8lE9idgmuRh2TewWf5041LDleTeq0ehj+wjlfEp8Zj9VupW2ztnWa1F2qJr3GTgghhBB1ozLpIFmPPUbVwYMANJs8Gd/HHkX7t7XdH58sSHxTjyA8nQ21H5jNCj89o/53z3+Bz7k36a1OWw3UvxZifyeJnRBCCCFqjWK3c2LBAnJffwPFbEbn7U3LF/+N+zmK0yccK2bjoXy0GrijXx2VOPn9v5CXAE5ecNVj53zJxiMb2ZatVtGQxE4IIYQQTZIlN5djTz9D2aZNALgOvIqAF1+sLkD8d59sTANgVIeWBDWvvaoVu3J2UWou5SqfTmjWvaieHPQUuDQ/67W/HfuNh395GLtiZ0zYGII8gmotrpogiZ0QQgghalxJfDzHnn0O24kTaEwmfJ94nGaTJp13N2lOcSUr9h4Faq992InKE7y641VWpq4EoJexBc+ZC2nt3QZ63HnW63dm7+SB+Acw280MDhrMnH5zaiWumiSJnRBCCCFqjL28nJyXX6HwZLF8U1QUga+/hin8wrtbv9iSjsWm0DOkOZ2DvGo0JkVRWJ2+mpe3v0xBZQEaNBi0eraZ87gusCX/Ch7EHcDpK/r25O5hWvw0Km2V9A/sz+sDX8egrYM1f1eo0eyKFUIIIYRjVfy5j7TrrleTOo2G5nfeQciSxf+Y1JVVWYn7LQOAu2q4fVh2WTYPrHuAxzc8TkFlARFeESy4ZgHfGdrQp6ICs1bDe0d+4obvb2B3jtqtaH/+fu5bex/l1nJ6tezFW4Pewqgz1mhctUVG7IQQQghxRRSbjeOffEreu++C1Yrez4+AV17GtXfvi7r+q52HKa60EurjyrAovxqJya7YWXpwKW/uepMySxl6rZ5/dfwXd7W/C8ORnZC4mo80Wn4c9wqvHIwjtSiVqaunMiZsDBuObKDUUkpX3668M/gdnPQNp86pJHZCCCGEuGyWrCyyHn+C8p07AXAfMYKWs2eh8/K6qOutNjufblI3TdzZPxSt9so7OqQXpTNr6yx25ewCoGOLjszuM5uIZhFQdhxWPQKApuutXNPlX/SLnshbu97im0PfVK+/69iiI+8Pe7/BtR6VxE4IIYQQl6Vo1SqyZ83GXlKC1sUFv2efxXPCtZfUbuun/TkcOVFBMxcD13dtdcUx5ZXnMXnVZEosJTjrnXmo60Pc3O5mdFodHE+BuBugIBWcm8FgtX6dp8mTWX1nMS58HK/vfB1XgytvDHoDV4PrFcdT12SNXQOSnZ3NQw89REREBE5OTvj5+dGvXz8++OADysvLAQgJCUGj0aDRaHB1daVr1658/fXX1fe47bbbuPbaa8+69/r169FoNBQWFtbRuxFCCNFQ2UpLyXriCbIeeRR7SQlOnToS+t0yvK6bcElJnaIo/OdkQeJb+oTgbNRdcWyLkxZTYikhwiuCZeOXERsVqyZ1mb/BJ8PUpM4rGO74CdzO7I/e1a8rC0cv5OOrP8bDeOHWXfWVjNg1EKmpqfTr1w8vLy9eeuklOnTogMlk4s8//+Q///kPgYGBjBs3DoA5c+Zw9913U1xczBtvvMHEiRMJDAykb9++Dn4XQgghGrry3bvJeuxxLEePglaLz7334nPfvWgMl75jdGfGCfYeLsSo13Jrn9ZXHFuVrYqlB5cCcG+newl0C1Q/sO8bWHYf2KogoCtMXnJWUtdYSGLXQNx///3o9Xp27tyJq+tfQ8NhYWGMHz8eRVGqz7m7u+Pv74+/vz/z589nwYIFfP/995LYCSGEuGyK1Ur+Bx+S/8EHYLdjaNWKgFdfxaVrl8u+58cb1NG667sG4uNmuuIYf0j9gYLKAvxd/RkaPBQUBTbPg7Wz1BdEjoHrPgZjw1o3dymadGKnKApKRYVDnq1xdr7o4erjx4/z888/89JLL52R1J1xv/PcS6/XYzAYMJvNlx2rEEKIps1y9ChHH3ucit1qORDP8ePwe+45dG5ul33PtPwy1iTkAHBn/ysvSKwoCnEJcQDc3O5m9IoCKx+C3V+qL+h9P1z9b9Be+XRvfdZoErv58+czf/58bDbbRV+jVFSQ1LVbLUZ1fu1270LjcnG/MSQnJ6MoCu3atTvjvI+PD5WVlQBMmzaNV1555YyPm81m3njjDYqKihgyZEjNBC6EEKJJKf7hB47NnKVukHBzw3/mTDzHjrni+366KRVFgSGRvkT4Xn6CeMrOnJ0knUjCSefEDcEjYOFESIkHjRZGvgy97rniZzQEjSaxmzZtGtOmTaO4uBhPT09Hh1Mntm/fjt1uJzY2lqqqqurzTzzxBM8++yyVlZW4ubnx8ssvM3r0aAdGKoQQoqGxl5WR/eJLFH37LQDOnToR8MbrGFtd+c7VnekFfLXjCFBz7cNOjdaNaX01ngtvhpw/weAC138KkdfUyDMagkaT2F0OjbMz7XbvctizL1ZERAQajYakpKQzzoeFqf8YnP92r8cee4zbbrsNNzc3/Pz8zpim9fDwICMj46xnFBYWotPpzjvVK4QQoumo2LefrEcewZyRARoN3vfeQ4v777+sDRJ/l5Zfxl3/3YnZZmdEjB+9w5pf8T2Plh7ll8O/ABCbsU9N6lx91U0SgV2v+P4NSdNO7DSai54OdSRvb2+GDx/Oe++9xwMPPPCPyZePjw8RERHn/Fi7du1YvHgxVVVVmEx/LVTdvXs3oaGhGGrgH60QQoiGSbHbKfj8C3LnzQOLBb2/PwGvvoJrz541cv/jpVXc9vl2CsstdGrlyVsTO19SeZTzWZSwCLtip7fJj4jE9aB3gtivIODyN3Y0VFLHroF4//33sVqtdO/enSVLlpCQkEBSUhILFiwgMTERne7iFoPGxsai0Wi49dZb2bVrF8nJyXz22WfMmzePRx55pJbfhRBCiPrKkpvL4bvuJve118BiwX34cMK+W1ZjSV2lxcbd/91JxvFyWjVz5pOpPXAxXvn4UrmlnG8PqdPFUzL+VE+OfbtJJnXQxEfsGpLw8HB+//13XnrpJZ566imOHDmCyWQiOjqaRx99lPvvv/+i7uPl5cXGjRt58sknGTduHEVFRURERPDmm29y55131vK7EEIIUR+V/PILx55+BtuJE2icnPB7+im8bryxRkbTAOx2hRlf7WF3ZiEeTnq+uL0HLdyvvLwJwIqUFZRYSgi22BhQUQm9p0Gnm2vk3g2RRjm9AFojcGrzRFFRER4eZ1aNrqysJC0tjdDQUJycGk5DX1F75GtCCNGU2auqyH3tdU4sWACAKSqKwDdexxRWMxsaTpn7QwIfbUjFoNPwvzt70TvMu0bua1fsjF82lvSSTJ48XkCsdzeY8i3oGte41YVym79rXO9cCCGEEBel6tAhjj7yKFUHDwLQfOqttHjkEbRGY40+53+/ZfDRyULEr93QqcaSOoAtRzaSXpKJq93OeG1zuPGLRpfUXaqm/e6FEEKIJkZRFAoXLybn5VdQqqrQeXsTMPcl3K66qsaftS4xh5nL9wHwyPC2XNslsEbvv2DzHAAmlFXhdvMycLnyHbYNnSR2QgghRBNhPXGCY88+R2l8PACuAwYQMPcl9D4+Nf6sfUeLmL7wd+wK3NS9FdOHnLtaw+VK3fEhm6ty0SgKk/s8Cf4davT+DZUkdkIIIUQTUPbbb2Q9/gTW3Fw0BgO+jz5Cs1tuQaOt+QIZRwsruP2LHZSbbfSP8OHFCR1qbCMGAMf2snDb6+DuzEDnAIK63VVz927gJLETQgghGjHFYiHvnXc5/sknoCgYQ0MJfON1nKKja+V5xZUWbv98O3klVbTzc+f9KV0x6GoweSzLp3hJLCs81V21sf1n1dy9G4Emmdg1so3A4grI14IQojEzZ2Zy9JFHqfxTre/mdeON+D31JNpaKs5vttq5b8EuDuaU4utu4vPbe+DhVIOF720W+Po2ltkLqdA2I8IzjF4BfWru/o1Ak0rsTnVVKC8vP6sNl2iazGYzwEUXeBZCiIZAURSKV6wge/Yc7OXlaD09aTlnDh4jrq7VZz697E82Jx/Hxajjs9t6EOBVwz9rf34OW/pGFgWpmzBio2+p2SneRqBJJXY6nQ4vLy9yc3MBcHFxkS+IJsxut5OXl4eLiwt6fZP6pyCEaMRsJSVkz55D8cqVALh0707Aa69iaNmyVp/77rpklu46glYD8yd3pX2gZ80+IHMbbPuA9S7OHNXr8DR5MjpsdM0+oxFocj/N/P39AaqTO9G0abVagoODJcEXQjQKFXv2cPTRx7AcOQI6HS2mT8P7X/9CU8uzEt/uPsKba9R6eHPGt2dwpG/NP2T9SwAsCIgAWxE3tLkBZ73Mvv1dk0vsNBoNLVu2xNfXF4vF4uhwhIMZjUa0tbAjTAgh6pJis3H844/Je/c9sNkwBAYS8PpruHSp/X6pW1LyeeKbPwC4Z2AYU3q3rvmHpG+G1PUkmpzZaStCp9Fxc2TTbRt2IU0usTtFp9PJuiohhBANnuXYMbIee5zynTsB8Bg9Gv9ZM9G5u9f6sw/llHDP/3ZhsSmM7tiSJ0ZE1s6D1s8FIC60I1QdY3jr4fi7+tfOsxq4JpvYCSGEEA1d8c8/c+y557EXFaF1ccHv+efwHD++TpaX5JZUctvnOyiptNKtdTPeuLETWm0tPDdtA6RvJM/gxA+WfABio2Jr/jmNhCR2QgghRANjLy8nZ+7LFH79NQBOHToQ+PprGFvXwjToOZSbrdz15U6OFlYQ4u3Cx7d2x8lQC7NgigK/qGvr/hPRHXNlJp1adKJTi041/6xGQhI7IYQQoh6zlZZhTkvDnJpCVar6d8Uff2LNyQGNBu+77qLFA9PRGI11E49d4cFFe/jjSBHNXAx8cXtPmrvW0rNTf4HMrRw1OrO0KguAB7s8KBveLqDeJXaHDx/mlltuITc3F71ez3PPPceNN97o6LCEEEKIWqMoCrb8fKpSUjGnpap/p6ZSlZqKNTv7nNfoW7Qg4NVXcO1TdwV6FUXhhZUHWJuQg1Gv5ZOp3Qnxca2th1WP1n0Q3gVr5RF6t+xNz5Y9a+d5jUS9S+z0ej3z5s2jc+fOZGdn061bN6655hpcXWvpC0cIIYSoI4rNhuXIkZOJ28kRuJQUqtLSsBcXn/c6nY8PptBQjOFhmMLCMIaF49KlM9o6/NlotyvM/n4/X27NAOCtmzrTrXXz2ntg8lo4soNUJze+r/xrtE5cWL1L7Fq2bEnLk0UU/f398fHxoaCgQBI7IYQQDYa9ogJzWlr11OmpBM6cno5yvlJbWi2GVq1OJnDhmMLDMIaGYQoLReflVafx/53ZaufRr/eyYm8WGo1aq250x1oseHzaaN17ITHYq44xOGgwHVp0qL1nNhI1ntht2LCB1157jV27dnHs2DGWLVvGtddee8Zr5s+fz2uvvUZ2djadOnXi3XffpWfPs4dWd+3ahc1mIygoqKbDFEIIIa6Y9cQJdcTttKlTc2oqlqwsNTk5B43JhDE09OTIW5iawIWFYwxpjdZkquN38M/KzVbuXbCbDQfz0Gs1vHFTJ8Z3Dqzdhx78CbJ2c8DFnTVVx9CgYXqX6bX7zEaixhO7srIyOnXqxB133MF111131seXLFnCjBkz+PDDD+nVqxfz5s1jxIgRJCUl4ev7V6XqgoICbr31Vj7++OOaDlEIIYS4aIrdjiUrS03cTk/gUlKwFRae9zqdp+dfI29h4ZjC1JE4Q0AAmgZSGL2w3MztX+zg98xCnA06PrylGwPbtqjdhyoK/PIiAO8GR0JVDteEXUPbZm1r97mNhEZRzvMrRU3cXKM5a8SuV69e9OjRg/feew9Q+3UGBQXxwAMP8OSTTwJQVVXF8OHDufvuu7nlllsu+Iyqqiqqqqqqj4uLiwkKCqKoqAgPD4+af1NCCCEaJXtVFeb0jJNTp6mYU1KpSkvDnJaGUll53usMAQFqAhcWqiZw4epInL55La4/qwPZRZXc8uk2DuWW4uls4PPbe9A1uFntPzhhJSyJZZebF7e18ECv0bP82uUEewTX/rPrqeLiYjw9PS8qt6nTNXZms5ldu3bx1FNPVZ/TarUMGzaMrVu3AuqOm9tuu40hQ4b8Y1IHMHfuXGbPnl1rMQshhGhcbEVF1VOm1QlcaqraX9VuP+c1GoMBY0jIX1Onoaf+DkXr3Pj6labmlXLLp9s5WliBv4cT/72zJ239ar+TBXY7rJ+LArwTGAbmfCa0mdCkk7pLVaeJXX5+PjabDT8/vzPO+/n5kZiYCMDmzZtZsmQJHTt25LvvvgPgf//7Hx06nHvB5FNPPcWMGTOqj0+N2AkhhGi6FEXBmp192tRpCubUNKpSU7Hl55/3Oq27+1lr30xhoRhatUKjr3f7DWvFn0eKmPr5dgrKzIT5uPLfO3vSqplL3Tw8YQXk7GOzR3N2m/Mxao38q+O/6ubZjUS9+yrt378/9vP8xnQuJpMJUz1cbCqEEKL2KWYz5sOHqUpJOXMELi0Npbz8vNfp/f2rp06NYaGYTk6h6nx8mnTx2y3J+dz9352UmW10CPTki9t74O1WRz9j7ba/Ruv8g8Bygpsjb5aesJeoThM7Hx8fdDodOTk5Z5zPycnB31/+xwkhhDg3W2np3xI39W/z4cNgtZ77Ir0eY3DwmVOnYep/69ykhNbfrd53jAcX7cFss9M33JuPbumGu5Oh7gLYvwzyElnr6U2C5QQuehfu7HBn3T2/kajTxM5oNNKtWzfi4+OrN1TY7Xbi4+OZPv3KtjHPnz+f+fPnY7PZaiBSIYQQdU1RFKx5eSd3n56aOlX/tv5tQOB0WheXM8uGhIViCg/HGBSExlCHiUkDtmh7Js8s+xO7AiNj/Jl3c+fa6f16PnYbrH8ZG/CuX0uwFHNrzK00d2rYG1AcocYTu9LSUpKTk6uP09LS2LNnD82bNyc4OJgZM2YwdepUunfvTs+ePZk3bx5lZWXcfvvtV/TcadOmMW3atOqdI0IIIeonxWrFfPiwWsA3JeWvEbjUNOwlJee9TtfCB9NpU6enEji9n1+Tnj69Eoqi8P76FF77KQmAST2D+Pe1HdBp6/jz+edSOH6Ilc1akGYpxtPkya3Rt9ZtDI1EjSd2O3fuZPDgwdXHpzY2TJ06lS+++IKJEyeSl5fH888/T3Z2Np07d2b16tVnbagQQgjRsNnLy9VyIadNoZrTUjGnZ1y4+0JQq+o1b6fvPtXJL+01ym5XePGHBD7dlAbA/YPCeWxEu7pPkm1W+PUVzMD7Pj5gLeOO9nfgbqyDXbiNUK3WsXOES6n1IoQQ4sooioKtoOCv4r0nG9hXpaZgzTp23us0Tk7qiFto2Gn9T8MwhoSgNRrr8B00TRabnSe++YNvdx8F4NnRUdw1IMwxwexZCN/dxyJvP17yMOHj7MMP1/2As77xlZG5XPW2jp0QQoiGSbHZsGRlnbX2zZySgq2o6LzX6Zo1O5m4nbb2LTQMQ0DLBtN9obGpMNuYvnA38Ym56LQaXr2+I9d3a+WYYGwW+PUVKjQa/tPMC2wV3NPxHknqrkCjSexk84QQQlw5e2Ul5oyMv/qfnhyBM6eno5zW5ecMGg2GwMC/1r6dNgKnb1YHnQrERSuqsHDXlzvYkX4Ck17L/MldGRbtwKVQexfBiXQWtWhJvq2CQLdArm9zvePiaQRkKlYIIZogW2HhX90XTut/ajly5PzN641GtftCeNiZU6ghIY2y+0Jjk1tcya2fbScxuwR3Jz2fTu1Bz1AH7jq1muHdbpQUH2ZkWATF9ipe7P8i48LHOS6mekqmYoUQQqDY7ad1X0ih6uTUaVVaGrbjx897ndbDQ03Y/jaFaggMRKOrwxIYosZkHC/jlk+3k1lQTgt3E1/e3pPoAAcPfuxZAEWZfOkbQLG9ijDPMEaHjnZsTI2AJHZCCNHAKWYz5owMNXH7WwKnVFSc9zp9y5Z/a5+ljsDpvL2lfEgjsj+riKmf7SC/tIrg5i4suLMXwd511CLsfEpy4NdXKdBq+Z+bMygWpneZjk4rvzhcKUnshBCigbCVlJy1+9ScerL7wvnWF+v1GFu3Pm0E7mT/09AQtK7SfaGx25Z6nLu+3ElJlZWolh58eUcPfN2dHBtUZTHEXQ8lx/g0oDXlioVo72iGBQ9zbFyNRKNJ7GTzhBCiMVAUBWtu7llr38wpKVjz8s57ndbVFWN4OKbQUPXvkzXgjEGtpPtCE7X2QA7TFu6mymqnZ0hzPp7aHU9nB38tWKtgyRTI/pNs9xYsdtaD3cKDXR6UUeIaIpsnhBDCARSrFXPm4bOmTs2pqdhLS897nd7Xt3rK9PQ2WnrfFvKDUVT7eudhnvz2T2x2hWFRvrw3uWvdtgg7F7sdvr0L9n0DBldm97qBpUd/oatvV74Y+YV8/V6AbJ4QQoh6wl5WRlVauprAnT4Cl5kJ5+u+oNNhDApSR97CQtWp07BQjGFh6NylGr+4sP9sSOGlHxIBuL5rK165vgN6nYNrBioK/PyMmtRp9fww5GGWHvwfAA92ldG6miSJnRBCXCFFUbAdP37W2req1FSsxy7QfcHZ+a+p01MJXHgYhuBg6b4gLpmiKLyyOokPf00B4O4BoTw1KgptXfd9PZct78Jv7wOwefAjPHNoEQCTIyfTza+bIyNrdCSxE0KIi6TYbFiOHj3ZfeGv/qdVaWnYL9R9wdv7rLVvpvAw9P7+0n1B1Airzc4zy/axZOdhAJ4YGcm9A8Pqx0jY3iWw5jn1PwdM5/8yv8OqWBkVMoonej7h4OAaH0nshBDib+yVlZjT0v5K3E4W8jWnp6OYzee+SKPB0KrVWWvfTGGh6Ly86jR+0bRUWmw8uOh3fj6Qg1YDL03owM09gx0dlio5HpbfD0BK91uZlvsrFdYK+gb05cX+L6LVyC82Na3RJHayK1YIcamsJ06c3H16Zv9Ty9GjF+6+EBp6RuJmDA9Xuy+YTHX8DkRTV1Jp4e7/7uS31AKMOi3vTOrMyPYtHR2W6uhuWHIL2K1kRY/hXxUHKDIX0dGnI28NeguDTnZr1wbZFSuEaNQUux1L1rGTa99OS+BSUrGdOHHe63SenmrCdrL/6akCvoaAAOm+IOqF/NIqbvt8O/uOFuNm0vOfW7vRN9zH0WGpjqfAp1dDeT4Fof2Z6g7pJZmEeYbx5cgv8XLycnSEDYrsihVCNDl2sxlzevrf1r6lYk5Lv2D3BUNAwF9TpyfXvhnDw9E1a1Y/1icJcQ6HC8q55dNtpB8vx9vVyJd39KR9oKejw1KV5sKC66E8nzL/9tzfzIX0E4n4u/rz0fCPJKmrZZLYCSEaFFtxcXXx3lNTp1WpKVgOH1HrZJ2LwYAppDXGsL9G4IxhoZhCQ9G6OLi1khCXQFEUfvgzm1nf7yevpIpAL2f+d2dPwlq4OTo0VVUJxN0IJ9IwewXzUHA4+/N+x8vkxUfDP8Lf1d/RETZ6ktgJIeodRVGw5uSctfatKjUFW17+ea/Turmd1bjeFBaGoVUrNHr5dicatkM5JcxcsZ8tKccBaOvnxn/v6IW/p4NbhJ1iNcNXt8KxPdhcvHkyqg/bsrfirHfmg2EfEOYZ5ugImwT5TieEcBjFYsF8+LCawP2tBpy9vPy81+n9/P5qmRX+VxcGfQvpviAan+JKC2+vPcSXW9Kx2hWMei33DQznvkHhju8mcYrdDiumQ8o6FIMLL3YdzZqj69Fr9bw9+G3a+7R3dIRNhiR2QohaZystw5yWenYD+8xMsFrPfZFOhzE4+KwROGNoKDq3ejLtJEQtstsVlv1+lLk/JpJfWgXA8Gg/nhsdTbB3PVtCED8L/lgCGh3v9Z7E10fWoEHDywNepk9AH0dH16Q0msROyp0I4ViKomDLzz9j7dupPqjW7OzzXqd1ccEYFvbX2rdTI3BBQWik+4JoovYdLeL55fvYnVkIQKiPKzPHRjOona9jAzuXre/D5rcBiOs7lf8cWQPAs72fZUTICEdG1iRJuRMhxCVRrFYsR46ojev/1sDeXlx83ut0Pj5qwhYehum0KVS9v79Mnwpx0okyM6//nMTC7ZkoCrgYdTwwpA139A/BpK8n066n+3MpfHMnACt7TuGpvA0ATOs8jXs73evIyBoVKXcihLhi9ooKtfvC39a+mdPTUc7XvF6rxRDU6ozEzRim/q3zrCelGISoh2x2hcU7MnntpyQKy9V/X+M6BfD0NVH1Z3PE36X+CsvU5G1jp+t4Ln8LoPZ/vafjPY6MrEmTxE6IJs5aUPDX2rfTRuAsWVnnvUbj5KR2Xzg1hRoerm5kCGkt3ReEuES7Mk4wc8U+9h1VR7zb+bkze3wMvcO8HRzZBRz7AxbHgt3CnnbDmFG2T+3/Gqr2f5VReMeRxE6IJkDtvpClTpn+bQrVVlh43ut0zZpVj7j9NQIXjiGgpTSvF+IK5ZZU8sqPSXyz+wgA7k56Zgxvyy29W6PX1eN/XyfSIe4GMJeQHNKLaWRTaaukX0A/Xuwn/V8dTRI7IRoRe1UV5vQMNXE7OXValZqKOS0Nparq3BdpNGr3hdPXvoWHq+VDmjWr2zcgRBNgsdn5cks6b689REmVuiv8pu6teHxkJD5u9XzEu7xA7SpRmsNR/2jucbFQXFFMxxYdeXPQm9L/tR6QxE6IBshWVHTm2reTmxcsR87ffUFjMGAMCcF4smhvdRutkBC0zs51/A6EaJq2JOczc8V+DuWWAtCxlSezx8XQJbgB/BJls8DXU+F4Mse9grjHx5PcsqOEe4bz/tD3cTHUsxIsTZQkdkLUU4qiYM3OPm3t26n+p2nY8i/QfcHD48zE7eRUqqFVK2leL4SDZBVW8OIPCaz64xgAzVwMPDEykpu6B6HVNoD1aIoCPz4OaRsoNblxX+swMorTaOnakg+Hf4inSTZH1ReNJrGTOnaioVLMZsyZmWridkYD+zSUC3Vf8Pc/ufYtHFNYKMawcEzhYei8vWXhshD1RJXVxicb03hvXTIVFhtaDUzp3ZoZw9vi5dKA6jTu+AR2foYFDQ9H9iShOJlmpmbS/7Uekjp2QtQRW2npabtPU6sTOXNmJpzvFxK9HmPr1mckbsbQsJPdF1zr9g0IIS7JL4m5zP5+P+nH1V/QeoQ0Y/a49kQHNLCfTSnrYMENKIqNWR2H8W3JQVz0Lnw24jNifGIcHV2TIHXshHAQRVGw5uadXPuWcnLkTR2Bs+bmnvc6ravrX7tPq6dQwzEGtUJjkMXIQjQkGcfLeGHlAdYmqP/mW7ibePqaSK7tHNjwRtPzk+Hr20CxERc5kG9LDqLVaHlt4GuS1NVTktgJcRkUqxXz4cN/mzpV/7aXlp73On2LFmckbqawUIzh4eh9fRveN3whxBkqzDbeX5/MRxtSMVvt6LUa7ugfygNDInB3aoC/oFWcgEUTobKIzUGdeM2cAcCMbjO4qtVVDg5OnI8kdkJcgL28nKq0tDMTuNQUzBmZcIHuC8agoLPWvhlDQ9HJ8gAhGh1FUVi9L5t/r0rgaGEFAP0jfJg1LpoIX3cHR3eZbFZ1pO54MmnNgnjM2YzdYmd8+Hhujb7V0dGJC5DETjR5iqJgKyhQp05T06ob2FelpmDNOnbe6zTOzhhDQzCdtvbNFB6GoXVrtNK8XogmITm3hFkrDrApWd2pHujlzHNjohgR08B7IP/0NKSup8joxgMBLSkpz6Zzi8483+f5hv2+mgBJ7ESTodhsWLKyzlr7Zk5NxVZUdN7rdM2bn7X2zRQWir6ldF8QoqkqqbTwTvwhPt+cjtWuYNRruXdgOPcNDMfZ2MDLCu38DLZ/hBV4NKonGcXJ+Lv689bgtzDq5JfW+k4SO9Ho2CsrMaen/7UD9VQR3/T0C3dfaNVK7XsaFn5a/9NQ6b4ghKimKArf7TnKSz8kkleifj8ZFuXH82OiCfZuBAV60zbAD48B8HqnEfxWnICz3pl3h7yLj7OPg4MTF0MSO9Fg2QoLqUpNPWsK1XLkiFpM8xw0RiPG0NDqBO5UAV9jSAhaJ6c6fgdCiIZkf1YRM5fvZ2fGCQBCvF2YOTaGwZG+Do6shhxPgSW3gN3K15EDiStOAOCl/i8R2TzSwcGJiyWJnajXFLsd67FjfzWuP60GnK2g4LzXaT09/2pcf1r/U0NAgHRfEEJcksJyM2/8fJC4bRnYFXA26Jg+JIK7BoRi0jeS7yeVRbBoElQWsqNVB14yZwIwrfM0hrUe5uDgxKWQxE7UC4rZjDkj48yp09ST3RcqKs57nT6g5V9Tp6dNoeqaN5cFvkKIK2KzKyzZcZjXfkrkRLm6C35Mx5Y8fU0UAV6NqL+yzQpL74D8JI54BTLDVcFqtjEyZCT3dLzH0dGJSySJnahTtpKS07ovpKgjcSkpmI8cOX/3BYMBY+tgNXELP62Ib0gIWlfpviCEqHm7M08wc/l+/jyqbqxq6+fGrHEx9A1vhOvM1jwPyWspNbjwQKtgCsuOEu0dzZx+c+QX5Aao0SR20iu2/lC7L+RiTkn5awr1ZAJnzcs773VaN7czp05PJnDGoCA0+kbzpSqEqMfySqp4dXUiX+86AoC7Sc//DW/LLX1aY9A1wl3wu/8Lv83HBjwV04/koiR8nH14Z/A7OOsb0ahkEyK9YsVlUywWzIePnLX2zZyair2s7LzX6X19TyZup+8+DUPv20J+OxRCOITVZue/WzN4a81BSqqsANzQrRVPjIykhbvJwdHVkvTN8N/xYLcwr9MoPi3ej1Fr5PORn9OxRUdHRydOI71iRY2yl5WpI25pf2tgn3mB7gs6Hcbg4L/6n542Aqdzc6vbNyCEEBewNeU4s1bsJymnBID2gR7MHteebq0bcamjE+mwZArYLXzfbiCfFu8HYHa/2ZLUNXCS2AngZPeF48fPWvtWlZaG9dgFui+4uGAKDT1z7VtYGMbgYDTSfUEIUY8dK6rgxVUJrPxD/R7n5WLg8RGRTOwRhE7biGcPKoth4c1QUcAfge2ZZT0KwJ3t72RM2BgHByeulCR2TYxis2E5cqR6yvT0ETh7cfF5r9P5+JyWwIVXd2HQ+/lJ9wUhRINSZbXx6aY03o1PpsJiQ6uByb2CeWR4O5q5NvJfSO02+OYuyEsg28Ofh9z1mKvMDGo1iAe7Pujo6EQNkMSukbJXVmJOSztr7Zs5PR3FbD73RVothlatzmyfFRqGKSwUnZdXncYvhBC1YX1SLrO/P0BavroOuFvrZsweF0P7QE8HR1ZH1s6CQz9RYXDiwZA25JdkEOEVwctXvYxWI7+kNwaS2DVw1hMnTo68ndZ9ISUVS1bW+bsvmEwYQ0P/tvYtHGNIa7SmRrpIWAjRpGUeL2fOygOsTcgBwMfNxNPXRDKhS2DT2bT1exxseQcFeK79YBIK9+Nl8uLdIe/iapDSUY2FJHYNgGK3Y8k6dnLtW+oZDextJ06c9zqdlxfGcLVhvfG09lmGgACZPhVCNAkVZhsf/JrCh7+mYLba0Ws13NY3hIeGtcHdyeDo8OpO5m+w8mEAPup0DT8V7kOv0fPWoLdo5d7KsbGJGiWJXT1iN5tPa15/agQuFXNaGkpl5XmvMwQEnEzgTptCDQtD37x5HUYvhBD1h6Io/LQ/mxdWJnC0UO1e0y/Cm1ljY2jj5+7g6OpYYSYsjgWbmTVtr2J+8T4Anun9DN39uzs4OFHTJLFzAFtx8VmN66tSU7AcPgJ2+zmv0RgMGENCTkvcTo7EhYaidZYikkIIcUpybimzv9/PxkP5AAR4OvHsmGhGtfdvOtOup1SVqj1gy/NJbBnNM/ZsAGKjYrmh7Q0ODk7UBknsaomiKFhzctQE7rSp06q0VGx5+ee9TuvufnLt25lTqIbAQOm+IIQQF1BaZeXd+EN8uikNq13BqNNyz8Aw7hsUjouxCX7/tNvh239Bzj7y3Xx5oJkzFRV59GnZh0e7P+ro6EQtaYJf6TVLsVgwZ2b+tfbt5AicOTUVe3n5ea/T+/ufufYtVB2J0/n4NL3fKIUQ4gooisLyPVm89EMCuSVVAAyN9OW5MdGE+DThTQHrXoCkVZh1Jh6OiCG7KIUQjxBeG/gaeq38+G+s5P/sZSjbsoWChQvVBC4zE6zWc79Qr8cYHHxG4mYMC8cYGorOrQl/sxFCiBpyIKuYWSv2sz29AIDW3i7MHBvNkEg/B0fmYHuXwKY3UYA5na9mb8Fe3A3uvDPkHTxNTaS0SxMlid1lsB4voHRtfPWx1sXljLVv1f1Pg4LQGJrQrishhKgjReUW3liTxILfMrAr4GTQ8sCQNtzZPxQng87R4TnW4R2w4gEA/ttpDMsL9qLVaHl94OuEeoY6ODhR2ySxuwwuXbvg98wzf+0+9fOT6VMhhKgDdrvCVzsP8+pPSRSUqcXWR3doydOjowj0ko1kFB2BxZPBVsWGNgN4s0TdAftY98foG9jXwcGJutBoErv58+czf/58bDZbrT/LEBhI81um1PpzhBBC/GXP4UJmLt/H3iNFALTxdWP2uBj6Rvg4OLJ6wlwGi26GslxS/KN4QpOPXbFzfZvriY2KdXR0oo5oFOU87QkaqOLiYjw9PSkqKsLDw8PR4QghhLhC+aVVvLY6iSU7DwPgZtLz8LA2TO0bgkEnxdYBdQfs11MhYQWFbi2YHBLG4bJjdPXtyidXf4JBJ8uCGrJLyW0azYidEEKIxsVqs7PgtwzeWHOQkkp1k9r1XVvxxKh2+Lo7OTi6emb9XEhYgUVn5NE2XThcmEigWyBvDX5LkromRhI7IYQQ9c621OPMXLGfxOwSAGICPJgzPoZuraWjzln+XAobXgXglS7XsO34blz0Lrwz5B2aO8nnq6mRxE4IIUS9kV1UyUs/JLBibxYAXi4GHr26HZN6BqPTyia1sxzdBcunAbCk01iWHN+NBg0vD3iZts3aOjg44QiS2AkhhHA4s9XOZ5vTeCf+EOVmGxoNTO4ZzKNXt6OZq9HR4dVPxVmwaDJYK9kWMYC5J3fAPtj1QQYHD3ZwcMJRJLETQgjhUL8ezGP2iv2k5pcB0DXYiznj29M+UArpnpe5XC1rUppNpm87ZugKsNlsXBN6DXe2v9PR0QkHksROCCGEQxwuKOeFlQf4+UAOAD5uJp4aFcmELoFoZdr1/Mzl8N19kPU7JS7NecDPh+LSw3Tw6cDsvrOlrmoTJ4mdEEKIOlVpsfHhryl8sD6FKqsdnVbDbX1DeGhYGzycZAfnedmssCdO3QFbcgyb1sATUb1JLdiHr7Mvbw9+Gye97BZu6iSxE0IIUScUReHnAzm8sPIAR05UANAnzJvZ42No6+fu4OjqMUWBxFUQPxvyD6rnPIOZFzOQjcd+xaQz8c6Qd2jh0sKxcYp6QRI7IYQQtS4lr5TZ3x9gw8E8AFp6OvHM6ChGd2gpU4cXkrEV1jwPR7arx87N4arHWO7txxdbZwHw737/JsYnxnExinpFEjshhBC1pqzKyjvrDvHZpjQsNgWjTsvdV4UybXAELkb5EXReuQmwdjYc/FE91juj9L6f3e0GEZfyHfG/fQTAvzr+i5GhIx0YqKhv5F+VEEKIGqcoCiv2ZvHSDwnkFFcBMLhdC2aOjSHEx9XB0dVjRUfgl7mwdyEodtDoqOoymR9De7AwfRUJ676ufun48PFM6zzNgcGK+kgSOyGEEDUq4VgxM1fsZ3taAQDBzV2YOTaaoVF+Do6sHqs4AZvegm0fgbUSgNzIkSwJimbpkXUU7P4VAJPOxJiwMUyOmiwFiMU5SWInhBCiRhRVWHhrzUH+uzUduwJOBi3TBkVw91VhOBl0jg6vfrJUwPb/wMY3oLIIgD9bd2dByzB+zt2JNfkAAP6u/tzc7maub3M9Xk5eDgxY1HeS2AkhhLgidrvC0l1HeGV1IsfLzACMau/PM6OjaNXMxcHR1VN2G+xdBL+8BMVHsQBrWrYhzsePP0ozIScXgK6+XZkcNZmhwUPRa+VHtvhn8lUihBDisu09XMjzK/az93AhAOEtXJk9rj392/g4NrD6SlHg4Gp1Y0ReAgVaLV/7tWKJhwd51lIozcSgNTAqdBSToyYT4y27XcWlkcROCCHEJTteWsVrPyWxZOdhFAXcTHoeGtqGqX1DMOq1jg6vfsrcBmtnQuZWEo0GFvj586OrM2bFBtZSfJx9uKndTdzY9kZ8nCUxFpdHEjshhBAXzWqzs3B7Jq//lERxpRWA67oE8uSoSHw9pOvBOeUlQfwcrIkr+cXFmQUt/dntZFQ/ptho792e2OhYRrQegUEnnTfElZHETgghxEXZnlbA88v3kZhdAkBUSw/mjI+hR0hzB0dWTxVnwfq5FO2N4xs3FxYHBXBMr/7Y1Wv0DG89nNjoWDr6dJQizaLGSGInhBDignKKK5n7QwLf7ckCwNPZwKNXt2Vyr9botJKQnKWiEDbPI3nnf1joauT7Vi2p1KrT081Mzbih7Q1MbDcRP1cp/yJqXr1M7CZMmMD69esZOnQoS5cudXQ4QgjRJJmtdj7fnMY78YcoM9vQaODmHsE8NqIdzV2Njg6v/rFUYt/+HzZsf5s4Zw2/tfSu/lDbZm2ZEjWFUaGjcNLLlLWoPfUysXvooYe44447+PLLLx0dihBCNEkbD+Uxc8V+UvPKAOgc5MWc8TF0bOXl2MDqI7uN0t//x3fbXmeh0crh5mqJFy0ahgQPYXJULN39ust0q6gT9TKxGzRoEOvXr3d0GEII0eQcOVHOv1cmsHp/NgA+bkaeGBnJ9V1boZVp1zMpChl/LGThjjf4TldFuasWMOCuNXF9u4ncHD2ZQLdAR0cpmpga35O+YcMGxo4dS0BAABqNhu++++6s18yfP5+QkBCcnJzo1asX27dvr+kwhBBCXIJKi4231x5i6Bu/snp/Njqthtv7hRD/yCBu7B4kSd1pFEVhy94vuP/LnozZ8zILDRbKtVrCDF481+MJ1t68gUd6PiZJnXCIGh+xKysro1OnTtxxxx1cd911Z318yZIlzJgxgw8//JBevXoxb948RowYQVJSEr6+vjUdjhBCiAtQFIW1CbnMWbmfwwUVAPQKbc6c8e1p5+/u4Ojql3JLOd//8SkL939JqlIFJ3Pdq0x+xPZ6jD4hV8t0q3C4Gk/sRo0axahRo8778TfffJO7776b22+/HYAPP/yQVatW8dlnn/Hkk09e8vOqqqqoqqqqPi4uLr70oIUQoglKzStl9vcH+PVgHgD+Hk48MzqKMR1bSoJymqOlR1n0xyd8m/wdJYpau8/Vbudap1ZMumoOrQN7OThCIf5Sp2vszGYzu3bt4qmnnqo+p9VqGTZsGFu3br2se86dO5fZs2fXVIhCCNHolVVZee+XZD7ZmIrFpmDQabhrQBjTB0fgaqqXS6/rnKIo7MzZSdy+L/jl6EbsKAAEWyxMNgUxfthc3AK7OzhKIc5Wp/+C8/Pzsdls+PmdWbvHz8+PxMTE6uNhw4axd+9eysrKaNWqFV9//TV9+vQ55z2feuopZsyYUX1cXFxMUFBQ7bwBIYRowBRFYeUfx3hxVQLZxZUADGzbgpljowlr4ebg6OqHSmslP6T9QNyBBRwsPFR9vk9FBbGGlgwYNhdtSH8HRijEhdXLX83Wrl170a81mUyYTKZajEYIIRq+pOwSZq7Yx2+pBQAENXfm+TExDIvylWlXILssm6+SvuLrg19TWFUIgLPdztjSMibrvAkfPBciR4N8rkQ9V6eJnY+PDzqdjpycnDPO5+Tk4O/vX5ehCCFEk1BUYWHe2oP8d2sGNruCSa9l2uAI/nVVGE4GnaPDcyhFUdibt5e4hDjWZKzBptgAaGm1Mqm4hOvsrngOmgWdp4CuXo6DCHGWOv1KNRqNdOvWjfj4eK699loA7HY78fHxTJ8+/YruPX/+fObPn4/NZquBSIUQomGz2xWW7j7Cq6sTyS81AzAyxp9nRkcRdLKAblNlsVlYnb6auIQ49h/fX32+W0UlU4pLGGQzoO//f9DrPjA27c+VaHhqPLErLS0lOTm5+jgtLY09e/bQvHlzgoODmTFjBlOnTqV79+707NmTefPmUVZWVr1L9nJNmzaNadOmUVxcjKen55W+DSGEaLD+OFLI88v3s+dwIQBhLVyZNTaGq9q2cGxgDpZfkc/XSV/z1cGvyK/IB8CIhmtKSogtLiHSpoGe/4IBj4BLcwdHK8TlqfHEbufOnQwePLj6+NTGhqlTp/LFF18wceJE8vLyeP7558nOzqZz586sXr36rA0VQgghLk1BmZnXfkpi8Y5MFAVcjToeGtaG2/qGYtTXeD36BmP/8f3EHYhjdfpqLHYLAL5aExOP53FDcTHN7Qp0uhkGPw1ewQ6OVogro1EURXF0EDXp1IhdUVERHh4ejg5HCCFqnc2usHBbBq//fJCiCjVxubZzAE9dE4WfR9NsOG+xW4jPjGdhwkJ+z/29+nxHozdTjqUzrPgEBoA2V8PQmeDf3mGxCvFPLiW3kdWgQgjRgO1ML+D55fs5cEwtzh7p786c8e3pGdo0pxILKwtZemgpixMXk1OubtTTa/WMcAsjNu0POhSfTPICu8Gw2RA6wIHRClHzGk1iJ5snhBBNSW5xJS//mMi3vx8FwMNJz6Mj2jG5ZzB6XdObdj144iALExayMnUlVTa1G1Fzp+bc5NWem5I20iLlZBkt7wgY+jxEjZPSJaJRkqlYIYRoQCw2O19sTuft+EOUVlnRaGBi9yAeG9EOb7emVdPTZrfx65FfiUuIY3v29urzUc2jiPXuyqg/VmLM/lM96eYHg56ELreAzuCgiIW4PDIVK4QQjdCmQ/nM+n4/ybmlAHQK8mLOuBg6BXk5NrA6VmwuZtmhZSxKXMTRUnXEUqfRMSR4CFNa9KLLzoVods1VX2x0h/4PQe/7wejqwKiFqBuS2AkhRD13tLCCf688wI/7sgHwdjXyxMhIbujWCq226UwnphalsjBhIStSVlBhrQDA0+TJ9W2u52a/vrT87SNY/y/1xVoD9LxbLV3i6uPAqIWoW5LYCSFEPVVpsfHxhlTmr0+m0mJHq4Fb+4Twf8Pb4uncNKYT7YqdzUc3E5cQx+aszdXnI7wiiI2KZbRvL5y3vAurRsPJUiZ0uAmGPAPNQhwTtBAO1GgSO9k8IYRoTOITcpj9/QEyC8oB6BnanNnjYohq2TTWDpdZylievJxFiYtIL04HQIOGgUEDmRI1hZ7NotH89j4sfQjM6tQ04UNh2Exo2clxgQvhYLJ5Qggh6pG0/DLmfL+fX5LyAPDzMPH0NVGM6xSApgns4jxccpiFCQv5Lvk7Si1qwuZmcGNCmwlMipxEkIs/7PoCfn0FytTPES07w/DZEDbIUWELUatk84QQQjQw5WYr839J5uMNaZhtdgw6DXf0D+WBIW1wMzXub9WKorAtextxCXH8evhXFNTxhhCPECZFTmJ8xHhc9S6wfxmsewEKUtULm4WqpUuirwVt0yvxIsS5NO7vFkIIUc8pisIPf2bz71UHOFZUCcCANj7MGhdDeAs3B0dXuyqsFaxKXUVcQhzJhX/1GO8X2I/YyFj6BfZDq9FC6q+wdiZknSwu7NoCBj4BXaeC3uig6IWonySxE0IIBzmYU8LM5fvZmnocgFbNnHluTDRXR/s16mnX7LJsFiUu4ptD31BUVQSAs96ZceHjmBw1mTDPMPWFx/6AtbMgJV49NrpB3wehzzQwNe6kV4jLJYmdEELUseJKC2+vPcQXW9Kx2RVMei33DQrn3oHhOBl0jg6vViiKwu+5v7MgYQHrMtdhU9SNboFugUyKnMSENhPwMJ5cO3QiA9b9G/78Sj3W6qH7HXDV4+DWwkHvQIiGodEkdrIrVghR39ntCt/+fpSXf0wkv1Rte3V1tB/PjYkmqLmLg6OrHWabmR/TfiQuIY6EgoTq8z39exIbFcvAVgPRaU8ms2XHYePrsOMTsJnVc+2vhyHPQvMwB0QvRMMju2KFEKIO7DtaxPPL97E7sxCAMB9XZo6LYWDbxjkClVeex5KkJXx98GsKKgsAMOlMjAkbw+SoybRt1vavF5vL4Lf3YdPbYC5Rz4UNgmGzIKBLnccuRH0ju2KFEKKeOFFm5rWfk1i0PRNFARejjgeHtuGOfqEY9Y1vJ+efeX8SlxjHT+k/YbVbAfBz8ePmyJu5vs31NHNq9teLbRb4/X+w/mUozVHP+XdUS5eED3FA9EI0fJLYCSFELbDZFRZtz+T1n5MoLFc7IozrFMDT10Th7+nk4OhqlsVuYU36GuIS4/gj74/q8118uxAbFcuQ4CEYtKd1ylAUSFgB8XPg+MndsF6t1dIlMddJ6RIhroAkdkIIUcN2ZRTw/PL97M8qBiDS351Z42LoHebt4MhqVkFlAUsPLmVJ4hJyK3IBMGgNjAodxeSoycR4x5x9UfomWPM8HN2lHrt4q6VLut0upUuEqAGS2AkhRA3JLank5R8T+Xb3UQDcnfQ8MrwtU3q3Rq9rPKNQiQWJxCXE8UPqD5jt6iYHbydvJrabyI3tbsTH2efsi7L3QfxsOPSzemxwhb7Toc90cJL10ELUFEnshBDiCllsdr7cks68tYcorVLXlU3sHsRjI9vh42ZycHQ1w2q3sv7wehYkLGBXzq7q8zHeMcRGxTIyZCQGneHsCwsz4ZeXYO9iQFFLl3S7TS1d4u5XV+EL0WQ0msROyp0IIRxhc3I+s1bs51Cu2te0YytPZo+LoUtws3+4smEoqiri20PfsjhxMVllWQDoNDqGtx5ObFQsnVp0Oncx5fIC2PgGbP/PX6VLYibAkOfAO7wO34EQTYuUOxFCiMuQVVjBi6sSWPXnMQCauxp5fEQ7buoehFbb8LtGpBSmEJcQx8rUlVRYKwDwMnlxY9sbuandTfi7+p/7QnM5bPsANs2DKnWNISED1J2ugd3qJnghGhkpdyKEELWkymrjk41pvLcumQqLDa0GbundmhnD2+Hpco6pyAbErtjZeGQjcQlxbD22tfp822ZtmRI1hVGho3DSn2dHr80Ke+Jg/VwoUZNd/NrDsNkQMRQacYs0IeoTSeyEEOIirUvMYc73B0g/Xg5Aj5BmzB7XnuiAhj07UGou5bvk71iYuJDDJYcB0Gq0DA4aTGxULN39up+/d62iQOIqdWNE/kH1nGew2i2iw41SukSIOiaJnRBC/IOM42XM+f4A8YlqSQ9fdxPPjI5iXKeA8yc8DUBGcQaLEhfxXfJ3lFnKAHA3uHNdm+uYFDWJQLfAf7jBFlgzE45sV4+dm8NVj0GPO0HfODaNCNHQSGInhBDnUW628v4vKfxnQypmmx29VsOd/UN5YGgb3EwN89unoihszdpKXGIcG49sREFdZh3qGUpsZCxjw8fiYviHvrW5CbB2Nhz8UT3WO0OfadDvQXDyrOV3IIS4kIb5nUkIIWqRoij8uC+bf688QFZRJQAD2vgwc2wMEb5uDo7u8pRbylmZupK4hDhSi1Krzw8IHMCUqCn0Cejzz6OPRUfgl7mwdyEodtDooOutaoFhj5a1/A6EEBdDEjshhDjNoZwSZn2/n83JxwEI9HLmuTHRjIjxa5DTrkdLj7I4cTHfHPqGEnMJAC56F66NuJbJUZNp7dH6n29SXgCb3oJtH4GtSj0XNU5tAebTphajF0JcKknshBACKKm08E78IT7fnI7VrmDUa7l3YDj3DQzH2ahzdHiXRFEUdubsJC4hjl8O/4JdsQMQ5B7E5MjJXBtxLW7Gixh5tFSoydymN6GySD3Xup+60zWoRy2+AyHE5Wo0iZ0UKBZCXA5FUVj2+1Hm/phIXok6GjU82o/nRkcT7P0Pa83qmSpbFT+k/kBcQhxJJ5Kqz/du2ZspUVPoH9gfnfYiklS7DfYsVEuXFKvt0fCNVhO6NsOldIkQ9ZgUKBZCNFn7jhYxa8V+dmacACDUx5Xnx0YzuJ2vgyO7NDllOSxJWsLSg0s5UaW+FyedE2PDxxIbFUu410V2elAUSPpRLV2Sl6ie8wyCwc9Ax5vgYpJCIUSNkwLFQghxAYXlZl7/OYmF2zKxK+Bs0PHA0Aju7B+KSd8wkhdFUdibt5eFCQtZk7EGq6L2qG3p2pJJkZO4rs11eJouYYdq5jZYOxMyTxYmdvKCqx6FHneD4TxFiYUQ9Y4kdkKIJsNmV1i8I5PXf0riRLkFgLGdAnj6mkhaejo7OLqLY7FZ+CnjJ+IOxLHv+L7q8938uhEbFcvgoMHotZfwrT0vCeLnQOJK9VjvBL3vg34Pg7NXjcYuhKh9ktgJIZqEXRknmLliH/uOqv1L2/m5M2tcDH3CvR0c2cXJr8jn64Nf81XSV+RX5ANg0Bq4JvQaYqNiifKOurQbFmepa+h+X3CydIkWukyBQU+BR0AtvAMhRF2QxE4I0ajllVTxyupElu46AoC7Sc+Mq9tyS+/W6HX1v93VgeMHiEuI48e0H7HY1VHGFs4tmNhuIje0vQFv50tMTCsKYfM8+O0DsKo1+ogco5YuadGuRmMXQtQ9SeyEEI2SxWbnf1szeGvNQUqq1PVnN3ZrxeMjI2nhXr/bXVntVuIz44lLiOP33N+rz3f06UhsVCzDWw/HoDNc2k0tlbDjY9jwOlQWqueCesPwORDcq+aCF0I4lCR2QohGZ0tKPrNW7OdgTikAHQI9mT0+hq7BzRwc2YUVVhay9NBSFicuJqc8BwC9Rs/VIVcTGxVLxxYdL/2mdhv8sQTWvQjF6qglLSJh2CxoO1JKlwjRyEhiJ4RoNI4VVfDiqgRW/nEMgGYuBh4bEcnEHkHotPU3gTl44iALExayMnUlVSc7OzR3as6NbW/kpnY34etyGeVXFAUO/QxrZ0HuAfWcRyAMfho6TZLSJUI0UpLYCSEavCqrjU82pvHeumQqLDa0Gojt1ZpHrm6Ll4vR0eGdk81u49cjv7IwYSHbsrdVn49qHkVsVCwjQ0di0l3mlPGRnbBmJmRsUo+dPKH/DOh1Dxgaxu5fIcTlkcROCNGg/ZKUy5zvD5CWXwZA99bNmD0+hpiAS6jhVoeKzcV8d+g7FiUu4kipOjWq1WgZGjyU2KhYuvp2vfyetPmH1NIlCSvUY50Jet8L/f8PnOv3NLQQomY0msROWooJ0bRkHi9nzsoDrE1Q16K1cDfx9DWRXNs58PITo1qUVpTGwoSFLE9ZToW1AgAPowfXt72eSe0m0dKt5eXfvCQb1r8Mu/8Lik0tXdJpMgx+Cjxb1dA7EEI0BNJSTAjRoFSYbXywPpkPN6RittrRazXc3i+EB4e2wd3pEneK1jK7YmdL1hYWJCxg89HN1ecjvCKYHDWZMWFjcNZfwdRoZRFsfgd+ex8s5eq5tqPU0iV+0VcYvRCivpCWYkKIRkdRFH7an80LKxM4WqiOePWL8GbW2Bja+Lk7OLozlVvKWZ6ynIUJC0kvTgdAg4aBrQYSGx1LL/9eVzaqaK2CHZ/ChtegokA916onDJ8Nrfte+RsQQjRYktgJIeq95NwSZq04wKZkteNCgKcTz42JZmR7/3o17Xq45DCLEhex7NAySi1qqRU3gxvXRlzL5MjJBHkEXdkD7Hb482tY928oylTP+bSFoTMhcrSULhFCSGInhKi/SqusvBN/iM82pWG1Kxj1Wu65Koz7B0XgbKwf5ToURWF79nbiEuJYf3g9CurqltYerZkcOZnxEeNxNbhe6UMgOV4tXZLzp3rOvaXa/qtzLOjkW7kQQiXfDYQQ9Y6iKCzfk8VLPySQW6LWdRsW5ctzY6Jp7X2FSVINqbBWsCp1FXEJcSQXJlef7xfQj9ioWPoF9kOrqYGWZUd3qaVL0jeqxyZP6P8w9LoXjC5Xfn8hRKMiiZ0Qol7Zn1XErBX72ZF+AoAQbxdmjo1hcORlFOmtBdll2SxOXMzSQ0spqioCwFnvzLjwcUyOnEyYV1jNPOh4ilq65MB36rHOCD3/BQMeAZfmNfMMIUSjI4mdEKJeKCw38+aagyz4LQO7As4GHdOHRHDXgFBMesdOuyqKwu+5vxOXEEd8Zjw2RS2rFOgWyKTISUxoMwEPYw3twi/JgQ2vwq4vwG4FNNDpZrVjhFdwzTxDCNFoSWInhHAom13hq52Hee2nJArKzACM7tiSZ66JIsDLsV0SzDYzq9NXs+DAAhIKEqrP9/DvQWxULINaDUJXU625Koth63uw5T2wqMWWaXO1ujHCv33NPEMI0ehJYieEcJjfM08wc8V+/jiiTmm28XVj9rgY+kb4ODSuvPI8vjr4FV8lfUVBpVpOxKQzMTpsNJMjJ9Ouebuae5jVDLs+h19fhXJ11y+B3WDYbAgdUHPPEUI0CZLYCSHqXH5pFa+uTuSrnWpLLXeTnoeHt+XWPq0x6Gpgw8Fl2pe/jwUJC/gp/SesdisAvi6+TIqcxPVtrqeZUw225bLbYf+36jq6wgz1nHeEWlw4apyULhFCXBZJ7IQQdcZqs/O/3zJ4c81BSirVxOn6rq14YlQ7fN2dHBKTxW5hbcZa4hLi2Ju3t/p85xadiY2OZWjwUAzaGu5okbJO3ema/Yd67OYHg56ELreArn51zxBCNCyS2Akh6sRvqceZtWI/idklALQP9GD2uPZ0a+2Y5vQFlQUsPbiUJYlLyK3IBUCv1TMqZBSxUbHE+MTU/EOzfldr0aWuV4+N7tD/Ieh9PxjrRxkXIUTDJomdEKJWHSuq4KUfEvl+bxYAXi4GHhvRjpt7BKPT1v10Y1JBEnEJcaxKXYXZrm7W8HbyZmK7idzY7kZ8nGthfV9BqtotYt836rHWAD3vhgGPgqt3zT9PCNFkSWInhKgVVVYbn21K5911hyg329BoYHLPYB69uh3NXI11GovNbuOXw78QlxDHzpyd1eejvaOZEjWFESEjMOpqIabSPLV0yc7P/ipd0vEmtXRJs5Caf54QoslrNInd/PnzmT9/PjabzdGhCNHk/Xowj9kr9pOar5bt6BrsxZzx7Wkf6FmncRRVFbHs0DIWJS4iq0wdMdRpdAxrPYwpUVPo1KJT7fSarSqBrfNhy7tgVnvGEjFMLV3SsmPNP08IIU7SKIqiODqImlRcXIynpydFRUV4eNRQwVAhxEU5XFDOCysP8POBHAB83Ew8NSqSCV0C0dbhtGtqYSpxCXF8n/o9FdYKALxMXtzQ9gYmtpuIv6t/7TzYZlELC//6CpTlqedadobhcyBsYO08UwjR6F1KbtNoRuyEEI5TabHxwfoUPvw1hSqrHZ1Ww+19Q3hwWBs8nOpml6ddsbPp6CYWHFjA1mNbq8+3adaGKVFTuCb0Gpz0tbTz1m5XW3+te0FdTwfQLFQtXRJ9LWgdV8JFCNG0SGInhLhsiqLw0/4c/r3qAEdOqCNjfcO9mTUuhrZ+7nUSQ6m5lOUpy1mYsJDMkkwANGgYHDSYKdFT6O7XvXamW09J/RXWzlR3vAK4toCBT0C326R0iRCizkliJ4S4LCl5pcxasZ+Nh9RuCS09nXh2dDTXdPCv3UTqpMziTBYmLuS75O8oO9mCy93gznVtruPmyJtp5d6qdgM49odauiQlXj02ukHfB6HPNDC51e6zhRDiPCSxE0JcktIqK++uO8Rnm9Kw2BSMOi3/uiqM+weH42Ks3W8piqKw9dhWFiYsZMORDSioS4RDPUOJjYxlbPhYXAwutRoDJ9Jh3Yvw51fqsdYA3e+Aqx4Dtxa1+2whhPgHktgJIS6Koiis2JvFSz8kkFNcBcCQSF+eHxNNiE/tFtctt5SzMnUlCxMWklKUUn1+QOAAYqNi6RPQB62mltexleXDhtdhxydgt6jn2t8AQ56B5mG1+2whhLhIktgJIf5RwrFiZq7Yz/a0AgBae7vw/Jhohkb51epzs0qzWJy4mKWHllJiVjtWuOhduDbiWiZFTiLEM6RWnw+AuQy2vg+b34aTMRA2CIbNhoDOtf98IYS4BJLYCSHOq6jcwltrD/LfrenYFXAyaJk+OIK7BoThZNDVyjMVRWFXzi7iEuJYd3gddsUOQCu3VkyOmsy1EdfibqyDjRk2C/z+P1j/MpSq5Vvw7wjDZ0P4kNp/vhBCXAZJ7IQQZ7HbFb7edZhXVidRUKa23bqmgz/PjI4m0Mu5Vp5ZZavih9QfiEuII+lEUvX5Xi17MSVqCgMCB6DT1k4yeQZFgQPL1dIlx5PVc81CYMhzEHOdlC4RQtRrktgJIc6w53AhM5fvY++RIgAifN2YPS6GfhG10EMVyCnLYUnSEpYeXMqJqhMAOOmcGBM+htjIWCKaRdTKc88pfROseR6O7lKPXbxPli65HfR12wZNCCEuhyR2QggAjpdW8erqJJbsPAyAm0nPw8PaMLVvCAZdzY9S7c3bS9yBONZkrMGqWAHwd/VnUuQkrm9zPZ6mOmw/lr0P4mfDoZ/VY4Mr9J0OfaaDk3SwEUI0HJLYCdHEWW124rZl8sbPSRRXqgnWdV0DeXJkJL4eNdupwWKz8FPGTyxMWMif+X9Wn+/q25Up0VMYHDQYvbYOvy0VZsIvL8HexYACWr1aWPiqx8G9djeGCCFEbZDETogmbHtaAc8v30ditrrbM7qlB3PGx9A9pHmNPie/Ip+vD37NV0lfkV+hFjQ2aA1cE3oNsVGxRHlH1ejz/lF5AWx8A7b/B2zqGkJiJqjr6LzD6zYWIYSoQZLYCdEE5RRX8tIPCSzfkwWAp7OBR0e0Y3LPYHTamusaceD4AeIS4vgx7UcsJ2u/tXBuwU3tbuLGtjfi7exdY8+6KOZy2PYBbJoHVcXquZAB6k7XwG51G4sQQtQCSeyEaELMVjufb07jnfhDlJltaDRwc49gHhvRjuauNbM5wGq3Ep8Zz8KEhezO3V19voNPB2KjYrm69dUY6rqHqs0KexaopUtKjqnn/DrA8FkQPhTqoAWaEELUBUnshGgiNhzMY9b3+0nNU/uqdgn2Ys649nRoVTObFAorC/nm0DcsTlpMdlk2AHqNnuEhw5kSNYWOLTrWyHMuiaJA4kpYOxuOH1LPeQWrU67tb5DSJUKIRkcSOyEaucMF5fx71QF+2q8W2fVxM/LEyEiu79oKbQ1Mux46cYi4hDhWpa6i0lYJQHOn5tzQ9gYmtpuIr4vvFT/jsmRsgTUz4ch29di5OQx8XO3rqjc5JiYhhKhlktgJ0UhVWmx89Gsq769PpspqR6fVMLVPCA8Pb4OH05VNhdrsNjYc2UBcQhzbsrdVn49sHklsVCyjQkdh0jkoeco5APFz4OCP6rHeGfpMg34PglMdllARQggHkMROiEZGURTWHMhhzsoDHDlRAUCfMG9mjYuhnf+VteIqMZew7NAyFiUu4kjpEQC0Gi1Dg4cSGxVLV9+uaBy1Xq3oCPwyF/YuBMUOGh10m6oWGHb3d0xMQghRxySxE6IRSc0rZfb3B/j1YB4A/h5OPDsmitEdWl5RwpVWlMbChIUsT1lOhVVNFj2MHlzf9npubnczAW4BNRL/ZSkvgE1vwbaPwFalnosaB0OfB582jotLCCEcoF4mditXruSRRx7BbrfzxBNPcNdddzk6JCHqtbIqK++uS+bTTalYbAoGnYa7B4QxbXAErqbL+2duV+xsydpCXEIcm45uqj4f7hnO5KjJjAkbg4vBpabewqWzVKjJ3KY3oVJtf0brfjBsNgT1cFxcQgjhQPUusbNarcyYMYNffvkFT09PunXrxoQJE/D2ruN6V0I0AIqi8P0fx3hpVQLZxerGhUHtWvD8mGjCWrhd1j3LLeWsSFlBXEIc6cXpAGjQMLDVQCZHTaZ3y96Om24FtXTJ3kVqx4gStQ4fvjEwbBa0GS6lS4QQTVq9S+y2b99OTEwMgYGBAIwaNYqff/6ZSZMmOTgyIeqXxOxiZi7fz7a0AgCCmjszc0wMQ6N8LyvxOlxymMWJi1l2aBklFrUThavBlQkRE5gUOYlgj+Aajf+SKQok/aj2dM1LVM95BsHgZ6DjTaDVOTY+IYSoB2o8sduwYQOvvfYau3bt4tixYyxbtoxrr732jNfMnz+f1157jezsbDp16sS7775Lz549AcjKyqpO6gACAwM5evRoTYcpRINVVGHhrTUH+d9vGdjsCk4GLfcPiuBfV4XhZLi05EZRFHZk72BBwgLWH16PggJAa4/WTIqcxLUR1+JqcK2Fd3GJMn9TS5cc/k09dm4GAx6FHneBoWb72QohRENW44ldWVkZnTp14o477uC666476+NLlixhxowZfPjhh/Tq1Yt58+YxYsQIkpKS8PV1UL0rIRoAu11h6e4jvPJjIsfL1P6mo9r788zoKFo1u7S1bpXWSlalriIuMY5DJw5Vn+8b0JfYqFj6B/ZHq6kHxXtzE9XSJUmr1GO9M/S+D/o9BM5eDg1NCCHqoxpP7EaNGsWoUaPO+/E333yTu+++m9tvvx2ADz/8kFWrVvHZZ5/x5JNPEhAQcMYI3dGjR6tH886lqqqKqqqq6uPi4uIaeBdC1C9/HCnk+eX72XO4EIDwFq7MGhfDgDYtLuk+2WXZLE5czNJDSymqUjccOOudGRc+jsmRkwnzCqvp0C9PcZa6hm5P3MnSJVroMgUGPQUeDtyBK4QQ9VydrrEzm83s2rWLp556qvqcVqtl2LBhbN26FYCePXuyb98+jh49iqenJz/++CPPPffcee85d+5cZs+eXeuxC+EIBWVmXvspkcU7DqMo4GrU8dCwNtzWNxSj/uJG1BRFYU/eHhYcWEB8Zjw2xQZAoFtg9XSrp6meFO6tKITN8+C3D8CqbgYhcoxauqRFO0dGJoQQDUKdJnb5+fnYbDb8/PzOOO/n50dioroYWq/X88YbbzB48GDsdjuPP/74BXfEPvXUU8yYMaP6uLi4mKCgoNp5A0LUEZtdYeG2DF7/+SBFFRYAJnQJ5MlRkfh5XNyaMrPNzOr01cQlxHHg+IHq8z38exAbFcugVoPQ1ZcNB5ZK2PExbHgdKgvVc8F91NIlwb0cGpoQQjQk9W5XLMC4ceMYN27cRb3WZDJhMknfR9F47EgvYOby/Rw4pi4riGrpwexxMfQMbX5R1+dX5PNV0ld8lfQVxyuPA2DUGhkTPobJkZNp17wejXzZbfDHElj3IhSrnSxoEamWLmk7UkqXCCHEJarTxM7HxwedTkdOTs4Z53NycvD3l5Y/omnLLa5k7o+JLPtdXWPq4aTnsRHtmNQzGL3un6dd9+XvIy4hjtXpq7HarQD4uvhyc7ubuaHtDTRzalar8V8SRYFDP8PaWZB7cjTRIxAGPw2dJknpEiGEuEx1mtgZjUa6detGfHx8dQkUu91OfHw806dPv6J7z58/n/nz52Oz2WogUiHqjtlq54staby99hBlZhsaDdzcI4hHr26Ht9uFR6MtdgvxGfEsSFjA3ry91ec7t+hMbFQsQ1sPxaA11PZbuDSHd8DamZCxWT128oQBj0DPf4HB2bGxCSFEA1fjiV1paSnJycnVx2lpaezZs4fmzZsTHBzMjBkzmDp1Kt27d6dnz57MmzePsrKy6l2yl2vatGlMmzaN4uJiPD3ryUJwIf7BxkN5zFqxn5S8MgA6BXkxZ1wMnYK8LnhdQWUB3xz8hsVJi8ktzwVAr9UzMmQksVGxtPdpX9uhX7r8Q2px4YTv1WOdCXrfC/3/T61LJ4QQ4orVeGK3c+dOBg8eXH18amPD1KlT+eKLL5g4cSJ5eXk8//zzZGdn07lzZ1avXn3WhgohGrMjJ8p5cVUCP+7LBsDb1cgToyK5oWsrtNrzrytLKkgiLiGOVamrMNvVWnbNnZozsd1Ebmp3Ez7OPnUS/yUpyYb1L8Pu/4JiU0uXdJ6sli7xbOXo6IQQolHRKIqiODqImnRqxK6oqAgPDw9HhyPEGSotNj7ekMr89clUWuzotBpu6d2a/xveFk/nc0+Z2uw21h9ez4KEBezM2Vl9Pto7milRUxgRMgKjzlhH7+ASVBbB5rdh6/tgrVDPtbtGLV3iG+XY2IQQogG5lNymXu6KFaKxURSF+IRc5qw8QGZBOQC9Qpsze3wMkf7n/kdaVFXEskPLWJy0mKOl6oYKnUbHsNbDiI2KpXOLzpfVE7bWWatgx6ew4TWoUPvYEtRLLV3Suo9jYxNCiEau0SR2snlC1Fdp+WXM+X4/vyTlAeDnYeKZ0dGM7djynIlZamEqCxMXsiJlBRUnR7q8TF7c0PYGJrabiL9rPd1BbrfDn1/Dun9DUaZ6zqctDJ0JkaOldIkQQtQBmYoVopaUm628ty6ZTzamYbbZMeg03Nk/jAeGROBqOvN3KrtiZ9PRTcQlxLEla0v1+QivCKZETWF02Gic9PW02b2iQHK8Wrok50/1nHtLdQ1d51jQNZrfH4UQwiFkKlYIB1IUhZV/HOOlHxI4VqS2xbqqbQtmjo0mvIXbGa8ts5TxXfJ3LEpcREZxBgAaNAwOGkxsVCw9/HvUz+nWU47ugjUzIX2jemzyhP4PQ697weji0NCEEKIpksROiBqUlF3CzBX7+C1VXVvWqpkzz4+JZni03xkJWmZxJosSF7EseRllFrXUibvBnQltJjApchKt3Ov5btHjKRA/Bw58px7rjGodugGPgMvFdcgQQghR8ySxE6IGFFdamLfmEF9uTcdmVzDptdw/KIJ7BobhZFC7KCiKwm/HfiMuIY4NRzagoK6CCPEIITYqlnHh43Ax1PNRrpIc+PUV2P0l2K2ARu0UMfgp8Ap2dHRCCNHkNZrETjZPCEew2xW+/f0oL/+YQH6pWlduRIwfz46OJqi5mqRVWCv4PuV7FiYsJKUopfra/oH9mRI1hT4BfdBq/rllmENVFsOWd2Hre2BRd/XSZgQMmwl+MY6NTQghRDXZPCHEZfrzSBHPr9jH75mFAIT5uDJzXAwD27YAIKs0i8WJi/nm0DcUm4sBcNY7c23EtUyKnESoZ6ijQr94VjPs+hx+fRXK89Vzgd1h+GwI6e/Y2IQQoomQzRNC1KITZWZe+zmJRdszURRwMep4cGgb7ugXikGnYWf2TuIS4lh3eB12xQ5AK7dWTI6azLUR1+JudHfwO7gIdjvs/1ZdR1eoburAO0ItLhw1TkqXCCFEPSWJnRAXyWZXWLQ9k9d/TqKw3ALA+M4BPDUqimZuGlalLmdh4kISCxKrr+nVshexkbFc1eoqdFqdo0K/NCnr1J2u2X+ox25+aumSLlNAd+7uGEIIIeoHSeyEuAi7Mgp4fvl+9mepU6qR/u7MHhdDqL+NJUkfs/TgUgoq1Z2wJp2JMWFjiI2KpU2zNo4M+9Jk/a7Woktdrx4b3aH/Q9D7fjC6OjIyIYQQF0kSOyEuILekkpd/TOTb3WpLLw8nPY9c3Y6O4YUsSnqFNZvWYFWsAPi7+nNzu5u5vs31eDl5OTDqS1SQqnaL2PeNeqw1QM+7YcCj4Ort2NiEEEJckkaT2MmuWFGTLDY7X25JZ97aQ5RWWdFo4IauLekWc5gVaU/z+uo/q1/b1bcrsVGxDAkegl7bgP5JlebBhldh52d/lS7peBMMfhqahTg6OiGEEJdBdsUK8Tebk/OZuWI/ybmlALQP0tC9w0E2ZK8gr0Lt92rQGhgVOorYqFiivaMdGe6lqyqBrfPV8iVm9T0SMUzt6dqyo2NjE0IIcRbZFSvEZThaWMGLqw7ww5/ZADTzyiU6ci8JJRv4Jk3dLOHj7MPEdhO5oe0N+Dj7ODLcS2c1q4WFf30FytQElYAuMGw2hA10bGxCCCFqhCR2osmrtNj4ZGMq7/2STKXFgsHjAIHBOzluS+KPIvU1HXw6EBsVy9Wtr8bQ0HaG2u1wYBnEvwAn0tRzzcPU0iXR10rpEiGEaEQksRNN2rrEHGZ/f4CME/kYvXbQrMU2rNoCjttAr9EzPGQ4sVGxdGrRydGhXp7U9WrpkmN71GNXXxj0BHSdKqVLhBCiEZLETjRJ6fllzFl5gPVpf2BotgX3Nr+D1oIVaGZqxg1tb2Biu4n4ufo5OtTLc+wPtXRJSrx6bHSDvg9Cn2lgcnNoaEIIIWqPJHaiSSk3W3lv3UE+2/0jGq9NuIYlV3+sXbN2xEbFck3YNZh0JgdGeQVOpMO6F+HPr9RjrQG63wFXPQZuLRwamhBCiNrXaBI7KXciLkRRFL7dk8LcjV9S4bwBQ6BaTFiLliHBQ4iNiqWbXzc0DXW9WVk+bHgddnwCdnWjB+1vgCHPqOvphBBCNAlS7kQ0er+m7mfm+o/IZzManRkAZ50bEyNvYFLkJALcAhwc4RUwl8HW92Hz22AuUc+FDYZhsyCgsyMjE0IIUUOk3Ilo8uyKnfj0jby29ROOWfaADjSAl74V93a5jQltxuJicHF0mJfPZoHd/1VLl5TmqOdadlITuvAhDg1NCCGE40hiJxqVcks5y5OX85+9/yO/6jAAiqKhmaYjj/a6k3HtBjXc6VYARYEDyyF+DhSkqOeahcCQ5yDmOtBqHRqeEEIIx5LETjQKR0qOsChxEUsPfku5Ve2moNhMOFf14fG+d3Bjpy4OjrAGpG2EtTPh6C712MUHBj4B3W4DvdGhoQkhhKgfJLETDZaiKOzI3kFcQhzrD6/Hjh0Au9kbivvzry4TufeqaEx6nWMDvVLZ+9TSJclr1GODK/R9APpOB5O7Q0MTQghRv0hiJxqcSmslP6T9QFxCHAdPHKw+by1tg/lEP0aFDeKZm6Jp6enswChrQGGmWrrkjyWAAlo9dLsdBj4Obr6Ojk4IIUQ9JImdaDCyy7JZkrSEpQeXUlhVCIBGMVJV2AVLQV/aNItg1qQY+oR7OzbQK1VeABvfgO3/AZu6i5eYCeo6Ou9wx8YmhBCiXpPETtRriqKwN28vCxIWsDZjLTZFrVPopPGhMLsnlsLuuBs9eHJEW27p3Rq9rgFvHjCXw7YPYNM8qCpWz4UMgOGzIbCbQ0MTQgjRMDSaxE4KFDcuZpuZn9J/YkHCAg4cP1B9PtCpPUfTu5F3oi2g46burXh8ZCQ+bg20UwSAzQp7FsAvc6E0Wz3n1wGGz4LwodCQd/EKIYSoU1KgWNQr+RX5fJX0FV8lfcXxyuMAGLVGerQYStLBTqRleQHQsZUns8fF0CW4mQOjvUKKAokrYe1sOH5IPecVrE65tr9BSpcIIYQApECxaID25+9nQcICVqevxmq3AuDr7Ms1IdeTeCia1evLAGjmYuDxkZFM7B6EVtuAR7IytsCa5+HIDvXYubm6KaL7HaBvwKOPQgghHEoSO+EwFruF+Ix44hLi2JO3p/p8pxaduKntJNIzw/ng+3QqLGVoNTCld2tmDG+Ll0sDrtmWcwDiZ8PB1eqxwQX6TFPLlzh5OjY2IYQQDZ4kdqLOnag8wTeHvmFR4iJyy3MB0Gv1jAgZwZSoKeTl+zJ72X7Sj6udFbq3bsbs8THEBDTgxKfoiLqGbu9CUOyg0UG3qWqBYXd/R0cnhBCikZDETtSZpIIkFiYuZFXqKqpsVQA0d2rOTe1u4qa2N1Fe4cILKw+wNkGdnmzhbuLpayK5tnNgw20DVl4Am96CbR/ByfdM9Hh1HZ1PG8fGJoQQotGRxE7UKpvdxvoj64lLiGNH9o7q81HNo5gSPYWRISOx2XR8sD6ZDzfsxGy1o9dquKN/KA8MicDdyeDA6K+ApQK2fagmdZVF6rnW/dXSJa26OzY2IYQQjZYkdqJWFJuLWXZoGYsSF3G09CgAOo2OocFDmRI9hc4tOgOwel82/16VwNHCCgD6R/gwa1w0Eb4NtFWWzQp7F8EvL0FJlnrONwaGzYI2w6V0iRBCiFoliZ2oUalFqSxMWMiKlBVUWNVkzdPkyQ1tbuDmyJvxd1XXkyXnljBrxQE2JecDEOjlzLOjoxjZ3r9hTrsqCiT9qG6MyEtUz3kGweBnoONNoG3g/WqFEEI0CJLYiStmV+xsOrqJuIQ4tmRtqT4f4RVBbFQso8NG46xX+7aWVFp4J/4Qn29Ox2pXMOq13HtVGPcNisDZ2ECTn8zfYM1MOPybeuzcDAY8Cj3uAoOTY2MTQgjRpEhiJy5bmaWM75K/Y1HiIjKKMwDQoGFQ0CBio2Lp6d+zevRNURS+23OUl35IJK9E3UQwLMqP58dEE+zt4rD3cEVyEyF+DiStUo/1ztD7Puj3EDh7OTQ0IYQQTVOjSeykpVjdOVx8mIWJC1mWvIwyi1o42M3gxoQ2E5gUOYkg96AzXr8/q4hZK/azI/0EACHeLswcG8PgSN86j71GFB2F9XNhT9zJ0iVa6HILDHoSPAIcHZ0QQogmTFqKiYuiKArbsrcRdyCOX4/8ioL6ZRPiEcLkqMmMDx+Pi+HMkbfCcjNv/HyQuG0Z2BVwNuiYPiSCuwaEYtI3wGnXihOwaZ6629VaqZ6LHANDn4cW7RwamhBCiMZLWoqJGlNhrWBl6koWJiwkuTC5+ny/wH5MiZpC34C+aDVn9jS12RW+2nmYV1cncqLcAsCYji15+pooAryc6zT+GmGphO3/gY1vQGWhei64DwyfA0E9HRqaEEIIcTpJ7MQ5HSs9xqKkRXxz8BuKzcUAOOudGR8+nslRkwn1DD3ndbszTzBz+X7+PKrWbmvr58ascTH0Dfeps9hrjN0GfyyBdS9C8RH1XIsotXRJ2xFSukQIIUS9I4mdqKYoCrtzdxOXEEd8Zjx2xQ5AoFsgkyMnM6HNBNyN564vl19axSs/JvL1LjUBcjfpeXh4W27t0xqDTnvOa+otRYFDP8PaWZB7QD3nEQiDn4ZOk6R0iRBCiHpLEjtBla2KH9N+ZGHCQhIKEqrP9/LvxeSoyQxsNRDdeZIZq83O/37L4M01BymptAJwQ7dWPDEykhbupjqJv0Yd3gFrZ0LGZvXYyQsGPAI97wZDA5xGFkII0aRIYteE5ZbnsiRpCUsPLqWgsgAAk87EmLAxTI6aTNtmbS94/daU48xasZ+knBKA/2/v/uOqqvM8jr+4/BQQFFEU+aX5C1GhFMwSFcVcSqcfW2NJZTXr7LTW1jq2o9OuRLXamNM6U7Q+mh81TdQwNpOaNZXiDyx1TBqoQFAMDVPxNwgIyL1n/zgOj6nUAO/lXC7v5+Ph49H5cjn3ff1Ifjz3fj+HUQNDyP7eKMbG9nZ5dqc7sc8cLrznbfPY2x+u/RFM/A9zLp2IiEgXoMauG/r0+Kfk7snlgwMf0GKYV9kiAiO4c8Sd3D70dnoF9Lrs9x+pOcfSd8t4u9i8ZVavQF/+c8YIZidH423rYp87qz0CW5+BT34Pht0cXZI0B6YshtAoq9OJiIi0ixq7buK8/TwbDm4gd08un574tHX9mn7XMCd+DtNipuFju/wfh6YWO7/5sJIXNlXQ0GzHywsyx8fw4+nD6R3k5+qX4FyNNfDRL2DHi3Dh1mcMv9EcXdIv3tpsIiIiHaTGzsOdPHeSN/e+SV55HsfPHQfA1+ZLxqAM5sTPIaFPQpvOs6X8GNlvl1J5whxIPDa2N9nfS2DUwFCXZXeJlib4+NdQsALOmW8/Ez0e0rMhdoK12URERK6QGjsPVXaqjNdKX+MvlX+h2dEMQHiPcL4//PvcMewOwnu0bfxI1akGnlxfyobSavMcwf789MYR3Hr1wNbbhXUJDjt8ttocXVLzpbkWPswcXTL8Ro0uERERj6DGzoO0OFrYXLWZ10pf45Njn7Suj+ozisyRmcyInYGvt2+bznWu2c7/bd3Pqq37aW5x4GPz4r7r4ngkfSg9A9p2DrdgGFCRb+50rf7cXOs54MLokjngrR8BERHxHPpbzQPUNNXwp31/4g9lf+BI/REAfLx8mB47nTnxc0jsm9jmq2uGYfB+STVPrS/lqzPmZ8+uH9KHJ2YlMDTi4jPs3NZXhbAhCw5sM4/9Q2HiozD+R+AXeNlvFRER6YrU2HVhFacryC3LZf3+9TTazXuX9vbvze3Dbmf28NlEBEW073zH6sh+u4Rt+04AEBkawH/NHEnGqP5d623Xk/sh/0koXWMee/tByg/NeXSBYZZGExERcSU1dl2Mw3BQcKiA3D257Dyys3V9WO9h3B1/NxmDMgjwCWjXOeuaWng+fx+/+bCSFoeBn7eNH04azL+lXUWgXxf6I3K2Grb+DApfMUeX4GXeKSJtMfSKsTqdiIiIy3Whv7UvLycnh5ycHOx2u9VRXKKuuY63Kt7ijbI3qDpbBYDNy0ZadBqZ8ZmMixjX7qtqhmGwrvgw//POHo6dbQJg2oh+/PfMkcSFBzn9NbhMYy1sfx52vADnG8y1oTMgPQsi2rbrV0RExBN4GYZhWB3CmWprawkNDaWmpoaQkBCr41yxAzUHeKPsDdZUrKGhxWxaevr15J+H/jN3jriTgcEDO3TePUdqyVpbwq4D5siP2D6BLJk5kmnx7Xv71lItTbD7ZShYDg0nzbWB42B6NsRNtDabiIiIk7Snt/GYK3aexDAMdhzewWt7XmPbV9ta1weHDiYzPpOZg2cS6NuxD//XNJznuQ3l/H7nQRwGBPjaeHjqUH4wcRABvl3k5vYOB3z+J9j0FJw5aK71GQLTsiB+lkaXiIhIt6XGzo00nG/g7f1vk1uWS2VNZev6pKhJZMZnMmHAhA5vYnA4DP64u4rl75dzqt6ca3fT6AH89KZ4BvbqQje337/J3Ol69MLdM4IjzNt/XX2PRpeIiEi3p78J3cBXdV/xxp43+HPFnznbfBaAIN8gbhlyC3eNuIvYkNgrOn9R1Rmy1n5O8aEaAIb2Cyb7ewlcN6RtQ4rdwuG/mQ1d5Vbz2D8Ern8Ern0Q/LrQ5wFFRERcSI2dRQzDYHf1bl4rfY0th7bgMBwARPeMZs6IOdwy5BaC/YKv6DlO1jWx/L1y8nabmy2C/X14NH0oc6+Lw9fbdsWvoVOc3A+bnoaSP5vH3n6QPM8cXRLUx9psIiIibkaNXSdrbGnk3cp3yd2Ty97Te1vXJwyYQGZ8JqlRqdi8rqzparE7yP3rl/z8g3JqG1sAuO2agSzKGEG/nu0bhWKZuuMXRpe8DI4WwAvGfB/SHofeV3YFU0RExFOpseskR+uPkleex5t73+RM0xkAArwDmHXVLDLjM7mq11VOeZ6/fnGSrHUllB0139JNiAzhyZsTGBvbRQbzNp2FHTnm+JLmOnNtSLq5MWLAGGuziYiIuDk1di5kGAbFx4vJ3ZPLhoMbsBvmjL0BQQO4a8Rd3Db0NkL9Q53yXEdrGln2lz2sLToMQK9AXxbeMJy7UmLwtnWBXaItzfDJ78yrdPXHzbXIqyE9GwZPtjabiIhIF6HGzgWa7c28f+B9cvfkUnKypHV9bMRY7o6/mynRU/CxOee3vrnFwW8/quSX+ftoaLbj5QVzUmJYeMNwegf5OeU5XMrhgNK3IP8pOH1hJ3DYYJi2BEbeotElIiIi7aDGzolOnDvB6vLV5JXncbLRHJjrZ/PjxsE3khmfyYiwEU59vq17j5O9roQvTtQDcHVML566eRSjBjrnKqDLfbHF3Ol6pMg8DuoHU34C18wFb18rk4mIiHRJauycoORkCbmlubx34D3OO84D0K9HP2aPmM3tw24nLMC5n2+rOtXAU+tL+aC0GoDwYD8WZcRz29UDsXWFt12PFMPGJ8yZdAB+wRdGl/wb+F/ZTmAREZHuTI1dB513nCf/y3xyS3MpOl7Uuj6m7xgyR2QyPW46vjbnXnVqPG9n1db9/N+W/TS1OPC2eXHfdXE8kj6UkIAucIXr9AFzdMlnq81jmy8k/wBSF0JwX0ujiYiIeAI1dh3wXuV7rNi9guoG84qZj82HGXEzyByRyei+o53+fIZhsKG0mifXl3Lo9DkAJgzuQ/bNCQyL6On053O6+hNQsAI+/jVcuKLJ6DvM0SVhg6zNJiIi4kHU2HWAn7cf1Q3VhAWEccewO5g9fDZ9A11zxWn/8Tqy3y6lYK+5U3RAaACP3xTPTaMHdPj2Yp2muR52vAgf/QIu3FGDq6aao0sikyyNJiIi4onU2HXA5KjJLJ+0nKkxU/H39nfJc9Q3tfD8pgp+8+EXnLcb+HnbmDdpEPPThhDo5+Zls5+HT16FLc9A/TFzbUCiObrkqjRrs4mIiHgwN+8Q3JO3zZuMQRkuObdhGKwrPszSd/dQXdsEwJThfcmalcCgcDe/J6phQOlayH8STu0313rHwdT/hoTbwNZFbmMmIiLSRamxcyNlR2tZsraEXZWnAIgJC2TJzJFMi+/n/m+7Vm6DjVnwVaF5HBgOk38CY+8Dny4wT09ERMQDqLFzAzXnzvO/G/by+50HsTsMAnxtzJ8yhHmTBhPg6211vMs7+rk5uqRig3nsGwTXPQzXPQT+XWBjh4iIiAdRY2chh8PgzcJD/Oy9Mk7WNwOQMao/j98UT1TvQIvTfYfTB2HzUvg0DzDA5gNj74fJ/wnB/axOJyIi0i2psbNIcdUZlqwrobjqDABX9Q0i+3ujmDg03Npg36X+JGz7OXz8K7CbzSgJt8HU/4I+V1mbTUREpJtzy8bu1ltvZcuWLUybNo0333zT6jhOdbKuiWffLydvdxWGAUF+3jyaPoy518Xh5+PGmwuaG2DnhdElTbXm2qBJ5k7XgddYm01EREQAN23sHnnkER544AF+97vfWR3FaVrsDl7f9SUr3i+ntrEFgFuvHsjijBH0CwmwON1l2Fug6DXYvAzqjppr/UdfGF0yFdx9U4eIiEg34paN3ZQpU9iyZYvVMZzm4wOnWLK2hD1HzCtd8QNCePLmBJLjnHsPWacyDChbDxuz4eQ+c61XjDm6ZNTtGl0iIiLihtr9t3NBQQGzZs0iMjISLy8v1qxZ863H5OTkEBcXR0BAAOPHj2fXrl3OyNrlVNc28ugf/sYdq3aw50gtoT18eermBNY/PNG9m7qD2+E30yHvbrOp6xEG//QMPLQbxnxfTZ2IiIibavcVu/r6ehITE3nggQe47bbbvvX1vLw8FixYwKpVqxg/fjwrV65kxowZlJeX06+fuVsyKSmJlpaWb33vBx98QGRkZAdehntpbnHwyvZKfrFxH/XNdry84M7kGB6bMZywIDee6VZdCvnZsPc989g3ECbMh+v+HQJCrM0mIiIi36ndjV1GRgYZGZe+68Jzzz3HvHnzuP/++wFYtWoV77zzDr/97W9ZtGgRAEVFRR1LexFNTU00NTW1HtfW1jrt3B2xbd9xnlhXwv7j9QAkRffiyZsTGBPVy9Jcl3WmCrYsg6LXAQO8vGHsXHPAcM/+VqcTERGRNnLqZ+yam5spLCxk8eLFrWs2m4309HR27NjhzKdqtWzZMrKzs11y7vY4dLqBp9fv4b0Sc4NBnyA/fpIxgtuvicJmc9MNBg2n4MPn4K8vgf1CczzyZpi6BMKHWJtNRERE2s2pjd2JEyew2+1ERER8bT0iIoKysrI2nyc9PZ3i4mLq6+uJiopi9erVTJgw4aKPXbx4MQsWLGg9rq2tJTo6umMvoAMaz9t5qeALcjZX0NTiwNvmxb0TYnk0fRihPXw7LUe7nD8Hf10FH/4vNNaYa7ETYXo2RI2zNpuIiIh0mFvuit24cWObH+vv74+/v78L01ycYRhs3HOMp9aX8uWpBgDGDwoj++YERvR308+j2Vug+HVzdMnZw+ZavwSzoRuSrtElIiIiXZxTG7vw8HC8vb2prq7+2np1dTX9+3vOZ7UqT9ST/XYJW8qPA9A/JIDHb4pn5pgBeLljc2QYUP6uObrkRLm5Fhpt3i1i9B1gc/P70YqIiEibOLWx8/PzY+zYseTn53PLLbcA4HA4yM/P56GHHnLmU31LTk4OOTk52O12lz4PwLufHWFL+XF8vb34l9TBPJQ2hCB/t7z4CV/uhA1ZULXTPO7RGyY9BuN+AL5uPBhZRERE2q3d3UhdXR0VFRWtx5WVlRQVFREWFkZMTAwLFixg7ty5jBs3jpSUFFauXEl9fX3rLllXmT9/PvPnz6e2tpbQ0FCXPte/pA7i0OkG5qUOZnDfYJc+V4cdK4P8J6H8HfPYpwdc+yBMfBQCXPv7IyIiItbwMgzDaM83bNmyhbS0tG+tz507l1deeQWAF154gWeffZajR4+SlJTEL3/5S8aPH++UwN/l741dTU0NISFu+lk3V6r56sLoklwwHOBlg6vvgSmLIKTrzwgUERHpbtrT27S7sXN33baxO3caPlxp7nZtaTTXRsyEaVnQd5il0URERKTj2tPbuOkHw6TNzjfCrpdg28+h8Yy5FjMBpj8J0SmWRhMREZHO5TGNXWdunnALDjsU/wE2L4XaQ+Za33hIfwKGzdDoEhERkW5Ib8V2NYYBe9+HjU/A8T3mWshASHscEu/U6BIREREPo7diPVXVx7AxCw5+ZB4H9ILUH0PKPPDtYWk0ERERsZ4au67g+F7Iz4ay9eaxTwCM/5E5uqRHb0ujiYiIiPtQY+fOao/A1mfgk9+DYTdHlyRlwpTFEDrQ6nQiIiLiZjymsfOozRONNfDRL2DHi9ByzlwbfiNMWwL94q3NJiIiIm5LmyfcSUsTfPxrKHjWnEsHED0e0rMhdoK12URERMQS2jzR1Tjs8Nlq2PQ/UPOluRY+HNKzzCt1Gl0iIiIibaDGzkqGARUbzdEl1Z+baz0HQNpPIXEOeKs8IiIi0nbqHKxyqNAcXXJgm3nsHwqp/wEp/wp+gdZmExERkS5JjV1nO7nfHF1SutY89vaH8T+EiQsgMMzabCIiItKleUxj5/a7Ys9Ww9afQeEr5ugSvCBpjjm6pFe01elERETEA2hXrKs11sL252HHC3C+wVwbOsPcGBGRYG02ERERcXvaFesOWppg98tQsBwaTpprUcnm6JK4663NJiIiIh5JjZ2zORzw+Z9g01Nw5qC51mcITMuC+FkaXSIiIiIuo8bOWQwD9m8yd7oe/cxcC+4PUxbB1fdodImIiIi4nLoNZzj8N9iQBZVbzWP/ELj+Ebj2QfALsjabiIiIdBtq7K7Eyf2w6Wko+bN57O0HyfMg9ccQ1MfabCIiItLteExj16njTuqOwdblUPgyOFoALxgz27xjRO9Y1z+/iIiIyEVo3ElHbF4GW58x/3vIdHN0Sf/RrnkuERER6dY07sTVJsyHrwrh+n+HQZOsTiMiIiICqLHrmIAQuPtNq1OIiIiIfI3N6gAiIiIi4hxq7EREREQ8hBo7EREREQ+hxk5ERETEQ6ixExEREfEQHtPY5eTkMHLkSJKTk62OIiIiImIJDSgWERERcWPt6W085oqdiIiISHenxk5ERETEQ6ixExEREfEQauxEREREPIQaOxEREREPocZORERExEOosRMRERHxEGrsRERERDyEGjsRERERD+FjdQBnycnJIScnh5aWFsCc0iwiIiLS1f29p2nLzcI87pZihw4dIjo62uoYIiIiIk5VVVVFVFTUZR/jcY2dw+Hg8OHD9OzZEy8vL5KTk/n4448v+thLfe1i699cq62tJTo6mqqqKkvuSXu51+Xq87T1e77rcaqN88+j2lyeanPpNdVGtbkU1ebS651VG8MwOHv2LJGRkdhsl/8Unce8Fft3Npvta92st7f3JX+zL/W1i61f6rEhISGW/KBd7nW5+jxt/Z7vepxq4/zzqDaXp9p892NVm44/TrVx/nncrTaXWu+M2oSGhrbpcR6/eWL+/Pnt/trF1i93His4K09HztPW7/mux6k2zj+PanN5qk3783QW1ab9eTqLatOxTFbxuLdiO0ttbS2hoaHU1NRY8i8ouTTVxn2pNu5LtXFfqo37csfaePwVO1fx9/cnKysLf39/q6PIN6g27ku1cV+qjftSbdyXO9ZGV+xEREREPISu2ImIiIh4CDV2IiIiIh5CjZ2IiIiIh1BjJyIiIuIh1Ng5WVVVFVOmTGHkyJGMGTOG1atXWx1JLjhz5gzjxo0jKSmJUaNG8atf/crqSPINDQ0NxMbGsnDhQqujyD+Ii4tjzJgxJCUlkZaWZnUc+QeVlZWkpaUxcuRIRo8eTX19vdWR5ILy8nKSkpJaf/Xo0YM1a9a4/Hm1K9bJjhw5QnV1NUlJSRw9epSxY8eyd+9egoKCrI7W7dntdpqamggMDKS+vp5Ro0axe/du+vTpY3U0ueDxxx+noqKC6OhoVqxYYXUcuSAuLo7PP/+c4OBgq6PIN0yePJmnn36a1NRUTp06RUhICD4+HndTqS6vrq6OuLg4Dh486PJ+QFfsnGzAgAEkJSUB0L9/f8LDwzl16pS1oQQwbwMTGBgIQFNTE4ZhoH/XuI99+/ZRVlZGRkaG1VFEuoSSkhJ8fX1JTU0FICwsTE2dm1q3bh3Tpk3rlIs8auy+oaCggFmzZhEZGYmXl9dFL5vm5OQQFxdHQEAA48ePZ9euXRc9V2FhIXa7nejoaBen7h6cUZszZ86QmJhIVFQUjz32GOHh4Z2U3rM5ozYLFy5k2bJlnZS4+3BGbby8vJg8eTLJycnk5uZ2UnLPd6W12bdvH8HBwcyaNYtrrrmGpUuXdmJ6z+fMfuCPf/wjs2fPdnFikxq7b6ivrycxMZGcnJyLfj0vL48FCxaQlZXFJ598QmJiIjNmzODYsWNfe9ypU6e49957eemllzojdrfgjNr06tWL4uJiKisref3116muru6s+B7tSmuzdu1ahg0bxrBhwzozdrfgjJ+bDz/8kMLCQtatW8fSpUv59NNPOyu+R7vS2rS0tLBt2zZefPFFduzYwYYNG9iwYUNnvgSP5qx+oLa2lu3bt3PjjTd2Rmww5JIA46233vraWkpKijF//vzWY7vdbkRGRhrLli1rXWtsbDRSU1ONV199tbOidjsdrc0/evDBB43Vq1e7Mma31JHaLFq0yIiKijJiY2ONPn36GCEhIUZ2dnZnxu4WnPFzs3DhQuPll192YcruqSO12b59u3HDDTe0fn358uXG8uXLOyVvd3MlPzuvvvqqkZmZ2RkxDcMwDF2xa4fm5mYKCwtJT09vXbPZbKSnp7Njxw4ADMPgvvvuY+rUqdxzzz1WRe122lKb6upqzp49C0BNTQ0FBQUMHz7ckrzdSVtqs2zZMqqqqjhw4AArVqxg3rx5LFmyxKrI3UZbalNfX9/6c1NXV8emTZtISEiwJG930pbaJCcnc+zYMU6fPo3D4aCgoID4+HirIncrbanP33Xm27Cgt2Lb5cSJE9jtdiIiIr62HhERwdGjRwH46KOPyMvLY82aNa1bnD/77DMr4nYrbanNwYMHSU1NJTExkdTUVB5++GFGjx5tRdxupS21EWu0pTbV1dVMnDiRxMRErr32Wu69916Sk5OtiNuttKU2Pj4+LF26lEmTJjFmzBiGDh3KzJkzrYjb7bT1/2s1NTXs2rWLGTNmdFo2bZ9xsokTJ+JwOKyOIReRkpJCUVGR1THkO9x3331WR5B/MHjwYIqLi62OIZeQkZGhneRuLDQ0tNM/y60rdu0QHh6Ot7f3t4pUXV1N//79LUoloNq4M9XGfak27ku1cW/uXB81du3g5+fH2LFjyc/Pb11zOBzk5+czYcIEC5OJauO+VBv3pdq4L9XGvblzffRW7DfU1dVRUVHRelxZWUlRURFhYWHExMSwYMEC5s6dy7hx40hJSWHlypXU19dz//33W5i6e1Bt3Jdq475UG/el2ri3LlufTtt/20Vs3rzZAL71a+7cua2Pef75542YmBjDz8/PSElJMXbu3Gld4G5EtXFfqo37Um3cl2rj3rpqfXSvWBEREREPoc/YiYiIiHgINXYiIiIiHkKNnYiIiIiHUGMnIiIi4iHU2ImIiIh4CDV2IiIiIh5CjZ2IiIiIh1BjJyIiIuIh1NiJiIiIeAg1diIiIiIeQo2diIiIiIdQYyciIiLiIdTYiYiIiHiI/wcCV8FZMlNWmAAAAABJRU5ErkJggg==", - "text/plain": [ - "<Figure size 640x480 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "xs = []\n", - "results_vec = []\n", - "\n", - "run_num = 10\n", - "\n", - "for _nsamples in nsamples_vec:\n", - " _nsamples = int(_nsamples)\n", - " xs.append(_nsamples)\n", - "\n", - " # Create synthetic data\n", - " a = np.random.random(_nsamples).astype('float64')\n", - " b = np.random.random(_nsamples).astype('float64')\n", - " c = np.random.random(_nsamples).astype('float64')\n", - "\n", - " # Simple function: multiply\n", - " my_function_partial = partial(discriminant, a, b, c)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res = np.min(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(discriminant_vec, a, b, c)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_vec = np.min(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(discriminant_vec_par, a, b, c)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_vec_par = np.min(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(discriminant_vec_gpu, a, b, c)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_vec_gpu = np.min(runtime) * 10**3\n", - "\n", - " results_vec.append((res,res_vec,res_vec_par,res_vec_gpu))\n", - "\n", - "normal = list(zip(*results_vec))[0]\n", - "cpu = list(zip(*results_vec))[1]\n", - "par_cpu = list(zip(*results_vec))[2]\n", - "gpu = list(zip(*results_vec))[3]\n", - "\n", - "# fig, axs = plt.subplots(4, 1, figsize=(10, 40))\n", - "plt.semilogx(nsamples_vec, normal, label='Baseline')\n", - "plt.semilogx(nsamples_vec, cpu, label='CPU')\n", - "plt.semilogx(nsamples_vec, par_cpu, label='Parallel CPU')\n", - "plt.loglog(nsamples_vec, gpu, label='GPU')\n", - "plt.legend()\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "RcaVaPXLej3T", - "metadata": { - "id": "RcaVaPXLej3T" - }, - "source": [ - "##### Observations: \n", - "\n", - "Two universal functions were created and vectorized, a simple multiplication function, taking 2 arguments, and a more complex discriminant function, taking 3 arguments. The four versions were created (baseline, simd, parallel cpu, gpu) and the performance was evaluated using input data in the forms of arrays containing from X to Y elements each. The 32 and 64 bit execution times were computed. \n", - "\n", - "As a general trend, the latency for the GPU code is above the CPU implementations, and this is likely due to the fact that heterogeneous computing generally has the communication bottleneck. The only case where the GPU was faster than the baseline comparison was when running the 64 bit discriminant computation.\n", - "\n", - "In the other cases, specially for smaller number or values, the baseline and SIMD vectorizations were better, as it is possible to be seen from the plotted charts. The parallel CPU optimization in general is only competitive in the cases where the input size grows considerably. Even though, we can see that for the multiplication ufunc with 32 bit, the baseline performs as well as the other CPU versions.\n", - "\n", - "As for the discriminant analysis, in all evaluated cases, either the SIMD or the parallel CPU version were the best ones, with the execution time growing the fastest for the baseline. In terms of computation time growth, the GPU has the smallest angular coefficient. If the input size was large enough, the chart would likely demonstrate the performance gain.\n" - ] - }, - { - "cell_type": "markdown", - "id": "e186370f-ae17-4696-a27e-6bb3763afc36", - "metadata": { - "id": "e186370f-ae17-4696-a27e-6bb3763afc36" - }, - "source": [ - "## Vectorizing distance between sets of points" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "id": "qTTWvHaLTaxt", - "metadata": { - "id": "qTTWvHaLTaxt" - }, - "outputs": [], - "source": [ - "# GPU vectorization\n", - "@nb.cuda.jit(device=True)\n", - "def polar_to_cartesian_dev(rho, theta):\n", - " x = rho * math.cos(theta)\n", - " y = rho * math.sin(theta)\n", - " return x, y\n", - "\n", - "@nb.cuda.jit(device=True)\n", - "def dist_rect_dev(x1, y1, x2, y2):\n", - " return math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))\n", - "\n", - "@nb.vectorize(['float32(float32, float32, float32, float32)',\n", - " 'float64(float64, float64, float64, float64)'],\n", - " target='cuda')\n", - "def dist_gpu(rho1, theta1, rho2, theta2):\n", - "\n", - " x1, y1 = polar_to_cartesian_dev(rho1, theta1)\n", - " x2, y2 = polar_to_cartesian_dev(rho2, theta2)\n", - "\n", - " distances = dist_rect_dev(x1, y1, x2, y2)\n", - "\n", - " return distances\n", - "\n", - "# CPU vectorization\n", - "@nb.jit(nopython=True)\n", - "def polar_to_cartesian_jit(rho, theta):\n", - " x = rho * math.cos(theta)\n", - " y = rho * math.sin(theta)\n", - " return x, y\n", - "\n", - "@nb.jit(nopython=True)\n", - "def dist_rect_jit(x1, y1, x2, y2):\n", - " return np.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))\n", - "\n", - "@nb.vectorize(['float32(float32, float32, float32, float32)',\n", - " 'float64(float64, float64, float64, float64)'],\n", - " target='parallel', nopython=True)\n", - "def dist_vec_par(rho1, theta1, rho2, theta2):\n", - "\n", - " x1, y1 = polar_to_cartesian_jit(rho1, theta1)\n", - " x2, y2 = polar_to_cartesian_jit(rho2, theta2)\n", - "\n", - " distances = dist_rect_jit(x1, y1, x2, y2)\n", - "\n", - " return distances\n", - "\n", - "@nb.vectorize(['float32(float32, float32, float32, float32)',\n", - " 'float64(float64, float64, float64, float64)'],\n", - " nopython=True)\n", - "def dist_vec(rho1, theta1, rho2, theta2):\n", - "\n", - " x1, y1 = polar_to_cartesian_jit(rho1, theta1)\n", - " x2, y2 = polar_to_cartesian_jit(rho2, theta2)\n", - "\n", - " distances = dist_rect_jit(x1, y1, x2, y2)\n", - "\n", - " return distances\n", - "\n", - "# Baseline\n", - "def polar_to_cartesian(rho, theta):\n", - " x = rho * np.cos(theta)\n", - " y = rho * np.sin(theta)\n", - " return x, y\n", - "\n", - "def dist_rect(x1, y1, x2, y2):\n", - " return np.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))\n", - "\n", - "def dist(rho1, theta1, rho2, theta2):\n", - "\n", - " x1, y1 = polar_to_cartesian(rho1, theta1)\n", - " x2, y2 = polar_to_cartesian(rho2, theta2)\n", - "\n", - " distances = dist_rect(x1, y1, x2, y2)\n", - "\n", - " return distances" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "cwc2pnY_W6ht", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "cwc2pnY_W6ht", - "outputId": "0c82f02e-5e5e-4f84-9ae2-669bc7e67a82" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time 0.03340315818786621, avg: 0.0\n" - ] - } - ], - "source": [ - "# Single run\n", - "n = 1000000\n", - "rho1 = np.random.uniform(0.5, 1.5, size=n).astype(np.float32)\n", - "theta1 = np.random.uniform(-np.pi, np.pi, size=n).astype(np.float32)\n", - "rho2 = np.random.uniform(0.5, 1.5, size=n).astype(np.float32)\n", - "theta2 = np.random.uniform(-np.pi, np.pi, size=n).astype(np.float32)\n", - "\n", - "# Sanity check, must be 0\n", - "a = time.time()\n", - "results = dist_vec(rho1, theta1, rho1, theta1)\n", - "b = time.time()\n", - "\n", - "print(f'time {b - a}, avg: {np.mean(results)}')" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "id": "9d613271-8568-4780-a472-512b1b3c33d1", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 487 - }, - "id": "9d613271-8568-4780-a472-512b1b3c33d1", - "outputId": "8331a48a-c6a3-4a64-e829-481a5531b39c" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACC2UlEQVR4nOzdd3hU1dbH8e+kF5JQAgkllFAFgUhVsQAiRQQF7L6KoKgYQYo0xYJXBVEwClEQxMZVURBUUERRig0CGEA6JHQSAiG9zsx5/ziQK9UkJJnJ5Pd5Hp579+TMOetkAlmetdfeFsMwDERERESk3HNzdAAiIiIiUjKU2ImIiIi4CCV2IiIiIi5CiZ2IiIiIi1BiJyIiIuIilNiJiIiIuAgldiIiIiIuQomdiIiIiIvwcHQAJc1ut3P06FECAgKwWCyODkdERETkshiGQXp6OrVq1cLN7dLP5FwusTt69ChhYWGODkNERESkRB06dIg6depc8hiXS+wCAgIA8+YDAwMdHI2IiIjI5UlLSyMsLKwgx7kUl0vszpRfAwMDldiJiIiIyyjMFDM1T4iIiIi4CCV2IiIiIi7CZRK76OhomjdvTvv27R0dioiIiIhDWAzDMBwdRElKS0sjKCiI1NTUS86xs9ls5Ofnl2Fk4oy8vLz+tXVcRETEkQqb24ALNk/8G8MwSEhIICUlxdGhiBNwc3OjQYMGeHl5OToUERGRy1bhErszSV2NGjXw8/PTIsYV2JnFrI8dO0bdunX1syAiIuVehUrsbDZbQVJXrVo1R4cjTqB69eocPXoUq9WKp6eno8MRERG5LBVqctGZOXV+fn4OjkScxZkSrM1mc3AkIiIil69CJXZnqOQmZ+hnQUREXEmFTOxEREREXJESOym0+vXrExUVVTC2WCwsWbLEYfGIiIjI2ZTYlRMPPfQQFoul4E+1atXo2bMnW7ZscVhMx44do1evXg67voiIiJxNiV050rNnT44dO8axY8dYuXIlHh4e3HrrrQ6LJzQ0FG9vb4ddX0RERM6mxK4c8fb2JjQ0lNDQUCIiIhg/fjyHDh0iKSkJgHHjxtGkSRP8/PwIDw/nueeeO2t3jc2bN9OlSxcCAgIIDAykbdu2bNiwoeDrv/76K9dffz2+vr6EhYUxfPhwMjMzLxrPP0ux+/fvx2Kx8NVXX9GlSxf8/Pxo3bo1f/zxx1nvKeo1REREpPAqdGJnGAZZeVaH/LncndwyMjKYP38+jRo1KliTLyAggA8//JDt27fz1ltvMWfOHN58882C99x///3UqVOHmJgYNm7cyPjx4wvWbtu3bx89e/ZkwIABbNmyhQULFvDrr7/y5JNPFimuZ599lqeffprY2FiaNGnCvffei9VqLdFriIiIOAOb3eBERq6jwzhLhVqg+FzZ+TaaP/+DQ669/aUe+HkV7du/dOlSKlWqBEBmZiY1a9Zk6dKlBXudTpw4seDY+vXr8/TTT/P5558zduxYAA4ePMiYMWNo1qwZAI0bNy44fvLkydx///2MGDGi4Gtvv/02N954I++++y4+Pj6FivHpp5+md+/eAEyaNIkWLVqwd+9emjVrVmLXEBERcTTDMJj09RYOb/+TZ4bcR6MaAY4OCXChJ3bR0dE0b96c9u3bOzqUUtOlSxdiY2OJjY1l/fr19OjRg169enHgwAEAFixYQKdOnQgNDaVSpUpMnDiRgwcPFrx/1KhRPPLII3Tr1o0pU6awb9++gq9t3ryZDz/8kEqVKhX86dGjB3a7nfj4+ELH2KpVq4L/X7NmTQCOHz9eotcQERFxtHnL/6Tnpsd5J+9ZEnZt+Pc3lBGXeWIXGRlJZGQkaWlpBAUFFeo9vp7ubH+pRylHdvFrF5W/vz+NGjUqGM+dO5egoCDmzJlD7969uf/++5k0aRI9evQgKCiIzz//nGnTphUc/+KLL3LfffexbNkyvv/+e1544QU+//xz+vXrR0ZGBo899hjDhw8/77p169YtdIz/3JbrzOK/drsdoMSuISIi4kg/f7+IPn+OooZ7CvnuvlxXPdvRIRVwmcSuOCwWS5HLoc7EYrHg5uZGdnY2v//+O/Xq1ePZZ58t+PqZJ3n/1KRJE5o0acLIkSO59957+eCDD+jXrx9t2rRh+/btZyWOJa0sriEiIlJq7Hb2fPUSN26Nwt1ikOQbTvXBC6B6E0dHVsBlSrEVQW5uLgkJCSQkJLBjxw6GDRtGRkYGffr0oXHjxhw8eJDPP/+cffv28fbbb7N48eKC92ZnZ/Pkk0+yatUqDhw4wG+//UZMTAxXXHEFYHbU/v777zz55JPExsayZ88evv766xJtbCiLa4iIiJSKzJOkvn87jf9+E3eLQUzlXgSP/NWpkjqo4E/sypvly5cXzFsLCAigWbNmfPnll3Tu3BmAkSNH8uSTT5Kbm0vv3r157rnnePHFFwFwd3fn5MmTPPjggyQmJhIcHEz//v2ZNGkSYM6NW716Nc8++yzXX389hmHQsGFD7r777hKLvyyuISIiUuISt5H/yR0EZRwl2/Dis+DhPPjEs1jcne/5mMW43HU3nMyZOXapqakEBgae9bWcnBzi4+Np0KCBOjAF0M+EiIj8i7hVGAv+D0tuOnH2UN4Ofo7Jj9+Lr1fR58oX16Vym3PpiZ2IiIjIhcR+Ct8Mw2K3ss7ejBf9nuHTh3uVaVJXVM73DFFERETEkQwDVr0GS4aC3cr3dOKBvAkM6d6WKv5ejo7ukvTETkREROQMWz58+xTE/heAjWEP8cSebjQIDqBv61rnHZ6am0qQd+GWWSsLemInIiIiApBxHOYPMJM6ixs5Pd5g8OHeGLgx/KbGePyjWSI1N5X//PEfei/uzYnsEw4M+mxK7ERERER2r4B3r4X41eDpD/d+zntZnUnNzqdhdX/6nH5aZxgGX+/9mr5L+vLF7i9IzU3ll0O/ODj4/1EpVkRERCqu/Bz46QVYN8sc12gBd7xPakAj5n76MwBPdWuCu5uFPaf28PKfL7Pp+CYAGgY15Nmrn6V9qPNsZ6rETkRERCqm4ztg4cNwfJs57vg4dJsEnj588NNu0nKsNK5RiR4tqhO1MYoPt32IzbDh6+HL460f54ErHsDT3fPS1yhjSuxERESkYjEMiJkLKyaCNQf8q8Nt70CT7gCkZuXz/q/xADzauSbDfo7kj2N/ANCtbjfGth9LzUo1HRb+pSixExERkYoj8yR88yTs+s4cN+oGt78LlWoUHPL+r3Gk51hpWDObjw+MZn/afnw9fHm508t0r9/dQYEXjponypGEhASGDRtGeHg43t7ehIWF0adPH1auXAlA/fr1sVgsWCwW/P39adOmDV9++WXB+x966CFuv/328867atUqLBYLKSkpZXQnIiIiDhC/FmZ1MpM6dy/oOQXu+/KspC4lK495v+3H3W8fGdWmsz9tPyF+IXzc62OnT+pAiV25sX//ftq2bcvPP//M66+/ztatW1m+fDldunQhMjKy4LiXXnqJY8eO8ddff9G+fXvuvvtufv/9dwdGLiIi4mA2K/z8MnzUB9KPQbXG8MhKuHoouJ2dCs1dG0+u7+/41X2fLFs6rYJb8fmtn9OsajMHBV80KsWWE0888QQWi4X169fj7+9f8HqLFi0YPHhwwTggIIDQ0FBCQ0OJjo5m/vz5fPvtt1x77bWOCFtERMSxUg7Cokfg0DpzfNUD0Os18DJ/l+ZabWzcf4rVu5NYtTuB/fYv8Kn5KwC9GvTipWtfwsej/Owl7nSJXUpKCt26dcNqtWK1WnnqqacYMmSIo8NyqOTkZJYvX84rr7xyVlJ3RuXKlS/4Pg8PDzw9PcnLyyvlCEVERJzQtiXw7XDISQXvQOgTBVcO4Hh6Dt9v2M+a3Un8vu8k2fk2cMvCt/ZneFXaA0BkRCSPtXoMi8Xi0FsoKqdL7AICAlizZg1+fn5kZmZy5ZVX0r9/f6pVq1byFzMMyM8q+fMWhqcfFPKHZe/evRiGQbNmhX8MnJeXx7Rp00hNTaVr167FjVJERKT8ycuCHybAxg/Nce12cMf7UKU+h5KzuD36N05m/u+hR7UqKXjU/IAsIxEfdx9evu5letTv4ZjYL5PTJXbu7u74+fkBkJubi2EYGIZROhfLz4JXz9/3rUw8c7TgMfC/Kcr9jxs3jokTJ5KTk0OlSpWYMmUKvXv3Lm6UIiIi5cvJffD5/ZC0A7DAdSOhyzPg7kl2no3HPtnIycw8woP9uat9GP6VdxO9bQaZ+ZnU8q/FW13fKjfz6S6kxJsn1qxZQ58+fahVqxYWi4UlS5acd0x0dDT169fHx8eHjh07sn79+rO+npKSQuvWralTpw5jxowhODi4pMMsVxo3bozFYmHnzp3/euyYMWOIjY3l8OHDnDp1inHjxhV8LTAwkNTU1PPek5KSgru7+wXLvCIiIuVG3GqY09VM6iqFwINLoNsL4O6JYRiMW7SF7cfSCK7kxScPd8C9ys+8HjuOzPxM2oW047NbPyvXSR2UwhO7zMxMWrduzeDBg+nfv/95X1+wYAGjRo1i1qxZdOzYkaioKHr06MGuXbuoUcNsN65cuTKbN28mMTGR/v37c8cddxASElLSoZrl0GeOlvx5C3vtQqpatSo9evQgOjqa4cOHn5eApaSkFMyzCw4OplGjRhc8T9OmTfn888/Jzc3F29u74PVNmzbRoEEDPD2da/VsERGRQls/B74fB4YNareFez6FgNCCL89dG883m4/i4WZh+t1XELXlBZbvXw7A3U3vZlyHcXi6lf/fgyX+xK5Xr168/PLL9OvX74Jfnz59OkOGDGHQoEE0b96cWbNm4efnx7x58847NiQkhNatW7N27dqLXi83N5e0tLSz/hSaxWKWQx3xp4iTMaOjo7HZbHTo0IFFixaxZ88eduzYwdtvv80111xTqHPcf//9WCwWHnzwQTZu3MjevXuZN28eUVFRjB49ukjxiIiIOAVbPiwdBd89bSZ1Le+Ch747K6lbuyeJyd/vAGBYjyrM2DmS5fuX4+HmwfPXPM/Eqye6RFIHZbyOXV5eHhs3bqRbt27/C8DNjW7duvHHH+ZWHYmJiaSnpwOQmprKmjVraNq06UXPOXnyZIKCggr+hIWFle5NOEh4eDibNm2iS5cujB49miuvvJKbb76ZlStX8u677xbqHJUrV2bt2rXk5+fTt29fIiIiePvtt5k+fTqPPfZYKd+BiIhICctKhk/6wYb3AQvc9AL0fw88/7c8yaHkLIZ99hd2A25ofYzPj4xiZ/JOqvpU5f3u73NnkzsdF38pKNPmiRMnTmCz2c4rq4aEhBTMHztw4ACPPvpoQdPEsGHDaNmy5UXPOWHCBEaNGlUwTktLc9nkrmbNmsycOZOZM2de8Ov79+//13M0adKEr776qoQjExERKWPHd8Jnd8Op/eBVCQbMhaa9zjokK8/KkI83kJKVQ52Gv/BX3k8AXFXjKl6/4XVC/EthmpeDOV1XbIcOHYiNjS308d7e3mfNFxMREREXt3sFLBwMeelQuS7cuwBCmp91iGEYjFm4hV0nDhMY/jmpXvEADGw+kKfaPuUypddzlWliFxwcjLu7O4mJiWe9npiYSGho6EXeJSIiIoK5/uzvM+DH5wED6nWCuz4G//NXz5i9Jo7le9fi3+AzDI9MKnlW4uVOL3NTvZvKPu4yVKZz7Ly8vGjbtm3BpvUAdrudlStXFroB4GKio6Np3rw57du3v9wwRURExNnkZ8OSofDjc4ABbQbCA0sumNT9siuRN2Oi8a37PhaPTJpVbcaCWxe4fFIHpfDELiMjg7179xaM4+PjiY2NpWrVqtStW5dRo0YxcOBA2rVrR4cOHYiKiiIzM5NBgwZd1nUjIyOJjIwkLS2NoKCgy70NERERcRYn98EXAyFxK1jcoOcU6PDoBVeY+GHHPp5eNR6v6ubc/f6N+jOh44Rytd/r5SjxxG7Dhg106dKlYHymsWHgwIF8+OGH3H333SQlJfH888+TkJBAREQEy5cvL5116kRERKR82/EtLHkCctPAL9jcGiy883mHGYbBqytX8On+l3HzS8FiePL8NRO5o+n5a+q6MotRavt1OcaZJ3apqakEBgae9bWcnBzi4+Np0KABPj4VI3OXS9PPhIiIk7Llw08vwh+nV4IIuxru/AACz98KNDvPyoMLo9iRNx+LxYavJYT3e86gZY0ryjbmUnKp3OZcTtcVW1zR0dEFi/iKiIhIOZZ2DBYOgoPmGrdc8yR0exHcz+9kjT+ZzL2LnybTMwaLBRr5X8NHfd4g0PvSCZCrKtPmidIUGRnJ9u3biYmJcXQoIiIiUlxxq2H29WZS5x0Id30CPV65YFL37fa/uG3xXWR6xoDhxh31n+CrAbMrbFIHLvTETkRERMoxux1+nQ6/vAKGHUKuNJcyqdbwgoc/99PHLD70FhbPPNzsQbx23ev0bHx5K2y4Apd5Yielw2KxsGTJEsDc2cJisRRpAenOnTszYsSIUolNRERcRFayuYvEz/8xk7qI/4NHfrpgUpeZl8Ntn41myZHXsbjlEcQVLO3/lZK601wmsXPldeweeughLBYLFosFLy8vGjVqxEsvvYTVanV0aCUiLy+PqVOn0rp1a/z8/AgODqZTp0588MEH5OfnA//+Pfjwww+pXLnyBc//z+RURESczJGNMPtG2LMCPHyg70y4PRo8fc87dFvifrr8907i8lYAEBFwB7/c/ylhQTXKOmqn5TKlWFdfx65nz5588MEH5Obm8t133xEZGYmnpycTJkwo8rlsNhsWiwU3N8fn9Xl5efTo0YPNmzfzn//8h06dOhEYGMiff/7JG2+8wVVXXUVERARQst8DERFxMMOAmLnwwzNgy4MqDczSa81WFzz849jveeOvFzHcsjBsvgxp9ixPXXtbGQft/Bz/m10Kxdvbm9DQUOrVq8fQoUPp1q0b33zzDQDTp0+nZcuW+Pv7ExYWxhNPPEFGRkbBe888zfrmm29o3rw53t7eHDx4kJiYGG6++WaCg4MJCgrixhtvZNOmTUWK6++//6ZXr15UqlSJkJAQHnjgAU6cOFHo90dFRbFmzRpWrlxJZGQkERERhIeHc99997Fu3ToaN25cqO+BiIiUI3mZ8NUQ+O5pM6lrdis8tvqCSV2+LZ9Hvp3E65vHYrhl4Z5fl9ld5iupuwglduWUr68veXl5ALi5ufH222+zbds2PvroI37++WfGjh171vFZWVm89tprzJ07l23btlGjRg3S09MZOHAgv/76K3/++SeNGzfmlltuIT09vVAxpKSk0LVrV6666io2bNjA8uXLSUxM5K677ir0ffz3v/+lW7duXHXVVed9zdPTE39//0J9D0REpJw4uQ/mdoOtX4LFHbq/DHfPB5/zq20HUo7S9b/3si55IQCh3MRP935BpwZNyjrqcsNlSrHFYRgG2dZsh1zb18MXywW2Qvk3hmGwcuVKfvjhB4YNGwZwVnNC/fr1efnll3n88cd55513Cl7Pz8/nnXfeoXXr1gWvde3a9axzv/fee1SuXJnVq1dz6623/mssM2fO5KqrruLVV18teG3evHmEhYWxe/dumjT59794e/bsoXPnzv963D9d6HsgIiLlwM5lsPhxcxeJSiFwxwdQv9MFD124/Wf+s+5Z7G4ZGDZveoUOY2qvB4v1u7MiqdCJXbY1m46fdnTItdfdtw4/T79CH7906VIqVapEfn4+drud++67jxdffBGAn376icmTJ7Nz507S0tKwWq3k5OSQlZWFn595DS8vL1q1OvsRd2JiIhMnTmTVqlUcP34cm81GVlYWBw8eLFRMmzdv5pdffqFSpUrnfW3fvn2FSuyKsvHJpb4HIiLixOw2+PllczkTgLrXwJ0fQkDoeYfa7DZG/fg6K499isXNwJJXi1c7vU6f5heeeydnc5nEztV3nujSpQvvvvsuXl5e1KpVCw8P86Pbv38/t956K0OHDuWVV16hatWq/Prrrzz88MPk5eUVJHa+vuc/IRw4cCAnT57krbfeol69enh7e3PNNdcUuryZkZFBnz59eO211877Ws2aNQt1jiZNmrBz585CHXux7wFAYGAgmZmZ2O32s5pCUlJSAFyyoUZEpFzIPAGLHoa4Veb46ifg5pcuuODwsfQk7v9mOEnWv7FYoIrtev5756uEXWTVAzmfyyR2xemK9fXwZd1960o5sotfuyj8/f1p1KjRea9v3LgRu93OtGnTChKaL774olDn/O2333jnnXe45ZZbADh06FCRGh/atGnDokWLqF+//llJVlHcd999PPPMM/z111/nzbPLz88nLy+vYJ7dxb4HAE2bNsVqtRIbG0ubNm0KXj/TDFKYp4ciIlLCDm+ELx6EtMPg6Qd9Z0DLOy546Pd7f2XC2nHY3NIw7J5cV/lxZvZ9BA93tQMURYX+blksFvw8/Rzyp6TmCDRq1Ij8/HxmzJhBXFwcn3zyCbNmzSrUexs3bswnn3zCjh07WLduHffffz++voVPOCMjI0lOTubee+8lJiaGffv28cMPPzBo0KBCPzkdMWIEnTp14qabbiI6OprNmzcTFxfHF198wdVXX82ePXsKdZ4WLVrQvXt3Bg8ezMqVK4mPj2f58uU88cQT3H333dSuXbvQ9yUiIpfJMGDDB/BBTzOpq9oQHll5waTObth59pcoxv76BDa3NMgLYXyrWczq96iSumLQd6yca926NdOnT+e1117jyiuv5L///S+TJ08u1Hvff/99Tp06RZs2bXjggQcYPnw4NWoUfpHHWrVq8dtvv2Gz2ejevTstW7ZkxIgRVK5cudBr5Hl7e/Pjjz8yduxYZs+ezdVXX0379u15++23GT58OFdeeWWh41mwYAE33ngjjz32GC1atGD48OHcdtttzJ07t9DnEBGRy5SfDV8/CUtH/G8pk0d/gZDm5x16MiuZ3gse4puD74PFwD+vI4v6LuD/2nYo+7iLwcjLI3PdekeHcRaLUZTZ6+XAmVJsamoqgYFnbwKck5NDfHw8DRo0wMfHx0ERijPRz4SISAk6tR8WPAAJW8DiBjc9D51GwAWqVGsOxDDil9HkW05h2D1o7TeIuf2ewNerfMwSy923j6NjxpKzezf1P/8c3ytblNq1LpXbnKt8fPdERETEue35ERY9Ajkp4FcN7pgH4Z3PO8wwDGZs+JA526LAYsfIC2Zo85eI7HR9WUdcLIbdzqn5/+X4tGkYubm4BwVhSz7p6LAKuExi5+pdsSIiIk7Jboc1r8OqyYABtduaW4MF1Tnv0GxrNiNXTuS3hBVgAa+cq5hzy2u0CSvcSgqOlp+QwLFnniHz9z8A8L/uOmq+8gqeIc6zV63LJHauvlesiIiI08k+BV89CntWmON2g6HnFPDwPu/QQ+mHeHT5MA5n7cMw3Kia249F942nekD5mAaT9v33HHvhRexpaVh8fKgxdgxV7r3X6RZMdpnETkRERMrQsc3mfLqUA+DhA72nw1X3X/DQtYfXMmrVWHJsGditlWjE4/z3ofup5O38aYhhGJx45x1OzJgJgE/LltR67TW8wxs4OLILc/7vqIiIiDiX2E9h6Uiw5kDleuZerzXP3xnCbth5b8t7RMe+AxjYssO4NmAU0Xd3wdvDvezjLiLDaiXhpf+Qcnp92KoPD6bGiBFYPM9fXNlZKLETERGRwrHmwfLxsOF9c9y4O/R/D3yrnHdoWl4az6x9htWHVwOQd6ojA+pF8p/bInB3c67y5YXYs7M5MvppMn7+GSwWQp6bSNX77nN0WP9KiZ2IiIj8u/QEcxeJQ+sAC3SeADeMgQusW7r71G5G/DKSQ+kHMewe5CTczpPt7+Wpmxo73Zy0C7GeOsXhoU+QHRuLxcuLWm+8TmD37o4Oq1CU2ImIiMilHYqBLx6A9GPgHQQD5kKTCyc638d/z/O/PU+OLQd7XmVyjvwfk3r25P+urlfGQRdP3uEjHBoyhLz4eNwCAwl79x382rZ1dFiFpsRORERELm7jR/Dd0+YuEtWbwT2fQrWG5x2Wb8/nzY1v8sn2TwCwZjTClnA/M+7qxC0ty8dyJuk//8Kx557DdvIkHjVrUnfOe3hfZI9yZ+UyiZ3WsRMRESlB586nu6IP3P4ueAecd+iJ7BM8vfppNiZuBCD3RGc8U3vx/sAOXNsouCyjLhZbejqJr04mdfFiALybNiVs9iw8Q0MdHFnRucxesZGRkWzfvp2YmBhHh1JqEhISeOqpp2jUqBE+Pj6EhITQqVMn3n33XbKysgCoX78+FosFi8WCv78/bdq04csvvyw4x0MPPcTtt99+3rlXrVqFxWIhJSWljO5GREScVnoifNTndFJnga4T4c6PL5jUbU7azN3f3s3GxI1Y7N5kH/4/ArL68vmjncpFUpf555/E3XabmdRZLFQdPJj6Xywol0kduNATO1cXFxdHp06dqFy5Mq+++iotW7bE29ubrVu38t5771G7dm369u0LwEsvvcSQIUNIS0tj2rRp3H333dSuXZtrr73WwXchIiJO7/AGc3269KOn59PNgSY9zjvMMAy+2PUFU2KmYLVbseSHkHHwfmr51+OThzvSINjfAcEXnj07m+PTpnNq/nwAPMPCqDVlcrmaT3chSuzKiSeeeAIPDw82bNiAv////rKEh4dz2223YRhGwWsBAQGEhoYSGhpKdHQ08+fP59tvv1ViJyIil7bpE1g2ypxPF9zUnE8XfP4csxxrDi//+TJf7/vafCGzFWmHB9CsRjAfDe5ASKBz7yaRvXkzR8eOI+/AAQAq33sPIU8/jZu/cyejhVGhEzvDMDCysx1ybYuvb6Fbvk+ePMmKFSt49dVXz0rqzjrfRc7l4eGBp6cneXl5xY5VRERcnC0flk+AmDnmuNmt0G/WBUuvRzKOMPKXkexI3oEFN/KTepJ94no61K/GnIHtCPJ13sV7DcPg1GefkfjqZLBa8QgJoeYrr1Dpuk6ODq3EVOzELjubXW0c88i16aaNWPz8CnXs3r17MQyDpk2bnvV6cHAwOTk5gDnH8LXXXjvr63l5eUybNo3U1FS6du1aMoGLiIhryTgOXwyEg78DFujyDFz/9AXXp1t3bB1Pr36alNwU/NwDORl/F9bMRnS7IoSZ912Fj6fz7iZhz80lYdJLpH71FQABvXpS88UXcXex/eUrdGJX3q1fvx673c79999Pbm5uwevjxo1j4sSJ5OTkUKlSJaZMmULv3r0dGKmIiDilIxvh8/87PZ8uEPrPgaY9zzvMMAw+3fkpr8e8js2wUd2rEfHb7sCwVuaudnV4tV9LPNydtx8z/9gxDg8bTs7ff4ObGzWefpqqgx4qF4slF1WFTuwsvr403bTRYdcurEaNGmGxWNi1a9dZr4eHhwPge865xowZw0MPPUSlSpUICQk56wc3MDCQA6fnFPxTSkoK7u7uFy31ioiIi/nrv+Z+r7ZcCG5yej5d4/MOy7Pl8cq6V/hqj/mkq67X9Wzb0h0MT4Z2bsjYHk2dOkHKXL+eIyNGYktOxr1yZWpPn4a/C885r9iJncVS6HKoI1WrVo2bb76ZmTNnMmzYsH9NvoKDg2l0kQUVmzZtyueff05ubi7e3t4Fr2/atIkGDRrg6cQbG4uISAmw5cMPz8D698xx01ug32zwCTzv0BPZJxj5y0hik2Kx4IZ/5m1s29EBsDCx9xU8cn142cZeBIZhcOqT+SS+9hrYbHhfcQV1ZszAq05tR4dWqpz3uamc5Z133sFqtdKuXTsWLFjAjh072LVrF/Pnz2fnzp24uxduXsP999+PxWLhwQcfZOPGjezdu5d58+YRFRXF6NGjS/kuRETEoTKS4OPb/pfUdZ4Ad//3gkndthPbuGfpPcQmxeKBH5kHH+LYwY4EV/Lm3fvbOHVSZ8/J4dj48SS++irYbAT26UP9T//r8kkduNATO1ffeaJhw4b89ddfvPrqq0yYMIHDhw/j7e1N8+bNefrpp3niiScKdZ7KlSuzdu1axo8fT9++fUlNTaVRo0ZMnz6dhx9+uJTvQkREHObIJljwf5B2BLwCoP970OyWCx66LG4ZL/z+Arm2XCz5NUg5+ABGXnXuaR/G+F7NqOznVcbBF17O7t0cHTee3B07wN2dkHFjqfLAA05dLi5JFuOfC6C5gLS0NIKCgkhNTSUw8Oz/AsnJySE+Pp4GDRrg4+Pca+xI2dDPhIhUCLGfwbdPmfPpqjU259NVb3LeYTa7jbf+eosP/v4AAGt6M7KP3kOj4GBe7deSDg2qlnXkhWbk53NizhxOvDsL8vNxr1KF2m++if/VHR0d2mW7VG5zLpd5YiciIiLnsOXDiomwbpY5btIL+s8Gn/OX+EjLS2Ps6nH8dvRXwNzvlVM9GX1TEx69MRxvD+ddyiRnxw6OPvOs+ZQOqNSlC6EvvohnSA0HR1b2lNiJiIi4oswT5vp0B8xEjRvHw43jLrg+XXxqPI+teJJjWQcx7J7kHL2DDjW68vKDVxJevVIZB154Rl4eJ2bN4sR7c8BqxT0oiJCJEwm8tXeFKb2eS4mdiIiIqzn6l7k+Xdphcz5dv1lwxa0XPHR53C9MWDsOK9nY84PwPDGY13p2p3+b2k6dHGVv/ZtjzzxD7p49AAR0707o88/hERzs4MgcS4mdiIiIK9n8uTmfzpoD1Rqdnk/X9LzD7HY741fO4Psj74PFwJpVn27VxjDp3qup6u+8zRH23FxOzIzm5Lx5YLPhXrUqoc8/R2DP8xdWroiU2ImIiLgCmxV+fA7+fMccN+lpdr5eYD7dvhPJDF46jmTLn2ABn+xOTOv2Ajc0rlnGQReekZdH1saNJLz8Cnn79gEQ2Ls3Ic8+g0dV523qKGsVMrFzsUZguQz6WRARl5B5Ar58CPavNcc3jDXXqDtnPp3VZuft1RuYt+cFLD6HMQw3rqn8MG/f+wS+Xs6VEuQnJpIdu5ns2FiyN28mZ9s2jNPbZ7pXD6bmiy8ScNNNDo7S+TjXp1jKzuyqkJWVdd42XFIx5eXlARR6gWcREadzbDN8fj+kHgKvSqfn0/U577DNh1IY9fUSEnxn4+aTgbvhz4sdX+P2K250QNBns+fmkrNtO9mbN5t/YmOxJiScd5x7UBAB3btTY/Qo3CtXLvtAy4EKldi5u7tTuXJljh8/DoCfn59TTwyV0mW320lKSsLPzw8Pjwr1V0FEXMWWL+GbYWDNhqoNzfl0NZqddUhGrpU3ftjFp9u/xCt0CW4WGzW8G/DhLe8QFljHQYFDVkwMaSt+NJ/G7dgB+flnH+DmhnfTpvhGtMa3tfnHq359/d7+FxXut1loaChAQXInFZubmxt169bVPxQiUr7YrPDTC/DHTHPcuDv0nwO+lc867IdtCTz/9RZSfBfhXfN3AG6o3ZXXb5yMn6dj9ko3DIOTs98jKSrqrNfdq1XDNyLCTOIiWuPbogVu/7I3upyvwiV2FouFmjVrUqNGDfLP/a8DqXC8vLxwu8CaTiIiTivjOCx6GOLXmOPrn4Yuz4Db/6aUHE3J5sVvtrFiVxy+tf+Ll38cAJERkTza6lHcLI75d8+em8uxic+R9u23AATeeiuVOnfGN6I1nrWde3mV8qLCJXZnuLu7a16ViIiUL3tXwuLHIfM4ePqb8+ma9y34ss1u8NHv+5m2YhfZliP41/8YN69k/Dz8ePX6V7mpruOaDaxJSRx68klyNm8BDw9CJ06kyj13OyweV1VhEzsREZFyw5YPP/8HfnvLHNdoAXfMO2s+3d9HUnlm8Va2HE7FI+BvKtX+EsOSS51KdXi769s0rtLYQcFDzvbtHHoiEmtCAm5BQdR56y2X2MPVGblMYhcdHU10dDQ2m83RoYiIiJSc5Hiz9Hpkozlu/wh0fxk8zdUdMnOtvPnjbub9Fo/dsBMQugqqrMAAOtbsyBs3vEFln8qOip60FSs4Om48RnY2XuHhhL37Dl716jksHldnMVxsIa+0tDSCgoJITU0lMDDQ0eGIiIgU39+L4NsRkJtmLjR8W/RZS5n8vDOR55Zs40hKNlhyaXDFt5wwNgDwf1f8H6PbjcbDzTHPcMwmidkkRZlPGf2vu47a06fhrt/NRVaU3MZlntiJiIi4jLxM+H4c/PWJOQ67GgbMhcphACSm5TDp2218t9Vc661mtUwC68/naFY8nm6ePHf1c/Rr3M9R0WPPyeHYsxNJW7YMgCoPPEDIuLFYtLRUqdN3WERExJkk/A0LB8GJ3YAFbhgDN44Ddw9sdoNP1x1g6vJdpOdacXezcGuHTDZkv83RrFSq+VQjqksUETUiHBZ+/vHjHH5yGDlbTjdJPPccVe6+y2HxVDRK7ERERJyBYUDMXPjhWbDlQkBNc6/XBjcAsP1oGs8s3krsoRQAWoUFcWPb3Xyy+21sho0W1VoQ1SWKUP9Qh91C9rZtHI58EmtCAu5BQdRWk0SZU2InIiLiaFnJ5g4SO5ea48Y94PZ3wD+YrDwrb/20h7m/xmOzG1Ty9mBU93D28wkf7loMQO/w3rx4zYv4ePg47BbSfljB0XHjMHJy1CThQErsREREHOnAH7DoEUg7DG6ecPNLcPVQsFj4ZedxJi7522yOAG5pGcrAG32YsWUSm5M242ZxY2SbkQxsMdBhi/sahsGJd9/lxNszgNNNEm9Oxz0gwCHxVHRK7ERERBzBboO102HVq2DYzb1e75gHtSJITMvhpW+3s2zrMQBqV/ZlfO+6/J31JY/9vACbYSPAM4CpN07lutrXOe4WcnI49syzpH33HQBVHnyAkLFqknAkfedFRETKWtpR+OpR2L/WHLe6B3q/gc2zEp/+sf+s5ohBnepRr/5mpm59gZTcFAC6hnVlTPsx1Amo47BbyE88zuEnnyRn61azSeL556hyl5okHE2JnYiISFnatRyWDIXsZHNbsFunQ+t7TjdH/F7QHNE6rDL/d2M+n8c9z4INuwFoVLkRY9uP5Zpa1zjwBk43STwRiTUx0WySePtt/Dt2cGhMYlJiJyIiUhasufDjC7DuXXNcszXc8QFZAfV467sdZzVHPHZTFeLtC3hp4woAArwCiIyI5O6mdztswWEw59Olf/89R5951mySaNjQbJKoW9dhMcnZlNiJiIiUthN7zbXpEraY46ufgG4v8sveVCbOWVPQHNHjyio0bBzDR3s+IdeWi5vFjTub3ElkRCRVfKo4LHzDZiP9x584+f77ZukV8L/+enMnCTVJOBUldiIiIqUp9jNYNhryM8GvGtz+LomhN/LSgm0FzRG1KvvQ77okViRE8ftOczeJdiHtGN9hPE2rNnVY6PacHFKXLOHkvA/IP3gQAIu3N1UHDqT68GFqknBC+kRERERKQ266mdBtWWCO61+Prd97fLo9j6n/XV3QHNGvIyR6fsTH+/4CoKZ/TUa3G033et0dtoSJLSWFU599RvIn87ElJwPgHhRElfvvp8r/3Y9H1aoOiUv+nRI7ERGRknb0L1g4GJLjwOIOXSawPfwRnpm/vaA54sowdxo1XcuKI99iYODj7sPgloMZ1GKQwxYazj96lOSPPuLUlwsxsrIA8KxVi6qDBlF5QH/c/PwcEpcUnhI7ERGRkmIY8Oc7ZpOEPR8C65Bz23u8uasqc9/543RzhIWuHfcQk7KAA0fSAehZvyej2o6iZqWaDgk7Z9cuTr7/PmnLvgObDQDvZs2o9vDDBPbqqZJrOaJPSkREpCRknjCXMdljdrLS7FbWXvEC4788zJGUOACuaXGCNP9F/JIUbx5StRnjO4ynbUjbMg/XMAyy1sdwcu5cMteuLXjd75qrqfbwI/h3utZhpWApPiV2IiIilyt+DSwaAhkJ4O5NWueXmHCgPcs+2wNAzWqZ1G/yE3+n/AHpUMW7CsPaDKN/o/64u7mXaagX6nDFzY3Anj2oOvhhfK9sUabxSMlyusTu0KFDPPDAAxw/fhwPDw+ee+457rzzTkeHJSIicj6bFVZPgTVvAAZGcFOWNnmZZ34ySM9NwN09j7atN7E3dxl/p+TjYfHgnmb38HjrxwnyDirTUC/W4Vp5QH+qPvSQ1qJzERbDMAxHB/FPx44dIzExkYiICBISEmjbti27d+/G39+/UO9PS0sjKCiI1NRUAgMDSzlaERGpsFIOwaJH4NCfAJxqdi+Pn7iTdYdzADvhDXZjDfyWU3knAbi21rWMaz+O8MrhZRqmLSWFU59/bna4njRjUYdr+VKU3MbpntjVrFmTmjXNyaOhoaEEBweTnJxc6MRORESk1G3/Br55EnJSMbwD+LrOWEZvaYTNnkOlwKPUavgDx3J2QR6EBYQxpt0YOod1LtM5a+pwrZjcSvqEa9asoU+fPtSqVQuLxcKSJUvOOyY6Opr69evj4+NDx44dWb9+/QXPtXHjRmw2G2FhYSUdpoiISNHlZ8PSUfDFA5CTSmq11txpvM6IbQ2xu6XSsPm3WGq/zbGcXfh5+DGizQiW3LaELnW7lFlSl7NrN0fHjWNv9x4kf/QxRlYW3s2aUev112m44geqPvB/SupcWIk/scvMzKR169YMHjyY/v37n/f1BQsWMGrUKGbNmkXHjh2JioqiR48e7Nq1ixo1ahQcl5yczIMPPsicOXNKOkQREZGiO77TXJvu+DYAVlS5lyeO9MJqgeDav0PlHzluN7cG69uwL0+1eYoafjUudcYSU9Dh+v5cMteow7UiK9U5dhaLhcWLF3P77bcXvNaxY0fat2/PzJkzAbDb7YSFhTFs2DDGjx8PQG5uLjfffDNDhgzhgQceuOQ1cnNzyc3NLRinpaURFhamOXYiIlIyDAM2fQzfjwNrNtle1Xgqdygrcq/AK2An1er9QIbN3AasZXBLxncYT6vqrcomNHW4VghOO8cuLy+PjRs3MmHChILX3Nzc6NatG3/88Qdg/lfHQw89RNeuXf81qQOYPHkykyZNKrWYRUSkAstJhW+fgm2LAfjLsw1D0oaQ7JVLjcafkO2xnQwbBPsGM6LNCPo07IObpcRnOZ3H7HD9mpMfzCP/gDpc5X/KNLE7ceIENpuNkJCQs14PCQlh586dAPz2228sWLCAVq1aFczP++STT2jZsuUFzzlhwgRGjRpVMD7zxE5EROSyHIqBRYMh5SA2izuv59/N7Lwu+NdcTUDl38jGhqebJw80f4BHWz2Kv2fJN/kZeXnkHTpE7r595MXFkxt35n/jChoi1OEq/+R0XbHXXXcddru90Md7e3vj7e1dihGJiEiFYrfD72/Bzy+D3coRSwhDc4ayIyiFKjWjyCcdO9C5TmfGtB9D3cDLfzpmS08nLy6O3Lh48uL2nf7fOPIOHizY4utcHrVqUu2hQVS+Y4CaIaRAmSZ2wcHBuLu7k5iYeNbriYmJhIaGlmUoIiIi50tPhMWPQdwvAHxru5pnPLrj1nAFPp6HyQcaBDVgXPtxdKrdqUinNgwDa2KimcDtiyMv/nQit28f1qSki77Pzc8Pr/BwvBuG49UgHK+G4XiHh+NVvz4W97LdtUKcX5kmdl5eXrRt25aVK1cWNFTY7XZWrlzJk08+eVnnjo6OJjo6GttF/stGRETkkvb+hLH4cSyZSWQbXozlLn6qkYpH4IfYgQDPAIZGDOWeZvfg6eZ50dOcWz7Niz+dyMXFYT9dPr0Qjxo1zAQuvAFe4Q3N/23YEI8aNdTRKoVW4oldRkYGe/fuLRjHx8cTGxtL1apVqVu3LqNGjWLgwIG0a9eODh06EBUVRWZmJoMGDbqs60ZGRhIZGVnQOSIiIlIo1jz4+T/w+9tYgM1GXR4L6EhW8J94WPKwYKF/4/4Mu2oY1XyrFbzt7PJpHLlxZvKWd+gQWK0Xvpa7O151655O4ML/8SSuAe4BAWVzv+LSSjyx27BhA126dCkYn2lsGDhwIB9++CF33303SUlJPP/88yQkJBAREcHy5cvPa6gQEREpdcnx2L4chPuxvzCAZ32u5tvgLPBcB0Cb6lcxvsEQ6p5yJ3fRchLOzH8ravk0vAHeDRviFRaGxcurjG5OKiKn2yv2cmmvWBERKZStC7F+8xQe+RlscAtkint9AjOTqXMSGqZ40zorGN8jJy9dPq1eHa+Gp8umDU4ncuHheISEqHwqJcZp17ErTZpjJyIi/8aWnk7e7u1kLJqMsWMDGeleJGTUJiDN4D/2E/84Mhs4hB3OKZ/+Y/5beLjKp+J09MRORERcimEYWI8fJ2/fvrOXD/mX8mmetzs+DRtSqVFTvMMbqnwqTqNCPrETEZGKxcjPJ+/gQbNp4czyIYXoPrX72okLdmNfdQtHqlmgfh3uunkk7Vr2UPlUyj0ldiIi4tRs6enkxccXJG2F7j4NC8OrYUPcaoeQfmglvt7bia4XwPdVzcV8g7yCGHbVMAY0GYCHm34dimvQT7KIiDjc+eXT/yVw1uPHL/q+M92nXuENLlg+3bRmGVVXDWdFs3w+CqxBnpsFN4s7dze9i8iISIK8tTyWuBaXSezUPCEi4vzOKp+es32WPTPzou/zqF79rOVD/q379HhKJutmPY2Ru5AxtYM47mE+pesY2pFxHcbRuErjUrtHEUdS84SIiJQ4W0bG/5667YsjN/70PLhClk/P6j5t0AD3Qv57brcbLF6zHvtvw/gmOIVYH3Mv8Vp+NRnbYRxd63bVPDopd9Q8ISIipa6gfBoXd978tyKXT8PD8apb97K6T3ccS+PTz2eQ7/Eh39X2xrB4423x4LGIJ3iwxYN4u3sX+9wi5YUSOxERuSQjP//svU+LWT49M/+tpBfvzcqz8taKzRzZNY6NVY+R4eYDwC21bmDUtc8T4q+djaTiUGInIiLARcqncfHkHTxY+PJpg3/sfVoG02F+2Xmcad+9S37AQo4GA7jRzD2QZ296k4iaHUr9+iLOxmUSOzVPiIj8uwuWT0/Pfyt8+TT8f5vYX2b5tLiOp+Uw7puf2Z/6BieqmYsOV7XZGdHkHm7r9CxuFrcyj0nEGah5QkTEBZ1fPv3f/LfClE/PXT7EWfY+tdsN5v2xk+gNb2EE/YbNAh6GwX0E8nifjwmo1sjRIYqUODVPiIhUEGeVT+PiyY3bV/jy6bnLh5RR+bS4th1NYdi373HSYyH2ytkAXJeVw9jGd9Og6yRwc3dwhCKOp8RORMTJnVU+PWf5kEuVTy1+fng3aIBXw3CnKJ8WV1aelYnLl/HD0Xdx8z0CQP28fMbkunND3/lQt6ODIxRxHkrsREScxJny6YWWD7lU+dS9evA/lg1xvvLp5Vi8dRv/+e0N8n034OYL/nY7Q0+lcl+tG/H8v5ngW8XRIYo4FSV2IiJlzJaRcXrv030uXz4trsOnUhm6NIp46zdYfPOwGAa3Z2QyPC2b4JtfgXaDoZwnrSKlwWUSO3XFiogzMcunSafXfDt7+RBrYuJF33ex8qln3bq4laPyaXHZbHYm/fwFiw/MAs+TWNygdU4uE06eokVQODz8AYQ0d3SYIk5LXbEiIpfhguXT+NOL92ZkXPR9FyyfhofjERpa7sunxbViTywT175CtvtOAKpYLYxNTqJ3ZhaWtg9Bj8ng5efYIEUcQF2xIiIl7NzyaV786USuqOXT8AZ4hYe7ZPm0uBIykon8bjK7slZgcbfjZndjYEYmjyefwM8rAO78EFr0c3SYIuWCEjsRkdPOK5/+Y/5bkcqnp+e/VZTyaXHZ7DZeWfsBC+PmYrhlYrFA67xAJifuIMxqg9rt4I73oUp9R4cqUm4osRORCues8mlcPHn79hW9fNogvCCRq8jl0+L6Me43nlv7CpkcAjfwya/Ga9lpdD35N2CB60ZCl2fB3dPRoYqUK0rsRMRlnSmfFsx/K2r5NLwBXuENVT4tQYfTjjDip5fZlf4rAIbNh9ssLXgxYTme1mzwrwH9Z0PDrg6OVKR8UmInIuVaQfk0Pu685UMKVT49Z/kQlU9LR7Y1m6l/vMuiffMxLPkYhoVqeVfzsXcK9eIXmwc1vAn6zYJKNRwbrEg5psRORMoFs3x6+PT8tyKWT8+UTf9ZPg0JweKmjeJLm2EYfLP3O17983Wy7CfBAkZ2OE/VuoVH4mZiOXoQ3DzgphfgmidBn4nIZXGZxE7r2Im4BltGJnnxcUUrn7q5meXThg3PLp82aIB7UFDZ3oAU2HFyBxNW/4d96VsBsOdXprnXfbwfnkbgHxPAsJmNEQPmQZ22jg1WxEVoHTsRKXMlWj4Nb4BnvXoqnzqR5Jxkpq6LYtn+JYCBYffEJ7MbUzreQ7cdkyBulXnglXfArW+Cj/6tFrkUrWMnIk7hvPLpP/c+LUr59HQip/Kpc8u35/PZjs94e9M75NrNvW2taa3oV+8xnu+Yjc/SOyHrBHj6wS2vQ8T92hZMpIQpsRORy3ZW+TQu/n+J3MGDkJ9/4TedWz79596nKp+WO78f+Z2X/pjMkcz9ANhyalLHfi9v3nYrLXa+BV/MMA8MuRLu+ACqN3FcsCIuTImdiBTKWeXT03ufnpn/Vujy6T/mv6l86hoOpR1i8vrXWHtkNQB2qz+WU70Yc83/8WBTC+5f3QVHN5kHd3gUbv4PePo4MGIR16bETkTOUlA+jf/H3qdFKZ8W7H2q8qkry8zPZM6WOXy47WNsRj6G4UZ+8jXcUP0+/jOkA6EHl8J7IyAvHXyrwG3R0Ky3o8MWcXlK7EQqKLN8+o+yaVHKp+es/abyacVhN+wsjVvK9A1vcjLnBADWjMYEZd/By7fcRLdGleC70RA733xD3WthwBwIquPAqEUqDiV2Ii7MMAysSUn/e+p2pnwaF481IeGi77P4+p7e+7ShyqdSYGvSViavn8zWE6eXL8mrRt7x3gxsfQsjb26Kf/J2mN0bTu4BixvcMAZuGAvu+lUjUlb0t03EBRhWK3kHD51dPo03N7G3p6df9H3uwcHmpvUqn8olJGUlEbUpim/2fQOAYfMi72RXmvnewqsPteHKWoGwfg6seBZseRBQy3xKV/86B0cuUvEosRMpR84vn55+EqfyqZSCPFse83fMZ/bm2WRZswDIT2mDR+qtPNutPf93dT3cc07B5/fDrmXmm5r0MufT+VdzYOQiFZfLJHbaeUJcxXnl03/Mf1P5VMqCYRisPrya12Ne52D6QQBs2WHkJPShR6MOvPBQC0KDfGD/b/DVEEg7Au5eZsdrx8e0Np2IA2nnCREHOat8enr+W7HLp+EN8AgNVflULltcahxT10/lt6O/AWC3BpB7vCc1LNfyUt+WdGseAnYbrHkdVr8Ghh2qNYI75kHN1g6OXsQ1aecJESdSUD49d/mQIpZPzUQuXOVTKRVpeWnM2jyLz3Z8htWwguFO7snrsCZ35eFrmzGiWxP8vT0g9Qh89Sgc+NV8Y8T90GsqeFdy7A2ICKDETqRE/K98+r89T4tVPj09/03lUykrNruNxXsXM+OvGSTnJANgTb+CnMTetAppyCtPtOTK2qf/Y2Lnd/D1E5B9Crwqmfu8trrLgdGLyLmU2IkUgWG1knfo0FnLhxS9fBpeMP9N5VNxpE2Jm5iyfgo7kncAYM+tTk5iH3ytzXmhZxMeuKY+7m4WyM+BH5+H9bPNN9aMMEuv1Ro6LngRuSAldiIXYM/MNLtOz10+5EDhyqf/m/+m8qk4n4TMBKZvmM73+783X7D7knP8JvJPXUPPFrV5oW9zagb5ml87sQcWDoIEc+06rnkSbnoBPPREWcQZKbGTCuvC5VPzSVyhyqfnLB+i8qk4uxxrDh9u+5B5f88j25oNWMg71Z68pO7UrBTMSw9eaTZHABgGxH4K342B/EzwC4Z+s6DxzQ69BxG5NCV24vLOK5/+I5H71/JpgwZ4NQxX+VTKNcMw+PHAj0zbMI2jmUfNF7MbkHnsVsirzcOdGjDy5tPNEQA5abBsFGz90hw3uBH6vwcBoY65AREpNCV24jLOKp/+c/7bv5RPPcPq/KNsqvKpuJZdybt4LeY1YhJiAPCwVyH9WE+saa1oXacyr/T7R3MEwJFNsHAwnIoHizt0fRY6jQA3d8fcgIgUiRI7KVf+WT49d/kQlU9F/iclJ4WZsTP5cveX2A077niSc+IG0k/cSCUvP57u84/mCAC7Hf6Mhp8mgT0fgsJgwPtQt6Njb0REikSJnTilgvJpfDy5+/apfCpSSFa7lS92fUF0bDRpeWkAeOREkHK4O0Z+VXq2CD27OQIgIwmWPA57fzLHV/SFvm+DbxUH3IGIXA4lduJQ9sxMcuP3n17zTeVTkcux7tg6pqyfwt6UvQD4U4ekA72wZTWkVpAPL932j+aIM+JWmQsOZySChw/0nAxtB2lbMJFySomdlDrDMLCdOGGWTS+zfOoV3gCv+vVVPhX5h8Pph3ljwxusPLgSAB+3AHISbybhRFvcLO48ct05zREAtnxYNRnWTgcMqN4M7vgAQpo75iZEpEQosZMSU2Ll09Pz31Q+Fbm0rPws5m6dy0fbPiLPnoebxZ2AvOs5HHcD2P1oVSeIV89tjgA4dQAWPQKH15vjtg9Bj8ng5Vfm9yAiJctlErvo6Giio6Ox2WyODsXlnVc+PZPAFal8Gm4+iWvQAPfKlcs0fpHyzjAMlsUv482Nb3I86zgAIZ4t2b+7G6k5IVTy9uDp7uc0R5yxbQl8MxxyU8E7CPq+BS36lf1NiEipsBiGYTg6iJKUlpZGUFAQqampBAYGOjqccuu88mlcPHn79pEbH4/12LGLvu+f5dN/zn9T+VSkZGw7uY0p66YQmxQLQDXvmmQn9CIxoTFguXBzBEB+NiyfABs/MMd1OsCAuVClXpnGLyJFV5TcxmWe2Enx/LN8mhf3z+2z4rGnpV30fQXl03OWD1H5VKR0nMg+wYy/ZrB4z2IMDHzcfQg1bmXr5tZgeF68OQLg+A74chAk7QAscN1I6PIMuHuW+X2ISOlSYldBFJRP4+POnv9WmPJpg/B/LB+i8qlIWcq35fPpzk+ZtXkWGfkZADQP6Mz2v69na5Y/bhYYfKHmCDC3Bdv4gfmkzpoDlULMHSTCO5f9jYhImVBi50IKyqdx8afnvxW+fOrVoP55y4d41auHm7d3Gd6BiPzT2sNrmRozlf1p+wEID2xKbmJf1u2oBnDx5giA7BT4djhs/9ocN7oZbn8XKlUvm+BFxCGU2JVDhtVK/uHDpxsXilA+rVbtf0/dzpRPwxvgUbOmyqciTmR/6n6mxkxl7ZG1AFT1rkoTr7v5JaYuVrvl0s0RAIfWw8KHIfUguHlAtxfh6kjQ33MRl6fEzoldqHyaFx9H3v4DGEUpn55O4FQ+FXFuGXkZzN4ym/k75mO1W/GweHBDaD82xLblx2TzmIs2RwDYbfDrm/DLq2DYoEp9uGMe1G5bpvchIo6jxM7BLlg+PbN4b5HKp+aTOJVPRcofu2Hn671fE7UpiuQcM4PrGNIJ28k+fP2zeUytIB8m3XYlN1+oOQIgPcHcQSJ+tTlueSf0ng4+Wh1ApCJRYldGziuf/mP+W6HLp+EN/rf3qcqnIi4h9ngsU9ZPYdvJbQDUC6xHu4CHWLQ2gPRcq9kc0ekizRFn7PkRFj8OWSfA0w9ueQMi7tO2YCIVkBK7EnZW+fT03qdFKp+eM/9N5VMR15SYmUjUpiiWxi0FwN/TnwHhg/htUzM+XJcBWC/dHAFgzYOVk+CPmeY4pKVZeq3epGxuQkScjhK7YjirfHru3qeXKp/6+Jhl03OWD1H5VKTiyLXl8vG2j5mzdQ7Z1mwsWLg1/DY803oz+5tkrPaMf2+OADi5DxY9DEf/MscdHoObXwJPn7K7GRFxOkrsiuHU/P+S+MorF/26e7Vqp/c+bajyqYgA5n8Q/nzoZ96IeYPDGYcBaF29NTeHPMacn/I5fOok8C/NEWds+RKWjoS8dPCtArdFQ7PeZXEbIuLklNgVg1e9umb5tE6dCy4fovKpiPzT3lN7mRIzhXXH1gFQw7cGD7d4kt9i6/LCmgSgEM0RALkZ8P1YiP2vOa7XCfrPgaDapX0LIlJOKLErBv+rr6bpX5tUPhWRS0rNTeWd2HdYsGsBNsOGl5sXDzZ/kIDcHkz+8gDpOQmFa44AOLYFFg6Gk3vA4gY3joMbxoCbe9ndkIg4PSV2xWDx8kK9ZiJyMTa7jYW7FzIzdiYpuSkAdA3rSv/6jxO1PJm/Du4D/mXniDMMA9a/Bysmgi0PAmrBgLlQv1MZ3ImIlDdK7ERESlBMQgxT1k9h96ndADSq3IgRVz3NH9uq8fDcOKx2A38vd8b0aHrp5giArGT4OhJ2fWeOm95izqfzq1oGdyIi5ZESOxGREnA04yjTNkxjxYEVAAR6BRIZEUkNSxee/WwHh0+ZT+kK1RwBsP9XWDQE0o+Cuxd0fwU6DNHadCJySUrsREQuQ7Y1m3l/z+ODvz8g15aLm8WNO5vcyd0NH+GtH4+ydMsmoJDNEQA2K6x5HdZMBcMO1Rqba9PVbFUGdyMi5Z1TJnb9+vVj1apV3HTTTSxcuNDR4YiInMcwDH7Y/wPTNk4jIdPsbG0X0o6x7caxca8v/aM3k55TyJ0jzkg9bD6lO/i7OY64H3pNBe9KpXw3IuIqnDKxe+qppxg8eDAfffSRo0MRETnPjpM7mLJ+CpuOm0/javrX5Ol2TxPm3ZFnvvibvw6mAIVsjjhj5zJzPl32KfAKgFvfhFZ3luJdiIgrcsrErnPnzqxatcrRYYiInCU5J5kZf81g0e5FGBj4uPswuOVg7mn8ILNXH+KJtb8VrTkCID8HfnzO7HwFqHWVWXqtGl76NyQiLqfEt0FYs2YNffr0oVatWlgsFpYsWXLeMdHR0dSvXx8fHx86duzI+vXrSzoMEZESk2/P55Ptn3DrV7eycPdCDAx61u/JN7d/wxU+A+gzYx2zVu/Dajfo2SKUn0bfyEOdGvx7Upe0G+Z2+19Sd82TMHiFkjoRKbYSf2KXmZlJ69atGTx4MP379z/v6wsWLGDUqFHMmjWLjh07EhUVRY8ePdi1axc1atQo6XBERC7L70d+57WY14hLjQOgWdVmjO8wnjDfFrz0zXaWbjH3hy50cwSYa9PF/he+GwP5WeAXDP1mQeObS/NWRKQCKPHErlevXvTq1euiX58+fTpDhgxh0KBBAMyaNYtly5Yxb948xo8fX+Tr5ebmkpubWzBOS0sretAiIuc4lHaIqRumsurQKgCqeFdheJvh3BZ+Ows2HOGh5auL3hwBkJMGy0bB1i/NcYMbof97EBBaavciIhVHmc6xy8vLY+PGjUyYMKHgNTc3N7p168Yff/xRrHNOnjyZSZMmlVSIIlLBZeZnMmfLHD7e/jH59nw8LB7c0+wehkYM5Wgy3PXeuuI1RwAc2QgLH4ZT8WBxh67PQqeR4Fbis2JEpIIq08TuxIkT2Gw2QkLOLlWEhISwc+fOgnG3bt3YvHkzmZmZ1KlThy+//JJrrrnmguecMGECo0aNKhinpaURFhZWOjcgIi7LbthZGreUqI1RJGUnAXBtrWsZ134cNf3q8dbKPcxdW8SdIwpOboc/ZsLKSWC3QlBduON9COtQynclIhWNU3bF/vTTT4U+1tvbG29v71KMRkRc3dakrUxZP4UtJ7YAEBYQxtj2Y7mxzo2s3p3Eg0tWc/hUNgA9WoTwYt8W/75zxBkZSbDkcdh7+t+15rdDn7fAt3LJ34iIVHhlmtgFBwfj7u5OYmLiWa8nJiYSGqr5JSJStpKykojaFMU3+74BwM/Dj0dbPcoDzR8gJdPOsM/+Kl5zxBn7foHFj0FGInj4QM8p0PYhbQsmIqWmTBM7Ly8v2rZty8qVK7n99tsBsNvtrFy5kieffPKyzh0dHU10dDQ2m60EIhURV5Zny2P+jvnM3jybLGsWAH0b9mVEmxFU8wnm0/UHeW35zuI1RwDY8uGXV+DXKMCA6lfAnR9AjStK7Z5ERKAUEruMjAz27t1bMI6Pjyc2NpaqVatSt25dRo0axcCBA2nXrh0dOnQgKiqKzMzMgi7Z4oqMjCQyMpK0tDSCggo5kVlEKhTDMFh9eDWvx7zOwfSDALQMbsn4DuNpVb0VOxPSeOzD39lU3OYIgFMHYNHDcDjGHLcbDD1eBc9Clm5FRC5DiSd2GzZsoEuXLgXjM40NAwcO5MMPP+Tuu+8mKSmJ559/noSEBCIiIli+fPl5DRUiIiUpLjWOqeun8tvR3wAI9g1mRJsR9GnYh9x8gynf7yx+c8QZ2xbDN09Bbip4B0Hft6HF7aVzQyIiF2AxDMNwdBAl6cwTu9TUVAIDAx0djog4WFpeGrM2z+KzHZ9hNax4unnyQPMHeLTVo/h7+rNq13EmLvm7+M0RAHlZsHw8bDq9v3WdDjBgLlSpVwp3JCIVTVFyG6fsii0OzbETkX+y2W0s3ruYGX/NIDknGYDOYZ0Z024MdQPrcjwth3Ffbrq85giAxO2wcBAk7QQscP0o6DwB3D1L+I5ERP6dntiJiMvZlLiJKeunsCN5BwANghowrv04OtXuhN1unNccMahTA0YVpTkCzG3BNsyDH54Baw5UCjF3kAjvXDo3JSIVVoV8YicikpCZwPQN0/l+//cABHgGMDRiKPc0uwdPN092JqTxzFdbC5ojWtYOYnL/IjZHAGSfgm+Gww5zmRQa3Qy3vwuVqpfg3YiIFJ0SOxEp93KsOXy47UPm/T2PbGs2Fiz0b9yf4W2GU9WnKtl5NqatLIHmCICD68yu19RD4OYJ3V6Eq5/QtmAi4hSU2IlIuWUYBj8e+JFpG6ZxNPMoAG1qtGF8h/FcUc1cM27VruM89/XfHEq+jOYIALsNfn0TfnkVDBtUaQB3zIPabUr0nkRELofLJHZqnhCpWHYl7+K1mNeISTDXiwvxC2F0u9H0rN8Ti8XC8fQcXvp2++U3RwCkHYPFj0L8GnPc8i7oPQ18NI9XRJyLmidEpFxJyUlhZuxMvtz9JXbDjre7N4OuHMSgFoPw8/QrueaIM3avMPd6zToJnv7Q+w1ofa+2BRORMqPmCRFxOVa7lS92fUF0bDRpeWkA3FzvZka3G03tSrUBSq45AsCaBysnwR8zzXFoS7jjAwhuXBK3IyJSKpTYiYjTW3dsHVPWT2FvirldYeMqjRnffjwdanYAIDvPxlsr95zVHPF0j6Y8WJzmCICT+2DhYDgWa447Pg43vwQe3iV0RyIipUOJnYg4rcPph3ljwxusPLgSgCDvIIZFDGNAkwF4uJn/fJVYc8QZmxfAslGQlwG+VeC2d6DZLSVyPyIipc1lEjs1T4i4jqz8LOZunctH2z4iz56Hu8Wdu5reRWREJEHeZln13OaImkE+TOrbgu4tQot30dwM+G4MbP7UHNfrBP3nQFDtkrglEZEyoeYJEXEahmGwLH4Zb258k+NZxwHoWLMj49qPo3EVc27bxZojRt7chErFaY4AOLbZLL2e3AsWN7hxPNzwNLi5l9StiYgUm5onRKTc2XZyG1PWTSE2KRaA2pVqM6bdGLrW7YrldAdqiTZHgLkt2LpZ8OPzYMuDwNrmU7r6nUrgjkREyp4SOxFxqBPZJ5jx1wwW71mMgYGvhy9DWg7hwRYP4u1uNitk59l4++c9zFlTQs0RAJkn4etI2G1uP0bT3nDbTPCrWkJ3JiJS9pTYiYhD5Nvy+XTnp8zaPIuM/AwAeof3ZmSbkYT4/28R4RJvjgDY/yssegTSj4G7N/R4Bdo/orXpRKTcU2InImVu7eG1TI2Zyv60/QA0r9acCR0mEFEjouCYEm+OALBZYc1UWPM6GHao1hju/MBco05ExAW4TGKnrlgR57c/dT9TY6ay9shaAKr6VGVEmxHc1ug23CxuQCk1RwCkHoZFQ+Dg7+b4qv+DXlPBy/9yb0tExGmoK1ZESl1GXgazt8xm/o75WO1WPCwe3H/F/TzW+jECvAIKjivx5oiCEy+DJU9ATgp4BUCfKGh5x+WdU0SkjKgrVkScgt2w8/Xer4naFEVyTjIA19e+njHtx9AgqEHBcaXSHAGQnwMrJkLMHHNcqw3c8T5UDb+c2xIRcVpK7ESkVMQej2XK+ilsO7kNgPqB9RnTfgw31LnhrONKpTkCIGmXuTZd4t/m+Nrh0PU58PC6vPOKiDgxJXYiUqISMxOJ2hTF0rilAPh7+jO09VDua3Yfnu6eBccdT8/hP0t38O3mo0AJNUeAuTbdX/Ph+7GQnwV+wdB/NjTqdnnnFREpB5TYiUiJyLXl8vG2j5mzdQ7Z1mwsWLi90e0MbzOcYN/gguPsdoPPYg4y5fsSbo4AyEmFpSPh70XmOLwz9JsNAZeZLIqIlBNK7ETkshiGwc+HfuaNmDc4nHEYgNbVWzOhwwRaBLc469hSa44AOLwRFg6ClANgcYeuE6HTCHBzu/xzi4iUE0rsRKTY9p7ay5SYKaw7tg6AGr41GNluJL0b9C7YBgxKsTkCwG6HP2bAypfAboXKdWHAPAhrf3nnFREph1wmsdM6diJlJzU3lXdi32HBrgXYDBtebl4MbDGQR1o+gp+n31nHllpzBEDGcVj8OOxbaY6b3w593gLfypd/bhGRckjr2IlIodnsNhbuXsjM2Jmk5KYAcFPdmxjdbjRhAWFnHVtqzRFn7PsZvnoMMo+Dhy/0mgJtBmpbMBFxOVrHTkRKXExCDFPWT2H3qd0ANKrciHEdxnF1zavPOq5UmyMAbPnwyyvwaxRgQI3mcMcHUKPZ5Z9bRKScU2InIpd0NOMo0zZMY8WBFQAEegUSGRHJXU3vwsPt7H9CSrU5AuDUflj0CByOMcftBkOPV8GzBMq6IiIuQImdiFxQtjWbeX/P44O/PyDXloubxY07m9xJZEQkVXyqnH1saTZHnPH3V/DtU5CbBj5B0HcGNL+tZM4tIuIilNiJyFkMw+CH/T8wbeM0EjITAGgX0o7xHcbTtGrT844v1eYIgLwsWD4eNn1kjsM6woC5ZveriIicRYmdiBTYcXIHU9ZPYdPxTQDU9K/J0+2e5uZ6N5+1fAmUQXMEQOI2c1uwpJ2ABa4fDZ0ngLv+6RIRuRD96ygiJOckM+OvGSzavQgDAx93Hwa3HMygFoPw8fA569hSb44Ac1uwDe/DD8+CNQcqhUL/9yD8xpI5v4iIi1JiJ1KB5dvz+Xzn57wb+y7p+ekA9Krfi1HtRhHqf/6Tt1JvjgDIPgXfDIMd35rjxt3h9nfBP/jS7xMRESV2IhXV70d+57WY14hLjQOgWdVmjO8wnrYhbc87tkyaIwAO/ml2vaYeAjdPuHkSdByqbcFERArJZRI77TwhUjiH0g4xdcNUVh1aBUAV7yoMbzOcfo364e7mft7xpd4cAWC3wdrpsGoyGDaoGg53zINaV5XcNUREKgDtPCFSQWTmZzJnyxw+3v4x+fZ8PCwe3NPsHoZGDCXQ6/y/K2XSHAGQdgy+GgL715rjVndD72ngHVCy1xERKae084SIFLAbdpbGLSVqYxRJ2UkAXFvrWsa1H0d45fDzj79Ac8RD1zZgVPcSbI44Y/cPsGQoZJ0ET38zoYu4t2SvISJSgSixE3FhW5O2MmX9FLac2AJAWEAYY9uP5cY6N563fAmUUXMEgDUXfpoEf0ab49BW5rZgwY1K9joiIhWMEjsRF5SUlUTUpii+2fcNAH4efjza6lEeaP4AXu5e5x1fZs0RACf3wcJBcGyzOe441GyS8PAu2euIiFRASuxEXEieLY/5O+Yze/NssqxZAPRt2JcRbUZQ3a/6Bd9TJs0RZ2xeAMtGQV4G+FY1lzFp2rPkryMiUkEpsRNxAYZhsPrwal6PeZ2D6QcBaBnckvEdxtOqeqsLvqfMmiMAcjPgu6dh82fmuN51MGAOBNYq+WuJiFRgSuxEyrm41Dimrp/Kb0d/AyDYN5iRbUdya/ituFnOX/+tTJsjAI7GmtuCJe8Di5u5Jdj1o+ECS6uIiMjlUWInUk6l5aUxa/MsPtvxGVbDiqebJw80f4BHWz2Kv6f/Bd+zKyGdCV9tKWiOuLJ2IJP7taJlnRJujgBzW7B1s+DH58GWB4F1YMBcqHdNyV9LREQAJXYi5Y7NbmPx3sXM+GsGyTnJAHQO68yYdmOoG1j3gu+5UHPE6O5NefCaeni4l8KuDpkn4esnYPdyc9zsVug7A/yqlvy1RESkgBI7kXJkU+Impqyfwo7kHQA0CGrAuPbj6FS700Xfs3p3EhOXbC1ojuje3GyOqFW5FJojAOLXmgsOpx8Dd2/o8Qq0fwQusLyKiIiULCV2IuVAQmYC0zdM5/v93wMQ4BnA0Iih3NPsHjzdPC/4ngs1R7zYtwU9SqM5AsBmhdWvwZrXAQOCm5jbgoW2LJ3riYjIeZTYiTixHGsOH277kHl/zyPbmo0FC/0b92d4m+FU9blwWbPMmyMAUg6ZT+kO/mGOr3oAer0GXhee6yciIqVDiZ2IEzIMgx8P/Mi0DdM4mmk+cWtTow3jO4znimpXXPR9ZdocccaOb+HrJyEnBbwCoE8UtLyj9K4nIiIX5TKJXXR0NNHR0dhsNkeHInJZdiXv4rWY14hJiAEg1D+U0W1H06N+jwtuAwYOaI4AyM+GFRMhZq45rt0WBrwPVRuUzvVERORfWQzDMBwdRElKS0sjKCiI1NRUAgMDHR2OSKGl5KQwM3YmX+7+Erthx9vdm0FXDmLwlYPx9bh4o0OZN0cAJO2CLwfB8W3muNNT0GUieJy/XZmIiFyeouQ2LvPETqS8stqtfLHrC6Jjo0nLSwOge73ujGo3itqVal/0fWXeHAHm2nR/fQLfj4P8LPCvDv1mQaNupXdNEREpNCV2Ig607tg6pqyfwt6UvQA0qdKE8R3G0z60/UXf45DmCICcVPh2BGz7yhyHd4F+syEgpPSuKSIiRaLETsQBDqcf5o0Nb7Dy4EoAgryDGBYxjAFNBuDhdvG/lrsS0nlm8VY2HjgFlFFzBMDhjbBwEKQcADcP6PocXDsc3Epp/p6IiBSLEjuRMpSVn8XcrXP5aNtH5NnzcLe4c1fTu4iMiCTI++LJmUOaIwDsdvj9bfj5P2C3QuW6cMcHUKdd6V1TRESKTYmdSBkwDINl8ct4c+ObHM86DkDHmh0Z134cjas0vuR7HdIcAZBxHBY/Bvt+Nsct+ptLmfiU8tNBEREpNiV2IqVs28ltTFk3hdikWABqV6rNmHZj6Fq360WXLwEHNUecsXclLH4cMo+Dhy/cMtVcdFjbgomIODUldiKl5ET2CWb8NYPFexZjYODr4cuQlkN4sMWDeLt7X/R9DmuOALDlm2XX394yxzWam6XXGs1K97oiIlIilNiJlLB8Wz6f7vyUWZtnkZGfAUDv8N6MbDOSEP9Ld5A6rDkCIDkeFj0MRzaa43YPQ49XwLOUS74iIlJilNiJlKC1h9cyNWYq+9P2A9C8WnMmdJhARI2IS77PYc0RZ/y9yFzKJDfNnEPXdyY071v61xURkRKlxE6kBOxP3c/UmKmsPbIWgKo+VRnRZgS3NboNN8ulE7PVu5N4bsnfHEzOAsqwOQIgL9NcbPivT8xx2NUwYI7Z/SoiIuWOEjuRy5CRl8HsLbOZv2M+VrsVD4sH919xP4+1fowAr4BLvtehzREACX+ba9Od2A1Y4Ian4cbx4K5/FkREyiv9Cy5SDHbDztd7vyZqUxTJOckAXF/7esa0H0ODoAaXfq8jmyPA3BYsZi788CzYciGgJvR/DxrcUPrXFhGRUqXETqSIYo/HMmX9FLad3AZA/cD6jGk/hhvq/Hti5NDmCICsZPhmGOxcao4b94Db3wH/4LK5voiIlColdiKFlJiZSNSmKJbGmUmRv6c/Q1sP5b5m9+Hp7nnJ9zq8OQLgwB+w6BFIOwxunnDzS3D1UK1NJyLiQpTYifyLXFsuH2/7mDlb55BtzcaChdsb3c7wNsMJ9v33J10ObY4AsNtg7XRY9SoYdqjaEO6YB7Uiyub6IiJSZpTYiVyEYRj8fOhn3oh5g8MZhwFoXb01EzpMoEVwi399//H0HF5euoNvHNUcAZB2FL56FPab3bq0ugd6vwHel27sEBGR8skpE7ulS5cyevRo7HY748aN45FHHnF0SFLB7D21lykxU1h3bB0ANXxrMLLdSHo36H3JbcDAbI74POYQU77fQZojmiPO2LUclgyF7GTw9Idbp0Pre8ru+iIiUuacLrGzWq2MGjWKX375haCgINq2bUu/fv2oVq2ao0OTCiA1N5V3Yt9hwa4F2AwbXm5eDGwxkEdaPoKfp9+/vt/hzREA1lz48QVY9645Dm1lbgsW3KjsYhAREYdwusRu/fr1tGjRgtq1awPQq1cvVqxYwb333uvgyMSV2ew2Fu5eyMzYmaTkpgBwU92bGN1uNGEBYf/6/uw8GzN+3sN7jmyOADix11ybLmGLOb76Cej2InhcfG9aERFxHSX+G2fNmjX06dOHWrVqYbFYWLJkyXnHREdHU79+fXx8fOjYsSPr168v+NrRo0cLkjqA2rVrc+TIkZIOU6RATEIMdy29i5fXvUxKbgqNKjdiTvc5RHWJKlRSt3p3Ej2i1vDOqn1Y7QY3Nw/hx1E3Mvi6BmWb1MV+BrNvMJM636pw7wLoOVlJnYhIBVLiT+wyMzNp3bo1gwcPpn///ud9fcGCBYwaNYpZs2bRsWNHoqKi6NGjB7t27aJGjRolHY7IRR3NOMq0DdNYcWAFAIFegURGRHJX07vwcPv3vxpO0RwBkJsOy0bDlgXmuP715oLDgbXKNg4REXG4Ek/sevXqRa9evS769enTpzNkyBAGDRoEwKxZs1i2bBnz5s1j/Pjx1KpV66wndEeOHKFDhw4XPV9ubi65ubkF47S0tBK4C3Fl2dZs5v09jw/+/oBcWy5uFjfubHInkRGRVPGp8q/vv1BzxMBr6zO6e9OybY4AOPoXLBwMyXFgcYPOz8D1o8DNvWzjEBERp1Cmv4Xy8vLYuHEjEyZMKHjNzc2Nbt268ccffwDQoUMH/v77b44cOUJQUBDff/89zz333EXPOXnyZCZNmlTqsUv5ZxgGP+z/gWkbp5GQmQBAu5B2jO8wnqZVmxbqHBdqjni1X0ta1alcWmFfmGHAn++YTRL2fAisAwPmQr1ryjYOERFxKmWa2J04cQKbzUZISMhZr4eEhLBz504zIA8Ppk2bRpcuXbDb7YwdO/aSHbETJkxg1KhRBeO0tDTCwv59XpRULDtO7mDK+ilsOr4JgFr+tRjdbjQ317v5X5cvASdqjgDIPAFLnoA9P5jjZrdC3xngV7Vs4xAREafjdF2xAH379qVv376FOtbb2xtvb00OlwtLzklmxl8zWLR7EQYGPu4+DG45mEEtBuHj4VOoc5y7c8TNzUOYVJY7R/xT/BpYNAQyEsDdG3q+Cu0e1rZgIiIClHFiFxwcjLu7O4mJiWe9npiYSGhoGU84F5eWb8/n852f827su6TnpwPQq34vRrUbRah/4X7WnKY5AsBmhdVTYM0bgAHBTc1twUKvLPtYRETEaZVpYufl5UXbtm1ZuXIlt99+OwB2u52VK1fy5JNPXta5o6OjiY6OxmazlUCkUp79fuR3Xot5jbjUOACaVW3G+A7jaRvStlDvd6rmCICUQ7DoETj0pzlu8yD0nAJe/mUfi4iIOLUS/y2VkZHB3r17C8bx8fHExsZStWpV6taty6hRoxg4cCDt2rWjQ4cOREVFkZmZWdAlW1yRkZFERkaSlpZGUFAZrvIvTuNQ2iGmbpjKqkOrAKjiXYXhbYbTr1E/3AvZJeo0zRFnbP8GvnkSclLBOxD6RMGVAxwTi4iIOL0ST+w2bNhAly5dCsZnGhsGDhzIhx9+yN13301SUhLPP/88CQkJREREsHz58vMaKkQKKzM/kzlb5vDx9o/Jt+fjYfHgnmb3MDRiKIFegYU6x7nNEX6nmyMGOqI5AiA/G354Fja8b45rt4M73ocq9cs+FhERKTcshmEYjg6iJJ15YpeamkpgYOF+qUv5ZDfsLI1bStTGKJKykwC4tta1jGs/jvDK4YU+j1M1RwAc32muTXd8mznuNAK6TgR3T8fEIyIiDlWU3MYpu2KLQ3PsKpatSVuZsn4KW06Ye6KGBYQxtv1YbqxzY6GWLwEna44Ac226TR/D9+PAmg3+1aHfbGh0k2PiERGRckdP7KRcScpKImpTFN/s+wYAPw8/Hm31KA80fwAvd69CncPpmiPAnEP37VOwbbE5btjVTOoqaZs9EZGKrkI+sRPXlmfLY/6O+czePJssq1ky7duwLyPajKC6X/VCn8fpmiMADsXAosGQchDcPKDrc3DtcHBzwNw+EREp15TYiVMzDIPVh1fzeszrHEw/CEDL4JaM7zCeVtVbFfo8TtccAWC3w+9vwc8vg90KleuZa9PVaeeYeEREpNxTYidOKy41jqnrp/Lb0d8ACPYNZmTbkdwafitulsInY07XHAGQngiLH4O4X8xxi/7mUiY+WqpHRESKz2USOzVPuI60vDRmbZ7FZzs+w2pY8XTz5IHmD/Boq0fx9yz8orznNkeEBvow6TYHNkecsfcnWPw4ZCaBhy/cMhWuekDbgomIyGVT84Q4DZvdxuK9i5nx1wySc5IB6BzWmTHtxlA3sG6hz+OUzREA1jz4+T/w+9vmOORKs/RavanjYhIREaen5gkpdzYlbmLK+insSN4BQIOgBoxrP45OtTsV6TxO2RwBkBwPix6GIxvNcfsh0P1l8PRxbFwiIuJSlNiJQyVkJjB9w3S+3/89AAGeAQyNGMo9ze7B063wC/Lm5Nt4e6WTNUecsXUhLB0JuWngUxlumwlX9HFsTCIi4pKU2IlD5Fhz+HDbh8z7ex7Z1mwsWBjQZADDrhpGVZ+qRTqXUzZHAORlwvdj4a/55rjuNdB/DlQOc2xcIiLislwmsVPzRPlgGAY/HviRaRumcTTTbGpoU6MN4zuM54pqVxTpXEnpufxn6Xbna44ASPgbFg6CE7sBC9w4Fm4YC+4u81dORESckJonpMzsSt7FazGvEZMQA0Cofyij246mR/0ehd4GDJy4OQLMbcFi5sIPz4ItFwJqmk/pGlzv2LhERKTcUvOEOJWUnBRmxs7ky91fYjfseLt7M+jKQQy+cjC+HkUrlzptcwRAVjJ8Mwx2LjXHTXrCbe+AfzXHxiUiIhWGEjspNVa7lS92fUF0bDRpeWkAdK/XnVHtRlG7Uu0incupmyMADvwOi4ZA2mFw94KbX4KOj2ttOhERKVNK7KRUrDu2jinrp7A3ZS8ATao0YXyH8bQPbV/kc53bHNHtihBeus0JmiMA7DZY8wasngKGHao2NNemqxXh6MhERKQCUmInJepw+mHe2PAGKw+uBCDIO4hhEcMY0GQAHm5F+3Fz6uYIgNQj8NWjcOBXc9z6XrjldfAOcGxcIiJSYblMYqeuWMfKys9i7ta5fLTtI/Lsebhb3Lmr6V1ERkQS5F20/U+dujnijF3fw5InIDsZvCpB7+nQ+m5HRyUiIhWcumLlshiGwbL4Zby58U2OZx0HoGPNjoxrP47GVRoX+XxO3RwBYM2FH1+Ade+a45qt4Y4PoFpDx8YlIiIuS12xUia2ndzGlHVTiE2KBaB2pdqMaT+GrmFdi7R8CZSD5giAE3vNtekStpjjqyOh2wvg4e3YuERERE5TYidFdiL7BDP+msHiPYsxMPD18GVIyyE82OJBvN2LnuQ4dXPEGbGfwbLRkJ8JftXg9lnQpLujoxIRETmLEjsptHxbPp/u/JRZm2eRkZ8BQO/w3oxsM5IQ/5Ain8/pmyMActPNhG7LAnNc/3pzweHAmo6NS0RE5AKU2EmhrD28lqkxU9mfth+A5tWaM6HDBCJqRBT5XOWiOQLg6F+wcDAkx4HFHbpMgOtGgZu7oyMTERG5ICf6LSrOaH/qfqbGTGXtkbUAVPWpyog2I7it0W24WYo+983pmyMA7Hb48x346UWw50NQGAyYC3WvdnRkIiIil6TETi4oIy+D2VtmM3/HfKx2Kx4WD+6/4n4ea/0YAV5FX6etXDRHAGSegCVDYc8Kc3xFH+g7A3yrODYuERGRQnCZxE7r2JUMu2Hn671fE7UpiuScZACur309Y9qPoUFQg2Kdc83uJCae0xwx6bYW1Ham5giAuNXmgsMZCeDuDT0nQ7vB2hZMRETKDa1jJwVij8cyZf0Utp3cBkD9wPqMaT+GG+rcUKzzJaXn8vKy7Xwd68TNEQA2K6x6FdZOBwwIbgp3fgAhLRwdmYiIiNaxk6JJzEwkalMUS+OWAuDv6c/Q1kO5r9l9eLp7Fvl8drvBgg2HmPydkzdHAKQchEWPwKF15rjNQOg5Bbz8HBuXiIhIMTjZb1kpS7m2XD7e9jFzts4h25qNBQu3N7qd4W2GE+wbXKxz7k5M55mvtrLBmZsjztj+NXwzDHJSwTsQ+rwFV/Z3dFQiIiLFpsSuAjIMg58P/cwbMW9wOOMwAK2rt2ZChwm0CC5e+bHcNEcA5GfD8gmw8QNzXLsd3PE+VKnv0LBEREQulxK7Cmbvqb1MiZnCumNm6bGGbw1GthtJ7wa9i7wN2BnlpjkC4PgOc22649sBC1w3Aro8C8UoOYuIiDgbJXYVRGpuKu/EvsOCXQuwGTa83LwY2GIgj7R8BD/P4s0nKzfNEQCGAZs+gu/HgzUb/GtA/9nQsKujIxMRESkxSuxcnM1uY+HuhcyMnUlKbgoAN9W9idHtRhMWEFasc5ar5giA7BT49inYvsQcN7wJ+s2CSjUcGZWIiEiJc8LfwlJSYhJimLJ+CrtP7QagUeVGjOswjqtrFn8HhXObI1rUCmRyfydtjgA4FAOLBpvdr24ecNMLcM2T4OZk8/5ERERKgBI7F3Q04yjTNkxjxQFz94RAr0AiIyK5q+ldeLgV7yPPybcx4+c9zF79v+aIUTc34aFr6ztfcwSY24L9FgU/vwyGzWyMGDAP6rR1dGQiIiKlxmUSO+08AdnWbOb9PY8P/v6AXFsubhY37mxyJ5ERkVTxKf6WWOWqOQIgPREWPwpxq8zxlQPg1ijw0YLVIiLi2rTzhAswDIMf9v/AtI3TSMhMAKB9aHvGtR9H06pNi33ectUcccaen2DxY5B1Ajz9oNdUuOr/tC2YiIiUW9p5ogLZcXIHU9ZPYdPxTQDU8q/F6HajubnezcVevqTcNUcAWPPg55fg9xnmOORKuGMeVC9+YisiIlLeOOlvafk3yTnJzPhrBot2L8LAwMfdh8EtBzOoxSB8PHyKfd5y1xwBkBwHCx+Go2ZyS/sh0P1l8Cz+90FERKQ8UmJXzuTb8/l85+e8G/su6fnpAPSq34tR7UYR6l/8Emm5a444Y+tC+HYE5KWDT2W4LRquuNXRUYmIiDiEErty5Pcjv/NazGvEpcYB0KxqM8Z3GE/bkMvr9Dy/OaIGk2670nmbIwDyMuG7sRA73xzXvRYGzIGgOo6NS0RExIGU2JUDh9IOMXXDVFYdWgVAFe8qDG8znH6N+uHu5l7s816oOeLFvi3o0SKk2PPzysSxLea2YCf3gMUNbhgDN4wFd/04i4hIxabfhE4sMz+TOVvm8PH2j8m35+Nh8eCeZvcwNGIogV7F7/g9tznCYoGB19RndPcmBPg48Z6phgHr58CKiWDLhYBa5lO6+tc5OjIRERGnoMTOCdkNO0vjlhK1MYqk7CQArq11LePajyO8cvhlnftCzRGv9mtJ67DKlxt26cpKhq+fhF3LzHGTXuZ8Ov9qjo1LRETEiSixczJbk7YyZf0UtpzYAkBYQBhj24/lxjo3XlZ5tNw2RwAc+B0WPQJpR8DdC27+D3R8TGvTiYiInEOJnZNIykoialMU3+z7BgA/Dz8ebfUoDzR/AC93r8s6d7lsjgCw22DN67D6NTDsUK2RuTZdzdaOjkxERMQpKbFzsDxbHvN3zGf25tlkWc3Eq2/DvoxoM4LqftUv69zltjkCIPUIfPUoHPjVHEfcb+4i4V3JsXGJiIg4MSV2DmIYBqsPr+b1mNc5mH4QgJbBLRnfYTytqre6rHOX2+aIM3Z+B18/AdmnwKsS3PomtLrL0VGJiIg4PSV2DhCXGsfU9VP57ehvAAT7BjOy7UhuDb8VN8vlzXcrt80RAPk58OPzsH62Oa4ZYZZeqzV0aFgiIiLlhcskdtHR0URHR2Oz2RwdykWl5aUxa/MsPtvxGVbDiqebJw80f4BHWz2Kv6f/ZZ27XDdHAJzYAwsHQcJWc3zNk3DTC+BxefMLRUREKhKLYRiGo4MoSWlpaQQFBZGamkpgYPHXeitJNruNxXsXM+OvGSTnJAPQOawzY9qNoW5g3cs+/9o9STy7uBw2R4C5Nl3sp/DdGMjPBL9qcPssaNLd0ZGJiIg4haLkNi7zxM5ZbUrcxJT1U9iRvAOA8KBwxrYfS6fanS773OW6OQIgJw2WjYKtX5rjBjdAv/cgsKZj4xIRESmnlNiVkoTMBKZvmM73+78HIMAzgKERQ7mn2T14ul1eA0O5b44AOLLJ3BbsVDxY3KHLM3DdSLiMLdJEREQqOiV2JSzHmsOH2z5k3t/zyLZmY8HCgCYDGHbVMKr6VL3s85fr5ggAux3+jIafJoE9H4LCYMD7ULejoyMTEREp95TYlRDDMPjxwI9M2zCNo5lmabRNjTaM7zCeK6pdcdnnL/fNEQAZSbBkKOz90Rxf0Rf6vg2+VRwbl4iIiItQYlcCdiXv4rWY14hJiAEg1D+U0W1H06N+jxKZ61aumyPOiFtlLjickQgePtBzMrQdpG3BRERESpASu8uQkpPCzNiZfLn7S+yGHW93bwZdOYjBVw7G1+Pyk65y3xwBYMuHVZNh7XTAgOrN4I4PIKS5oyMTERFxOUrsisFqt/LFri+Ijo0mLS8NgO71ujOq3ShqV6p92ed3ieYIgFMHYNEjcHi9OW77EPSYDF5+Dg1LRETEVSmxK4bo2Gjmbp0LQJMqTRjfYTztQ9uXyLnLfXPEGduWwDfDITcVvIOg71vQop+joxIREXFpSuyK4d5m9/Jd3HcMvnIwA5oMwMPt8r+NLtEcAZCfDcsnwMYPzHGd9mbXa5V6jo1LRESkAlBiVww1/GqwrP+yEknowEWaIwCO74AvB0HSDsBirkvX5RlwL0flYxERkXJMiV0xlURS5xLNEWBuC7bxA/NJnTUHKoVAv9nQsIujIxMREalQlNg5gMs0RwBkp8C3w2H71+a4UTdzr9dK1R0aloiISEWkxK6MuUxzBMCh9bDwYUg9CG4e0O1FuDoS3MrRnEAREREXosSujLhMcwSA3Qa/vgm/vAqGDarUhzvmQe22jo5MRESkQlNiVwbW7kli4pK/OXCynDdHAKQnmDtIxK82xy3vhN7TwSfQsXGJiIiIErvS5DLNEWfs+REWPw5ZJ8DTD255AyLu07ZgIiIiTsIpE7t+/fqxatUqbrrpJhYuXOjocIrMpZojAKx5sHIS/DHTHIe0NEuv1Zs4Ni4RERE5i1Mmdk899RSDBw/mo48+cnQoReZSzREAJ/fBoofh6F/muMNjcPNL4Onj2LhERETkPE6Z2HXu3JlVq1Y5OowicanmiDO2fAlLR0JeOvhWgduioVlvR0clIiIiF1HkjGPNmjX06dOHWrVqYbFYWLJkyXnHREdHU79+fXx8fOjYsSPr168viVid1to9SfSIWkP0L/uw2g26XVGDH0fdyCPXh5fPpC43A5Y8AV89YiZ1da+Fx39TUiciIuLkivzELjMzk9atWzN48GD69+9/3tcXLFjAqFGjmDVrFh07diQqKooePXqwa9cuatSoAUBERARWq/W8965YsYJatWoV4zYc40RGLv9Z6kLNEQDHtsDCwXByD1jc4IaxcMMYcHfKh7siIiLyD0X+bd2rVy969ep10a9Pnz6dIUOGMGjQIABmzZrFsmXLmDdvHuPHjwcgNja2eNFeQG5uLrm5uQXjtLS0Ejv3xdjtBl9sOMTk73eSmp1f/psjwNwWbP17sGIi2PIgoBYMmAP1r3N0ZCIiIlJIJfoYJi8vj40bNzJhwoSC19zc3OjWrRt//PFHSV6qwOTJk5k0aVKpnPtipv24i+hf9gEu0BwBkJUMX0fCru/McZNecPs74FfVsXGJiIhIkZToBLATJ05gs9kICQk56/WQkBASEhIKfZ5u3bpx55138t1331GnTp1LJoUTJkwgNTW14M+hQ4eKHX9h3dexHsGVvJnY+wq+juxUvpO6/b/Cu53MpM7dC3pNhXs/U1InIiJSDjnlxKmffvqp0Md6e3vj7e1ditGcr3ZlX34d1wUfT/cyvW6JsllhzeuwZioYdqjW2FybrmYrR0cmIiIixVSiiV1wcDDu7u4kJiae9XpiYiKhoaEleSmHK9dJXephWDQEDv5ujiPuN5/UeVdybFwiIiJyWUq0FOvl5UXbtm1ZuXJlwWt2u52VK1dyzTXXlOSlzhMdHU3z5s1p3759qV6n3Nu5DGZdZyZ1XgHQf645n05JnYiISLlX5Cd2GRkZ7N27t2AcHx9PbGwsVatWpW7duowaNYqBAwfSrl07OnToQFRUFJmZmQVdsqUlMjKSyMhI0tLSCAoKKtVrlUv5OfDjc2bnK0Ctq8zSa9Vwx8YlIiIiJabIid2GDRvo0qVLwXjUqFEADBw4kA8//JC7776bpKQknn/+eRISEoiIiGD58uXnNVRIGTqxB74cBIlbzfE1T8JNL4CHl2PjEhERkRJlMQzDcHQQJenME7vU1FQCAwMdHY5jGQbE/he+GwP5WeAXDP1mQeObHR2ZiIiIFFJRchun7IotjujoaKKjo7HZbI4OxTnkpMGyUbD1S3Pc4Ebo/x4EuFYTi4iIiPyPnti5oiMbYeHDcCoeLO7Q9VnoNBLcyuG+tSIiIhVchXxiJ4DdDn/MhJWTwG6FoLowYC7U7ejoyERERKQMKLFzFRlJsORx2Ht6cefmt0Gft8G3skPDEhERkbKjxM4V7PsFFj8GGYng4QM9p0Dbh8BicXRkIiIiUoZcJrGrkM0Ttnz45RX4NQowoPoV5tp0Ic0dHZmIiIg4gJonyqtTB2DRw3A4xhy3HQQ9XgUvP8fGJSIiIiVKzROubtti+OYpyE0F7yDo+za0uN3RUYmIiIiDKbErT/KyYPl42PSROa7Twex6rVLPsXGJiIiIU1BiV14kboeFgyBpJ2CB60dB5wng7unoyERERMRJuExi57LNE4YBGz+A5RPAmgOVQswdJMI7OzoyERERcTJqnnBm2afgm+Gw4xtz3OhmuP1dqFTdsXGJiIhImVHzhCs4uM7sek09BG6e0O1FuPoJbQsmIiIiF6XEztnYbfDrm/DLq2DYoEoDc2262m0cHZmIiIg4OSV2ziTtGCx+FOLXmOOWd0Lv6eBTzkvKIiIiUiaU2DmL3SvMvV6zToKnH9zyBkTcp23BREREpNBcJrErt12x1jxYOQn+mGmOQ1vCHR9AcGPHxiUiIiLljrpiHenkPlg4GI7FmuOOj0O3SeDp49CwRERExHmoK7Y82LwAlo2CvAzwrQK3vQPNbnF0VCIiIlKOKbEra7kZ8N0Y2PypOa7XCfrPgaDajo1LREREyj0ldmXp2Gaz9HpyL1jc4MbxcMPT4Obu6MhERETEBSixKwuGAetmw4/PgS0PAmubT+nqd3J0ZCIiIuJClNiVtsyT8HUk7P7eHDftDbfNBL+qjo1LREREXI4Su9K0/1dYNATSj4K7N/R4Bdo/orXpREREpFS4TGLnVOvY2aywZiqseR0MO1RrDHd+YK5RJyIiIlJKtI5dSUs9bD6lO/i7OY74P7hlKnj5l30sIiIiUu5pHTtH2bkMljwBOSngFQB9oqDlHY6OSkRERCoIJXYlIT8HVkyEmDnmuNZVcMc8qBru2LhERESkQlFid7mSdplr0yX+bY6vHQZdnwcPL8fGJSIiIhWOErviMgz4az58Pxbys8AvGPrNhsbdHB2ZiIiIVFBK7IojJxWWjoS/F5nj8M5mUhcQ6tCwREREpGJTYlcca6ebSZ3FHbpOhE4jwM3N0VGJiIhIBafErjhuHGvOqbtxHIR1cHQ0IiIiIoASu+Lx8of/W+ToKERERETO4jL1w+joaJo3b0779u0dHYqIiIiIQ2jnCREREREnVpTcxmWe2ImIiIhUdErsRERERFyEEjsRERERF6HETkRERMRFKLETERERcRFK7ERERERchBI7ERERERehxE5ERETERSixExEREXERSuxEREREXIQSOxEREREXocRORERExEW4TGIXHR1N8+bNad++vaNDEREREXEIi2EYhqODKElpaWkEBQWRmppKYGCgo8MRERERuSxFyW08yiimMnMmT01LS3NwJCIiIiKX70xOU5hncS6X2KWnpwMQFhbm4EhERERESk56ejpBQUGXPMblSrF2u52jR48SEBCAxWKhffv2xMTEXPDYi33tQq+f+1paWhphYWEcOnTIISXfS91XaZ+nsO/5t+P02ZT8efTZXJo+m4u/ps9Gn83F6LO5+Otl9dkYhkF6ejq1atXCze3S7REu98TOzc2NOnXqFIzd3d0v+s2+2Ncu9PrFjg0MDHTIX7RL3Vdpn6ew7/m34/TZlPx59Nlcmj6bfz9Wn03xj9NnU/LncbbP5mKvl8Vn829P6s5wma7Yi4mMjCzy1y70+qXO4wglFU9xzlPY9/zbcfpsSv48+mwuTZ9N0eMpK/psih5PWdFnU7yYHMXlSrFlRd23zkufjfPSZ+O89Nk4L302zssZPxuXf2JXWry9vXnhhRfw9vZ2dChyDn02zkufjfPSZ+O89Nk4L2f8bPTETkRERMRF6ImdiIiIiItQYiciIiLiIpTYiYiIiLgIJXYiIiIiLkKJXQk7dOgQnTt3pnnz5rRq1Yovv/zS0SHJaSkpKbRr146IiAiuvPJK5syZ4+iQ5BxZWVnUq1ePp59+2tGhyD/Ur1+fVq1aERERQZcuXRwdjvxDfHw8Xbp0oXnz5rRs2ZLMzExHhySn7fr/9u4mJIo/DgP4Y5qYioUu+IIvS5AhpbNouyo4CSqKkecOkS+HDhFdxEAICkF2QTwEogcvgqCgHjKvYsJaGuKK9gKVgokHHYktcxcy3P11qP+SZvzXXGfGmecDe9jfLu4jDyNfZ/bHvH8Pm80Wepw5cwajo6PH/rncFRth6+vrUBQFNpsNGxsbKCoqwocPH5CQkKB1NNMLBALY2dlBfHw8/H4/Ll++jLm5OaSkpGgdjX558OABlpeXkZWVhc7OTq3j0C9WqxVv3rxBYmKi1lFon/LycrS3t0OWZXi9XiQlJSEmxnA3lTrxfD4frFYrVldXj30e4Bm7CEtPT4fNZgMApKWlwWKxwOv1ahuKAPy8DUx8fDwAYGdnB0II8P8a/VhaWsK7d+9QW1urdRSiE+Ht27c4ffo0ZFkGACQnJ3Oo06mxsTFUVlaqcpKHg90+brcbdXV1yMjIQFRU1IGnTbu7u2G1WhEXF4fi4mLMzs4e+LM8Hg8CgQCysrKOObU5RKKbL1++QJIkZGZm4v79+7BYLCqlN7ZIdNPS0gKXy6VSYvOIRDdRUVEoLy+H3W7HwMCASsmN76jdLC0tITExEXV1dSgsLITT6VQxvfFFch4YHh7GjRs3jjnxTxzs9vH7/ZAkCd3d3Qe+PjQ0hObmZjx69Ajz8/OQJAk1NTXY3Nzc8z6v14v6+nr09vaqEdsUItHNuXPnsLi4iJWVFQwODkJRFLXiG9pRu3n69Clyc3ORm5urZmxTiMRx8/z5c3g8HoyNjcHpdOLVq1dqxTe0o3azu7uLqakp9PT0YGZmBuPj4xgfH1fzVzC0SM0DX79+xfT0NK5du6ZGbEDQXwEQT5482bPmcDjE3bt3Q88DgYDIyMgQLpcrtPbt2zchy7Lo7+9XK6rp/Gs3v7tz544YGRk5zpim9C/dtLa2iszMTJGTkyNSUlJEUlKSaGtrUzO2KUTiuGlpaRF9fX3HmNKc/qWb6elpUV1dHXq9o6NDdHR0qJLXbI5y7PT394ubN2+qEVMIIQTP2B3C9+/f4fF4UFVVFVo7deoUqqqqMDMzAwAQQqCxsREVFRW4deuWVlFNJ5xuFEXB9vY2AGBrawtutxsXL17UJK+ZhNONy+XC2toaPn78iM7OTty+fRsPHz7UKrJphNON3+8PHTc+nw/Pnj3DpUuXNMlrJuF0Y7fbsbm5ic+fPyMYDMLtdiMvL0+ryKYSTj//UfMyLMBLsYfy6dMnBAIBpKam7llPTU3FxsYGAODFixcYGhrC6OhoaIvz69evtYhrKuF0s7q6ClmWIUkSZFnGvXv3kJ+fr0VcUwmnG9JGON0oioKysjJIkoSSkhLU19fDbrdrEddUwukmJiYGTqcTV69eRUFBAS5cuIDr169rEdd0wv27trW1hdnZWdTU1KiWjdtnIqysrAzBYFDrGHQAh8OBhYUFrWPQ/2hsbNQ6Av3m/PnzWFxc1DoG/UVtbS13kuvY2bNnVf8uN8/YHYLFYkF0dPQfJSmKgrS0NI1SEcBu9Izd6Be70S92o2967oeD3SHExsaiqKgIExMTobVgMIiJiQmUlpZqmIzYjX6xG/1iN/rFbvRNz/3wUuw+Pp8Py8vLoecrKytYWFhAcnIysrOz0dzcjIaGBly5cgUOhwOPHz+G3+9HU1OThqnNgd3oF7vRL3ajX+xG305sP6rtvz0hJicnBYA/Hg0NDaH3dHV1iezsbBEbGyscDod4+fKldoFNhN3oF7vRL3ajX+xG305qP7xXLBEREZFB8Dt2RERERAbBwY6IiIjIIDjYERERERkEBzsiIiIig+BgR0RERGQQHOyIiIiIDIKDHREREZFBcLAjIiIiMggOdkREREQGwcGOiIiIyCA42BEREREZBAc7IiIiIoPgYEdERERkED8Aat0iC/vZcmkAAAAASUVORK5CYII=", - "text/plain": [ - "<Figure size 640x480 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "#### Instrumentation\n", - "\n", - "# Instrument multiply function\n", - "nsamples_vec = np.linspace(100, 10000000, 10)\n", - "\n", - "xs = []\n", - "results_vec = []\n", - "\n", - "run_num = 10\n", - "\n", - "for n in nsamples_vec:\n", - " n = int(n)\n", - " xs.append(n)\n", - "\n", - " rho1 = np.random.uniform(0.5, 1.5, size=n).astype(np.float32)\n", - " theta1 = np.random.uniform(-np.pi, np.pi, size=n).astype(np.float32)\n", - " rho2 = np.random.uniform(0.5, 1.5, size=n).astype(np.float32)\n", - " theta2 = np.random.uniform(-np.pi, np.pi, size=n).astype(np.float32)\n", - "\n", - " my_function_partial = partial(dist_vec, rho1, theta1, rho1, theta1)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_vec = np.min(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(dist_vec_par, rho1, theta1, rho1, theta1)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_vec_par = np.min(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(dist, rho1, theta1, rho1, theta1)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res = np.min(runtime) * 10**3\n", - "\n", - " my_function_partial = partial(dist_gpu, rho1, theta1, rho1, theta1)\n", - " runtime = timeit.repeat(my_function_partial, number=run_num, repeat=7)\n", - " res_gpu = np.min(runtime) * 10**3\n", - "\n", - " results_vec.append((res, res_vec, res_vec_par, res_gpu))\n", - "\n", - "normal = list(zip(*results_vec))[0]\n", - "cpu = list(zip(*results_vec))[1]\n", - "par_cpu = list(zip(*results_vec))[2]\n", - "gpu = list(zip(*results_vec))[3]\n", - "\n", - "# fig, axs = plt.subplots(4, 1, figsize=(10, 40))\n", - "plt.semilogx(nsamples_vec, normal, label='Baseline')\n", - "plt.semilogx(nsamples_vec, cpu, label='CPU')\n", - "plt.semilogx(nsamples_vec, par_cpu, label='Parallel CPU')\n", - "plt.loglog(nsamples_vec, gpu, label='GPU')\n", - "plt.legend()\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "s3Q--VlCeBbJ", - "metadata": { - "id": "s3Q--VlCeBbJ" - }, - "source": [ - "Observations: As we can see from this graph, a more complex set of function was advantageous when using GPU as an accelerator, as opposed to the baseline implementation. The parallel CPU was also faster compared to the Baseline and the CPU (SIMD) vectorizations. The baseline was probably better than the CPU because numpy also performs some vectorizations on its own." - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "gpuType": "T4", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.10" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/task5-lab2.jpg b/lab2/task5-lab2.jpg similarity index 100% rename from task5-lab2.jpg rename to lab2/task5-lab2.jpg diff --git a/pdf/Lab4.pdf b/lab4/Lab4.pdf similarity index 100% rename from pdf/Lab4.pdf rename to lab4/Lab4.pdf